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Abstract
The existence of both uncertainty and imprecision has detrimental impact on efficiency of decision-making applications

and some machine learning methods, in particular support vector machine in which noisy samples diminish the perfor-

mance of SVM training. Therefore, it is important to introduce a special method in order to improve this problem. Fuzzy

aspects can handle mentioned problem which has been considered in some classification methods. This paper presents a

novel weighted support vector machine to improve the noisy sensitivity problem of standard support vector machine for

multiclass data classification. The basic idea is considered to add a weighted coefficient to the penalty term Lagrangian

formula for optimization problem, which is called entropy degree, using lower and upper approximation for membership

function in fuzzy rough set theory. As a result, noisy samples have low degree and important samples have high degree. To

evaluate the power of the proposed method WSVM-FRS (Weighted SVM-Fuzzy Rough Set), several experiments have

been conducted based on tenfold cross-validation over real-world data sets from UCI repository and MNIST data set.

Experimental results show that the proposed method is superior than the other state-of-the-art competing methods

regarding accuracy, precision and recall metrics.
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1 Introduction

Support vector machine (SVM) is supervised machine

learning model which has been presented for classification

and regression analysis (Vapnik 1995; Yang and Xu 2017;

Mao et al. 2014; Santhanama et al. 2016). SVM has been

converted into a convex quadratic optimization problem

and then solved by a quadratic programming (QP) tech-

nique (Vanir 1999). It can also classify nonlinear samples

using the kernel function (Cortes and Vapnik 1995; Xue

et al. 2018; Moghaddam and Hamidzadeh 2016).

In the real-world applications, there is some complex

information under uncertainty which reduces efficiency

and accuracy of decision-making systems. Machine learn-

ing algorithms would be able to handle decision-making

applications via classification algorithms, but it requires a

specific algorithm which has high tolerance in dealing with

uncertainty aspects, namely noise. The classification

hyperplane, which is obtained by SVM, is determined by

the support vectors. The presence of noise increases inef-

ficiency of the standard SVM training which makes the

decision boundary from the optimal hyperplane. In

machine learning, there are many techniques to improve

classification (Alcantud et al. 2019; Hamidzadeh and

Moradi 2018, 2020; Hamidzadeh et al. 2014, 2017;

Hamidzadeh and Namaei 2018; Hamidzadeh and

Ghadamyari 2019; Javid and Hamidzadeh 2019). There-

fore, there are many methods which have been proposed to

improve the SVM classification using identifying uncer-

tainty samples such as noisy and outlier ones in order to

discard or delete them (Han et al. 2016; Nguyen et al. 2018;

Xu et al. 2016). On the other hand, some solutions have

been presented to deal with noisy and outlier samples in

weighted support vector machine classification methods in
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order to reduce the effect of unimportant samples (Karal

2017; Sheng et al. 2015; Zhou et al. 2016; Yang et al.

2005). The previous methods, in which weighted SVM is

based on probabilities, cannot reduce the effect of noisy

samples in SVM training accurately.

Fuzzy aspects in the real-world applications play a

crucial role due to existence of sophisticated information in

real-world applications such as medical diagnosis, pattern

recognition and wherever exist big data. With respect to the

importance of this aspect, the use of probabilistic and fuzzy

methods is effective (Singh et al. 2020; Sivasankar et al.

2020). Also regarding importance of the efficiency and the

speed of classification-based model, it is important to

introduce a specific method that classifies precisely. In

order to realize this aim, it is better to introduce a more

precise and quick method. Therefore, the fuzzy rough set

theory is redesigned. This paper presents a method to les-

sen the effect of noise in SVM training with soft margin

using fuzzy rough set theory (Dubois and Prade 1990). In

the proposed method, a weight coefficient is added to the

penalty term Lagrangian formula for optimization problem.

This weighted coefficient is called entropy degree, which

uses lower and upper approximation for membership

function in fuzzy rough set theory. As a result, in the

proposed method—WSVM-FRS (Weighted SVM-Fuzzy

Rough Set)—noisy samples have low degree, and impor-

tant samples have high degree. The results have obtained

good classification accuracy, precision and recall for SVM

training.

The rest of this paper is organized as follows: In Sect. 2,

a survey of weighted support vector machine algorithms is

presented. In Sect. 3, primary concepts of support vector

machine and fuzzy rough set theory are presented. In

Sect. 4, the proposed method is introduced. The experi-

mental results are shown in Sect. 5. Finally, Sect. 6 con-

tains conclusions and future works.

2 Related works

Several methods have been proposed for weighted support

vector machine. This section surveys some important

weighted support vector machine methods to deal with

noisy and outlier samples.

Weighted support vector machine (WSVM) (Yang et al.

2005) has been presented to improve the outlier sensitivity

problem of SVM. The basic idea is possibility c-means

(PCM), which is extended into kernel space to generate

different weight values for main training data points and

outliers according to their relative importance in the

training set. In Du et al. (2017), a fuzzy compensation

multiclass SVM method has been introduced to improve

the outlier and noise sensitivity problem, which gives the

dual effects to penalty term through treating every data

point as both positive and negative classes, but with dif-

ferent memberships. In Sheng et al. (2015), a method has

been presented to reduce the noise sensitive issue based on

fuzzy least square support vector machine. By applying

fuzzy inference and nonlinear correlation measurement, the

effects of the samples with low confidence can be reduced.

WDRSVM (Li et al. 2016) has been presented a weighted

doubly regularized support vector machine to deal with

noise by using both the distance information between

classes and within each class. Incosh loss (Karal 2017) has

been introduced to obtain support vector regression (SVR)

models for coping with different noise distributions, which

is optimal in the maximum likelihood sense for the hyper-

secant error distributions. In Ding et al. (2017), the pre-

sented method (WLMSVM) is a new classifier for multi-

class classification, called weighted linear loss multiple

birth support vector machine based on information granu-

lation to enhance the performance of multiple WLTSVM.

BWSVM (Sun et al. 2017) has presented a band-

weighted support vector machine, which is to quantify the

divergent contributions of different bands when imple-

menting SVM; the BWSVM adopts the L1 norm penalty

term of band weights on the original SVM. In Li et al.

(2017), a method has been introduced to construct the new

weighted mechanisms for both loss and penalty, which has

developed the weight partly adaptive elastic net for dealing

with the binary classification problem of microarray with

noise by using the distances from the sample points to both

class centers. In Lu et al. (2017) a probabilistic weighted

least squares SVM method has been presented to model

these kinds of processes under noise; this method can

increase robustness and accuracy even with outliers or non-

Gaussian noise. RLS-SVM (Yang et al. 2014) has pre-

sented a method based on the truncated least squares loss

function for regression and classification with noise. DS-

RLSSVM (Zhou et al. 2016) has been developed to model

complex systems in the presence of various types of ran-

dom noise. The integration of the distributed LS-SVM and

fuzzy clustering is used to construct the evidence for the

LS-SVM parameters. In Zhang et al. (2018), a method has

been presented to incorporate prior knowledge into SVM

using sample confidence, which is called feature weighted

confidence with SVM. This method computes the sample

confidence directly from the weights of prior features

provided by SVM. In Xu et al. (2015), a new support vector

weighted quantile regression approach has been introduced

that is closely built upon the idea of support vector

machine. It can be estimated by solving a Lagrangian dual

problem of quadratic programming and is able to imple-

ment the nonlinear quantile regression by introducing a

kernel function. In Tang et al. (2019), a new approach of

integrating piecewise linear representation and weighted
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support vector machine has been introduced to forecast the

stock turning points. K-SRLSSVCR (Ma et al. 2019) has

been proposed a robust least squares version of K-SVCR

(K-RLSSVCR) based on squares e-insensitive ramp loss

and truncated least squares loss, which partially depress the

impact of outliers on the new model via its nonconvex e-
insensitive ramp loss and truncated least squares loss.

