
Soft Computing (2021) 25:9077–9096
https://doi.org/10.1007/s00500-021-05853-8

METHODOLOGIES AND APPL ICAT ION

Pareto-like sequential sampling heuristic for global optimisation

Mahmoud Shaqfa1 · Katrin Beyer1

Accepted: 28 April 2021 / Published online: 29 May 2021
© The Author(s) 2021

Abstract
In this paper, we propose a simple global optimisation algorithm inspired by Pareto’s principle. This algorithm samples most
of its solutions within prominent search domains and is equipped with a self-adaptive mechanism to control the dynamic
tightening of the prominent domains while the greediness of the algorithm increases over time (iterations). Unlike traditional
metaheuristics, the proposed method has no direct mutation- or crossover-like operations. It depends solely on the sequential
random sampling that can be used in diversification and intensification processes while keeping the information-flow between
generations and the structural bias at a minimum. By using a simple topology, the algorithm avoids premature convergence
by sampling new solutions every generation. A simple theoretical derivation revealed that the exploration of this approach is
unbiased and the rate of the diversification is constant during the runtime. The trade-off balance between the diversification
and the intensification is explained theoretically and experimentally. This proposed approach has been benchmarked against
standard optimisation problems as well as a selected set of simple and complex engineering applications. We used 26 standard
benchmarks with different properties that cover most of the optimisation problems’ nature, three traditional engineering
problems, and one real complex engineering problem from the state-of-the-art literature. The algorithm performs well in
finding global minima for nonconvex and multimodal functions, especially with high dimensional problems and it was found
very competitive in comparison with the recent algorithmic proposals. Moreover, the algorithm outperforms and scales better
than recent algorithms when it is benchmarked under a limited number of iterations for the composite CEC2017 problems.
The design of this algorithm is kept simple so it can be easily coupled or hybridised with other search paradigms. The code
of the algorithm is provided in C++14, Python3.7, and Octave (Matlab).

Keywords Pareto principle · Heuristic · Global optimisation · Evolutionary algorithms · Self-adaptation · Online calibration

1 Introduction

Over the past fewdecades, global optimisation techniques for
solving combinatorial problems have flourished. The ever-
increasing complexity of engineering applications means
that variable sets are growing larger, and the subsequent
landscapes that need to be explored by these optimisation
problems are becoming increasingly complicated.

This work was funded through the Swiss National Science Foundation
(SNSF) Project 200021_175903/1.

B Katrin Beyer
katrin.beyer@epfl.ch

Mahmoud Shaqfa
mahmoud.shaqfa@epfl.ch

1 Earthquake Engineering and Structural Dynamics Laboratory
(EESD), School of Architecture, Civil and Environmental
Engineering (ENAC), École polytechnique fédérale de
Lausanne (EPFL), 1015 Lausanne, Switzerland

Many metaheuristic algorithms were developed to solve
optimisation problems by mimicking biological and phys-
ical analogies (Ser et al. 2019), including algorithms such
as genetic algorithms (GAs) (Holland 1992), particle swarm
optimisation (PSO) (Kennedy and Eberhart 1995) and the
recent generalized version (GEPSO) (Sedighizadeh et al.
2021), and harmony search (HS) (Geem et al. 2002) and
its latest modifications such as the Geem and Sim (2010),
Shaqfa and Orbán (2019) and Jeong et al. (2020), as well as
the recent whales optimisation algorithm (WOA) (Mirjalili
and Lewis 2016), and pathfinder algorithm (PFA) (Yapici and
Cetinkaya 2019), to mention but a few. The candidate prob-
lems usually range from continuous differentiable problems
to discrete, noisy, and even loosely defined objectives, such
as in engineering applications.

Sequential sampling was used intensively in the second
half of the last century for estimating the distribution of
unknown functions, and the influence of such methods is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-05853-8&domain=pdf
https://orcid.org/0000-0002-0136-2391
https://orcid.org/0000-0002-6883-5157

9078 M. Shaqfa, K. Beyer

still highly echoed in current engineering metamodels (Jin
et al. 2002). As the purpose of this paper is not to review all
the optimisation algorithms that employed sequential sam-
pling techniques, we advise the readers to refer to (de Mello
and Bayraksan 2014) where they can find a comprehen-
sive review for algorithms used the Monte Carlo sampling
approach for solving optimisation problems. Holistically,
metaheuristics can be seen as performance-driven sequen-
tial sampling processes (Markovian processes) (Yang et al.
2013), where the efficiency of such algorithms depends on
the randomwalks that are used to explore and exploit the pro-
vided landscapes. Many random walks have been proposed
in the literature, such as Brownian motion (obeys Gaussian
distribution) and the Lévy flights (obeys Lévy distribution)
for handling stochastic optimisation problems (seeYang et al.
2013; Yang 2009 for comparison).

Estimation of distribution algorithms (EDAs) is another
rank of search methods that tries to obtain better solutions
from the search domain by estimating the probability den-
sity function (PDF) over the whole landscape from the so-far
sampled solutions (see Dai et al. 2019 for a detailed review).
One relatively recent method that has been used by many
engineering problems was proposed by Raphael and Smith
(2003). In their method, they subdivide the search domain
into a fixed number of sub-domains and depending on the fit-
ness of the collected solutions the PDF of the domain evolves
over time and the solutions are eventually focused around the
most promising regions.

Generally,most currentmemetic algorithms are population-
based and heavily dependent—as an initial step—on crude
random sampling. This initial population step is crucial for
the overall performance of the algorithms, affects all subse-
quent search phases (Ser et al. 2019), is independent of the
objective function and is considered anunbiased stepofmeta-
heuristics. Said otherwise, the quality of the chosen solutions
in the initial population depends only on the design-of-
experiment (DOE) methods used (space-filling techniques).
Such methods assure equal accessibility to each part of the
landscape. A plethora of publications dealt with the influence
of the initial sampling and the population size on the overall
performance of metaheuristics (such as in Polkov and Bujok
2018). For the here proposed algorithm, we use at every iter-
ation DOE methods for sampling the new generation, as this
guarantees simplicity and minimum structural bias of the
algorithm.

The algorithm that we propose in this paper builds on the
gbest topology that was originally used in the PSO algorithm
by Eberhart and Kennedy (1995). This simple and conser-
vative topology prevents the algorithm from exploiting too
much information from the candidates, which could drag the
algorithm into a structural bias (see Kononova et al. 2015 for
definition) or even a premature convergence in late stages.
In this work, we demonstrate how this simple algorithm can

perform surprisingly well for complex optimisation prob-
lems, sometimes outperforming the existing state-of-the-art
metaheuristics.

We further postulate our motivation behind this algorith-
mic proposal where we will use it as a heuristic for solving
physical packing problems. The chosen topology of this
algorithm was tailored to analogise the exact mathematical
solvers used in packing regular items (boxes) in containers.
Those solvers use the domain-reduction techniques of the
available packing domain as we add more items to the con-
tainer; some areas become more occupied than others and
exploring the search domain of such areas is not computa-
tionally efficient. However, this algorithm will be used for
packing physical items that are highly irregular and noncon-
vex in containers. Such complex geometries make the use of
traditional methods impractical. For a comprehensive review
about the techniques of domain-reduction in mathematics
and optimisation problems we refer the reader to Puranik
and Sahinidis (2017) and Caprara and Locatelli (2010) and
some examples such as Paulen et al. (2013) and for the pack-
ing optimisation problems literature see Martello and Toth
(1990) and Carlier et al. (2007).

Our algorithm uses only the best solution from the previ-
ous generation. This best solution will be the center of the
tightened search domain, which is referred to as the cur-
rent promising region. The size of the current promising
region will be a function of time–the more optimisation steps
that have already been completed, the smaller the promising
region will be. The boundaries of the prominent region are
only updated if a better solution than any previously obtained
solution has been found. We sample inside and outside this
region using a standard DOE method; in this paper we use
Monte-Carlo sampling, though any other DOEmethod could
also be used such as the Latin hypercube sampling (LHS)
method (see Owen 1992; Tang 1993; Ye 1998).

The chosen topology in this paper could be good for
global exploration, as it maintains the population diversity,
i.e., avoids premature convergence. Conversely, it could be
problematic for exploiting local solutions where this process
normally depends on the intensified information flow among
themembers of the population. Thus, this algorithmmight be
best hybridised in sequential or parallel schemes with other
well-known algorithms. For more about topologies in meta-
heuristics, we refer the readers to Lynn et al. (2018) as they
comprehensively review the common algorithmic topologies
used in the literature. However, in this paper, we use the
proposed algorithm as a standalone metaheuristic, with its
simple topology, when benchmarking the algorithm against
a range of problems and engineering applications.

The renowned no free lunch (NFL) theorems by Wolpert
and Macready (1997) have proven the non-uniformity of the
superiority of algorithms for all ranks of optimisation prob-
lems. In this spirit, we propose that our algorithm be used as

123

Pareto-like sequential sampling heuristic for global optimisation 9079

Fig. 1 The topology of Pareto-like sequential sampling (PSS) algorithm

template, which can be combinedwith variousDOEmethods
and other optimisation algorithms.

This work has been organized such that Sect. 2 explains
the analogy, the topology and the mathematical formulation
of this algorithm. Section 3 provides a simple probabilis-
tic analysis of the parameter settings, including a numerical
illustration. In Sect. 4, we test and compare the performance
of this simplified approach with the state-of-the-art algo-
rithms. Finally, our conclusions are provided in Sect. 5, some
future applications for this approach are given in Sect. 6 and
links to the source code of the algorithm are provided in
Sect. 7.

2 Pareto-like sequential sampling (PSS)

2.1 Analogy

As mentioned earlier, the main analogy of this model is to
mimic the Pareto principle, which implies that a “virtual
few” of a population account for the majority of the effects
(Juran and Gryna 1988; Pareto 1897). The Pareto principal
is popularly referred to as the 80/20 rule. This principle has
been applied to a wide range of human relations and can
be observed when a small percentage of contributors make
the bulk impact on human-related matters. Historically, this
80/20 principlewasfirst observed anddescribed by the Italian
professor Vilfredo Pareto from the University of Lausanne
(UNIL), Switzerland (Pareto 1897).

We here employ the Pareto principle by more densely
sampling the solutions’ design variables from a tightened
search domain, i.e., the current prominent region, while sam-
pling the remainder of the solutions from the overall search
domain.

