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Abstract
The q-rung orthopair fuzzy sets dynamically change the range of indication of decision knowledge by adjusting a parameter
q from decision makers, where q ≥ 1, and outperform the conventional intuitionistic fuzzy sets and Pythagorean fuzzy sets.
Linguistic q-rung orthopair fuzzy sets (Lq-ROFSs), a qualitative type of q-rung orthopair fuzzy sets, are characterized by
a degree of linguistic membership and a degree of linguistic non-membership to reflect the qualitative preferred and non-
preferred judgments of decision makers. Einstein operator is a powerful alternative to the algebraic operators and has flexible
nature with its operational laws and fuzzy graphs perform well when expressing correlations between attributes via edges
between vertices in fuzzy information systems, which makes it possible for addressing correlational multi-attribute decision-
making (MADM) problems. Inspired by the idea of Lq-ROFS and taking the advantage of the flexible nature of Einstein
operator, in this paper, we aim to introduce a new class of fuzzy graphs, namely, linguistic q-rung orthopair fuzzy graphs
(Lq-ROFGs) and further explore efficient approaches to complicated MAGDM situations. Following the above motivation,
we propose the new concepts, including product-connectivity energy, generalized product-connectivity energy, Laplacian
energy and signless Laplacian energy and discuss several of its desirable properties in the background of Lq-ROFGs based
on Einstein operator. Moreover, product-connectivity energy, generalized product-connectivity energy, Laplacian energy and
signless Laplacian energy of linguistic q-rung orthopair fuzzy digraphs (Lq-ROFDGs) are presented. In addition, we present
a graph-based MAGDM approach with linguistic q-rung orthopair fuzzy information based on Einstein operator. Finally, an
illustrative example related to the selection of mobile payment platform is given to show the validity of the proposed decision-
making method. For the sake of the novelty of the proposed approach, comparison analysis is conducted and superiorities in
contrast with other methodologies are illustrated.
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1 Introduction

With the advent of the era of big data, practical problems
and actual scenarios in real life have become more compli-
cated. In some cases, Pythagorean fuzzy set (PFS) (Yager and
Abbasov 2013) and intuitionistic fuzzy set (IFS) (Atanassov
1986) cannot effectively deal with certain types of data. To
solve this issue, Yager (2016) put forward the concept of
q-rung orthopair fuzzy sets (q-ROFSs), which generalize

3 Department of Applied Mathematics, Ayandegan Institute of
Higher Education, Tonekabon, Iran

4 School of Mathematics, Minhaj University, Lahore, Pakistan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-021-05771-9&domain=pdf
http://orcid.org/0000-0001-9349-5695


10310 M. Akram et al.

the classical IFSs and PFSs. q-ROFSs provide more free-
dom and choice for decision makers by allowing the sum
of the qth power of the membership degree (MD) and the
qth power of the non-membership degree (NMD) to be less
than or equal to 1. The above information can be illustrated
as Q = (0.6, 0.9); it is q-rung orthopair fuzzy number, but
not an intuitionistic fuzzy number and Pythagorean fuzzy
number (because 0.6q + 0.9q ≤ 1 and 0.62 + 0.92 > 1,
0.6+0.9 > 1 ). The q-ROFSs reduced to IFSs, PFSs and Fer-
matean fuzzy sets (Senapati and Yager 2020) when q = 1,
q = 2 and q = 3, respectively. When q expands, the q-
ROFSs give more freedom to decision makers to provide
their assessment data. Recently, many researchers developed
several decision-making methods under generalized fuzzy
scenario (Akram et al. 2020; Akram and Shahzadi 2020;
Akram et al. 2021, 2020; Feng et al. 2021; Abdullah and
Aslam 2020; Ashraf et al. 2019a, b, c; Liu et al. 2021; Qiyas
et al. 2020; Zhan et al. 2018; Zhang and Li 2019).