Overall, in the real-world applications, it is impossible

to ignore the importance of productivity and speed of

classification-based model due to the existence of complex

information. Consequently, it is substantial to introduce a

specific method in order to decide and classify precisely.

Regarding this, fuzzy aspects and probability distribution

can be effective. Although the previous methods have

increased the precision and accuracy of SVM classifier,

those methods have not been able to handle uncertainty

aspects such as noisy and outlier samples based on a

probability distribution. In order to realize this aim, it is

better to introduce a more precise and quick method. Thus,

the fuzzy rough set theory is redesigned. Following the

strategy outlined above, this paper proposes a new

weighted support vector machine method based on the

fuzzy rough set theory in order to decrease uncertainty.

3 Preliminaries

In this section, a brief overview of the constructive con-

cepts of the proposed method is presented. In Sect. 3.1, the

concepts regarding the support vector machine are

reviewed. In Sect. 3.2, the basic comprehension of fuzzy

rough set theory is defined.

3.1 Support vector machine

Suppose that there is a group of training samples

fðxi; yiÞ; xi 2 Rd; yi 2 fþ1;�1g; i ¼ 1; . . .;Ng; where xi
represents the ith sample and yi represents its correspond-

ing class label. SVM aims to find a hyperplane which

separates the positive training samples from those negative

ones and maximizing the margin W between both training

samples. Also SVM can extend two class problems to

multiclass problems (Hsu and Lin 2002) which yi 2
f1; . . .;Cig; where Ci represents the number of classes.

There are two common methods for implementation for

SVM multiclass classification including one-against-all

method and one-against-one method. In this paper, one-

against-one method is considered. In order to maximize the

margin, thus it needs to minimize Wk k that converts to

primary quadratic programming of SVM (Vapnik 1995;

Yang and Xu 2017; Mao et al. 2014; Santhanama et al.

2016) as following:

min
1

2
Wk k2þC

XN

i¼1

ni

s:t yiðws/ðxiÞ þ bÞ� 1� ni;

ni � 0; i ¼ 1; . . .;N

ð1Þ

where ni is the error term and C[ 0 is the regularization

parameter. The above optimization can be converted to one

problem in the form of (2) by introducing Lagrange

parameters

min
1

2
wk k2þC

XN

i¼1

ni �
XN

i¼1

ai yiðws/ðxiÞ þ bÞ � 1þ ni½ �

�
XN

i¼1

nili

s:t ai � 0;li � 0; i ¼ 1; . . .;N

ð2Þ

where w is a weight vector, b is bias,a is Lagrangian

coefficients, and /ðxiÞ is kernel of training samples.

To apply such trends, the results of partial derivatives

are replaced in (2). Therefore, a dual problem is con-

structed in the form of (3). In fact, it can be solved by

quadratic programming.

min
1

2

X

i

X

j

aiajyiyjx
s
i xj �

X

i

ai

¼ 1

2

X

i

X

j

aiajyiyjkðxi; xjÞ �
X

i

ai

s:t
X

i

aiyi ¼ 0; 0� ai �C; 8i

ð3Þ

Hence, the solution has the form

w ¼
Xn

i¼1

aiyi/ðxiÞ ¼
X

i2sv
aiyi/ðxiÞ ð4Þ

where SV is the number of support vectors

sv ¼ fij0� ai �Cg
8i 2 sv; ws/ðxiÞ þ b ¼ yi

yi 2 fþ1;�1g
bi ¼ yi � ws/ðxiÞ

ð5Þ

where xi is support vector. And the average of all this bi
defines the bias

b ¼ 1

svj j
X

i2sv
bi ¼

1

svj j
X

i2sv
ðyi � ws/ðxiÞÞ ð6Þ

Once the optimal pair (w, b) is determined, the decision

function is obtained by
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f ¼ ðw;/ðzÞÞ þ b ¼ sign
XNsv

i¼1

aiyiKðxi; zÞ þ b

 !
ð7Þ

where Nsv is the number of support vectors.

3.2 Fuzzy rough set

Fuzzy rough set theory (Dubois and Prade 1990) is built

upon two other theories, namely fuzzy set theory (Zadeh

1965) and rough set theory (Pawlak 1982). Rough set tries

to divide universe of discourse to positive region (lower

approximation sets), boundary region, and negative region.

Fuzzy rough set for each sample returns a pair of mem-

berships that show lower approximation membership as a

degree of certainty and upper approximation membership

as a possibility degree of being included in target samples.

The lower and upper approximation memberships are

constructed by indiscernibility relationships (IR) between

samples and the amount of dependency on the target set, lF
(Verbiest et al. 2013b). IR as shown in (8) measures the

similarity of each pair of samples. When two samples are

identical, IR becomes 1, and when the samples are com-

pletely different, it shows zero.

IRðxi; xjÞ ¼ s
a2Dimension

1� xiðaÞ � xjðaÞ
�� ��2

� �
ð8Þ

where s is a triangular norm (t-norm),s : ½0; 1�2 ! ½0; 1�
based on dimension (attribute) a.

According to the above relation, the differences between

two samples in every dimension are aggregated by a t-

norm. The result is called indiscernibility relation between

two samples under decision boundary DB. On the other

hand, membership of each sample into target class, lF ; can
be shown differently like binary ones or the others.

Therefore, by these two concepts, lower and upper

approximation memberships are defined in (9) and (10),

respectively:

lFIR;lF
ðxiÞ ¼ inf

xj2T ;xi 6¼xj
IðIRðxi; xjÞ; lFðxjÞÞ ð9Þ

lFIR;lF
ðxiÞ ¼ sup

xj2T ;xi 6¼xj

sðIRðxi; xjÞ; lFðxjÞÞ: ð10Þ

As shown in the above equations, fuzzy operators,

implicator (I) and t-norm (s), combine two basic elements

and result in several outputs. Then, ‘‘inf’’ and ‘‘sup’’ select

one of these outcomes as the final result. Hence, outlier and

noise data can change lower and upper approximation

memberships in a wide range. Therefore, Verbiest et al.

(2013a) propose adjusted versions of the memberships

using order weigh average (OWA) instead of ‘‘inf’’ and

‘‘sup.’’ These forms of memberships are presented as

follows:

lFIR;lF
ðxiÞ ¼ OWAmin

xj2T ;xi 6¼xj

IðIRðxi; xjÞ; lFðxjÞÞ ð11Þ

lFIR;lF
ðxiÞ ¼ OWAmax

xj2T ;xi 6¼xj

sðIRðxi; xjÞ; lFðxjÞÞ: ð12Þ

Many methods like popular fuzzy belief function (Sha-

fer 1976) follow similar trend to handle conflicting,

incomplete, and uncertain information (Liu et al. 2011,

2015, 2016). In fact, it tries to explain probability of

occurring a subset of universe of discourse based on belief

and plausibility functions in the form of (13) and (14),

respectively.

8A 2 T : BelðAÞ ¼
X

B:B2A
PaðBÞ ð13Þ

8A 2 T : PlðAÞ ¼
X

B:B\A 6¼/

PaðBÞ ð14Þ

where PaðBÞ demonstrates the probability of happening B

while the amount of a has the probability of occurrence

relevant to a-cut in fuzzy concept (Chen et al. 2008). On

the other hand, the relation between these two concepts as

explained in (Dubois and Prade 1990; Chen et al. 2008;

Yao and Lingras 1998; Wu et al. 2002; Liu et al. 2015) can

be gained as follows:

8A 2 T : BelðAÞ ¼ lFIR;lF
ðAÞ ð15Þ

8A 2 T : PlðAÞ ¼ lFIR;lF
ðAÞ: ð16Þ

Consequently, fuzzy rough set is powerful to handle the

vagueness and conflict among data and its effectiveness has

been proved by remarkable results in fields such as KNN

improvement (Verbiest et al. 2013a; Bian and Mazlack

2003; Derrac et al. 2013), fuzzy decision tree expansion

(Zhai 2011), and solid multiple traveling salesman problem

(Changdar et al. 2016). However, it stands on common

fuzzy operators which may be improvable in some issues.

