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Abstract
The estimation of the energy performance of residential buildings has gained importance because of the significant

consumption of electricity in housing estate areas. For this aim, different approaches were utilized for robust and accurate

prediction of the energy load in buildings. The use of different kind of construction materials, timely change in building

parameters lead to imprecise and vague evaluation of energy consumption. For such kind of problems that are charac-

terized with uncertainties, the use of fuzzy set theory is a more suitable approach for the modeling of energy consumption.

This paper proposes a novel type-2 fuzzy wavelet neural network (T2FWNN) for modeling the energy performance of

residential buildings. Based on the type-2 fuzzy rules, the multi-input multi-output T2FWNN model is proposed. For the

construction of the T2FWNN model, the learning algorithm has been designed using cross-validation approach, clustering

and gradient descent algorithms. During construction, the adaptive learning procedure was developed to stabilize and speed

up the learning process. The proposed model is used for the solution of two problems. At the first stage, based on statistical

data, the T2FWNN model has been designed for modeling the cooling and heating load of residential buildings. In the

second stage, using T2FWNN the prediction model was designed for the energy consumption of residential buildings in

Northern Cyprus. Comparative results have been provided to prove the efficiency of using the designed model in the

prediction of the energy load of residential buildings. The obtained results indicated the suitability of using the T2FWNN

system for estimation of the energy performance and prediction of the energy consumption of residential buildings.
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1 Introduction

The energy utilization in residential sectors is growing

every year. Determining the minimum energy requirements

of residential buildings is an important engineering prob-

lem. In the residential sector of many countries, the energy

consumption of buildings includes a significant part of the

total energy used (Rafe Biswas et al. 2016; Amasyali and

El-Gohary 2018). This sector is not studied well in

comparison to industrial and transportation sector because

of a lack of financial incentive (Amasyali and El-Gohary

2018; Tsanas and Xifara 2012). Regulating the energy

consumption of residential buildings is sometimes imple-

mented by selecting heating and cooling systems. Optimal

control of energy utilization is important for decreasing

energy waste and its adverse impact on the environment.

The energy consumption in residential buildings depends

on a set of factors. The locations and human occupancy are

important factors affecting energy consumption. The

characteristics of buildings such as number and sizes of

rooms, the size of the house, size and number of windows,

the use of different materials in the construction of build-

ings (such as the use of wooden, concrete, plastic or stone)

are factors affecting energy utilisation in buildings (Tsanas

and Xifara 2012; Perez-Lombard et al. 2008). Also, the

income of pupils, cost of energy, the frequency of using

cooling, heating and other electrical appliances, the usage
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of hot water, indoor lighting are parameters affecting the

energy consumption in buildings.

Recently different approaches were used for the pre-

diction of energy demand in buildings. These are methods

based on physical modeling and data-driven methods (Rafe

Biswas et al. 2016; Amasyali and El-Gohary 2018).

Physical models are based on the analysis of thermody-

namic rules for detailed energy modeling. Various software

programs have been developed using physical modeling.

These are DOE-2 (Sullivan and Winkelmann 1999),

EnergyPlus (Crawley et al. 2001), ESp-r (Strachan et al.

2008), DeST (Yan et al. 2008), TRNSYS and (Fumo 2014).

Using these software tools, the designers were able to

estimate the impact of design alternatives on energy con-

sumption. However, these software simulation systems

have a complex structure and time-consuming. During

modeling, physical principles, detailed building informa-

tion, whether detail and resident behavior should be con-

sidered for proper development of the model. However,

acquiring these parameters is difficult and sometimes the

predicted output results of these models are far from actual

values (Amasyali and El-Gohary 2018; Fumo 2014).

Because of the progress of intelligent systems and com-

puter technology, data-driven models are widely used for

energy prediction in practices. These models are based on

machine learning methods and the historical data of energy

utilization in the building. Different machine learning-

based models have been extensively used for energy

modeling. These models were basically based on ANNs

(Rafe Biswas et al. 2016; Kumar et al. 2013; Sholahudin

et al. 2016; Zhang and Haghighat 2010; Deb et al. 2016;

Chae et al. 2016), SVM (Li et al. 2009; Zhang et al. 2016),

SVR (Hong 2009). The papers (Rafe Biswas et al. 2016;