For certain qualitative attributes, in some complicated
decision-making problems, the decision makers cannot
assign the MD and NMD by crisp numbers, and a fea-
sible solution is to describe them by linguistic variables
(LVs). Lin et al. (2020) developed Lq-ROFSs and devised the
operational laws, such as weighted averaging operator and
weighted geometric operator based on Lq-ROF environment
to aggregate the Lq-ROF numbers. Obviously, Lq-ROFS can
be regarded as the extension of the linguistic intuitionistic
fuzzy set (LIFS) (Zhang 2014) and linguistic Pythagorean
fuzzy set (LPFS) (Garg 2018; Lin et al. 2018), when q = 1
and q = 2 the Lq-ROFS reduces to LIFS and LPFS, respec-
tively. Wang et al. (2019) introduced some basic concepts
of Lq-ROFS and developed some new operational laws,
comparison methods, and distance measure methods with
Lq-ROFS.Liu et al. (2019) proposed a newclass of fuzzy sets
(Zadeh1965) calledq-rungorthopair uncertain linguistic sets
based on the q-ROFSs and uncertain linguistic variables and
developed uncertain linguistic aggregation operators. Yue
et al. (2020) put forward several new operational laws of
probabilistic linguistic term sets along with its application
in MADM. Amin et al. (2020) developed MADM approach
on the basis of triangular cubic linguistic uncertain fuzzy
aggregation operators. Table 1 expresses the superiority and
flexibility of the Lq-ROFS model compared to some of the
existing models in literature.

Graphs can be used to model many real life systems. The
graphs demonstrate the connections within these systems
between the entities. As in electrical networks and computer
networks, the connections may be physical or relationships
as in molecules and ecosystems. Graphs are abstractions of
these connections. The spectrum is the set of all eigenval-
ues of a graph. There has been detailed analysis of spectral
properties of graphs. Gutman (2001) proposed the concept of
the graph energy in chemistry and evaluated lower and upper

limits for the energy of the graph. If a graph is connected,
its distance and adjacent energy is computed as the sum of
the absolute values of the associated eigenvalues. If graph is
not connected, then a graph’s energy is the sum of the energy
of its connected components. The Laplacian matrix L(G) of
a graph G is obtained by subtracting the adjacency matrix
A(G) from its degree matrix D(G) whose vertex fi has
degree di is defined by dG(ri ) when i = j and 0 otherwise.
Signless Laplacian matrix L+(G) of a graph G is obtained
by adding the adjacency matrix A(G) in its degree matrix
D(G). Laplacian energy (Gutman and Zhou 2006) and sign-
less Laplacian energy (Gutman et al. 2010) of a graph is the
sum of the absolute values of the differences of the average
vertex degree of G to the Laplacian and signless Laplacian
eigenvalues of G, respectively. Graphs are representations of
binary relations. Similarly, fuzzy binary relations are repre-
sented by graphs called fuzzy graphs (FGs). Fuzzy graphs
are generalizations of crisp graphs. Rosenfeld (1975) sug-
gested the idea of FGs and established its structure. Anjali
and Mathew (2013) evaluated the energy of FGs.

Naz et al. originally introduced some new classes of FGs
called PFGs (Naz et al. 2018) and complex PFGs (Akram
and Naz 2019) along its pertinent applications in decision
making.Akram andNaz (2018) discussed the theory of graph
spectra in the context of the generalized fuzzy circumstances
which deal MADM information more objectively. A new
concept of q-rung orthopair fuzzy graphs was put forward by
Habib et al. (2019) along its application in the soil ecosystem.

Koczy et al. (2020) put forward the notion of picture
fuzzy graphs and analyze a Wi-Fi network and a social net-
work based on picture fuzzy graphs. Akram et al. (2021) and
Akram and Luqman (2020) defined trapezoidal picture fuzzy
numbers alongwith its graphical representation andproposed
a new approach of formation of granular structures based
on fuzzy soft graphs. Recently, novel concepts of Zagreb
and Harmonic energy in the background of interval-valued
q-rung orthopair dual hesitant fuzzy Hamacher graphs are
incorporatedbyNaz et al. (2021).Apart from this, somenovel
concepts of energy based on well-known molecular descrip-
tors geometric-arithmetic and the atom bond connectivity of
dual hesitant q-ROFGs have been presented by Akram et al.
(2021).