4 Proposed method

In this section, a novel method, namely WSVM-FRS

(Weighted SVM-Fuzzy Rough Set), is proposed for SVM

training which is one of the novel data characteristic to

reduce the effect of noise in SVM training with soft margin

toward important samples in contrast to the others. In this

method, a weighted coefficient is added to the penalty term

Lagrangian formula for optimization problem, using lower

and upper approximation for membership function in fuzzy

rough set theory. Consequently, in WSVM-FRS noisy

samples have low degree. The simplest form of samples is

shown by discrete attributes reviewed in the following

paragraph.
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In Fig. 1, assume a curved line as boundary region

dividing universe of discourse. The whole area is section-

alized by indiscernibility relation (IR) shaping equivalent

squares. Therefore, these squares contain samples that have

similar attributes. According to the rough set theory, the

upper approximation represented includes all squares

having at least one sample in the boundary region. On the

other hand, as shown in Fig. 1, samples in square units

located in the boundary region are positive region (lower

approximation sets) of the universe segregated by curved

boundary region and IR. Consequently, as shown in Fig. 1,

simultaneously considering both approximation sets, sam-

ples that are certainly in the boundary region gain higher

values rather than those on the boundary region. In addi-

tion, negative samples are the ones taking zero values.

The approximation memberships constructing ED use

(8) and (17) as IR and amount of belonging samples to

target set ts; respectively. ts demonstrates reverse distance

of samples from the center of the class

ts ¼ 1�

P
a2Dimension

P
xi2T xiðaÞ � c�

�� ��

c�j j

2

ð17Þ

where T is target set and a dimension (attribute) and jj is
absolute value. Also c* is the center of class. The center of

each class c* is defined as follows

c� ¼ 1

N

X

xi2yi
xi ð18Þ

where N is total number of training sample in each class.

Therefore, the lower and upper approximations mem-

berships are reconstructed according to (9) and (10) by the

following

lFIR;lF
ðxiÞ ¼ inf IðIRðxi; c�Þ; tsÞ ð19Þ

lFIR;lF
ðxiÞ ¼ sup sðIRðxi; c�Þ; tsÞ: ð20Þ

It is important to introduce a measurement parameter

which measures relation among samples based on entropy

of samples. Furthermore, WSVM-FRS sets penalty and

kernel parameters by using grid search. The new data

characteristics discover the certainty of a sample. Each

sample, xi; is recognized as certain one if it is represented

by entropy of attributes similar to the others.

In order to satisfy the above explanations, WSVM-FRS

creates a map of data importance by computing ED in the

form of (21).

EDðxiÞ ¼ �
X

xi2Rd

lFIR;lF
ðxiÞ log2 lFIR;lF

ðxiÞ ð21Þ

Therefore, in this paper, ED concludes that both lower

and upper approximation memberships are proposed as

certainty index. In fact, ED gains a general perspective of

sample’s roles by the upper approximation membership.

Following this, the lower approximation membership,

which computes restricted relation between samples and

the decision boundary, is added to ED to improve the level

of samples, which are certainly in the decision boundary.

Then, it maps to range of [0, 1].

In addition to assigning certain values as ED to each

sample, kernel function is also used for mapping data to

hyper dimension u(.). The advantages of this mapping

appear when inner product is displayed in optimization

formula, then it can be replaced with the kernel trick.

WSVM-FRS can be optimized as follows to discover

boundary:

min
1

2
Wk k2þC

XN

i¼1

EDðxiÞni

s:t yiðws/ðxiÞ þ bÞ� 1� ni;

ni � 0; i ¼ 1; . . .;N:

ð22Þ

This optimization turns into differentiable form below

by adding ai � 0 and li � 0 as positive Lagrange values:

Fig. 1 An example for entropy degree (ED) expression
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Lðw; b; aÞ ¼ min
1

2
wk k2þC

XN

i¼1

EDðxiÞni

�
XN

i¼1

ai yiðws/ðxiÞ þ bÞ � 1þ ni½ � �
XN

i¼1

nili

s:t ai � 0; li � 0; i ¼ 1; . . .;N:

ð23Þ

Since minimization of (23) is reachable by minimization

of w; b; ni and maximization of ai; li; partial derivations of
w; b; ni have been set to zero as follows:

oLðw; b; aÞ
ow

¼ 0 ) w�
XN

i¼1

aiyi/ðxiÞ ¼ 0 ) w

¼
XN

i¼1

aiyi/ðxiÞ ð24Þ

oLðw; b; aÞ
ob

¼ 0 )
XN

i¼1

aiyi ¼ 0 ð25Þ

oLðw; b; aÞ
oni

¼ 0 )
XN

i¼1

C � EDðxiÞ �
XN

i¼1

ai �
XN

i¼1

li

¼ 0 )
XN

i¼1

ðC � ai � liÞ ¼ 0 )
ai � 0;li � 0

C ¼ ai þ li

) 0� ai �C; 0� li �C:

ð26Þ

By replacing equations of (24) and (25) with (26), a

form of DB is constructed in the form of (27):

min
1

2

X

i

X

j

aiajyiyjkðxi; xjÞ �
X

i

ai

s:t
X

i

aiyi ¼ 0; 0� ai �C � EDðxiÞ; 8i:
ð27Þ

The above form of optimization can be solved by the

well-known quadratic optimization. Positive results of (27)

describe support vectors (SVs). These special samples

show the boundary and bias toward special ones.

Therefore, if x is a new sample, its decision function in

the form of (28):

f ¼ ðw;/ðzÞÞ þ b ¼
XN

i¼1

aiyiKðxi; zÞ þ b

¼
X

i2sv
yiKðxi; zÞ þ b: ð28Þ

In WSVM-FRS, the boundary is shaped by more

effective SVs, the decision boundary becomes more

accurate. In the proposed method, grid search is used to

find values of penalty and kernel values. Overall, illustra-

tion of the proposed method as a step-by step implemen-

tation flowchart in Fig. 2 is shown. The next section will

demonstrate the superiority of WSVM-FRS over state-of-

the-art methods based on experiments conducted on real

data sets.

5 Results and discussion

Several experiments have been conducted in terms of

accuracy and the value of area under the receiver operating

characteristic (ROC) graph to represent the superiority of

the proposed method (WSVM-FRS) in comparison with

the alternative classification methods. The alternative

classification methods involved in this comparison include

probabilistic weighted least squares SVM (Lu et al. 2017),

DS-RLSSVM (Zhou et al. 2016), Fuzzy-LSSVM (Sheng

et al. 2015), RLS-SVM (Yang et al. 2014), PLR-WSVM

(Tang et al. 2019) and K-SRLSSVCR (Ma et al. 2019)

methods. After describing the implementation details in

Subsection 5.1, the results of the experiments are shown in

Subsection 5.2.

5.1 Implementation details

In order to validate WSVM-FRS, experiments have been

carried out over the real-world data sets taken from the UCI

data set repository (Lichman 2013). The case and mecha-

nism of data sets applicability is based on classification

under uncertainty due to decision-based models in real-

world application because accurate decision is very

important such as in medical data, time series data, letter

data, etc. which have been described in UCI data set

(Lichman 2013).

For all the experiments, the tenfold cross-validation

procedure has been used. That is, each data set was divided

into ten mutually exclusive blocks, and the proposed

method was applied over a training set, built with nine of

the ten blocks, and the left one was used as a testing set.

Each block was used as the testing set, and the average of

the ten tests was reported. The selected data sets and their

related parameters are listed in Table 1. In Table 1,

#samples, #features, and #classes denote the number of

data samples, the number of attributes and the number of

classes, respectively.