In order to better understand the collective behavior con-
sidered in our analogy, one out of many possible examples,
is by letting us imagine a selected group of people were
appointed to discuss a certain social problem in a local com-
munity to find a proper solution. First, the problem will be

communicated to each one of them individually and each one
of them will have an initial opinion about what the solution
could look like. However, these appointees, as representa-
tives for the society, must sit together and meet regularly in
order to reach a consensus on the optimal solution. As the
appointees regularly meet, every one of them must express
her/his own opinion, perspective, and exchange ideas of
different solutions. Every meeting themajority of these indi-
viduals will group behind certain revealing ideas that could
be better to settle down the problem and try even to push
it further by combining different solutions or sub-solutions
from other individuals to reach an optimal solution. While
the rest will always try to find better and optimal ideas that
could convince the majority to shift to their sides. In this
particular example, the appointees are the population of the
solutions as they start randomly at one point (before themeet-
ings and when they got informed) and then they refine their
ideas every time they meet (number of iterations).

2.2 Topology

In this paper, we achieve the proposed analogy using mere
performance-driven sequential sampling (see Fig. 1) to create
better generations every iteration. We do this in a way that
is compatible with any sampling method, i.e., classical DOE
methods, such as the traditionalMonte Carlo (MC) and Latin
hypercube sampling (LHS), though in this paper we only use
the MC sampling approach. Unlike traditional evolutionary
algorithms (EAs), this algorithmdoes not use operations such
as mutation or crossover to obtain better generations.

The process builds on the assumption that the current
best solution vector, xbest, lays in a sub-domain where the
majority of the good features exist (components of x).
We refer to this sub-domain as the prominent region Ω

′
.

Hence,we sample themajority of the features, approximately
α × 100%, from the surrounding neighborhood. This topol-
ogy of keeping track of only xbest each iteration is similar
to the traditional gbest topology proposed by Eberhart and
Kennedy (1995).

123

9080 M. Shaqfa, K. Beyer

The location and the size of the prominent domain changes
every time the xbest changes. The size of the prominent
domain (bandwidth), as will be described later, depends on
the time remaining for the algorithm to make improvements
and the predetermined size of the analogy (1 − α). The size
of the prominent region is set to a maximum of (1− α)% of
Ω , centered about xbest, where α is the acceptance probabil-
ity that allows us to sample the components of the solutions
from the prominent neighbourhood. The closer the algorithm
gets to the maximum number of iterations, i.e., the shorter
the time left for the algorithm to make improvements, the
smaller the size of the prominent region.

This algorithm explores and exploits the domain by giving
special emphasis to the prominent region around the current
best solution. At each iteration, the algorithm performs the
following steps:

– Determine the new best fitness x i
best,

– Update the prominent region η i if x i
best is better than

x i−1
best ,

– Sample from the search domain using classical DOE
methods; sample more densely from the prominent
regions η i and less densely from the overall search
domain.

2.3 Mathematical model

Let the real-valued optimization problem f (x) be defined on
the search domain Ω ∈ IRn and for all sub-domains iΩ

′ ⊂
Ω . The corresponding boundaries are � and i�

′
for the main

domain and the sub-domain, respectively.

optimize f (x), x ∈ Ω,Ω ⊂ IRn, where (1)

x = {x1, . . . , xn}, �− ≤ x ≤ �+.

More specifically, the lower and the upper bounds for the
main domain and the sub-domain can be written as [�−,�+]
and [i�′−,i �

′+], respectively. Additionally, let there be a
solution vector xopt that reclines in Ω

′
and minimizes f (.),

where f (xopt) ≤ f (x) ∀ x ∈ Ω is a global solution. For
clarity, the following notations will be used in this work: i is
the current time step (iteration), k is the index of the solution
vector in the population matrix and j indicates the j th design
variable (feature x j) of any solution vector x.

The process of random feature selection depends either on
the algorithm sampling a decision variable xij ∈ x j from the

prominent domainΩ
′
or improvising and sampling randomly

from the entire region Ω . This decision is dependent on the
acceptance probability α.

Like any other metaheuristic algorithm, the first step is the
initial population sampling. For a continuous landscape, the

population can be composed by:

kx = �− + ku � (�+ − �−). (2)

In this equation, ku is a vector of randomcoefficients sampled
using one of the classical DOE methods. The � operator
indicates an element-wise multiplication of vectors.

Thematrixui is sampled at each iteration i with the chosen
DOE method. It contains the sampled random coefficients;
its size is β × n where β is the size of the population and n
is the number of dimensions of the problem.

[ui] =

⎡
⎢⎢⎢⎣

1ui1 1ui2 . . . 1uin
2ui1 2ui2 . . . 2uin
...

...
. . .

...

βui1 βui2 . . . βuin

⎤
⎥⎥⎥⎦ . (3)

After evaluating the initial population and determining
the best solution x i

best , the algorithm estimates the domain-
tightening coefficients to update the current prominent upper
and lower bounds for each design feature as per the following
expressions:

i�
′+ = x i

best + η i , i�
′+ ≤ �+, (4)

i�
′− = x i

best − η i , i�
′− ≥ �−, (5)

η i =
(1 − α)

(
1 − i

γ

)

2
(� + − � −). (6)

Thebandwidth (η i) is updated every time x i
best is updated

(self-adaptive mechanism). As can be seen in (6), we applied
time-dependent bandwidth tightening using the term

(
1− i

γ

)
.

This controls the greediness of the algorithm with time: as
time passes, the algorithm becomes greedier. The (1 − α)

term in (6) is used to maintain the α/(1 − α) ratio (resem-
bling the 80/20 analogy). To control the number of features
(design variables) that will be sampled per solution from the
prominent domainΩ

′
, the acceptance probability α has been

used.
If the algorithm decides to draw from the prominent

domain Ω
′
, the set of Eqs. (4) to (6) together with (7) are

used to generate a feature as follows:

k x
i
j = i

j�
′− + ku

i
j (ij�

′+ − i
j�

′−). (7)

If the algorithm decides to draw a feature from the overall
domain Ω , then it will instead be evaluated using:

k x
i
j = j�

− + ku
i
j (j�

+ − j�
−). (8)

This recursive process runs until the stopping condition is
satisfied, which we have set to the maximum number of eval-
uations γ . Algorithm 1 explains the steps of the algorithm.

123

Pareto-like sequential sampling heuristic for global optimisation 9081

3 Parameters setting

The no free lunch (NFL) theorem directly promotes that no
algorithm has a global parameters set that ensures an overall
good performance for all the possible optimisation prob-
lems (Arcuri and Fraser 2013). In line with this, we provide
a comprehensive theoretical and visual explanation of the
parameter-setting (tuning) for the PSS algorithm. A survey
about traditional tuning techniques can be found in Eiben
et al. (1999). The PSS algorithm is based on three input
parameters that need to be set by the user. Namely, the pop-
ulation size (β), the maximum number of iterations (γ) and
the acceptance probability (α). The taxonomy and terminol-
ogy used in this section are taken from Eiben et al. (1999).
The derived formulae here follow probabilistic rules that can
be found in standard textbooks about the theory of prob-
ability (for example see Capiński and Zastawniak (2001)).
In this section, we provide an analytical investigation of the
interaction between the three parameters and illustrate their
effects on finding the global optimum by means of a numer-
ical example. Apart from this, the self-adaptive mechanism

Fig. 2 A virtual 1D optimization objective f (x) – discretized space

for the prominent domain will not be discussed here (see
Sect. 2.3).

Let f (x) be a 1D discrete optimization problem with N
finite possible solutions that we need to minimize. Figure 2
shows the distribution of x along the domain Ω . Now, let
Ω

′
be the true1 prominent domain around the optimum solu-

tion xopt. The red-dashed line, shown in Fig. 2, represents
the lowest valley of all local minima, wherein all the points
below this line are better than any local optima above it. If
any solution below this line is chosen, it will always lead to
the global solution in the coming generations by using the
gbest topology. Assuming that n

′
is the number of all pos-

sible points below the line ∈ Ω
′
and N is the number of

all possible solutions ∈ Ω , the probability of finding a solu-
tion inside the true prominent domain in the first step (initial
population sampling) is:

P(x ∈ Ω
′
) = n

′

N
. (9)

We can expand (9) to determine the probability of drawing
at least one solution that lays in Ω

′
(event A0) from β drawn

solutions:

P(A0) = 1 −
(
1 − n

′

N

)β

. (10)

Equation (10) explains the exponential relationship between
the landscape size and the initial population size. The proba-
bility of event A0 is a problem-specific property that differs
per objective and independent design variable. The comple-
mentary event to A0 will be called B0, wherein P(B0) =
1− P(A0) and P(B0) means none of the drawn β solutions
initially is located in the true prominent region.

After the population initialization, the algorithm perfor-
mance phase begins. In this phase, the algorithm tests the
acceptance-rejection paradigm against α for each solution
component (∀xij ∈ xi). If a random number r i ∼ U (0, 1) ≤
α, the algorithm will sample the design component from the
prominent region, else it will be sampled from the overall

1 This is an innate constitutive property of the distribution (the change)
of f (x) vs. any independent x j ∈ x.

123

9082 M. Shaqfa, K. Beyer

Fig. 3 The population history for Case (a)—2D Schwefel function

region. The probability of exploring new solutions ∈ Ω
′

from the domain is defined in Eq. (11). This equation is inde-
pendent of the time step, i , and it is always constant if the
population size β is constant for a specific optimization prob-
lem and an independent design variable.

Pi (x ∈ Ω
′ |r i > α

) =
[
1 −

(
1 − n

′

N

)β
]

(1 − α). (11)

Now if the algorithmwere to intensificate (success against
α), the probability of getting a better solution within the cur-
rent fictitious prominent region is shown in the following:

Pi (xi+1
best < xibest|r i ≤ α

) =
[
1 −

(
1 − nit

N i
t

)β
]

α. (12)

Notice that Eq. (12) is time-dependent. The terms nit and
Ni
t by definition depend on the sub-region (the current fic-

titious prominent region), and they are a function of time
(notice the i superscription). This can be imagined as if the
red-dotted line corresponds to the current best solution and
the algorithm tries tofindabetter sub-optimal. Put differently,
it implies—only in this algorithm—that the intensification
property is time-dependent and it resembles a perturbation
problem.

In real life, the algorithm is not aware of the true prominent
domain. Indeed, the only parameters known to the algorithm
are the domain and the objective function (as an evaluator).
We assume that the best-known solution so far lays in the
prominent domain and hope that the algorithm’s exploration
will find a better one in the upcoming generations (if any).

If we have an optimization problem with n dimensions
where n > 1, we always assume independent design vari-
ables. For expanding the reflections made above for n design
variables, the probability of obtaining an optimal solution
can be calculated using the multiplication rule, wherein
every design variable is treated as an independent event.
This simple probabilistic analysis shows that the algorithm
is dependent on the distribution of the objective function,
though because the algorithmic parameters are interactive,
they must be carefully set. From this analysis, we can see

Fig. 4 Domain tightening and convergence histories—2D Schwefel
function

that with a bigger β, we boost the probability of obtaining
solutions that belong to the true prominent region, i.e., global
optimum. With a higher α, the algorithm puts most of its
effort into intensification, weakening the diversification. For
multimodal and nonconvex problems, α should be smaller
than in convex and unimodal problems. Using more itera-
tions will always increase the probability of exploring better
solutions. Finally, it is worth mentioning that we used only
MC sampling in the presented analysis. Unless mentioned
otherwise, we used a population of 30 and an acceptance
probability of 0.95.