Kumar et al. 2013) integrated statistics and artificial neural

networks (ANNs) for analysis and prediction of energy

utilization in buildings. These machine learning methods

were reliable and effective approach for solving prediction

problem because of their learning ability that allows them

to handle nonlinear processes, and also generation prop-

erty. Deb et al. (2016) used ANN and Bayesian regular-

ization learning algorithm for forecasting cooling loads of

buildings. Ensemble empirical mode decomposition adap-

tive noise and support vector regression with quantum-

based dragonfly algorithm (Zhang and Hong 2019),

empirical mode decomposition with support vector

regression model (Fan et al. 2020a), regression model

based on hybrid empirical mode decomposition and sup-

port vector regression with back propagation neural net-

work (Hong and Fan 2019) were developed for electricity

load forecasting. Fan et al. 2020b designed a hybrid model

using machine learning techniques for prediction energy

consumption. The paper (Kumar et al. 2021) presented

different machine learning models such as SVM, ANN and

random forest for solving forecasting problem. The authors

find that the random forest was the most suitable prediction

model. The authors also presented the importance of the

Internet of Things (IoT) (Plageras et al. 2017; Gupta and

Quamara 2018; Esposito et al. 2021) to support and

implement efficient solutions for Smart Cities. The authors’

proposed methods for collecting and managing sensors’

data in a smart building, which operates in IoT environ-

ment. The hybrid models that integrate different machine

learning techniques were developed to improve the per-

formance of the prediction systems (Dong et al. 2016;

Abizada and Abiyeva 2018; Gao et al. 2019; Abiyev 2009).

The effects of various parameters of residential buildings

on energy consumption were considered in (Tsanas and

Xifara 2012; Gao et al. 2019). Cooling and heating loads

were evaluated using various variables of buildings. Dif-

ferent research works have investigated the relationships

between the building’s parameters and the energy con-

sumption related to cooling and heating loads. Improving

the performance characteristics of the designed models is

the primary concern of most research works.

As we mentioned above, the factors affecting energy

utilization in buildings are different. These are physical

characteristics of buildings, weather conditions of the

region, social and demographic location of pupils, etc. The

influences of these factors on the energy load of buildings

are imprecise and uncertain. Therefore, it is difficult to

evaluate accurately the energy performance and energy

load of the building based on uncertain information. One

effective approach to solve these problems is the use of a

fuzzy set theory that handles the uncertainties and impre-

cise information in designed models. The fuzzy systems

(FSs) have widely been used in modeling of different

industrial and nonindustrial problems characterizing

uncertainty. However, in some practical applications, type-

1 fuzzy sets are unable to handle high levels of uncer-

tainties, imprecision and vagueness. In some research

studies, it has been shown that type-2 fuzzy sets are a

valuable approach for handling uncertainty in the solution

of uncertain problems (Zadeh 1975; Mendel 2017).

Because the membership functions of type-2 fuzzy sets are

fuzzy, they outperform their type-1 counterparts in han-

dling uncertainties. If the extracted data are noisy and the

knowledge extracted from the experts carries uncertainties

then type-2 fuzzy sets are an effective approach for mod-

eling such uncertainties. Since the MFs of type-2 fuzzy sets

are fuzzy, they can model high levels of uncertainties and

consequently minimize the effects of uncertainties in the

rules.

Type-2 fuzzy sets were introduced by Zadeh (1975) and

subsequently developed by Mendel and his co-authors

(Mendel 2017). These systems have been widely used for

solving many practical problems. Such as time-series
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forecasting (Karnik and Mendel 1999; Abiyev 2010),

channel equalizations (Liang and Mendel 2000; Abiyev

et al. 2011), for robot control (Hagras 2004; Liu et al.

2007), dynamic plant identification and control (Castillo

and Melin 2008; Biglarbegian et al. 2010; Abiyev and

Kaynak 2010; Lin et al. 2015), time-series applications

(Baklouti et al. 2018), servo system control (Kayacan et al.

2011), credit rating (Abiyev 2014), gene expression

(Shukla and Muhuri 2019).

The integration of ANNs and FSs allows us to automate

the construction of the fuzzy rule-based models, decrease

their design time and develop trainable fuzzy systems

(Abiyev and Kaynak 2010; Lin et al. 2015; Baklouti et al.

2018; Kayacan et al. 2011; Abiyev 2014; Stojčić et al.

2019; Vilela et al. 2019). Neural networks (NNs) have been

applied for designing type-2 fuzzy systems for dynamic

plant identification and control (Abiyev and Kaynak 2010;

Kayacan et al. 2011) and time-series predictions (Baklouti

et al. 2018). The integration of FSs and NNs has been used

for energy load prediction (Abiyev 2009, 2010). Fuzzy set

theory is more robust in tolerating imprecision, vague,

noisy or missing information. The use of wavelet functions

in NN structure allows us to model local detail of nonlinear

processes (Zekri et al. 2008; Zhang et al. 1995; Thuillard

2001). Fuzzy wavelet neural network-based systems were

developed for dynamic plant control (Abiyev et al. 2013),

and function learning (Ho et al. 2001). These research

studies demonstrated good performances of designed

models. However, most of these research studies are

devoted to the solution of particular problems and some-

times did not adequately describe some special character-

istics such as uncertainty, high nonlinearity of considered

problems. To improve the performances of constructed

models in the paper, we propose the design of a hybrid

system based on type-2 fuzzy sets, neural networks and

wavelet technology for modeling energy performances of

residential buildings. The integration of these paradigms in

system design offsets the demerits of one paradigm by the

merits of another. Wavelet functions allow us to analyse

non-stationary signals and discover their local details.