Experiments have been carried out to evaluate the pro-

posed method against three state-of-the-art weighted SVM

methods like probabilistic weighted least squares SVM (Lu

et al. 2017), DS-RLSSVM (Zhou et al. 2016), Fuzzy-

LSSVM (Sheng et al. 2015), RLS-SVM (Yang et al. 2014),

PLR-WSVM (Tang et al. 2019) and K-SRLSSVCR (Ma

et al. 2019) methods. In these experiments, grid search has

been used for tuning the regularization parameters. A

typical soft-margin SVM classifier equipped with an RBF

kernel has at least two hyperparameters that need to be

tuned for good performance on unseen data. In the grid
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searching scheme, the regularization constant C (penalty

parameter) is tuned within the range

f0; 2�1; 20; 21; 22; 23; . . .g, and a kernel parameter c is

tuned within the range f2�1; 20; 21; 22; 23; 24; . . .g. These
experiments have been executed by a computer with an

Intel Core i3 2.4 GHz CPU, 8 GB DDR III memory and

software of MATLAB R2015b over Microsoft Windows 7

OS. In experiments, libsvm (Chang and Lin 2011) is

employed to implement the base classifier of SVM.

The kernel used in all experiments is a radial basis

function:

f ðx; zÞ ¼ exp � x� zk k2

2r2

 !
: ð29Þ

5.2 Experimental results

The final results of SVM classification can be summarized

in four groups: true positive rate is the proportion of pos-

itive samples that were correctly identified (TP), false-

positive rate is the proportion of negatives samples that

were incorrectly classified as positive (FP), true negative

rate is defined as the proportion of negatives samples that

were classified correctly (TN), and finally false negative

rate is the proportion of positives samples that were

incorrectly classified as negative (FN). These sample seg-

regations are briefly shown in Table 2.

Accuracy is a popular index displaying the percentages

of samples which is truly described as the result. The

accuracy can be computed using Eq. (30):

Multiplication of ED parameter to the 
penalty parameter in SVM formula in order 

to lessen noise sensitive

Creation of the relationships 
(IR) between samples 

i = 1i = i+1

Calculation the amount of belonging 
sample i to target set

Calculation the lower and upper 
approximation membership of sample i

Calculation the entropy degree (ED) 
for sample i

i > N 
No

Yes

Training SVM classifier

Fig. 2 Flowchart of the

proposed method
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Accuracy ¼ TPþ TN

ðTPþ FNÞ þ ðFPþ TNÞ : ð30Þ

The results of experiments in the form of accuracy are

described in Table 3. In most cases, classification accuracy

WSVM-FRS has better results than the others.

A statistical significance analysis was performed by

considering the nonparametric Wilcoxon signed-rank test

(Demsar 2006) to analyze the results and derive strong

conclusions. We used this test to determine whether the

improvement in the proposed method (WSVM-FRS) is

relevant. The last two rows of Tables 3, 4 and 5 present the

results of Wilcoxon test. A significance level 0.05 has been

considered for the analysis. Number ‘‘1’’ represents that

WSVM-FRS significantly improves over the other com-

peting methods in terms of the average SVM classification

accuracy measure.

Table 3 shows the result of average SVM classification

accuracy for the competing methods. In some of the data

sets, the proposed WSVM-FRS method has a better

classification accuracy than the other methods (Sheng et al.

2015; Zhou et al. 2016; Lu et al. 2017; Yang et al. 2014;

Tang et al. 2019; Ma et al. 2019), which is shown in bold.

For all data sets, the rank of each method is expressed in

Table 3, and the average rank is shown. The best rank in

any data set is highlighted. The classification accuracy of

SVM training has been shown in terms of percentage (%).

The proposed method has the best performance and the

top rank in rank average, compared to the other methods; it

has, considerably, performed better than the other methods

concerning the amount of ranks average. WSVM-FRS

method is successful in six out of 20 existing data sets such

as Sonar, Heart, E. coli, Diabetes, Yeast, and Letter in in

terms of increasing the SVM classification accuracy,

compared to the other methods; it has the best perfor-

mance. The proposed method has the second to third rank

among eight data sets. However, it has between the fourth

and sixth rank in six of the data sets in increasing the SVM

classification accuracy which means that WSVM-FRS

method is different from the other methods and chosen as

the best.

For some data sets, other methods have better perfor-

mance in terms of increasing the classification accuracy.

For example, in case of Ionosphere, Transfusion, and

Vowel data sets, DS-RLSSVM (Zhou et al. 2016) obtained

better results. Although DS-RLSSVM method has, among

the average ranks, won the second rank in terms of

increasing the classification accuracy, in some data sets, it

has the second to sixth rank in increasing the classification

accuracy. PLR-WSVM (Tang et al. 2019) method has the

third rank average in comparison with competing methods

which has had the best result in Glass and Wdbc data sets

but in others this method has obtained between the second

and seventh rank. After that, K-SRLSSVCR (Ma et al.

2019) method has the fourth rank average among other

methods and this method has won in Haberman and Seg-

ment data sets but in other data sets has earned different

ranks. Similarly, in some cases, probabilistic weighted LS-

SVM (Lu et al. 2017) method has the best performance, in

Musk, Pendigits, and Satimage data sets, in comparison

with other methods; it has won the first rank. Probabilistic

weighted LS-SVM method has won the fifth rank with

considerable difference with the average rank of WSVM-

FRS methods. Probabilistic weighted LS-SVM method

does not have an acceptable performance in some data sets;

it has the worst performance in increasing the classification

accuracy, in four data sets, compared to the other methods.

Table 1 Selected data sets of UCI data repository (Lichman 2013) in

the experiments

No Data set #samples #features #classes

1 Iris 150 4 3

2 Sonar 208 60 2

3 Glass 214 9 7

4 Heart 267 44 2

5 Haberman 306 3 2

6 E. Coli 336 7 8

7 Liver 345 6 2

8 Ionosphere 351 34 2

9 Musk 476 167 2

10 Wdbc 569 30 2

11 Transfusion 748 4 2

12 Diabetes 768 8 2

13 Vehicle 846 18 4

14 Vowel 990 10 11

15 Yeast 1484 8 10

16 Segment 2310 19 7

17 Pendigits 3498 16 10

18 Satimage 4435 36 6

19 Letter 15,000 16 26

20 Shuttle 43,500 9 7

Table 2 Confusion matrix
Predicted as interested sample Predicted as unwanted sample

Actually interested sample True positive (TP) False negative (FN)

Actually unwanted sample False positive (FP) True negative (TN)
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Fuzzy-LSSVM (Sheng et al. 2015) method has the sixth

rank average. It has the best performance in terms of

increasing the classification accuracy in Iris data set

compared to the other methods. It stands far away from the

proposed method in ranks average for increasing the SVM

classification accuracy. RLS-SVM (Yang et al. 2014) has

Table 3 Result of average SVM classification accuracy

Data set Probabilistic weighted

LS-SVM (Lu et al.

2017)

Fuzzy-LSSVM

(Sheng et al.

2015)

DS-RLSSVM

(Zhou et al.

2016)

RLS-SVM

(Yang et al.

2014)

PLR-WSVM

(Tang et al.