3.1 Numerical illustration

The example shown in Figs. 3 and 4 indicates the solution of
the standard 2D Schwefel problem. The optimum solution

123

Pareto-like sequential sampling heuristic for global optimisation 9083

(a) (b) (c)

Fig. 5 a The change of P(A0)with β; b the diversification probability versus α inΩ; c the intensification probability versus α inΩ
′
—nD Schwefel

function for n = 1, n = 2, n = 4, n = 10, and n = 100

f (xopt) = 0.0 is obtained when both x1 and x2 hit 420.9687
(the red-dotted lines in Fig. 4). A population of 30 members
and a sum of 20 iterations were used to solve this problem.
For this problem, we set α = 0.95 and 0.70. Figure 4 reveals
how the algorithm adaptively changed the prominent search
area Ω

′
(the gray fill-up) and dynamically tightened it to

control the greediness of the algorithm with respect to the
remaining time (for the two cases).

According to our definition of the true prominent region
for Schwefel function Ω

′ ∈ [389.33, 452.16] ∀ x j (deter-
mined graphically), we say that the algorithm has globally
converged if the algorithm successfully found both x1 and
x2 ∈ Ω

′
. We analyzed 30 consecutive runs for each case,

and the converged results are expressed as: average ± stan-
dard deviation (success rate %). For Case (a), the results
were 0.197345 ± 0.835687 (83.33%), and for Case (b), the
results were 2.435370 ± 2.599124 (96.67%). These results
highlight the trade-off balance between the diversification
and the intensification processes explained in Eqs. (11) and
(12). Side by side, Fig. 5a reveals the effect of choosing the
population size (β) on the probability of finding better initial
solutions (event A0). Moreover, Fig. 5b, c explain the global
diversification (∀xi ∈ Ω) and the intensification inside the
true prominent domain (∀xi ∈ Ω

′
) for different dimensions

of Schwefel function, respectively.

4 Benchmarks and comparisons

The presented PSS algorithm was used to solve a set of stan-
dard functions (Sect. 4.1), the CEC2017 composite functions
(Sect. 4.3), and another selected set of engineering problems
(Sect. 4.4). We benchmarked and compared the performance
of the PSS algorithm with the obtained results from other
state-of-the-art algorithms, the results of which were mostly
retrieved directly from the source papers and not re-simulated
herein. To obtain a meaningful comparison, we used the
same number of evaluations per problem as were used by the

authors of the other algorithms. This benchmarking approach
follows the recommendations by Arcuri and Fraser (2013)
and Liao et al. (2015), which were recently reemphasized by
Ser et al. (2019) and used by Piotrowski and Napiorkowski
(2018).

For the standard benchmarks, we chose state-of-the-art
algorithms to compare with and avoided using the classical
and outperformed algorithms following the suggestions by
Ser et al. (2019) and Molina et al. (2018). The first algorithm
we used in the benchmarking was the whale optimization
algorithm (WOA) as this is one of the recent and heavily cited
algorithms in the literature, which outperformed many other
recent algorithmic proposals (see Mirjalili and Lewis 2016).
The second one was the pathfinder algorithm (PFA), which
has also been published recently and shown to outperform
many other algorithms (see Yapici and Cetinkaya 2019).

For engineering benchmarks, we compared the obtained
solution by directly adopting the best results obtained from
different algorithms in the literature. We also solved a recent
engineering case study with high dimensions that was solved
by using themodified parameter-setting-free harmony search
(MPSFHS) algorithm by Shaqfa and Orbán (2019) and we
used the same algorithm to benchmark the new algorithm
with regard to its scalability.

4.1 Standard benchmarks

Here, we compare our proposed algorithm with the WOA
(Mirjalili and Lewis 2016) and the PFAYapici and Cetinkaya
(2019) using the standard benchmarks explained in Table 1.
We carefully chose the benchmarks in this paper to cover a
wide range of problems.

In Table 2, we compared the WOA with our proposed
PSS method. The problems were solved by assuming α =
0.95. For the population size and the number of iterations,
we chose the same values as in Mirjalili and Lewis (2016),
i.e., a population size of 30 and a total of 500 iterations.

123

9084 M. Shaqfa, K. Beyer

Table 1 Standard benchmark functions (refer to Jamil and Yang 2013 for details)

Function Expression

Sphere f1(x) =
n∑

i=1
x2i

Sum squares f2(x) =
n∑

i=1
i x2i

Chung Reynolds f3(x) =
(n∑
i=1

x2i

)2

Schwefel2.21 f4(x) = max
i=1,...,n

|xi |

Schwefel2.22 f5(x) =
n∑

i=1
|xi | +

n∏
i=1

|xi |

Rosenbrock f6(x) =
n∑

i=1
[100(xi+1 − x2i)

2 + (1 − xi)2]

Trid 6 f7(x) =
n∑

i=1
(xi − 1)2 −

n∑
i=2

xi xi−1

Zakharov f8(x) =
n∑

i=1
x2i + (

n∑
i=1

0.5i xi)2 + (
n∑

i=1
0.5i xi)4

Griewank f9(x) = 1 +
n∑

i=1

x2i
4000 −

n∏
i=1

cos(xi√
i
)

Ackley f10(x) = −20exp

(
− 0.2

√
1
n

n∑
i=1

x2i

)
− exp

(
1
n

n∑
i=1

cos(2πxi)
)

+ 20 + exp(1)

Schwefel f11(x) = 418.9829n −
n∑

i=1
xi sin(

√|xi |)

Shubert f12(x) =
n∏

i=1

(
5∑
j=1

cos
(
(j + 1)xi + j

))

Six-hump camel f13(x1, x2) =
(
4 − 2.1x21 + x41

3

)
x21 + x1x2 +

(
− 4 + 4x22

)
x22

Goldstein f14(x1, x2) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x21 − 14x2 + 6x1x2 + . . .

3x22)][30 + (2x1 − 3x2)2(18 − 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22)]

De Jong 5 f15(x1, x2) =
(

1

500
+

25∑
j=1

(
j +

2∑
i=1

(xi − ai j)6
)−1

)−1

Hartmann 3 f16(x1, x2, x3) = −
4∑

i=1
αi exp

(
−

3∑
j=1

Ai j (x j − Pi j)2
)

Table 2 Comparison with WOA
Mirjalili and Lewis (2016)

Function Proposed approach WOA Mirjalili and Lewis (2016) f (xopt)

f1 0.775955 ± 0.222759 1.41E−30 ± 4.91E−30 0

f4 5.154556 ± 2.273995 0.072581 ± 0.39747 0

f5 0.759658 ± 0.251091 1.06E−21 ± 2.39E−21 0

f6 26.778816 ± 3.804910 27.86558 ± 0.763626 0

f9 0.809812 ± 0.088605 0.000289 ± 0.001586 0

f10 2.230591 ± 0.810609 7.4043 ± 9.897572 0

f †11 − 12554.89 ± 33.2842 − 5080.76 ± 695.7968 − 12569.48

f13 − 1.031611 ± 3.73E-05 − 1.03163 ± 4.2E−07 − 1.0316

f15 0.998004 ± 5.98E-10 2.111973 ± 2.498594 0.998004 ≈ 1

†This version of Schwefel min f (xopt) = − 418.9829×30 (see Mirjalili and Lewis 2016)

123

Pareto-like sequential sampling heuristic for global optimisation 9085

Table 3 Comparison with PFA
Yapici and Cetinkaya (2019)

Function Proposed approach PFA Yapici and Cetinkaya (2019) f (xopt)

f2 0.117980 ± 0.048295 5.5674E−25 ± 7.9092E−25 0

f3 0.031421 ± 0.016130 9.9813E−46 ± 3.3585E−45 0

f5 0.437154 ± 0.249896 3.4831E−14 ± 6.2094E−14 0

f7 − 49.996395 ± 0.004986 − 50.0000 ± 1.98E−11 − 50†

f8 0.081319 ± 0.027990 11.5480 ± 12.9802 0

f9 0.425310 ± 0.408112 0.0006 ± 0.0012 0

f11 0.610558 ± 0.145078 3.1549E+3 ± 5.6274E+2 0

f14 3.000043 ± 7.51E−5 3.0000 ± 2.4952E−16 3

f16 − 3.855772 ± 0.009925 − 3.8628 ± 1.5026E−15 − 3.8628

†This value has been evaluated for n = 6 (as in Yapici and Cetinkaya 2019)

Table 4 Scalability with PFA
Yapici and Cetinkaya (2019)

Function n Proposed approach PFA Yapici and Cetinkaya (2019) f (xopt)

f8 10 0.0143 ± 0.0206 2.17E−35 ± 1.09E−34 0

50 53.6161 ± 11.3012 343.1244 ± 92.1694 0

100 680.8374 ± 61.9845 1911.1759 ± 195.2386 0

f11 10 0.3395 ± 0.91820 449.5090 ± 184.2821 0

50 129.6466 ± 82.8948 6423.8391 ± 663.2207 0

100 7208.6969 ± 489.7975 13610.2227 ± 1361.9760 0

Table 5 Comparison with
MPSFHS Shaqfa and Orbán
(2019)

Function Proposed approach MPSFHS Shaqfa and Orbán (2019) f (xopt)

f8 173.1648 ± 17.1974 1181.5644 ± 71.3395 0

f11 971.8366 ± 150.2988 1554.8070 ± 178.5386 0

In general, 30 dimensions were used for all the proposed
problems (n = 30) except for f13 and f15 (see Table 1).

The reported results in Table 2 express the average ± the
standard deviation for 25 consecutive runs per problem (as in
Mirjalili and Lewis 2016). The boldfaced results indicate—
for each problem—the algorithm that performed the best in
the comparison. From Table 2, it can be seen that in easy uni-
modal and convex functions, the best algorithm was WOA.
This behaviour was expected due to the weak intensifica-
tion in the PSS algorithm that the crude randomwalk usually
reveals. For harder problems, such as nonconvex and/or mul-
timodal ones, though, the PSS algorithm was better able
to allocate global optima–this finding holds notably for the
Schwefel function f11.

In Table 3, we compare the PSS algorithm to the recently
proposed PFA algorithm (Yapici and Cetinkaya 2019). As in
their work, the problems in this table were simulated using
a population size of 30 and 1000 iterations. For the PSS
algorithm, α was set to 0.95 as per the previous comparison.
However, the number of dimensions used for f8 was 20,
while for f7 n = 6, and for f14 and f16, n was set to 2 and 3,
respectively, as shown in Table 1. The stated results are for
30 consecutive runs per function (as in Yapici and Cetinkaya
2019).