Einstein operator not only a good alternative to the alge-
braic operator, and gives the same smooth approximations
as the algebraic but also has more and more flexibility and
robustness than algebraic operator. Due to the uncertainty of
information data from some practical decision-making prob-
lems with the interrelated criteria, it might be tough for the
decision makers to precisely quantify their judgment with a
classical number, but can represent themby natural language.
Lq-ROFS theory is one of the successful generalizations of
linguistic fuzzy set theory which provides greater range for
decision makers to express their uncertain, vague and impre-
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Table 1 Comparison of Lq-ROFS model with extant models in literature

Model Membership Non-membership Indeterminacy Linguistic
membership

Linguistic non-
membership

Linguistic inde-
terminacy

FS � × × × × ×
IFS � � � × × ×
PFS � � � × × ×
q-ROFS (q ≥ 1) � � � × × ×
LFS � × × � × ×
LIFS � � � � � �
LPFS � � � � � �
Lq-ROFS (q ≥ 1) � � � � � �

cise information in natural language, and graphs play an
essential role in modern world, due to its broadly spread
use for representing, modeling and organizing linked data.
In this manner, it is very significant to present the idea of
Lq-ROFGs that not only accommodates Lq-ROF informa-
tion but also can capture the relationships among arguments.
To achieve this goal, utilizing LFSs into q-ROFGs, we intro-
duce a new class of fuzzy graphs called linguistic q-rung
orthopair fuzzy graphs (Lq-ROFGs) on the basis of Einstein
operator and discuss its spectra. Due to its simple analysis
and computational flexibility, the presented study has a dis-
tinct advantage over the others. The main contributions of
this research are:

(1) to incorporate the theory of LFSs into q-ROFGs and
propose a new, powerful tool for describing interrelated
uncertain phenomena, called Lq-ROFGs based on Ein-
stein operator;

(2) to propose the new concepts of the product-connectivity
energy, generalized product-connectivity energy, Lapla-
cian energy and signless Laplacian energy of Lq-ROFGs,
as well as the Lq-ROFDGs;

(3) to develop a MAGDM method based on Lq-ROFG and
Einstein operator;

(4) to solve decision-making problem related to mobile pay-
ment platform selection to illustrate the applicability and
effectiveness of our proposed approach.

Compared with many existing generalized fuzzy graph the-
ories, the newly proposed Lq-ROFGs show extraordinary
flexibility and effectiveness and can successfully express the
decision-making opinions of decision experts. Themost ben-
eficial advantage of the Lq-ROFG is that it uses linguistic
terminology to describe the qualitative evaluation details pro-
vided by decision makers for a specific evaluation object.

Remaining paper is organized as follows: Sect. 2 recalls
some basic definitions related to this paper. Section 3
introduces the concept of Lq-ROFG based on Einstein

operator, the spectra of a graph in Lq-ROF environment
and briefly discusses its certain properties. Section 4 find
out the product-connectivity energy, generalized product-
connectivity energy, Laplacian energy, and signless Lapla-
cian energy of Lq-ROFDGs based on Einstein operator. In
Sect. 5, a graph-based MAGDM approach with Lq-ROF
information is given and illustrative example shows the valid-
ity of our proposed method. Finally, we summarize the paper
in Sect. 6.

2 Preliminaries

In this section, the basic concepts of LTS and Lq-ROFS are
provided to facilitate the next sections.

Definition 1 (Dutta and Guha 2015) Let there exist a finite
LTS S = {sγ |γ = 0, 1, . . . , τ } with odd cardinality, where
sγ indicates a possible linguistic term. For instance, a LTS S
having seven terms can be described as follows:

S = {s0 = none, s1 = very low, s2 = low, s3 = medium,

s4 = high, s5 = very high, s6 = perfect}.