2019)

K-SRLSSVCR

(Ma et al. 2019)

WSVM-

FRS

Iris 83.33 (6) 90.00 (1) 85.33 (4) 82.00 (7) 86.23 (3) 83.89 (5) 87.33

(2)

Sonar 80.76 (7) 85.09 (4) 81.25 (6) 83.17 (5) 85.58 (3) 86.12 (2) 87.50
(1)

Glass 79.90 (3) 78.50 (4) 75.70 (5) 85.51 (2) 86.85 (1) 71.12 (7) 73.17

(6)

Heart 76.40 (5) 75.28 (6) 80.52 (3) 73.40 (7) 79.54 (4) 81.01 (2) 81.64
(1)

Haberman 83.98 (6) 88.56 (3) 88.23 (4) 83.33 (7) 88.98 (2) 89.54 (1) 86.92

(5)

E. coli 76.48 (5) 79.76 (4) 82.73 (2) 80.65 (3) 72.85 (7) 75.01 (6) 85.41
(1)

Liver 78.55 (4) 75.36 (7) 77.68 (6) 79.71 (1) 78.98 (2) 78.65 (3) 77.97

(5)

Ionosphere 72.36 (4) 71.50 (5) 74.35 (1) 70.08 (7) 70.87 (6) 73.22 (3) 73.50

(2)

Musk 71.21 (1) 67.43 (5) 68.90 (3) 67.85 (4) 66.67 (6) 66.02 (7) 70.37

(2)

Wdbc 83.83 (6) 84.00 (5) 85.23 (4) 83.65 (7) 87.11 (1) 87.01 (2) 86.99

(3)

Transfusion 73.66 (7) 80.00 (6) 85.42 (1) 83.82 (5) 85.02 (2) 84.98 (3) 84.35

(4)

Diabetes 75.26 (7) 76.56 (5) 76.04 (6) 79.68 (2) 77.25 (4) 78.58 (3) 81.11
(1)

Vehicle 85.46 (6) 83.21 (7) 86.52 (3) 87.35 (1) 85.98 (5) 86.98 (2) 86.40

(4)

Vowel 77.77 (4) 80.10 (2) 80.60 (1) 76.96 (5) 73.58 (7) 75.12 (6) 79.89

(3)

Yeast 74.73 (7) 84.23 (6) 84.56 (4) 83.82 (5) 85.58 (2) 84.78 (3) 86.99
(1)

Segment 67.79 (5) 67.74 (6) 69.78 (3) 67.53 (7) 70.54 (2) 71.45 (1) 69.65

(4)

Pendigits 70.41 (1) 67.35 (3) 67.26 (4) 67.12 (5) 66.21 (6) 64.58 (7) 70.18

(2)

Satimage 81.08 (1) 78.30 (3) 78.12 (6) 75.12 (7) 78.20 (4) 78.18 (5) 80.92

(2)

Letter 75.81 (3) 67.10 (5) 70.14 (4) 65.50 (6) 76.01 (2) 65.02 (7) 76.67
(1)

Shuttle 88.16 (1) 83.90 (3) 83.13 (4) 80.45 (5) 78.12 (6) 76.54 (7) 88.02

(2)

Rank

average

4.45 (5) 4.50 (6) 3.70 (2) 4.90 (7) 3.75 (3) 4.10 (4) 2.60 (1)

z value - 2.76 - 2.87 - 2.53 - 2.94 - 2.20 - 2.63

Wilcoxon

test result

1 1 1 1 1 1

Note that the rank of each method is enclosed in parenthesis. The best results are given in bold
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the seventh rank average in terms of increasing the SVM

classification accuracy which is the worst method among

ranks average compared to the other methods; it has the

best performance in Liver, and Vehicle data sets as well as

the first rank. It has the biggest difference with WSVM-

FRS method concerning rank average.

Table 4 Result of average SVM classification precision

Data set Probabilistic weighted

LS-SVM (Lu et al.

2017)

Fuzzy-LSSVM

(Sheng et al.

2015)

DS-RLSSVM

(Zhou et al.

2016)

RLS-SVM

(Yang et al.

2014)

PLR-WSVM

(Tang et al.

2019)

K-SRLSSVCR

(Ma et al. 2019)

WSVM-

FRS

Iris 83.33 (7) 90.27 (1) 84.72 (4) 83.34 (6) 85.65 (3) 84.01 (5) 88.88

(2)

Sonar 84.37 (7) 88.54 (5) 89.58 (4) 86.45 (6) 89.70 (3) 89.92 (2) 90.62
(1)

Glass 73.00 (4) 70.00 (6) 72.00 (5) 78.00 (2) 80.15 (1) 69.25 (7) 75.00

(3)

Heart 79.48 (3) 77.77 (5) 76.63 (6) 74.35 (7) 79.04 (4) 79.68 (2) 80.34
(1)

Haberman 77.14 (6) 84.76 (4) 85.71 (3) 76.19 (7) 86.08 (2) 87.34(1) 81.90

(5)

E. coli 78.40 (5) 81.25 (4) 82.32 (2) 82.38 (3) 71.20 (7) 74.21 (6) 83.52
(1)

Liver 83.68 (5) 78.42 (7) 80.52 (6) 84.21 (1) 84.08 (2) 83.75 (3) 83.69

(4)

Ionosphere 74.02 (2) 70.56 (5) 74.03 (1) 69.69 (6) 68.20 (7) 73.66 (3) 73.59

(4)

Musk 77.49 (1) 74.16 (5) 74.90 (3) 74.53 (4) 70.11 (6) 66.32 (7) 76.75

(2)

Wdbc 77.82 (4) 75.73 (5) 77.40 (6) 74.05 (7) 81.36 (1) 80.31 (2) 79.49

(3)

Transfusion 97.07 (1) 86.84 (5) 96.78 (2) 94.15 (4) 85.00 (6) 82.52 (7) 96.49

(3)

Diabetes 74.18 (7) 78.26 (5) 74.72 (6) 79.36 (2) 78.90 (4) 78.88 (3) 80.15
(1)

Vehicle 89.33 (4) 89.55 (3) 89.11 (7) 89.77 (1) 85.25 (5) 89.75 (2) 89.12

(6)

Vowel 79.00 (1) 78.20 (4) 78.60 (2) 78.40 (3) 72.59 (7) 75.00 (6) 77.68

(5)

Yeast 80.38 (7) 87.15 (6) 87.50 (4) 87.38 (5) 94.08 (2) 90.70 (3) 98.57
(1)

Segment 60.71 (5) 60.47 (6) 63.57 (2) 60.31 (7) 62.64 (4) 65.35 (1) 63.49

(3)

Pendigits 61.28 (1) 60.70 (3) 60.65 (4) 60.54 (5) 59.32 (6) 57.99 (7) 61.07

(2)

Satimage 78.84 (1) 73.87 (3) 73.82 (5) 72.35 (7) 73.85 (4) 72.88 (6) 78.75

(2)

Letter 76.98 (3) 63.27 (4) 62.50 (5) 62.20 (6) 77.31 (2) 60.02 (7) 77.51
(1)

Shuttle 91.52 (1) 86.95 (4) 87.45 (3) 86.08 (5) 84.42 (6) 80.64 (7) 91.30

(2)

Rank

average

3.75 (2) 4.50 (6) 4.00 (3) 4.70 (7) 4.10 (4) 4.35 (5) 2.60 (1)

z value - 2.12 - 3.21 - 2.80 - 3.28 - 2.57 - 2.72

Wilcoxon

test result

1 1 1 1 1 1

Note that the rank of each method is enclosed in parenthesis. The best results are given in bold
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The two last rows of Table 3 show the results of the

Wilcoxon test comparing the classification accuracy of

WSVM-FRS against the other competing methods. A

significance level 0.05 has been considered for the analysis.

Number ‘‘1’’ represents that WSVM-FRS significantly

Table 5 Result of average SVM classification recall

Data set Probabilistic weighted

LS-SVM (Lu et al.

2017)

Fuzzy-LSSVM

(Sheng et al.

2015)

DS-RLSSVM

(Zhou et al.

2016)

RLS-SVM

(Yang et al.

2014)

PLR-WSVM

(Tang et al.