As can be seen in Table 3, f2 and f5 behaved the same
as in Table 2 (the pronounced weak intensification for the
proposed approach). On the other hand, the results of f8
and f11, see Table 3, were outperformed by the Pareto-like
sampling. The results of f7, f14, and f16 are almost identical.

4.2 Testing scalability

With an increased dimensionality, the problem complexity
increases, and accordingly, the search domain expands expo-
nentially. To test the scalability of the current algorithm, we
compared the behaviour of the proposed approach with the
PFA algorithm for f8 and f11 functions. The simulations
were run 30 times for each, with 10, 50, and 100 dimensions
as illustrated in Table 4. As the results suggest, the proposed
PSS algorithm outperformed the PFA and registered fewer
deteriorations in performance with the increase of dimen-
sions.

As this test implies that increased dimensionality requires
more computational capacity, we ran simulations with the
recently modified parameter-setting-free harmony search
algorithm (MPSFHS) and the proposed PSS approach to see
how increasing the iterations could enhance the results. To
do this, f8 and f11 were solved for n = 100 and a total
of 300, 000 evaluations (10, 000 iterations with a popula-

123

9086 M. Shaqfa, K. Beyer

Table 6 Composite benchmark functions—adopted from CEC2017 Wu et al. (2016). The definitions of the base functions (FN) are defined in
CEC2017

Function definition f (xopt)

fc,1(x) =

⎧⎪⎪⎨
⎪⎪⎩

F1 = Rotated and Shifted Rosenbrock’s Function,
F2 = Rotated and Shifted High Conditioned Elliptic Function,
F3 = Rotated and Shifted Rastrigin’s Function,
σ = [10, 20, 30], λ = [1, 1E+06, 1], bias = [0, 100, 200].

2100

fc,2(x) =

⎧⎪⎪⎨
⎪⎪⎩

F1 = Rotated and Shifted Rastrigin’s Function,
F2 = Rotated and Shifted Griewank’s Function,
F3 = = Rotated and Shifted Modified Schwefel’s Function,
σ = [10, 20, 30], λ = [1, 10, 1], bias = [0, 100, 200].

2200

fc,3(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F1 = Rotated and Shifted Rosenbrock’s Function,
F2 = Rotated and Shifted Ackley’s Function,
F3 = Rotated and Shifted Modified Schwefel’s Function,
F4 = Rotated and Shifted Rastrigin’s Function,
σ = [10, 20, 30, 40], λ = [1, 10, 1, 1], bias = [0, 100, 200, 300].

2300

fc,4(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F1 = Rotated and Shifted Ackley’s Function,
F2 = Rotated and Shifted High Conditioned Elliptic Function,
F3 = Rotated and Shifted Griewank’s Function,
F4 = Rotated and Shifted Rastrigin’s Function,
σ = [10, 20, 30, 40], λ = [1, 1E+06, 10, 1], bias = [0, 100, 200, 400].

2400

fc,5(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F1 = Rotated and Shifted Rastirigin’s Function,
F2 = Rotated and Shifted HappyCat Function,
F3 = Rotated and Shifted Ackley’s Function,
F4 = Rotated and Shifted Discus Function,
F5 = Rotated and Shifted Rosenbrock’s Function,
σ = [10, 20, 30, 40, 50], λ = [10, 1, 10, 1E+06, 1],
bias = [0, 100, 200, 300, 400].

2500

fc,6(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F1 = Rotated and Shifted Expanded Scaffer’s Function,
F2 = Rotated and Shifted Modified Schwefel’s Function,
F3 = Rotated and Shifted Griewank’s Function,
F4 = Rotated and Shifted Rosenborck’s Function,
F5 = Rotated and Shifted Rastrigin’s Function,
σ = [10, 20, 30, 40], λ = [1E+26, 10, 1E+06, 10, 5E+04],
bias = [0, 100, 200, 300, 400].

2600

fc,7(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 = Rotated and Shifted HGBat Function,
F2 = Rotated and Shifted Rastrigin’s Function,
F3 = Rotated and Shifted Modified Schwefel’s Function,
F4 = Rotated and Shifted BentCigar Function,
F5 = Rotated and Shifted High Conditioned Elliptic Function,
F6 = Rotated and Shifted Expanded Scaffer’s Function,
σ = [10, 20, 30, 40, 50, 60], λ = [10, 10, 2.5, 1E+26, 1E+06, 5E+04],
bias = [0, 100, 200, 300, 400, 500].

2700

fc,8(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 = Rotated and Shifted Ackley’s Function,
F2 = Rotated and Shifted Griewank’s Function,
F3 = Rotated and Shifted Discus Function,
F4 = Rotated and Shifted Rosenbrock’s Function,
F5 = Rotated and Shifted HappyCat Function,
F6 = Rotated and Shifted Expanded Scaffer’s Function,
σ = [10, 20, 30, 40, 50, 60], λ = [10, 10, 1E+06, 1, 1, 5E+04],
bias = [0, 100, 200, 300, 400, 500].

2800

fc,9(x) =

⎧⎪⎪⎨
⎪⎪⎩

F1 = Hybrid Function 5,
F2 = Hybrid Function 8,
F3 = Hybrid Function 9,
σ = [10, 30, 50], λ = [1, 1, 1], bias = [0, 100, 200].

2900

fc,10(x) =

⎧⎪⎪⎨
⎪⎪⎩

F1 = Hybrid Function 5,
F2 = Hybrid Function 6,
F3 = Hybrid Function 7,
σ = [10, 30, 50], λ = [1, 1, 1], bias = [0, 100, 200].

3000

123

Pareto-like sequential sampling heuristic for global optimisation 9087

Ta
bl
e
7

C
E
C
20

17
co
m
po

si
te

fu
nc
tio

ns
te
st
ed

w
ith

n
=

2
by

us
in
g
on
ly

10
ite
ra
tio

ns
(o
nl
y
fo
r
th
e
PS

S,
PF

A
,W

O
A
,a
nd

PS
O

an
d
eq
ui
va
le
nt

ev
al
ua
tio

ns
fo
r
th
e
M
PS

FH
S)

fo
r
f c

,1
→

f c
,8
–

re
po
rt
ed

th
e
er
ro
r
va
lu
es

he
re

(f c
,i
(x

i)
−

f c
,i
(x

op
t)
)