Neural networks have self-learning characteristics that

increase the accuracy of the model. The localization

properties of wavelets used in NN structures allow mod-

eling of the local detail of nonlinear processes. Fuzzy logic

allows us to reduce the complexity of the data and to

handle uncertainty and imprecision. The combination of

fuzzy logic and wavelet neural networks automate the

construction of the fuzzy rule-based models, decrease their

design time and develop trainable fuzzy systems that can

describe nonlinear systems characterized with uncertain-

ties. At the same time, this hybrid structure allows

approximation of complex functions more effectively. In

the paper, these methodologies are integrated into the

T2FWNN structure for modeling the energy performances

of residential buildings. The contribution of the paper is

summarized as follows: The structure of a multi-input and

multi-output T2FWNN model that integrates type-2 fuzzy

sets, neural networks and wavelet technology is proposed

for modeling energy performance of residential buildings,

in particular, prediction of cooling and heating loads of

buildings; The learning algorithm of T2FWNN is designed

using cross-validation technique, fuzzy clustering and

gradient descent algorithm with an adaptive learning rate;

using T2FWNN the energy consumption prediction model

is designed for residential buildings in North Cyprus.

Comparative results are provided to demonstrate the

effectiveness of the designed T2FWNN models used for

modeling energy performances and predicting the energy

consumption of residential buildings.

The paper includes five sections. Section 2 proposes the

T2FWNN model used for the estimation of energy per-

formance. Section 3 presents the update algorithms used

for adjusting the parameters of the T2FWNN. Section 4

presents a simulation of the T2FWNN system and com-

parative results of different models. Section 5 presents the

conclusions of the paper.

2 T2FWNN model for estimation energy
performance of buildings

In this section, the structure of T2FWNN used for the

estimation of the energy performance of the residential

building is presented. The designed system is based on the

type-2 fuzzy If–Then rules of TSK type. The antecedent

parts of the considered rules utilize type-2 sets, consequent

parts utilize wavelet functions. Because of the localization

properties of wavelet functions, the constructed model

allows us to model local features of the nonlinear processes

and increase the computational power of the T2FWNN

model. This property allows decreasing of the number of

rules used in respect to the type-2 TSK system that uses

linear functions in the consequent parts. The If–Then rules

used in the paper are given as

If x1 is and . . . and xmis Then y1 is wjk

Xm

i¼1

ð1� z2ijÞe�
z2
ij
2 ð1Þ

where x1, x2,…, xm are the input-, y1, y2,…, yr are the

output variables, ~Aji are type-2 fuzzy sets, wij (i = 1,…, m

and j = 1,…, r) are coefficients. m and r are the numbers of

inputs and fuzzy rules, respectively. zij ¼ ðxi � bijÞ
�
aij and

aij and bij are dilation and translation coefficients. As

shown, the antecedent part of the rules includes type-2

fuzzy sets, and the consequent part- Mexican Hat wavelet

functions. The wavelet functions used in the rule base with
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the different dilation and translation parameters allow

capturing various essential features and behaviors of the

nonlinear model. By learning these parameters and finding

their optimal values, the proper rule base of T2FWNN can

be designed.

The structure of multi-input and multi-output T2FWNN

used for estimation of energy performance is given in

Fig. 1. The proposed T2FWNN model uses eight input and

two output variables. The T2FWNN is based on fuzzy rules

of (1) and has six layers. The first layer is used for the

distribution of input signals. The second layer is used to

represent type-2 fuzzy sets described by Gaussian MFs. In

Gaussian, 2 parameters (center and width) are used to

represent membership functions. The high number of

parameters affects the learning time. We selected the

Gaussian MF function because of less number of parame-

ters. The uncertainties can be represented with the mean or

standard deviation (STD) of membership functions. Fig-

ure 2a and b presents Gaussian type-2 MFs with the

uncertain mean and uncertain STD, respectively. In the

paper, the MFs presented by uncertain mean and fixed STD

(Fig. 2a) is used in the second layer. The Gaussian MFs

l1j(xi) used in this paper are described as

l1jðxiÞ ¼ e
�ðxi�cijÞ2

r2
ij ð2Þ

where cij and ij are the center and width of the Gaussian

MFs, respectively. x is the input vector with for uncertain

mean c [ [c1, c2].