Generally, the LTS meets the following characteristics:

(i) The set is ordered: sk > sl , if and only if k > l.
(ii) Max operator: max(sk, sl) = sk, if and only if k ≥ l.
(iii) Min operator: min(sk, sl) = sk, if and only if k ≤ l.
(iv) Negative operator: Neg(sk) = sl such that l = τ − k.

Definition 2 (Lin et al. 2020) If there is a finite reference
set U = {r1, r2, . . . , rn} and a continuous LTS (CLTS) S =
{sγ |γ ∈ [0, τ ]} with a nonnegative integer τ ; then Lq-ROFS
on U is expressed as

L = {(r , sa(r), sb(r))|r ∈ U },
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Fig. 1 The distribution area of LIFNs in a LIFS

characterized as the membership function sa(r) and non-
membership function sb(r) of an element r . Each orthopair
(sa(r), sb(r)) in the Lq-ROFS L is considered as a Lq-
ROFN and is simplified as (sa, sb). In each orthopair (sa, sb),
sa and sb must fulfill the condition: a, b ∈ [0, τ ] and
0 ≤ aq +bq ≤ τ q with q ≥ 1. Further, sπ (r) = s q√τq−aq−bq

is the hesitant degree of the element r .

Definition 3 (Lin et al. 2020) Consider a Lq-ROFN p =
(sa, sb) with sa, sb ∈ S and a CLTS S = {sγ |γ ∈ [0, τ ]},
then the score value of the Lq-ROFN is described as

S(p) = s
((τq+aq−bq )/2)

1
q
, (1)

and its accuracy value is described as

J (p) = s
(aq+bq )

1
q
. (2)

Any two Lq-ROFNs p1 and p2 are compared by the follow-
ing developed method as follows:

(1) if S(p1) > S(p2), then p1 � p2;
(2) if S(p1) = S(p2), then: (a) if J (p1) > J (p2), then

p1 � p2; (b) if J (p1) = J (p2), then p1 ∼ p2.

To illustrate the difference among linguistic intuitionistic
fuzzy numbers (LIFNs), linguistic Pythagorean fuzzy num-
bers (LPFNs) and linguistic q-rung orthopair fuzzy numbers
(Lq-ROFNs), we present their space of acceptable member-
ship degrees in Figs. 1, 2 and 3.

Figures 1, 2 and 3 clearly show that as the index of sa
and sb increases, so does the range of information which
can be described by the fuzzy numbers. The Lq-ROFNs can
therefore enlarge the information which the attributes can
portray and expand the space for decision makers to evaluate

Fig. 2 The distribution areas for LIFNs and LPFNs

Fig. 3 The distribution areas for Lq-ROFNs

alternatives. It can also be observed that each of LIFS and
LPFS is also a Lq-ROFSwith q ≥ 1 and q ≥ 2, respectively.

Definition 4 (Wang and Liu 2011) For any two real numbers
r , s ∈ [0, 1], the Einstein t-norm and t-conorm are defined
as follows:

I (r , s) = rs

1 + (1 − r)(1 − s)
,

I ∗(r , s) = r + s

1 + rs
.

Some notations used in this paper are listed in Table 2.

3 Linguistic q-rung orthopair fuzzy Einstein
graphs

In this section, we introduce the innovative concept of
Lq-ROFGs based on Einstein operator called Linguistic q-
rung orthopair fuzzy Einstein graphs or simply Lq-ROFGs.
Further, we discuss the spectra of a graph in Lq-ROF envi-
ronment and discuss its certain properties.