A
lg
or
ith

m
f c

,1
f c

,2
f c

,3
f c

,4
f c

,5
f c

,6
f c

,7
f c

,8

PS
S

M
in

2.
42
85
E
−0

2
6.
58
34
E
−0

2
6.
07
17
E
−0

2
7.
28
68
E
+
00

2.
84
64
E
−0

1
6.
22
83
E
−0

2
6.
46
29
E
−0

1
5.
51
29
E
+
00

M
ax

1.
00
18
E
+
02

1.
12
26
E
+
02

3.
03
92
E
+
02

2.
06
35
E
+
02

2.
11
18
E
+
02

2.
00
57
E
+
02

1.
89
14
E
+
02

2.
19
92
E
+
02

M
ed
ia
n

4.
13
76
E
+
00

1.
26
10
E
+
01

7.
00
64
E
+
01

1.
00
59
E
+
02

1.
06
14
E
+
02

1.
70
70
E
+
00

2.
64
10
E
+
00

1.
01
17
E
+
02

M
ea
n

1.
90
17
E
+
01

2.
50
48
E
+
01

9.
42
31
E
+
01

1.
07
93
E
+
02

1.
10
02
E
+
02

2.
75
32
E
+
01

2.
71
33
E
+
01

1.
05
10
E
+
02

St
d

3.
14
68
E
+
01

3.
37
41
E
+
01

1.
14
63
E
+
02

5.
54
02
E
+
01

6.
12
74
E
+
01

5.
26
81
E
+
01

5.
05
66
E
+
01

7.
57
55
E
+
01

PF
A

M
in

5.
19
62
E
−0

2
2.
02
61
E
−0

2
7.
81
46
E
−0

1
2.
14
61
E
+
01

6.
78
42
E
+
00

8.
84
38
E
−0

2
1.
39
07
E
+
00

1.
21
69
E
+
01

M
ax

1.
00
21
E
+
02

1.
02
30
E
+
02

3.
03
03
E
+
02

2.
02
44
E
+
02

3.
01
68
E
+
02

2.
08
58
E
+
02

4.
00
21
E
+
02

3.
53
66
E
+
02

M
ed
ia
n

4.
05
89
E
−0

1
8.
03
29
E
-0
1

9.
64
71
E
+
00

1.
01
42
E
+
02

1.
07
13
E
+
02

1.
92
40
E
+
00

3.
68
75
E
+
00

1.
12
03
E
+
02

M
ea
n

4.
27
39
E
+
00

9.
56
96
E
+
00

9.
56
48
E
+
01

1.
08
74
E
+
02

1.
18
02
E
+
02

9.
19
56
E
+
00

1.
72
40
E
+
01

1.
37
32
E
+
02

St
d

1.
82
21
E
+
01

2.
54
88
E
+
01

1.
36
89
E
+
02

3.
70
36
E
+
01

8.
28
71
E
+
01

3.
76
97
E
+
01

7.
23
59
E
+
01

7.
48
51
E
+
01

W
O
A

M
in

3.
91
20
E
−0

2
4.
60
32
E
−0

2
3.
85
43
E
−0

1
1.
40
56
E
+
01

3.
41
95
E
+
00

3.
78
80
E
−0

1
2.
45
74
E
+
00

3.
26
45
E
+
01

M
ax

1.
17
61
E
+
02

2.
31
30
E
+
01

3.
02
07
E
+
02

2.
13
58
E
+
02

3.
09
99
E
+
02

2.
03
12
E
+
02

1.
89
17
E
+
02

3.
04
09
E
+
02

M
ed
ia
n

6.
12
33
E
−0

1
1.
08
85
E
+
01

5.
36
77
E
+
00

1.
00
70
E
+
02

1.
19
37
E
+
02

5.
39
88
E
+
00

2.
43
32
E
+
01

1.
64
72
E
+
02

M
ea
n

4.
98
54
E
+
00

8.
93
99
E
+
00

1.
06
09
E
+
02

1.
07
71
E
+
02

1.
31
70
E
+
02

2.
20
09
E
+
01

4.
81
68
E
+
01

1.
65
02
E
+
02

St
d

2.
13
19
E
+
01

5.
96
59
E
+
00

1.
22
64
E
+
02

3.
39
13
E
+
01

9.
46
36
E
+
01

4.
61
16
E
+
01

5.
45
86
E
+
01

6.
52
13
E
+
01

M
PS

FH
S

M
in

1.
35
82
E
+
00

3.
01
20
E
−0

1
8.
89
72
E
+
00

9.
22
68
E
+
01

3.
12
34
E
+
01

1.
64
34
E
−0

1
3.
57
03
E
+
00

5.
24
73
E
+
01

M
ax

6.
03
20
E
+
01

1.
13
24
E
+
02

3.
04
30
E
+
02

2.
09
83
E
+
02

3.
19
93
E
+
02

1.
49
41
E
+
02

7.
88
58
E
+
01

3.
08
67
E
+
02

M
ed
ia
n

1.
92
90
E
+
01

2.
44
65
E
+
01

7.
50
47
E
+
01

1.
32
01
E
+
02

2.
04
06
E
+
02

4.
10
46
E
+
01

2.
89
17
E
+
01

1.
45
37
E
+
02

M
ea
n

2.
11
65
E
+
01

3.
03
13
E
+
01

1.
05
91
E
+
02

1.
44
25
E
+
02

1.
88
85
E
+
02

4.
82
82
E
+
01

3.
36
65
E
+
01

1.
59
04
E
+
02

St
d

1.
77
33
E
+
01

2.
33
74
E
+
01

8.
98
50
E
+
01

3.
81
89
E
+
01

7.
98
65
E
+
01

3.
57
34
E
+
01

1.
96
70
E
+
01

5.
57
76
E
+
01

PS
O

M
in

3.
07
62
E
−0

1
6.
84
06
E
−0

1
2.
43
19
E
+
00

7.
11
58
E
+
01

1.
15
24
E
+
01

2.
98
69
E
+
00

5.
92
83
E
+
00

4.
41
53
E
+
01

M
ax

1.
01
09
E
+
02

1.
73
30
E
+
01

3.
03
34
E
+
02

1.
60
73
E
+
02

2.
81
49
E
+
02

2.
24
89
E
+
02

4.
02
18
E
+
02

2.
18
41
E
+
02

M
ed
ia
n

5.
80
90
E
+
00

7.
51
09
E
+
00

2.
64
52
E
+
01

1.
10
33
E
+
02

1.
42
09
E
+
02

2.
04
22
E
+
01

2.
15
16
E
+
01

1.
23
96
E
+
02

M
ea
n

9.
49
14
E
+
00

8.
28
78
E
+
00

1.
10
08
E
+
02

1.
12
24
E
+
02

1.
41
44
E
+
02

2.
76
41
E
+
01

3.
48
90
E
+
01

1.
38
74
E
+
02

St
d

1.
78
32
E
+
01

4.
83
97
E
+
00

1.
30
79
E
+
02

1.
57
96
E
+
01

7.
76
16
E
+
01

3.
86
40
E
+
01

7.
02
02
E
+
01

4.
84
16
E
+
01

123

9088 M. Shaqfa, K. Beyer

Table 8 CEC2017 composite
functions tested with n = 100
by using only 100 iterations for
both the PSS and PFA
algorithms on
fc,1 → fc,10—reported the
error values here(
fc,i (xi) − fc,i (xopt)

)

Algorithm fc,1 fc,2 fc,3 fc,4 fc,5

PSS Min 1.2002E+03 2.5724E+04 1.5424E+03 2.1423E+03 5.1997E+03

Max 1.7306E+03 3.1503E+04 1.8003E+03 2.5840E+03 9.2997E+03

Median 1.5094E+03 2.8014E+04 1.6500E+03 2.3455E+03 7.0022E+03

Mean 1.4929E+03 2.7920E+04 1.6588E+03 2.3551E+03 7.0311E+03

Std 1.0472E+02 1.3480E+03 7.0691E+01 1.1244E+02 1.0787E+03

fc,6 fc,7 fc,8 fc,9 fc,10

Min 1.6692E+04 1.5568E+03 4.9472E+03 5.1738E+03 1.7476E+07

Max 1.9222E+04 2.2142E+03 1.2336E+04 7.4074E+03 8.2332E+07

Median 1.7630E+04 1.6990E+03 8.4480E+03 6.3363E+03 4.2002E+07

Mean 1.7686E+04 1.7340E+03 8.7575E+03 6.2897E+03 4.2233E+07

Std 8.4035E+02 1.4641E+02 1.9430E+03 5.6462E+02 1.6223E+07

fc,1 fc,2 fc,3 fc,4 fc,5

PFA min 1.3493E+03 2.4074E+04 2.3835E+04 2.1928E+03 5.6223E+03

Max 1.9686E+03 3.2000E+04 3.3604E+04 2.8422E+03 1.6262E+04

Median 1.5668E+03 2.6900E+04 2.8106E+04 2.5436E+03 6.9669E+03

Mean 1.6031E+03 2.7021E+04 2.7941E+04 2.5141E+03 7.7530E+03

Std 1.5386E+02 2.2703E+03 2.7965E+03 1.7907E+02 2.2391E+03

fc,6 fc,7 fc,8 fc,9 fc,10

Min 1.6504E+04 1.1039E+03 7.0900E+03 5.7046E+03 4.2582E+07

Max 2.2592E+04 1.8703E+03 1.6716E+04 1.0894E+04 2.0416E+08

Median 1.9795E+04 1.4006E+03 1.1057E+04 7.7024E+03 9.5209E+07

Mean 1.9688E+04 1.4345E+03 1.1339E+04 7.8995E+03 1.0203E+08

Std 1.5073E+03 1.8877E+02 2.3745E+03 1.2773E+03 4.5804E+07

tion size of 30 for PSS). Table 5 illustrates the results of
30 consecutive runs for each algorithm. The PSS approach
outperformed the MPSFHS algorithm, and considerable
enhancements were seen in the end results.

4.3 Composite benchmarks

In this section, we used the CEC2017 by Wu et al. (2016)
and reviewed by Molina et al. (2018), competition’s com-
posite functions to benchmark the behaviour of the proposed
algorithm (PSS). The used functions are briefly described
in Table 6. We first tested our algorithm against these func-
tions under extreme cases where only a few iterations are
allowed. In Table 7, we ran 30 consecutive tests with n = 2,
α = 0.95, β = 30, and with allowing a total of 10 iterations
per run for the composite functions fc,1 → fc,8. We con-
ducted a comparison under the same conditions for the PSS,
PFA, WOA, and PSO algorithms. The MPSFHS was tuned
to HMS = 30 m = 2, HMCRi = 0.75, PARi = 0.15,
HMCRmax = 0.99, PARmin = 0.05, and 300 iterations to
have an equivalent number of evaluations as the PSS, PFA,
WOA, and PSO (for more about the used parameter-settings
refer to Shaqfa and Orbán (2019)).

The results shown in Table 7 suggest that the PSS algo-
rithm can still be globally convergent and allocate global

minima in most of the runs and it scales well with the avail-
able time (iterations). Indeed it scored the best results for
most functions, though, the gap between the PSS and the
PFA algorithms was small. The best runs are revealed in Fig.
6 showing two iteration-milestones i = 5 and i = 10. Notice
that the reported results in Table 7 are expressed in terms of
the error values and computed as (fc,i (xi) − fc,i (xopt)) and
we revealed theminimum,maximum,mean, median, and the
standard deviation of the error values as recommended by the
CEC2017 report (refer to Wu et al. 2016).

In another extreme case we tested the functions fc,1 →
fc,10 but this time with n = 100 and by only employing
100 iterations. In this experiment, we only compared the
PSS with the PFA algorithm. The shown results in Table
8 suggest that the gap between the PSS and the PFA widens.
Indeed, the PSS outperformed the PFA in all the functions
except fc,2 and fc,7. These results signify the capability of
the PSS algorithm to scale with high-dimensional problems
while exploiting very limited computational resources. This
is quite important for complex surrogate models that require
a significant computational capacity for each functional eval-
uation (Forrester and Keane 2009; Queipo et al. 2005).

We also conducted simulations similar to the ones pre-
sented by Yapici and Cetinkaya (2019) and again we com-
pared our results with the adopted ones directly from their

123

Pareto-like sequential sampling heuristic for global optimisation 9089

Ta
bl
e
9

C
om

po
si
te
fu
nc
tio

ns
co
m
pa
ri
so
n
w
ith

PF
A
al
go
ri
th
m

Y
ap
ic
ia
nd

C
et
in
ka
ya

(2
01
9)
—
re
po
rt
ed

he
re

th
e
er
ro
r
va
lu
es

(f c
,i
(x

i)
−

f c
,i
(x

op
t)
)

M
et
ho
d

n
E
rr
or

f c
,1

f c
,2

f c
,3

f c
,4

f c
,5

f c
,6

f c
,7

f c
,8

f c
,9

f c
,1
0

PF
A
Y
ap
ic
ia
nd

C
et
in
ka
ya

(2
01
9)