In the output of the nodes of the second layer, the type-2

membership degrees are calculated using (2). All the

operations are implemented using interval type-2 fuzzy

sets. Using (2) upper and lower MFs are derived in the

second layer

l ~A j
k
ðxkÞ ¼ l ~Aj

k

ðxkÞ; l ~A j
k
ðxkÞ

h i
¼ l j;l j
h i

ð3Þ

here l j and l j are upper and lower membership func-

tions, respectively. The third layer is the rule layer. Here

R1, R2,…, Rr represents the type-2 rules, and the number of

rules is equal to the number of nodes. The t-norm min

operation is used to determine outputs of the third layer

f
j
¼ minðl ~A1

ðx1Þ; l ~A2
ðx2Þ; :::; l ~Am

ðxmÞÞ;

f j ¼ minðl ~A1
ðx1Þ; l ~A2

ðx2Þ; :::; l ~Am
ðxmÞ

ð4Þ

here f j and f
j
are upper and lower membership func-

tions obtained using t-norm min operations. The fourth

layer is a consequent layer, that calculates the outputs of

wavelet functions. The number of wavelet functions is

equal to the rules’ number r. The outputs of the fourth layer

are the products of the outputs of the third layer and

wavelet networks that include wavelet functions of the

fourth layer. Here the contributions of wavelet functions to

the output of the rules are determined. The wavelet func-

tions are calculated as

Consequent layer
Wavelet 
functions 

: 

X

Rule Layer Input  

layer 

Antecedent layer 
(Type-2 membership 

functions) 

Rr 

: 

R1 

Ψr 

WFr 

Ψ1

WF1 

               y1

                yr

Output layer 

:

*

* / 

/

::

X1 

Xm

:

µ111 

Cij,σij 

μmr

U

un

u1

layer 1            layer 2                 layer 3                   layer 4              layer 5     layer 6       

],[ jf
j

fj =μ

Fig. 1 T2FWNN model
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WjðzÞ ¼
Xm

i¼1

aij
�� ���1

2ð1� z2ijÞe�
z2
ij
2 ; yj ¼ wjWj zð Þ ð5Þ

where zij ¼ xi�bij
aij

, i = 1,…, m, j = 1,…, r. In the next fifth

layer, the obtained output signals of the fourth layer are

multiplied by the wjk weight coefficients. This operation

allows scaling the output signals into the desired range.

Then, the defuzzification and type-reduction are applied to

find the network’s outputs (Biglarbegian et al. 2010;

Abiyev and Kaynak 2010; Begian et al. 2008).

uk ¼ p
Xr

j¼1

f
j
yjk

 !,
Xr

j¼1

f
j

 !

þ q
Xr

j¼1

f jyjk

 !,
Xr

j¼1

f j

 !
ð6Þ

Here yjk = wjk�Wj(z), where uk (k = 1,…, n) are the

outputs of T2FWNN, r is a number of active rules, n is a

number of outputs. p and q are the parameters that are used

for weighting the share of lower and upper levels of each

rule. The p and q parameters are used to adjust the lower or

the upper portions according to the certainty level of the

system.

For the design of T2FWNN model, the learning of the

network parameters c1ij, c2ij, rij in the second layer, wjk,

aij, bij (i = 1,…, m, j = 1, …, r, k = 1,…, n) in the fourth

layer and also p, q parameters is carried out. In the next

section, the learning of the parameters is presented.

3 Parameters’ learning

The development of the T2FWNN model consists of

finding proper values of the parameters cij, oij, aij, bij, and

wjk of the If–Then rules (1). Consequent parts of the If–

Then rules define the behaviors of the system in certain

regions determined by the antecedent parts. The learning

algorithm can be applied to find appropriate values of the

parameters of the If–Then rules. Recently various tech-

niques were applied for this purpose. These are clustering,

gradient algorithms, the least-squares method (LSM) and

genetic algorithms (Abiyev and Kaynak 2010; Lin et al.

2015; Baklouti et al. 2018; Kayacan et al. 2011; Abiyev

2014; Abiyev et al. 2013). In this paper, the parameter

update of T2FWNN is implemented using type-2 fuzzy

clustering and gradient descent algorithms.

The learning of T2FWNN is started by determining the

parameters of the antecedent part of the rules, which are the

centers and widths of MFs. For this purpose, type-2 fuzzy

classification is applied. Type-2 fuzzy clustering is pre-

sented in (Abiyev et al. 2011; Kayacan et al. 2011) in more

detail. As a result of clustering, the cij parameters corre-

sponding to the cluster centers of fuzzy regions are

obtained. These centers correspond to the centers of MFs.

Using the distances between the centers of membership

functions, the widths rij are calculated.

After finding the parameters of the MFs, the parameters

of the wavelet networks are determined. For this purpose,

the cross-validation with the gradient descent algorithm is

applied for parameter learning. At first, the initial values of

the T2FWNN parameters are generated randomly. During

initialization, the parameters of Gaussian functions and

wavelet functions are generated using the change interval

of input parameters. This approach allows fast training of

T2FWNN parameters. The parameter update is carried out

using the network output errors. The output error is cal-

culated as

E ¼ 1

2

Xn

k¼1

ðudk � ukÞ2 ð7Þ

Fig. 2 Gaussian type-2 fuzzy

set: a uncertain mean,

b uncertain STD
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where udk and uk are desired and current output signals,

respectively. wjk; aij; bij, cij, and oij (i = 1,…, m, j = 1, …,

r, k = 1, …, n) parameters of T2FWNN are adjusted as

wjkðt þ 1Þ ¼ wjkðtÞ � c
oE

owjk
þ kðwjkðtÞ � wjkðt � 1ÞÞ;

aijðt þ 1Þ ¼ aijðtÞ � c
oE

oaij
þ kðaijðtÞ � aijðt � 1ÞÞ;

bijðt þ 1Þ ¼ bijðtÞ � c
oE

obij
þ kðbijðtÞ � bijðt � 1ÞÞ;