2019)

K-SRLSSVCR

(Ma et al. 2019)

WSVM-

FRS

Iris 82.19 (4) 89.04 (1) 84.72 (3) 80.00 (5) 78.21 (7) 79.02 (6) 85.33

(2)

Sonar 76.41 (6) 80.95 (4) 74.78 (7) 79.04 (5) 81.75 (3) 81.90 (2) 83.65
(1)

Glass 80.21 (5) 81.39 (4) 75.00 (6) 87.64 (2) 88.45 (1) 72.30 (7) 85.22

(3)

Heart 70.45 (5) 69.46 (6) 77.31 (3) 67.96 (7) 72.04 (4) 77.78 (2) 78.33
(1)

Haberman 76.41 (6) 82.40 (3) 81.08 (4) 75.47 (7) 82.90 (2) 83.16 (1) 80.37

(5)

E. coli 77.09 (5) 80.33 (4) 84.30 (2) 81.00 (3) 68.15 (7) 75.02 (6) 88.02
(1)

Liver 78.71 (5) 77.20 (7) 79.27 (4) 82.05 (1) 80.20 (2) 79.75 (3) 77.94

(6)

Ionosphere 79.90 (6) 83.58 (4) 85.07 (1) 82.14 (5) 68.54 (7) 83.70 (3) 84.15

(2)

Musk 73.42 (1) 70.27 (5) 71.73 (3) 70.62 (4) 69.02 (6) 67.12 (7) 72.72

(2)

Wdbc 82.66 (7) 84.57 (6) 86.04 (4) 85.09 (5) 90.30 (1) 89.80 (2) 88.37

(3)

Transfusion 74.27 (4) 74.06 (5) 77.15 (1) 76.12 (2) 73.21 (6) 72.01 (7) 75.86

(3)

Diabetes 74.18 (7) 74.22 (6) 75.13 (5) 77.31 (2) 76.00 (4) 76.50 (3) 79.11
(1)

Vehicle 84.27 (6) 80.92 (7) 86.05 (3) 86.88 (1) 84.33 (5) 86.22 (2) 85.86

(4)

Vowel 77.45 (4) 81.62 (2) 82.21 (1) 76.56 (5) 71.24 (7) 75.02 (6) 81.41

(3)

Yeast 77.45 (7) 86.16 (6) 86.40 (5) 86.98 (4) 88.88 (2) 87.08 (3) 90.36
(1)

Segment 75.51 (5) 75.52 (4) 77.09 (2) 75.34 (6) 75.00 (7) 77.98 (1) 76.92

(3)

Pendigits 79.42 (1) 74.35 (3) 74.24 (4) 74.06 (5) 70.02 (6) 69.54 (7) 79.15

(2)

Satimage 81.82 (1) 80.23 (3) 79.85 (5) 75.73 (7) 80.05 (4) 76.30 (6) 81.61

(2)

Letter 77.51 (3) 71.70 (5) 77.17 (4) 71.33 (6) 77.91 (2) 68.14 (7) 78.48

(1)

Shuttle 88.63 (1) 85.10 (3) 83.58 (4) 80.48 (5) 79.00 (6) 78.78 (7) 88.57

(2)

Rank

average

4.45 (5) 4.40 (4) 3.55 (2) 4.35 (3) 4.45 (5) 4.40 (4) 2.40 (1)

z value - 3.36 - 3.21 - 2.50 - 3.17 - 2.57 - 2.94

Wilcoxon

test result

1 1 1 1 1 1

Note that the rank of each method is enclosed in parenthesis. The best results are given in bold
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improves over the other competing methods in terms of

classification accuracy.

In pattern recognition and information retrieval classi-

fication, precision (also called positive predictive value) is

the fraction of retrieved samples that are relevant, while

recall (also known as sensitivity) is the fraction of relevant

samples that are retrieved. Precision and recall can be

measured by (31) and (32), respectively. The results of

precision comparison are listed in Table 4, while Table 5

shows experimental results of recall.

Precision ¼ TP

TPþ FP
ð31Þ

Recall ¼ TP

TPþ FN
: ð32Þ

Table 4 shows the result of average SVM classification

precision for the competing methods. In some of the data

sets, the proposed WSVM-FRS method has a better clas-

sification precision than the other methods (Sheng et al.

2015; Zhou et al. 2016; Lu et al. 2017; Yang et al. 2014;

Tang et al. 2019; Ma et al. 2019), which is shown in bold.

For all data sets, the rank of each method is expressed in

Table 4, and the average rank is shown. The best rank in

any data set is highlighted. The classification precision of

SVM training has been shown in terms of percentage (%).

The proposed method has the best performance and the

top rank in rank average, compared to the other methods; it

has, considerably, performed better than the other methods

concerning the amount of ranks average. WSVM-FRS

method is successful in six out of 20 existing data sets such

as Sonar, Heart, E. coli, Diabetes, Yeast, and Letter in in

terms of increasing the SVM classification precision mea-

sure, compared to the other methods; it has the best per-

formance. The proposed method has the second to third

rank among 9 data sets. However, it has between the fourth

and sixth rank in five of the data sets in increasing the SVM

classification precision which means that WSVM-FRS

method is different from the other methods and chosen as

the best.

For some data sets, other methods have better perfor-

mance in terms of increasing the classification precision.

For example, in case of Transfusion, Musk, Pendigits,

Satimage, Vowel, and Shuttle data sets, probabilistic

weighted LS-SVM (Lu et al. 2017) obtained better results.

Although probabilistic weighted LS-SVM method has,

among the average ranks, won the second rank in terms of

increasing the classification precision, in some data sets, it

has the second to seventh rank in increasing the classifi-

cation precision. Similarly, in some cases, DS-RLSSVM

(Zhou et al. 2016) method has the best performance, in

Ionosphere data set, in comparison with other methods; it

has won the first rank. DS-RLSSVM method has won the

third rank with considerable difference with the average

rank of WSVM-FRS methods. DS-RLSSVM method does

not have an acceptable performance in some data sets,

compared to the other methods. PLR-WSVM (Tang et al.

2019) method has the forth rank average in comparison

with competing methods which has had the best result in

Glass and Wdbc data sets but in others this method has

obtained between the second and seventh rank. After that,

K-SRLSSVCR (Ma et al. 2019) method has the fifth rank

average among other methods and this method has won in

Haberman and Segment data sets but in other data sets has

earned different ranks.

Similarity, Fuzzy-LSSVM (Sheng et al. 2015) method

has the sixth rank average. It has the best performance in

terms of increasing the classification precision in Iris data

sets compared to the other methods. It stands far away from

the proposed method in ranks average for increasing the

SVM classification precision. RLS-SVM (Yang et al. 2014)

has the seventh rank average in terms of increasing the

SVM classification precision which is the worst method

among ranks average compared to the other methods; it has

the best performance in Liver and Vehicle data sets as well

as the first rank. It has the biggest difference with WSVM-

FRS method concerning rank average.

The two last rows of Table 4 show the results of the

Wilcoxon test comparing the classification precision of

WSVM-FRS against the other competing methods. A sig-

nificance level 0.05 has been considered for the analysis.

Number ‘‘1’’ represents that WSVM-FRS significantly

improves over the other competing methods in terms of

classification precision.

Table 5 shows the result of average SVM classification

recall for the competing methods. In some of the data sets,

the proposed WSVM-FRS method has a better classifica-

tion precision than the other methods (Sheng et al. 2015;

Zhou et al. 2016; Lu et al. 2017; Yang et al. 2014; Tang

et al. 2019; Ma et al. 2019), which is shown in bold. For all

data sets, the rank of each method is expressed in Table 5,

and the average rank is shown. The best rank in any data

set is highlighted. The classification recall of SVM training

has been shown in terms of percentage (%).

The proposed method has the best performance and the

top rank in rank average, compared to the other methods; it

has, considerably, performed better than the other methods

concerning the amount of ranks average. WSVM-FRS

method is successful in 6 out of 20 existing data sets such

as Sonar, Heart, E. coli, Diabetes, Yeast, and Letter in

terms of increasing the SVM classification recall, com-

pared to the other methods; it has the best performance.