10
M
in

1.
00
00
E
+
02

1.
15
63
E
+
01

3.
00
14
E
+
02

1.
00
06
E
+
02

3.
97
74
E
+
02

3.
00
00
E
+
02

3.
88
48
E
+
02

3.
00
00
E
+
02

2.
41
24
E
+
02

2.
86
12
E
+
03

M
ax

2.
20
19
E
+
02

1.
03
11
E
+
02

3.
18
46
E
+
02

3.
43
80
E
+
02

4.
46
02
E
+
02

3.
00
00
E
+
02

3.
95
70
E
+
02

4.
44
98
E
+
02

3.
23
67
E
+
02

9.
28
12
E
+
04

M
ed
ia
n

1.
54
67
E
+
02

1.
01
37
E
+
02

3.
07
62
E
+
02

1.
65
47
E
+
02

4.
00
78
E
+
02

3.
00
00
E
+
02

3.
90
90
E
+
02

3.
02
77
E
+
02

2.
84
14
E
+
02

1.
76
56
E
+
04

M
ea
n

1.
56
45
E
+
02

9.
35
93
E
+
01

3.
07
06
E
+
02

2.
13
30
E
+
02

4.
18
63
E
+
02

3.
00
00
E
+
02

3.
91
75
E
+
02

3.
40
87
E
+
02

2.
84
18
E
+
02

6.
23
90
E
+
04

St
d

5.
57
56
E
+
01

2.
43
40
E
+
01

4.
38
61
E
+
00

9.
81
89
E
+
01

2.
17
35
E
+
01

2.
19
02
E
−0

5
1.
90
96
E
+
00

6.
30
04
E
+
01

1.
53
59
E
+
01

1.
51
05
E
+
04

M
in

2.
07
78
E
+
02

1.
00
00
E
+
02

3.
73
23
E
+
02

5.
29
36
E
+
02

3.
83
00
E
+
02

2.
07
82
E
+
02

4.
88
04
E
+
02

4.
05
28
E
+
02

5.
62
56
E
+
02

2.
46
85
E
+
03

M
ax

4.
23
79
E
+
02

7.
57
75
E
+
03

5.
21
40
E
+
02

5.
86
19
E
+
02

4.
35
44
E
+
02

2.
63
65
E
+
03

5.
10
48
E
+
02

4.
77
41
E
+
02

1.
05
63
E
+
02

1.
57
43
E
+
05

M
ed
ia
n

3.
16
04
E
+
02

1.
99
84
E
+
03

4.
93
08
E
+
02

5.
71
69
E
+
02

3.
88
10
E
+
02

9.
56
00
E
+
02

5.
02
77
E
+
02

4.
32
75
E
+
02

6.
80
22
E
+
02

5.
72
36
E
+
04

M
ea
n

3.
20
29
E
+
02

3.
38
80
E
+
03

4.
87
91
E
+
02

5.
70
49
E
+
02

3.
89
89
E
+
02

9.
55
05
E
+
02

5.
02
81
E
+
02

4.
38
39
E
+
02

7.
14
05
E
+
02

6.
41
99
E
+
04

St
d

5.
58
65
E
+
01

3.
36
43
E
+
03

2.
68
40
E
+
01

1.
21
25
E
+
01

7.
35
78
E
+
00

6.
28
41
E
+
02

2.
52
84
E
+
00

2.
55
85
E
+
01

1.
17
31
E
+
02

3.
01
36
E
+
04

50
M
in

2.
91
69
E
+
02

1.
00
00
E
+
02

5.
17
01
E
+
02

5.
55
98
E
+
02

5.
40
14
E
+
02

3.
52
36
E
+
02

5.
00
00
E
+
02

5.
13
85
E
+
02

4.
69
40
E
+
02

1.
10
16
E
+
06

M
ax

6.
51
78
E
+
02

1.
41
77
E
+
04

7.
73
42
E
+
02

8.
38
18
E
+
02

6.
74
21
E
+
02

4.
10
24
E
+
03

6.
80
90
E
+
02

6.
58
09
E
+
02

1.
47
84
E
+
03

1.
82
61
E
+
06

M
ed
ia
n

5.
66
87
E
+
02

1.
32
55
E
+
04

7.
20
31
E
+
02

8.
12
95
E
+
02

6.
09
00
E
+
02

2.
02
29
E
+
03

6.
22
69
E
+
02

5.
52
60
E
+
02

8.
71
84
E
+
02

1.
43
03
E
+
06

M
ea
n

5.
18
24
E
+
02

1.
30
02
E
+
04

7.
09
09
E
+
02

7.
91
78
E
+
02

6.
10
75
E
+
02

2.
21
47
E
+
03

6.
22
70
E
+
02

5.
63
26
E
+
02

9.
08
43
E
+
02

1.
43
01
E
+
06

St
d

1.
09
89
E
+
01

1.
92
55
E
+
03

4.
97
10
E
+
01

6.
06
05
E
+
01

2.
12
06
E
+
01

6.
35
98
E
+
02

3.
80
00
E
+
01

3.
02
91
E
+
01

2.
58
33
E
+
02

1.
53
98
E
+
05

PS
S

10
M
in

1.
00
00
E
+
02

2.
58
11
E
+
01

3.
05
43
E
+
02

1.
00
04
E
+
02

1.
05
49
E
+
02

5.
05
21
E
+
00

3.
88
91
E
+
02

3.
96
83
E
+
01

2.
37
91
E
+
02

2.
77
32
E
+
03

M
ax

2.
64
12
E
+
02

1.
10
87
E
+
02

3.
46
89
E
+
02

3.
85
52
E
+
02

4.
46
23
E
+
02

4.
52
87
E
+
02

4.
42
13
E
+
02

6.
11
88
E
+
02

3.
16
90
E
+
02

8.
42
83
E
+
04

M
ed
ia
n

2.
23
92
E
+
02

1.
07
95
E
+
02

3.
23
32
E
+
02

3.
59
39
E
+
02

3.
99
10
E
+
02

3.
01
09
E
+
02

4.
00
22
E
+
02

3.
03
52
E
+
02

2.
66
77
E
+
02

1.
32
33
E
+
04

M
ea
n

2.
07
25
E
+
02

1.
00
58
E
+
02

3.
24
51
E
+
02

3.
16
12
E
+
02

3.
93
22
E
+
02

2.
93
45
E
+
02

4.
00
51
E
+
02

3.
47
62
E
+
02

2.
70
31
E
+
02

1.
90
25
E
+
04

St
d

4.
80
79
E
+
01

1.
98
23
E
+
01

1.
01
29
E
+
01

1.
00
04
E
+
02

5.
22
61
E
+
01

5.
50
00
E
+
01

8.
14
09
E
+
00

1.
16
75
E
+
02

1.
76
54
E
+
01

1.
62
83
E
+
04

30
M
in

2.
59
82
E
+
02

9.
51
78
E
+
01

4.
11
79
E
+
02

5.
04
58
E
+
02

3.
83
76
E
+
02

2.
10
92
E
+
02

4.
95
58
E
+
02

4.
00
02
E
+
02

4.
74
01
E
+
02

1.
26
50
E
+
04

M
ax

3.
54
42
E
+
02

3.
01
17
E
+
03

5.
04
32
E
+
02

6.
50
72
E
+
02

3.
96
24
E
+
02

2.
24
63
E
+
03

5.
58
34
E
+
02

4.
61
09
E
+
02

1.
03
32
E
+
03

1.
84
96
E
+
06

M
ed
ia
n

2.
98
40
E
+
02

1.
07
73
E
+
02

4.
61
86
E
+
02

5.
92
02
E
+
02

3.
87
51
E
+
02

3.
02
66
E
+
02

5.
26
53
E
+
02

4.
17
88
E
+
02

6.
93
33
E
+
02

6.
08
21
E
+
04

M
ea
n

2.
97
69
E
+
02

5.
98
79
E
+
02

4.
64
72
E
+
02

5.
85
96
E
+
02

3.
87
45
E
+
02

7.
10
25
E
+
02

5.
25
44
E
+
02

4.
20
76
E
+
02

6.
89
41
E
+
02

1.
05
82
E
+
05

St
d

1.
69
33
E
+
01

9.
98
55
E
+
02

2.
25
48
E
+
01

3.
11
20
E
+
01

1.
87
91
E
+
00

7.
49
29
E
+
02

1.
24
94
E
+
01

1.
25
97
E
+
01

1.
14
08
E
+
02

2.
56
46
E
+
05

50
M
in

3.
23
16
E
+
02

1.
23
46
E
+
02

5.
82
61
E
+
02

7.
12
24
E
+
02

5.
19
11
E
+
02

3.
17
99
E
+
02

5.
89
63
E
+
02

4.
69
72
E
+
02

6.
88
60
E
+
02

1.
84
73
E
+
06

M
ax

4.
28
92
E
+
02

6.
50
96
E
+
03

7.
88
39
E
+
02

9.
05
54
E
+
02

6.
20
09
E
+
02

3.
98
18
E
+
03

8.
07
12
E
+
02

6.
14
70
E
+
02

1.
99
81
E
+
03

3.
81
91
E
+
06

M
ed
ia
n

3.
85
11
E
+
02

5.
43
46
E
+
03

6.
75
49
E
+
02

8.
41
79
E
+
02

5.
77
57
E
+
02

3.
48
53
E
+
03

6.
98
24
E
+
02

5.
26
09
E
+
02

1.
18
05
E
+
03

2.
59
66
E
+
06

M
ea
n

3.
85
74
E
+
02

5.
37
59
E
+
03

6.
73
42
E
+
02

8.
35
83
E
+
02

5.
74
06
E
+
02

3.
26
46
E
+
03

7.
07
68
E
+
02

5.
29
15
E
+
02

1.
20
65
E
+
03

2.
57
69
E
+
06

St
d

2.
30
97
E
+
01

8.
86
43
E
+
02

3.
69
80
E
+
01

4.
36
56
E
+
01

2.
68
76
E
+
01

7.
49
41
E
+
02

5.
33
67
E
+
01

2.
33
79
E
+
01

2.
42
02
E
+
02

3.
57
85
E
+
05

123

9090 M. Shaqfa, K. Beyer

Fig. 6 The convergence of
composite functions using
α = 0.95, β = 30, and
γ = 10—illustrated the best
runs for fc,1 → fc,4 where
n = 2.

123

Pareto-like sequential sampling heuristic for global optimisation 9091

Fig. 6 Continued.

paper. The tests were conducted with different dimensions
for each function; we used n = 10, n = 30, and n = 50.
50 runs with 1000 iterations per each were used to run all
the tests. α and β were also set to be 0.95 and 30, respec-
tively. The results of both algorithms, shown in Table 9, are in
proximity to each other for most functions. However, in their
paper they compared the performance of the PFA with other
algorithms and the best performance was registered by the
effective butterfly optimizer (EBO) (Kumar et al. 2017) and
the enhanced version of the success-History based adaptive
differential evolution LSHADE-cnEpSin algorithm (Kumar
et al. 2017) and they outperformed, though the results are not
shownhere (refer toYapici andCetinkaya 2019), the PFAand
the PSS as those algorithms (EBO and LSHADE-cnEpSin)
were specifically designed to solve the CEC2017 problems.

The CEC2017 report indeed recommends to measure the
performance of the algorithms at several iteration-milestones
to monitor the convergence behavior. However, the reported
error values in terms of the mean and standard deviation does
not reveal the real distribution of the data. For this purpose,

we used the raincloud plots by Allen et al. (2019) to monitor
the convergence at several iteration-milestones. In Fig. 7,
we evinced a sample of the convergence data distribution at
different milestones i = 50, i = 100, i = 500, and i =
1000 and for problem dimensions n = 30 and n = 50. As
can be seen in the figure the results are widely-distributed at
the beginning of the performance stage (notice data at i =
50); at later iterations relatively narrower distributions can be
identified. It can be noticed as well that some distributions
have two peaks and this could be related to the corresponding
topology of the function as they contain many attractive local
minima that could trick the algorithm into it (for example see
fc,7 in Fig. 7 and the corresponding 2D surface in Fig. 6).
The raincloud figures help to visualize how frequent the

algorithm could be trapped in local minima and how often it
converges globally. This is more clear in lower dimensions,
for instance, when n = 10 as shown in Fig. 8 three different
distributions can be noticed as each one of them represents a
possible local minima. The consistency of the algorithm can
be seen as it generates more iterations it approaches global

123

9092 M. Shaqfa, K. Beyer

Fig. 7 The statistical
distribution of the obtained
optima for a set of composite
functions, with 50 runs per each,
computed at four
iteration-milestones (i = 50,
i = 100, i = 500, and i = 1000)
with a semi-log scale (on the
y-axis). (insets), reveal the
actual log-log scale convergence
curves for the all 50 runs

Fig. 8 The statistical
distribution of convergence data
of the composite function fc,4
for n = 10, n = 30, and n = 50
at four different
iteration-milestones (i = 50,
i = 100, i = 500, and
i = 1000). The right column
shows the actual convergence
curves in log-log scalef
corresponding to n = 10,
n = 30, and n = 50

123

Pareto-like sequential sampling heuristic for global optimisation 9093

(a) (b) (c)

Fig. 9 a The cantilever beam design problem; b the train gears design problem (a modified figure from Mirjalili 2015); c the three-bar truss design
problem

Fig. 10 Case study (1) retrieved from Shaqfa and Orbán (2019)—best reinforcement details by PSS

answers without being staggered at local minima. Moreover,
the dimensional discrepancy can be clearly distinguished on
the same figure for all the runs.