ð8Þ

c1ijðt þ 1Þ ¼ c1ijðtÞ � c
oE

ocij
þ kðc1ijðtÞ � c1ijðt � 1ÞÞ;

c2ijðt þ 1Þ ¼ c2ijðtÞ � c
oE

ocij
þ kðc2ijðtÞ � c2ijðt � 1ÞÞ;

rijðt þ 1Þ ¼ rijðtÞ � c
oE

orij
þ kðrijðtÞ � rijðt � 1ÞÞ;

i ¼ 1; :::; n; j ¼ 1; . . .; r; k ¼ 1; . . .; n:

ð9Þ

where c is the learning rate, k is the momentum. m, r and

n are the numbers of input, hidden and output neurons of

T2FWNN, respectively.

The derivatives in (8) are computed as.

oEðtÞ
owjk

¼ oEðtÞ
oukðtÞ

oukðtÞ
oyjkðtÞ

oyjkðtÞ
owjk

¼ ðuk � udkÞ � wj(z) �
p � f

j

Pr

j¼1

f
j

þ
q � f j
Pr

j¼1

f j

0
BBB@

1
CCCA ð10Þ

oEðtÞ
oaij

¼ oEðtÞ
oukðtÞ

oukðtÞ
oyjkðtÞ

oyjkðtÞ
owjðtÞ

owjðtÞ
ozijðtÞ

ozijðtÞ
oaij

¼

ðuk�udkÞ�wjk �
p�f

j

Pr

j¼1

f
j

þ
q�f j
Pr

j¼1

f j

0
BBB@

1
CCCA�ð3:5z2ij�z4ij�0:5Þe�

z2
ij
2

�
ð
ffiffiffiffiffi
a3ij

q
Þ

ð11Þ

oEðtÞ
obij

¼ oEðtÞ
ouðtÞ

ouðtÞ
oyjðtÞ

oyjðtÞ
owjðtÞ

owjðtÞ
ozijðtÞ

ozijðtÞ
obij

¼

ðuk � udkÞ � wjk �
p � f

j

Pr

j¼1

f
j

þ
q � f j
Pr

j¼1

f j

0
BBB@

1
CCCA � ð3zij � z3ijÞe�

z2
ij
2

�
ð
ffiffiffiffiffi
a3ij

q
Þ

ð12Þ

The gradient algorithm can be applied for learning of

c1ij, c2ij, rij parameters. During the learning of the net-

work, the parameters p and q that are used for weighting

lower and upper levels of the output signal are adjusted.

The update is started from the initial value of 0.5 as

pðt þ 1Þ ¼ pðtÞ � cpðtÞ oEðtÞ
opðtÞ ;

qðt þ 1Þ ¼ qðtÞ � cqðtÞ oEðtÞ
oqðtÞ ;

ð13Þ

Using (8–13) the parameters of T2FWNN are updated.

We use adaptive learning in order to speed up the

learning process and guarantee convergence. The learning

rate is adjusted according to the increase or decrease of root

mean square of error R(t).

R tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

udi tð Þ � ui tð Þð Þ2
vuut ;

decay tð Þ ¼ R tð Þ � R t � 1ð Þ
R tð Þ

ð14Þ

The adjusting of c(t) learning rate is implemented by the

following formula. Here t is the current epoch number.

If decay tð Þ\0 g tð Þ ¼ g t� 1ð Þ � 1:001;
else g tð Þ ¼ g t� 1ð Þ=1:01;

ð15Þ

The adaptive adjusting allows to stabilize and speed up

the learning process.

The design stages of the T2FWNN for estimation of

energy performances of residential buildings are presented

below
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Table 1 Energy efficiency data

set
X1 X2 X3 X4 X5 X6 X7 X8 Y1 Y2

0.90 563.50 318.50 122.50 7.00 2 0.00 0 20.84 28.28

0.90 563.50 318.50 122.50 7.00 3 0.00 0 21.46 25.38

… … … … … … … … … …
0.98 514.50 294.00 110.25 7.00 2 0.10 1 24.58 26.47

0.98 514.50 294.00 110.25 7.00 3 0.10 1 24.63 26.37

0.90 563.50 318.50 122.50 7.00 2 0.10 1 29.03 32.92

0.90 563.50 318.50 122.50 7.00 3 0.10 1 29.87 29.87

Fig. 3 Relationship between input variables and output heating load
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4 Simulations

The above described T2FWNN and its training algorithm

are used for the estimation of the energy performance of

residential buildings. We used two kinds of statistical data.