The proposed method has the second to third rank among

11 data sets. However, it does have between fourth and

sixth in three of the data sets in increasing the SVM
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classification recall which means that WSVM-FRS method

is different from the other methods and chosen as the best.

For some data sets, other methods have better perfor-

mance in terms of increasing the classification precision.

For example, in case of Ionosphere, Transfusion, and

Vowel data sets, DS-RLSSVM (Zhou et al. 2016) obtained

better results. Although DS-RLSSVM method has, among

the average ranks, won the second rank in terms of

increasing the classification recall, in some data sets, it has

the second to seventh rank in increasing the classification

recall. RLS-SVM (Yang et al. 2014) has the third rank

average in terms of increasing the SVM classification recall

which is the worst method among ranks average compared

to the other methods; it has the best performance in Liver,

and Vehicle data sets as well as the first rank. After that,

K-SRLSSVCR (Ma et al. 2019) method has the fourth rank

average among other methods and this method has won in

Haberman and Segment data sets but in other data sets has

earned different ranks. Similarly, in one case, Fuzzy-

LSSVM (Sheng et al. 2015) method has the best perfor-

mance, in Iris data set, in comparison with other methods;

it has won the first rank. Fuzzy-LSSVM method has won

the fourth rank with considerable difference with the

average rank of WSVM-FRS methods. Fuzzy-LSSVM

method does not have an acceptable performance in some

data sets, compared to the other methods. Probabilistic

weighted LS-SVM (Lu et al. 2017) method has the fifth

rank average. It has the best performance in terms of

increasing the classification recall in Musk, Pendigits,

Satimage, and Shuttle data sets compared to the other

methods. It stands far away from the proposed method in

ranks average for increasing the SVM classification recall.

Finally, PLR-WSVM (Tang et al. 2019) method has the

fifth rank average in comparison with competing methods

which has had the best result in Glass and Wdbc data sets

but in others this method has obtained between the second

and seventh rank.

The two last rows of Table 5 show the results of the

Wilcoxon test comparing the classification recall of

WSVM-FRS against the other competing methods. A sig-

nificance level 0.05 has been considered for the analysis.

Number ‘‘1’’ represents that WSVM-FRS significantly

improves over the other competing methods in terms of

classification recall.

As the number of positive samples is smaller than the

negative ones, the performance of SVM classification in

segregating positive samples is more important. Therefore,

the value of area under the receiver operating characteristic

(ROC) graph, known as area under curve (AUC), is com-

puted as another metric. ROC graph is constructed by

plotting TPR in contrast to false-positive rate (FPR).

Hence, more AUC in the form of (33) shows better ability

to distinguish positive samples:

AUC ¼ ð1þ TPR� FPRÞ=2: ð33Þ

Based on Fig. 3, AUC metric represents special power

of WSVM-FRS to gain data characteristics of positive

samples. This ability causes better results of the proposed

method rather than the others. Finally, through analyzing

several experiments on data sets taken from the UCI

repository, the superiority of WSVM-FRS over state-of-

the-art methods (Sheng et al. 2015; Zhou et al. 2016; Lu

et al. 2017; Yang et al. 2014; Tang et al. 2019; Ma et al.

2019) is proved.

Overall, in accuracy, precision and recall metrics,

WSVM-FRS has had good performance in data sets that

have many classes. Also in some data sets, the proposed

method has been able to satisfy all metrics to face with

large number datasets and in high-dimension data sets

WSVM-FRS to some extent has resulted as well.

5.2.1 Noise analysis

The presence of noise in training data has strong and

negative impact on the performance of learning algorithms.

Thus, methods should be sufficiently resistant and be able

to deal with them. In order to present a deeper discussion

and show that the proposed method has better results than

competing methods (Sheng et al. 2015; Zhou et al. 2016;

Lu et al. 2017; Yang et al. 2014; Tang et al. 2019; Ma et al.

2019), the most common type of artificial noise has been

used which is called uniform random addition (Zhu and

Wu 2004). Therefore, class noise and attribute noise have

been added. The noise level has been raised in an interval

of 0% (original datasets) to 30%. To evaluate the impact of

noise level in terms of accuracy, the proposed method and

all the other comparing methods have been performed on

each dataset. The results are demonstrated in Fig. 4 for

each dataset. The x-axis indicates the noise level, and the

y-axis represents the classification accuracy from different

types of classifiers trained.

To keep looking at Fig. 4, when the noise level

increases, classification accuracy of all methods has been

decreasing dramatically. Furthermore, it is clear that the

more noise is added to the datasets, the more proposed

method is resistant against the other methods. This is

because of a strong and satisfactory classifier based on

fuzzy rough set strategy which has been applied. Results

indicate the superiority of the proposed method in com-

parison with the others in dealing with noisy data.

Weighted support vector machine using fuzzy rough set theory 8473

123



5.2.2 Real-world data set analysis

In this section, two various real-world data sets are con-

sidered to illustrate performance of the proposed method

(WSVM-FRS) in comparison with some state-of-the-art

methods.

MNIST data set To continue evaluation of the proposed

method, specific real-world data set, namely MNIST

(LeCun et al. 2010), has been considered, which is related

to the handwritten digits date set and is a dataset of simple

gray handwritten digits, while ImageNet is a large-scale

dataset of labeled high-resolution images. MNIST has a

training set of 60,000 examples, and a test set of 10,000

examples. It is a subset of a larger set available from NIST.

The digits have been size-normalized and centered in a

fixed-size image. Description of MNIST data sat is illus-

trated in Table 6. Also demonstration of the dataset is

shown in Fig. 5.

Experimental results on MNIST dataset Experiment on

MNIST data set has been carried out to evaluate the pro-

posed method against three state-of-the-art weighted SVM

methods like probabilistic weighted least squares SVM (Lu

et al. 2017), DS-RLSSVM (Zhou et al. 2016), Fuzzy-

LSSVM (Sheng et al. 2015), RLS-SVM (Yang et al. 2014),

PLR-WSVM (Tang et al. 2019) and K-SRLSSVCR (Ma

et al. 2019) methods, which are shown in Table 7. In this

table, three evaluation measure have been considered such

as classification accuracy, recall and precision.

Table 7 shows the result of average SVM classification

accuracy, recall and precision for the competing methods.

Regarding MNIST data set, the proposed WSVM-FRS

method has a better classification performance than the

other methods (Sheng et al. 2015; Zhou et al. 2016; Lu

et al. 2017; Yang et al. 2014; Tang et al. 2019; Ma et al.

2019), which is shown in bold. For all methods, the rank of

each method is expressed in Table 7, and the average rank

is shown. The best rank is highlighted, which approves the

best performance of the proposed method. The classifica-

tion of three mentioned evaluations of SVM training has

been shown in terms of percentage (%).

Fashion-MNIST dataset Also, other type of real-world

data set, which has been used in evaluations, is Fashion-

MNIST Dataset (Cohen et al. 2017). Fashion-MNIST is

based on the assortment on Zalando’s website. Every

fashion product on Zalando has a set of pictures shot by

professional photographers, demonstrating different

aspects of the product, i.e., front and back looks, details,

looks with model and in an outfit. The original picture has a

light-gray background (hexadecimal color: #fdfdfd) and

stored in 762 9 1000 JPEG format. For efficiently serving

different frontend components, the original picture is

resampled with multiple resolutions, e.g., large, medium,

small, thumbnail and tiny.

The front look thumbnail images of 70, 000 unique

products in used to build Fashion-MNIST. Those products

come from different gender groups: men, women, kids and

neutral. In particular, whitecolor products are not included

Fig. 3 Result of AUC metric
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Fig. 4 Experimental results of

noise effect on classification

accuracy
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Fig. 4 continued
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in the dataset as they have low contrast to the background.