4.4 Engineering benchmarks

4.4.1 Traditional engineering benchmarks

In this section, the PSS was tested and compared with some
of the traditional constrained engineering design problems,
including: (i) the cantilever beam design (Fig. 9a), (ii) the
train gears design (Fig. 9b), and (iii) the three-bar truss design
(Fig. 9c). The reader is referred to Yapici and Cetinkaya
(2019) and Mirjalili (2015) for the formulations of these
problems.

The results of the three problems are shown in Table 10.
For the first problem, we obtained an almost-identical solu-
tion to the PFAalgorithm.However, Sharma andSah recently
obtained an even better optimum solution of 1.32545with the
novel hybrid algorithm m-MBOA (Sharma and Saha 2019).
Another recently published article obtained anoptimumsolu-
tion of 1.330565414 by (Zhao et al. 2020)

Regarding the train gears design problem, the PSS algo-
rithm reached the same optimal answer as many other
algorithms using integer formulation, such as themoth-flame
optimization algorithm (MOA) (Mirjalili 2015). Notwith-
standing, Sharma and Saha (2019) claim to obtain the
optimumanswer of 3.3610E−16by considering the problem
landscape as continuous. By also considering the problem’s
distribution to be continuous, we obtained a solution of
2.2695E−21with x = {43.170946, 14.205443, 17.919979,
40.869247}. However, these solution must not be considered
as a new valid optimum, as it disregards the nature of the
problem by dealing with the number of teeth per gear as a
continuously distributed design variable.

Finally, the third case study minimizes the weight of a
three-bar truss structure. As can be seen in Table 10, the PSS
obtained a slightly better solution than the one obtained by
Mirjalili (2015). Sharma and Saha (2019) again detail a new
optimal solution of 1.325454889710144, which lays outside
of the feasibility domain of the problem and is therefore
inconsequential for engineers. We believe that this solu-
tion is obtained by incorrectly enforcing the constraints, or
it could be a simple typo. It is worth to mention that the

123

9094 M. Shaqfa, K. Beyer

Table 10 Comparisons of
solutions to engineering
problems

(i) Cantilever beam design
Method Proposed approach PFA Yapici and Cetinkaya (2019)

Weight 1.33995664399519 1.33995638

x1 6.01683010096092 6.0154633

x2 5.30655187659779 5.3090222

x3 4.49420948422588 4.4946314

x4 3.50272928517748 3.5017850

x5 2.15334341962752 2.1527578

(ii) Train gears design
Method Proposed approach MFO Mirjalili (2015)

Gear ratio 2.7009E−12 2.7009E-12

x1 43 43

x2 19 19

x3 16 16

x4 49 49

(iii) Three-bar truss design
Method Proposed approach MFO Mirjalili (2015)

Weight 263.895843501333 263.895979682

x1 0.788683438026281 0.788244770931922

x2 0.408224806061712 0.409466905784741

(iv) Reinforced concrete beam design
Method Proposed approach MPSFHS Shaqfa and Orbán (2019)

Weight (kN) 42.138 42.125

recent water strider algorithm (WSA) by Kaveh and Eslam-
lou (2020) obtained a slightly better solution with a weight
of 263.89584340 kN.

4.4.2 Design of reinforced concrete beams

In the fourth design case study, we recall the problem of
designing a reinforced concrete beam (formulated in Shaqfa
andOrbán 2019). In this example, the PSS algorithm solved a
complex weight minimization case study that was presented
and solved by Shaqfa and Orbán (2019) using the MPSFHS
algorithm.Herein,weused anα of 0.85 instead of 0.95 as pre-
viously, because this problem required more diversification.
Table 10 shows the difference between the results obtained
with both the MPSFHS and the PSS algorithms. For this dis-
crete problem with 25 independent design variables, the best
answer was obtained by the MPSFHS. However, the differ-
ence between the two is small and can be related to some
details of the top reinforcement (see Fig. 10). This level of
perturbation normally requires a small-stepped randomwalk
algorithm to exploit small details. As outlined above, the PSS
algorithm does not perform well with regard to finding the
local optimum and should be, for this purpose, combined
with other algorithms whenever necessary.

5 Conclusions

In this work, we propose a heuristic approach that uses
a simple analogy with classical DOE methods. The pre-
sented approach samples solution features more densely
in a detected prominent region than in the entire search
domain. The design of this algorithm was kept as simple
as possible, while avoiding structural bias and premature
convergence. The algorithm requires three input parame-
ters, namely the population size (β), the maximum number
of iterations (γ), and the acceptance probability (α). We
provided a simple probabilistic derivation for investigating
good parameter choices. The algorithm was benchmarked
against state-of-the-art algorithmsusing a selected set of stan-
dard and engineering optimization problems. The algorithm
behavedbetter in allocatingglobalminima for nonconvex and
multimodal problems than the state-of-the-art algorithms,
while it does need enhancements on the intensification side
to make better use of all the available solution vectors. More-
over, the PSS algorithm proved useful and outperformed
state-of-the-art algorithmic proposals in the scalability prob-
lems and under extreme cases where only a few iterations
are allowed. Even though we used it as a standalone meta-
heuristic in this paper when benchmarking the algorithm, the
algorithm will likely be most useful hybridised in sequential

123

Pareto-like sequential sampling heuristic for global optimisation 9095

or parallel schemes with other well-known algorithms, e.g.,
Lévy flights.

6 Future work

In future work, we plan to implement the lbest (see Eberhart
and Kennedy 1995) analogy with the algorithm, where it
can redefine the prominent domain region, Ω

′
, by using, for

instance, the best (1 − α) × β candidates per iteration. This
topology could be used to strengthen the intensification of the
algorithm. Hybridization via other well-known algorithms,
including but not limited to Lévy flights (Yang 2009; Yang
et al. 2013) and spiral search (Mirjalili and Lewis 2016),
could be another way to control the intensification step size
in the PSS.

Another possible direction includes applying dynamic
schemes for the number of population candidates to scale up
or down with the global and local search needs. Liang and
Juarez (2020) applied a dynamic approach for the popula-
tion sizing in their algorithm self-adaptive virus optimization
algorithm (SaVOA) and it seems as a promising technique to
be applied with the PSS algorithm. Eventually, hybridizing
the algorithm with sequential and parallel topologies could
be interesting for multimodal optimization problems.

7 Reproducibility

To promote openness and transparency, the authors have
provided the readers with the source code of the algorithm
written in C++14, Python 3.7, and Octave (Matlab) program-
ming languages. The source codes can be downloaded from
the following online platforms:

– Zenodo: 10.5281/zenodo.3630764
– Github: git@github.com:eesd-epfl/pareto-optimizer.git

Acknowledgements We thank Dr. Ketson Roberto Maximiano Dos
Santos (EPFL–Switzerland) for his efforts in refining the revised copy
of the manuscript.

Author Contributions MS and KB both developed the analogy behind
this algorithm.MS developed the codes and conducted the benchmarks,
while KB supervised the process. The written manuscript was first writ-
ten by MS and then edited by KB.

Funding OpenAccess funding provided by EPFLLausanne. This work
was funded through the Swiss National Science Foundation (SNSF)
Project 200021_175903/1.

Declarations

Conflict of interest The authors declare that they have no competing
interests.

Ethical standard This article does not contain any studies with human
participants performed by any of the authors.

Informed consent For this type of study formal consent is not required.

Data availability and supplemental materials No Electronic Supple-
mental Materials (ESM) are attached with this manuscript. However,
the attached codes are able to reproduce the presented benchmarks data,
convergence videos, and figures.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Allen M, Poggiali D, Whitaker K, Marshall TR, Kievit RA (2019)
Raincloud plots: a multi-platform tool for robust data visu-
alization. Wellcome Open Res 4:63. https://doi.org/10.12688/
wellcomeopenres.15191.1

ArcuriA, FraserG (2013)Parameter tuning or default values?Anempir-
ical investigation in search-based software engineering. Empir
Softw Eng 18(3):594. https://doi.org/10.1007/s10664-013-9249-
9

Capiński M, Zastawniak T (2001) In: Problem books in mathematics,
pp. 87–116. Springer, New York. https://doi.org/10.1007/978-0-
387-21659-1_8

Caprara A, Locatelli M (2010) Global optimization problems and
domain reduction strategies. Math Program 125(1):123

Carlier J, Clautiaux F, Moukrim A (2007) New reduction procedures
and lower bounds for the two-dimensional bin packing problem
with fixed orientation. Comput Oper Res 34(8):2223. https://doi.
org/10.1016/j.cor.2005.08.012

Dai H, Wang W, Xu Q, Xiong Y, Wei DQ (2019) Estimation of proba-
bility distribution and its application in Bayesian classification and
maximum likelihood regression. Interdiscip Sci Comput Life Sci
11(3):559. https://doi.org/10.1007/s12539-019-00343-w

de Mello TH, Bayraksan G (2014) Monte Carlo sampling-based
methods for stochastic optimization. Surv Oper Res Manag Sci
19(1):56. https://doi.org/10.1016/j.sorms.2014.05.001

Eberhart R, Kennedy J (1995) In: MHS’95. Proceedings of the sixth
international symposium on micro machine and human science,
pp 39–43. https://doi.org/10.1109/MHS.1995.494215

Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control
in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124.
https://doi.org/10.1109/4235.771166

Forrester AI, Keane AJ (2009) Recent advances in surrogate-based
optimization. Prog Aerosp Sci 45(1):50. https://doi.org/10.1016/
j.paerosci.2008.11.001

GeemZW, SimKB (2010) Parameter-setting-free harmony search algo-
rithm. Appl Math Comput 217(8):3881. https://doi.org/10.1016/j.
amc.2010.09.049

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/wellcomeopenres.15191.1
https://doi.org/10.12688/wellcomeopenres.15191.1
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1007/s10664-013-9249-9
https://doi.org/10.1007/978-0-387-21659-1_8
https://doi.org/10.1007/978-0-387-21659-1_8
https://doi.org/10.1016/j.cor.2005.08.012
https://doi.org/10.1016/j.cor.2005.08.012
https://doi.org/10.1007/s12539-019-00343-w
https://doi.org/10.1016/j.sorms.2014.05.001
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/4235.771166
https://doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.1016/j.amc.2010.09.049
https://doi.org/10.1016/j.amc.2010.09.049