At first, using the proposed T2FWNN model, we modeled

Fig. 4 Relationship between input variables and output cooling load

Fig. 5 Plot of RMSE

Table 2 T2FWNN simulation results

Number of rules RMSE

Train Evaluation Test

8 1.617 1.645 1.61

16 1.562 1.634 1.578
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the association strength of input and output variables using

the real energy efficiency data set taken from the UCI

machine learning data repository. In the second simulation,

we designed the energy prediction model using the statis-

tical data of energy utilization in residential buildings in

Northern Cyprus. In the first simulation, the data set uses

eight input and two output variables. Heating and cooling

loads of buildings are the predicted output variables. Rel-

ative compactness, surface area, wall area, roof area,

overall height, orientation, glazing area and glazing area

distribution are the input variables. 768 instances repre-

senting different buildings are used for modeling input–

output relationship. The fragment of the energy efficiency

data set is given in Table 1. Here X variables denote input

and Y variables denote output signals.

The training set of T2FWNN based system consists of

the values of eight input and two output variables. Using

input and output variables, the architecture of the

T2FWNN is constructed. The number of fuzzy rules that

are hidden neurons is set by the programmer. We used a

different number of hidden neurons (rules) for modeling of

the T2FWNN model in order to obtain the required accu-

racy. The learning of the system was accomplished using

the cross-validation technique. Using cross-validation, two

independent data sets were generalized: training and

evaluation. During the training of the T2FWNN model, K-

fold cross-validation was used for separating the dataset

into training and testing sets. Here the original data sam-

ples are randomly partitioned into k groups of equal size. A

single group was used as a validation group for testing, and

the remaining k-1 groups were used for training. In the

paper, the k value was taken as 10. The cross-validation is

repeated 10 times (number of folds). The training is con-

tinued for k epochs set by the programmer. In each epoch,

one set of data (group) is used for evaluation of the model,

and the remaining part is used for training. In each epoch,

the testing data are changed and moved to the next group in

order to test all data sets. Final classification accuracy is

determined using averaged values of accuracies obtained

from the folds.

Figures 3 and 4 depicted the scatter plots for each of the

input variables with each output variables, in particular,

heating and cooling loads. These plots demonstrate that

associations between input and output variables are too

complex. T2FWNN is one of the effective approaches to

present such relationships. In the paper, using T2FWNN

the modeling of relationships between input parameters

and output variables is constructed. The considered

T2FWNN model will have eight inputs and two outputs.

During the modeling, we recorded the results obtained

for training, evaluation and testing modes. For measuring,

the performance of the system mean square error (MSE)

and also root mean square error (RMSE) were used.

Table 3 MSE values for each

output obtained with 16 rules
16 rules 200 epochs Train Evolution Test

MSE RMSE MSE RMSE MSE RMSE

T2FWNN Y1 0.194 0.44 0.221 0.47 0.2 0.447

Y2 2.31 1.52 2.56 1.6 2.39 1.545

Fuzzy neural networks Y1 1. 41 1.18 1.46 1.21 1.43 1.2

Y2 3.48 1.86 4.21 2.05 4.18 2.04

Neural networks Y1 2.09 1.45 2.33 1.53 2.31 1.52

Y2 5.15 2.27 5.71 2.39 5.569 2. 36

Table 4 Comparison of different models

16 rules Test

MSE RMSE

IRLS (Tsanas and Xifara 2012) Y1 9.87 3.14

Y2 11.46 3.385

RF (Tsanas and Xifara 2012) Y1 1.03 1.015

Y2 6.59 2.567

Fuzzy Model (Cantreras et al. 2017) Y1 1.48 1.217

Y2 3.04 1.745

RBF (Razali et al. 2018) Y1 0.21 0.458

Y2 2.78 1.667

RF(RF’) (Razali et al. 2018) Y1 1.03 1.0149

Y2 6.59 2.56

AMT(Gao et al. 2019) Y1 0.296 0.544

Y2 1.769 1.330

RF(RF’) (Gao et al. 2019) Y1 0.057 0.239

Y2 0.3844 0.62

Lazy K-star (Gao et al. 2019) Y1 – –

Y2 0.717 0.847

NN Y1 2.75 1.66

Y2 5.569 2. 36

FNN Y1 1.56 1.25

Y2 4.41 2.1

T2FWNN Y1 0.2 0.447

Y2 2.39 1.545
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M ¼ 1

N

XN

i¼1

Yd
i � Yi

� �2
; R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

Yd
i � Yið Þ2

vuut ð16Þ

Here N is a number of samples (data items), M is MSE,

R is RMSE. For test subset N = 768, for training subset

N = 768*K fold; where K fold is the number of folds. In the

paper, the tenfold cross-validation is used, therefore

K fold = 10.