The thumbnails (51 9 73) are then fed into the following

conversion pipeline, which is visualized in Fig. 6.

1. Converting the input to a PNG image.

2. Trimming any edges that are close to the color of the

corner pixels. The ‘‘closeness’’ is defined by the

distance within 5% of the maximum possible intensity

in RGB space.

3. Resizing the longest edge of the image to 28 by

subsampling the pixels, i.e., some rows and columns

are skipped over.

4. Sharpening pixels using a Gaussian operator of the

radius and standard deviation of 1.0, with increasing

effect near outlines.

5. Extending the shortest edge to 28 and put the image to

the center of the canvas.

6. Negating the intensities of the image.

7. Converting the image to 8-bit grayscale pixels.

The dataset is divided into a training and a test set. The

training set receives a randomly selected 6000 examples

from each class. Images and labels are stored in the same

file format as the MNIST data set, which is designed for

storing vectors and multidimensional matrices. The result

Table 6 Files contained in the

MNIST dataset
Name Description #Examples Size

Train-images-idx3-ubyte.gz Training set images 60,000 9,912,422 bytes

Train-labels-idx1-ubyte.gz Training set labels 60,000 28,881 bytes

t10k-images-idx3-ubyte.gz Test set images 10,000 1,648,877 bytes

t10k-labels-idx1-ubyte.gz Test set labels 10,000 4542 bytes

Fig. 5 Demonstration of the MNIST data set

Fig. 4 continued
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files are listed in Table 8. Examples have been sorted by

their labels while storing, resulting in smaller label files

after compression comparing to the MNIST. It is also

easier to retrieve examples with a certain class label.

For the class labels, the silhouette code of the product

has been used. The silhouette code is manually labeled by

the in-house fashion experts and reviewed by a separate

team at Zalando. Each product contains only one silhouette

code. Table 9 gives a summary of all class labels in

Fashion-MNIST with examples for each class.

Experimental results on fashion-MNIST dataset Exper-

iment on Fashion-MNIST Dataset has been conducted out

to evaluate the proposed method compared to three state-

of-the-art weighted SVM methods like probabilistic

weighted least squares SVM (Lu et al. 2017), DS-

RLSSVM (Zhou et al. 2016), Fuzzy-LSSVM (Sheng et al.

2015), RLS-SVM (Yang et al. 2014), PLR-WSVM (Tang

et al. 2019) and K-SRLSSVCR (Ma et al. 2019) methods,

which are demonstrated in Table 10. In this table, three

evaluation measure have been considered such as classifi-

cation accuracy, recall and precision.

Table 10 shows the result of average SVM classification

accuracy, recall and precision for the competing methods.

Regarding Fashion-MNIST data set, the proposed WSVM-

FRS method has a better classification performance than

the other methods (Sheng et al. 2015; Zhou et al. 2016; Lu

et al. 2017; Yang et al. 2014; Tang et al. 2019; Ma et al.

2019), which is shown in bold. For all methods, the rank of

each method is expressed in Table 10, and the average rank

is shown. The best rank is highlighted, which approves the

Table 7 Result of the proposed method performance compared to other competitors regarding MNIST data set

Evaluation

metrics

Probabilistic weighted

LS-SVM (Lu et al.

2017)

Fuzzy-LSSVM

(Sheng et al.

2015)

DS-RLSSVM

(Zhou et al.

2016)

RLS-SVM

(Yang et al.

2014)

PLR-WSVM

(Tang et al.

2019)

K-SRLSSVCR

(Ma et al. 2019)

WSVM-

FRS

Accuracy 88.50 (2) 77.98 (7) 80.54 (6) 85.51 (4) 82.10 (5) 86.41 (3) 90.01
(1)

Precision 80.15 (4) 78.45 (5) 86.48 (2) 75.10 (6) 84.45 (3) 75.01 (7) 88.50
(1)

Recall 82.15 (4) 86.45 (2) 72.45 (7) 85.20 (3) 76.00 (6) 80.08 (5) 89.51
(1)

Average

rank

3.33 (2) 5.66 (6) 5.00 (5) 4.33 (3) 4.66 (4) 5.00 (5) 1.00 (1)

Note that the rank of each method is enclosed in parenthesis. The best results are given in bold

Fig. 6 Diagram of the conversion process used to generate Fashion-MNIST dataset. Two examples from dress and sandals categories are

depicted, respectively. Each column represents a step described previously

Table 8 Files contained in the

Fashion-MNIST dataset
Name Description #Examples Size

Train-images-idx3-ubyte.gz Training set images 60,000 25 MBytes

Train-labels-idx1-ubyte.gz Training set labels 60,000 140 Bytes

t10k-images-idx3-ubyte.gz Test set images 10,000 4.2 MBytes

t10k-labels-idx1-ubyte.gz Test set labels 10,000 92 Bytes
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best performance of the proposed method. The classifica-

tion of three mentioned evaluations of SVM training has

been shown in terms of percentage (%).

6 Conclusions and future works

In this paper, a novel method, namely WSVM-FRS, has

been introduced to reduce uncertainty effect, say, noise in

SVM training. The primary reason of introducing the

method is consideration of sophisticated information in the

real-world applications under uncertainty so that it would

retain training effectiveness against of challenging and

large-scale datasets, without losing satisfactory speed.

WSVM-FRS has introduced a novel weighted support

vector machine to improve the noisy sensitivity problem of

standard support vector machine for multiclass data clas-

sification. To keep basic idea, weighted coefficient has

been added to the penalty term Lagrangian formula for

optimization problem, which is called entropy degree,

using lower and upper approximation for membership

function in fuzzy rough set theory. Consequently, noisy

Table 10 Result of the proposed method performance compared to other competitors regarding Fashion-MNIST data set

Evaluation

metrics

Probabilistic weighted

LS-SVM (Lu et al.

2017)

Fuzzy-LSSVM

(Sheng et al.

2015)

DS-RLSSVM

(Zhou et al.

2016)

RLS-SVM

(Yang et al.

2014)

PLR-WSVM

(Tang et al.

2019)

K-SRLSSVCR

(Ma et al. 2019)

WSVM-

FRS

Accuracy 90.02 (2) 86.02 (5) 88.99 (3) 87.50 (4) 85.54 (6) 84.48 (7) 91.21
(1)

Precision 86.41 (7) 89.75 (5) 87.87 (6) 90.20 (3) 88.21 (4) 91.91 (2) 92.55
(1)

Recall 86.41 (3) 87.18 (2) 83.06 (5) 82.29 (6) 81.59 (7) 83.14 (4) 88.06
(1)

Average

rank

4.00 (2) 4.00 (2) 4.66 (4) 4.33 (3) 5.66 (5) 4.33 (3) 1.00 (1)

Note that the rank of each method is enclosed in parenthesis. The best results are given in bold

Table 9 Class names and

example images in Fashion-

MNIST dataset

Label Description Example

0 T-Shirt/Top

1 Trouser

2 Pullover

3 Dress

4 Coat

5 Sandals

6 Shirt

7 Sneaker

8 Bag

9 Ankle Boots
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samples have low degree, and important samples have high

degree. The performance of WSVM-FRS has been exam-

ined on 20 data sets taken from the UCI repository and

real-world data sets so that the results have been compared

to six other algorithms in recent literature. Experimental

results demonstrate that the proposed method has good

classification accuracy, precision and recall due to con-

sideration and handling uncertainty aspect including noisy

sample. The Wilcoxon test proves that the methods is more

statistically different, in terms of appropriated perfor-

mance, regarding accuracy, precision and recall metrics.

In the future, we not only would endeavor to enhance

effectiveness of WSVM-FRS in dealing with data stream,

but also would introduce more accurate kernel using ED

concept when the method would face with more chal-

lenging real-world data sets. Furthermore, we are fasci-

nated to seek other aspects of weighted SVM in order to

reduce the noise more effectively and quickly.
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