9096 M. Shaqfa, K. Beyer

Geem Z, Kim J, Loganathan G (2002) Harmony search optimization:
application to pipe network design. Int J Model Simul 22(2):125.
https://doi.org/10.1080/02286203.2002.11442233

Holland JH (1992) Adaptation in natural and artificial systems: an intro-
ductory analysis with applications to biology, control and artificial
intelligence. MIT Press, Cambridge

Jamil M, Yang X (2013) A literature survey of benchmark functions for
global optimisation problems. arXiv:1308.4008

Jeong YW, Park SM, Geem ZW, Sim KB (2020) Advanced parameter-
setting-free harmony search algorithm. Appl Sci. https://doi.org/
10.3390/app10072586

Jin R, Chen W, Sudjianto A (2002) In: DAC 2002
Juran J, Gryna F (1988) Juran’s quality control handbook. Industrial

engineering series. McGraw-Hill. https://books.google.ch/books?
id=_-VTAAAAMAAJ

Kaveh A, Eslamlou AD (2020) Water strider algorithm: a new meta-
heuristic and applications. Structures 25:520. https://doi.org/10.
1016/j.istruc.2020.03.033

Kennedy J, Eberhart R (1995) In: Proceedings of ICNN’95—
international conference on neural networks, vol 4, pp 1942–1948.
https://doi.org/10.1109/ICNN.1995.488968

Kononova AV, Corne DW, Wilde PD, Shneer V, Caraffini F (2015)
Structural bias in population-based algorithms. Inf Sci 298:468.
https://doi.org/10.1016/j.ins.2014.11.035

Kumar A, Misra RK, Singh D (2007) In: 2017 IEEE congress on evo-
lutionary computation (CEC), pp 1835–1842

Liang YC, Juarez JRC (2020) A self-adaptive virus optimization
algorithm for continuous optimization problems. Soft Comput
24(17):13147. https://doi.org/10.1007/s00500-020-04730-0

Liao T, Molina D, Stützle T (2015) Performance evaluation of automat-
ically tuned continuous optimizers on different benchmark sets.
Appl SoftComput 27:490. https://doi.org/10.1016/j.asoc.2014.11.
006

Lynn N, Ali MZ, Suganthan PN (2018) Population topologies for par-
ticle swarm optimization and differential evolution. Swarm Evol
Comput 39:24. https://doi.org/10.1016/j.swevo.2017.11.002

Martello S, Toth P (1990) Lower bounds and reduction procedures for
the bin packing problem. Discrete Appl Math 28(1):59. https://
doi.org/10.1016/0166-218X(90)90094-S

Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-
inspired heuristic paradigm.Knowl Based Syst 89:228. https://doi.
org/10.1016/j.knosys.2015.07.006

Mirjalili S, LewisA (2016) Thewhale optimization algorithm.Adv Eng
Softw 95:51. https://doi.org/10.1016/j.advengsoft.2016.01.008

Molina D, LaTorre A, Herrera F (2018) An insight into bio-inspired and
evolutionary algorithms for global optimization: review, analysis,
and lessons learnt over a decade of competitions. Cogn Comput
10(4):517. https://doi.org/10.1007/s12559-018-9554-0

Owen AB (1992) Orthogonal arrays for computer experiments, integra-
tion and visualization. Statistica Sinica 2(2):439

Pareto V (1897) Cours d’économie politique: professé à l’Université
de Lausanne. F. Rouge. https://books.google.ch/books?
id=fd1MAQAAMAAJ

Paulen R, Villanueva M, Chachuat B (2013) Optimization-based
domain reduction in guaranteed parameter estimation of nonlinear
dynamic systems. In: IFAC proceedings on 9th IFAC symposium
on nonlinear control systems, vol 46, no 23, p 564. https://doi.org/
10.3182/20130904-3-FR-2041.00057

Piotrowski AP, Napiorkowski JJ (2018) Some metaheuristics should be
simplified. Inf Sci 427:32. https://doi.org/10.1016/j.ins.2017.10.
039

Polkov R, Bujok P (2018) in 2018 25th International conference on
systems, signals and image processing (IWSSIP), pp. 1–5. https://
doi.org/10.1109/IWSSIP.2018.8439374

PuranikY, SahinidisNV (2017)Domain reduction techniques for global
NLP and MINLP optimization. Constraints 22(3):338. https://doi.
org/10.1007/s10601-016-9267-5

Queipo NV, Haftka RT, ShyyW, Goel T, Vaidyanathan R, Kevin Tucker
P (2005) Surrogate-based analysis and optimization. Prog Aerosp
Sci 41(1):1. https://doi.org/10.1016/j.paerosci.2005.02.001

Raphael B, Smith I (2003) A direct stochastic algorithm for global
search. Appl Math Comput 146(2):729. https://doi.org/10.1016/
S0096-3003(02)00629-X

Sedighizadeh D, Masehian E, Sedighizadeh M, Akbaripour H (2021)
Gepso: a new generalized particle swarm optimization algorithm.
Math Comput Simul 179:194. https://doi.org/10.1016/j.matcom.
2020.08.013

Ser JD, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Camacho D,
Das S, Suganthan PN, Coello CAC, Herrera F (2019) Bio-inspired
computation: where we stand and what’s next. Swarm Evol Com-
put 48:220. https://doi.org/10.1016/j.swevo.2019.04.008

Shaqfa M, Orbán Z (2019) Modified parameter-setting-free harmony
search (PSFHS) algorithm for optimizing the design of reinforced
concrete beams. Struct Multidiscip Optim 60(3):999. https://doi.
org/10.1007/s00158-019-02252-4

Sharma S, Saha AK (2019) m-MBOA: a novel butterfly optimization
algorithm enhancedwithmutualism scheme. Soft Comput. https://
doi.org/10.1007/s00500-019-04234-6

Tang B (1993) Orthogonal array-based Latin hypercubes. J Am
Stat Assoc 88(424):1392. https://doi.org/10.1080/01621459.
1993.10476423

Wolpert DH, Macready WG (1997) No free lunch theorems for opti-
mization. IEEE Trans Evol Comput 1(1):67. https://doi.org/10.
1109/4235.585893

Wu N, Mallipeddi R, Suganthan PN (2016) https://www.ntu.edu.sg/
home/EPNSugan/index_files/CEC2017/CEC2017.htm

Yang XS, Ting TO, Karamanoglu M (2013) Random walks, Lévy
flights, Markov chains and metaheuristic optimization, pp 1055–
1064. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-
6516-0_116

Yang X, Deb S (2009) In: 2009 World congress on nature biologi-
cally inspired computing (NaBIC), pp 210–214. https://doi.org/
10.1109/NABIC.2009.5393690

Yapici H, Cetinkaya N (2019) A new meta-heuristic optimizer:
pathfinder algorithm. Appl Soft Comput 78:545. https://doi.org/
10.1016/j.asoc.2019.03.012

Ye KQ (1998) Orthogonal column Latin hypercubes and their appli-
cation in computer experiments. J Am Stat Assoc 93(444):1430.
https://doi.org/10.1080/01621459.1998.10473803

Zhao X, Fang Y, Liu L, Li J, Xu M (2020) An improved moth-flame
optimization algorithmwith orthogonal opposition-based learning
and modified position updating mechanism of moths for global
optimization problems. Appl Intell 50(12):4434–4458. https://doi.
org/10.1007/s10489-020-01793-2

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1080/02286203.2002.11442233
http://arxiv.org/abs/1308.4008
https://doi.org/10.3390/app10072586
https://doi.org/10.3390/app10072586
https://books.google.ch/books?id=_-VTAAAAMAAJ
https://books.google.ch/books?id=_-VTAAAAMAAJ
https://doi.org/10.1016/j.istruc.2020.03.033
https://doi.org/10.1016/j.istruc.2020.03.033
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.ins.2014.11.035
https://doi.org/10.1007/s00500-020-04730-0
https://doi.org/10.1016/j.asoc.2014.11.006
https://doi.org/10.1016/j.asoc.2014.11.006
https://doi.org/10.1016/j.swevo.2017.11.002
https://doi.org/10.1016/0166-218X(90)90094-S
https://doi.org/10.1016/0166-218X(90)90094-S
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1007/s12559-018-9554-0
https://books.google.ch/books?id=fd1MAQAAMAAJ
https://books.google.ch/books?id=fd1MAQAAMAAJ
https://doi.org/10.3182/20130904-3-FR-2041.00057
https://doi.org/10.3182/20130904-3-FR-2041.00057
https://doi.org/10.1016/j.ins.2017.10.039
https://doi.org/10.1016/j.ins.2017.10.039
https://doi.org/10.1109/IWSSIP.2018.8439374
https://doi.org/10.1109/IWSSIP.2018.8439374
https://doi.org/10.1007/s10601-016-9267-5
https://doi.org/10.1007/s10601-016-9267-5
https://doi.org/10.1016/j.paerosci.2005.02.001
https://doi.org/10.1016/S0096-3003(02)00629-X
https://doi.org/10.1016/S0096-3003(02)00629-X
https://doi.org/10.1016/j.matcom.2020.08.013
https://doi.org/10.1016/j.matcom.2020.08.013
https://doi.org/10.1016/j.swevo.2019.04.008
https://doi.org/10.1007/s00158-019-02252-4
https://doi.org/10.1007/s00158-019-02252-4
https://doi.org/10.1007/s00500-019-04234-6
https://doi.org/10.1007/s00500-019-04234-6
https://doi.org/10.1080/01621459.1993.10476423
https://doi.org/10.1080/01621459.1993.10476423
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm
https://www.ntu.edu.sg/home/EPNSugan/index_files/CEC2017/CEC2017.htm
https://doi.org/10.1007/978-94-007-6516-0_116
https://doi.org/10.1007/978-94-007-6516-0_116
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1109/NABIC.2009.5393690
https://doi.org/10.1016/j.asoc.2019.03.012
https://doi.org/10.1016/j.asoc.2019.03.012
https://doi.org/10.1080/01621459.1998.10473803
https://doi.org/10.1007/s10489-020-01793-2
https://doi.org/10.1007/s10489-020-01793-2

	Pareto-like sequential sampling heuristic for global optimisation
	Abstract
	1 Introduction
	2 Pareto-like sequential sampling (PSS)
	2.1 Analogy
	2.2 Topology
	2.3 Mathematical model

	3 Parameters setting
	3.1 Numerical illustration

	4 Benchmarks and comparisons
	4.1 Standard benchmarks
	4.2 Testing scalability
	4.3 Composite benchmarks
	4.4 Engineering benchmarks
	4.4.1 Traditional engineering benchmarks
	4.4.2 Design of reinforced concrete beams

	5 Conclusions
	6 Future work
	7 Reproducibility
	Acknowledgements
	References