During updating of parameters, a fuzzy type-2 clustering

algorithm is applied to partition input space and find cluster

centers which are centers of MFs. Using distances between

cluster centers, the widths of membership functions are

computed. These two parameters are the parameters of the

second layer of T2FWNN (Fig. 1). After determining the

centers and widths of membership functions in the second

layer of the network, a gradient descent algorithm is

applied in order to determine the parameters of the wavelet

function in the fourth layer of T2FWNN. Learning is car-

ried out using a cross-validation approach. Initially, the

parameters of wavelet functions are generated in the

interval [f, h] randomly. Here f is the corresponding min-

imum, h is the corresponding maximum value of the input

data set. By finding the error of network output and using

learning formulas given in Sect. 3, the adjusting of the

parameters is performed. The formula (16) is used to

evaluate the performances of simulated T2FWNN models.

The plot of RMSE obtained from the training was depicted

in Fig. 5. The simulation is carried out using 8 and 16

hidden neurons. The training is continued for 200 epochs.

For each obtained clusters and wavelet parameters, the

results of the simulation are given in Table 2. The

table depicted the simulation results of the T2FWNN sys-

tem using 8 and 16 hidden neurons. Using 16 hidden

neurons, the RMSE value for training data was obtained as

1.582, for evaluation- 1.614. After learning the RMSE

value for the testing data was obtained as 1.599.

The simulation results of T2FWNN models using 8 and

16 rules are depicted in Table 2 correspondingly. For each

output variables, the values of RMSE are fixed for training,

evaluation and testing stages. Comparative results have

been provided in order to show the efficiency of the

designed system. For this purpose, the simulation results of

the T2FWNN model were compared with the simulation

results of the ANN-based and fuzzy neural network (FNN)-

based models. Table 3 presented the values of RMSE

averaged over ten simulations. As shown from Tables 2

and 3, the T2FWNN model more accurately describes

heating load than cooling load.

The comparative results of different machine learning

models used for estimation of energy performances of

buildings are presented in Table 4. The used models are an

iteratively reweighted least-squares (IRLS), random forest

(RF), radial basis function (RBF) network, alternating

model tree (AMT), lazy K-star, neural networks (NN),

fuzzy neural networks (FNN) and T2FWNN. For com-

parative purpose, we used the mean squared error and root

mean squared error. As it was shown, the simulation results

obtained with the T2FWNN model are better than the ones

obtained from other models. The wavelet functions used in

the T2FWNN model allow us to catch the local details of

(a) (b)

Fig. 6 Chat for the T2FWNN

results for a heating b cooling

load estimation

Fig. 7 The plot of RMSE obtained during training
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the input–output relationships. The proposed model can be

a practical solution for modeling the energy performance of

buildings. At the same time, RF and RBF models have

good performance also. The comparisons demonstrate the

efficiency of the application of T2FWNN-based energy

consumption model in real life.

The correlation between the actual output of cooling and

heating loads and predicted model outputs is given in

Fig. 6. Here S2 measure that presents the strength of rela-

tionships between actual and predicted values is calculated.

The R2 value for the heating load was measured as 0.9995,

and the cooling load was 0.975. As shown from the figures,

the obtained model accurately describes the input–output

Fig. 8 The plots of actual and

3-step ahead predicted values of

energy consumption

Fig. 9 The plot of prediction

error

Table 5 Comparative results of 3 step ahead prediction of different models

Number of hidden neurons MSE RMSE

Training Evaluation Testing Training Evaluation Testing

NN 10 0.005598 0.006134 0.005971 0.074824 0.078318 0.077275

Fuzzy NN 10 0.004713 0.004742 0.004197 0.068651 0.068866 0.064787

T2FWNN 5 0.004140 0.004160 0.004072 0.064340 0.064500 0.063809

8 0.003042 0.003054 0.002991 0.055153 0.055261 0.054677

10 0.002783 0.002794 0.002628 0.052754 0.052858 0.051163

Fig. 10 The plots of actual and

one-ahead predicted values of

energy consumption
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relationships. Considering Tables 2, 3 and 4, we can see

that the RMSE value obtained for the heating load is lower

than the one obtained for the cooling load. If we consider

Fig. 6 and analyse the S2 values that depict the strength of

the relationship, we can see that the S2 value for the heating

load is larger than the cooling load. The analyse show that

the constructed model describes the associations between

building parameters and heating load more accurately than

the associations between building parameters and the

cooling load. The comparative result given in Table 4

demonstrates the performances of other models. Compar-

ative results of different models show that the T2FWNN is

the best method among the presented approaches and more

accurately describes the association between the building’s

parameters and energy utilization.

In the second simulation, T2FWNN was applied for the

prediction of energy consumption in the residential build-

ings in Northern Cyprus. The monthly data characterizing

the energy consumption in residential buildings between

2004 and 2020 were taken for modeling purpose. Predic-

tion of energy consumption plays an important role in

enhancing the energy efficiency of the buildings. As it is

known, Northern Cyprus does not explore petroleum and

gas import these from abroad. In Northern Cyprus, resi-

dential buildings utilize more than 30% of total energy.

The problem is to meet the energy demand of customers. In

the summertime, the houses use an essential part of ener-

gies for cooling of houses. In wintertime, the essential part

of the energy is used for heating purpose. The other parts of

the energy are used for lighting, cooking and for the con-

sumption of home appliances. The overall electricity con-

sumption data for residential buildings in Northern Cyprus

were obtained from KibTek Corporation. Energy

consumption prediction allows the advanced planning of

energy production, thereby preventing unexpected energy

deficiency problems. The data characterize the monthly

energy consumption used by residential buildings. We used

the data set and organized input and output training pairs.

At first, we have considered a 3-step ahead prediction of

energy consumption. We used input data x(t-9), x(t-8), x(t-

3), x(t -2) and x(t) in order to predict x(t?3) signal. Using a

five-dimensional input vector and one-dimensional output

vector, the training and testing sets are generated. These

data sets are used in designing the T2FWNN prediction

model. Based on the five-dimensional input vector and one-

dimensional output vector, the structure of the network is

selected. The number of rules in the second hidden layer is

selected by the programmer. Using a different number of

rules, the simulation of the T2FWNN system has been

performed. During training, we applied cross-validation to

train the network. The training has been done for 200

epochs. Figure 7 depicts the plot of RMSE values obtained

for training data. When the number of hidden neurons was

10, the training and validation errors were obtained as

0.052754 and 0.052858 correspondingly. After training the

test of the system was performed. The value of test error

was 0.051163. Figure 8 depicted the plots of actual and

3-step ahead predicted values of energy consumption. The

plot of prediction error is depicted in Fig. 9. Comparative

results of different models have been provided in order to

show the efficiency of the proposed T2FWNN system.

Table 5 depicts the comparative results of different pre-

diction models.

In the next simulation, we have implemented the sim-

ulation of one-step-ahead prediction using T2FWNN. x(t -

11), x(t -5), x(t-4) xt(t -1) and xt(t) are used as input signal

Fig. 11 The plot of errors

Table 6 Comparative results of different models

Number of hidden neurons MSE RMSE

Training Evaluation Testing Training Evaluation Testing

NN 10 0.00524 0.00532 0.00523 0.072415 0.072941 0.072334

Fuzzy NN 10 0.00477 0.00483 0.00471 0.069086 0.69526 0.068672

T2FWNN 5 0.004307 0.004392 0.003933 0.065627 0.066273 0.065373

10 0.003392 0.003482 0.003303 0.058245 0.059007 0.057475
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for the system, and the predicted output value was x(t?1).

The RMSE values for training, validation and test data

were obtained as 0.058245, 0.059007 and 0.057475 cor-

respondingly. Figure 10 depicts plots of actual and one-

step ahead predicted values of energy consumption. Fig-

ure 11 depicts the plot of errors obtained during training.

To show the efficiency of the constructed system, we

compared T2FWNN results with the results of other

machine learning techniques, such as ANN- and FNN-

based models. Comparative results of the models are given

in Table 6. For measuring the performance of the models,

the authors used the RMSE value. As shown in the table,

the T2FWNN model has better performance than neural

networks (NN) and type-1 fuzzy neural networks (Fuzzy

NN) based models.

In the paper, the authors proposed the T2FWNN model

for energy consumptıon in residential buildings. The data

set is used to predict the future value of the total energy

utilized in the buildings. The obtained simulation results

indicate the efficiency of the proposed T2FWNN model in

energy prediction.

5 Conclusions

In this paper, a novel T2FWNN model is proposed for the

estimation of the energy performance of residential build-

ings. The integration of fuzzy clustering, gradient descent

algorithm and cross-validation technique was used for the

design of T2FWNN. The T2FWNN was proposed for

solving two problems, the first one is the determination of

associations between building parameters and energy

consumptions for accurate prediction of the buildings’

energy load, and the second one is the prediction of energy

consumption in residential buildings in Northern Cyprus.

Using statistical data and training algorithms, the devel-

opment of the T2FWNN prediction models has been per-

formed. The special adaptive learning algorithm is

developed to stabilize and speed up the training of the

T2FWNN model. After the design of prediction models,

comparative results have been provided to show the effi-

ciency of the designed T2FWNN models. The obtained

simulation results demonstrate that the T2FWNN has

obtained a better accuracy value than the existing models

used for modeling energy performances of residential

buildings as presented in Table 4. The designed T2FWNN

structure is also applied for the prediction of energy con-

sumptions of residential buildings of North Cyprus.

Experimental results indicate that the T2FWNN prediction

model outperforms neural networks (NN) and type-1 fuzzy

neural networks-based models in terms of prediction

accuracy indices MSE and RMSE as presented in Table 6.

Comparative results with the different machine learning

models demonstrated the efficiency of the proposed

T2FWNN model in predicting the energy consumption in

residential buildings. Future research is based on the

improvement of the learning algorithm of the T2FWNN

model and the application of the presented model for

solving other prediction and classification problems in

engineering.
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