Definition 5 LetU be the universe of discourse. A Lq-ROFS
E in U ×U is said to be a linguistic q-rung orthopair fuzzy
relation (Lq-ROFR) in U , denoted by

E = {〈rs, saE (rs), sbE (rs)〉|rs ∈ U ×U },
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Table 2 List of notations Notation Description Notation Description

U Classical set L+(M ) SLM of Lq-ROFG

S CLTS ς+
i Eigenvalues of L+(saE (ri r j ))

L Lq-ROFS υ+
i Eigenvalues of L+(sbE (ri r j ))

E Lq-ROFR D Lq-ROFDG

M Lq-ROFG A(D) Adjacency matrix of Lq-ROFDG

sa Linguistic membership PCα(D) GPC matrix of Lq-ROFDG

sb Linguistic non-membership t̃i Eigenvalues of PCα(sa−→
E

(ri r j ))

A(M ) Adjacency matrix of Lq-ROFG w̃i Eigenvalues of PCα(sb−→
E

(ri r j ))

PCα(M ) GPC matrix of Lq-ROFG D(D) Degree matrix of Lq-ROFDG

κi Eigenvalues of PCα(saE (ri r j )) L(D) LM of Lq-ROFDG

χi Eigenvalues of PCα(sbE (ri r j )) �i Eigenvalues of L(sa−→
E

(ri r j ))

D(M ) Degree matrix of Lq-ROFG h̄i Eigenvalues of L(sb−→
E

(ri r j ))

L(M ) LM of Lq-ROFG L+(D) SLM of Lq-ROFDG

ςi Eigenvalues of L(saE (ri r j )) �+
i Eigenvalues of L+(sa−→

E
(ri r j ))

υi Eigenvalues of L(sbE (ri r j )) h̄+
i Eigenvalues of L+(sb−→

E
(ri r j ))

where saE : U × U → [0, τ ] and sbE : U × U → [0, τ ]
represent the membership and non-membership function of
E , respectively, such that 0 ≤ aqE (rs) + bqE (rs) ≤ τ q for all
rs ∈ U ×U .

Definition 6 A Lq-ROFG based on Einstein operator under
CLTS S = {sγ |γ ∈ [0, τ ]} with a positive integer τ is a
pair M = (L,E), where L is a Lq-ROFS on U and E is a
Lq-ROFR on U such that:

saE (rs) ≤ s
τ

( a
τ )L (r)( a

τ )L (s)

1+(1−( a
τ )L (r))(1−( a

τ )L (s))

,

sbE (rs) ≤ s
τ

(
b
τ

)
L

(r)+
(
b
τ

)
L

(s)

1+
(
b
τ

)
L

(r)
(
b
τ

)
L

(s)

and 0 ≤ aqE (rs) + bqE (rs) ≤ τ q for all r , s ∈ U . We call L
and E the Lq-ROFS of vertices and the Lq-ROFS of edges
ofM , respectively. Here, E is a symmetric linguistic q-rung
orthopair fuzzy relation on L . If E is not symmetric on L ,
then D = (L,

−→
E ) is called Lq-ROFDG.

The adjacency matrix A(M ) = (A(saE (rir j )), A(sbE (ri
r j ))) of a Lq-ROFG M = (L,E) is a square matrix
A(M ) = [ai j ],ai j = (saE (rir j ), sbE (rir j )),where saE (rir j )
and sbE (rir j ) indicate the relationship and non-relationship
strength between ri and r j , respectively.

Example 1 Consider a L3-ROFG M = (L,E), shown in
Fig. 4, which models collaboration between researchers. The
researchers are represented by vertices V = { f1, f2, f3, f4,
f5, f6} and the collaborations between any two researchers
are representedbyedges E = { f1 f2, f1 f4, f1 f5, f1 f6, f2 f3,
f3 f4, f4 f5}. Let S = {s0 = worst, s1 = very poor, s2 =

Fig. 4 Linguistic 3-rung orthopair fuzzy Einstein graph with CLTS
S = {sγ |γ ∈ [0, 8]}

poor, s3 = slightly poor, s4 = medium, s5 = slightly good,
s6 = good, a7 = very good, s8 = outstanding} be a CLTS.
Then,

L =
〈(

f1
s7

,
f2
s5

,
f3
s7

,
f4
s4

,
f5
s5

,
f6
s5

)
,

(
f1
s2

,
f2
s5

,
f3
s4

,
f4
s3

,
f5
s3

,
f6
s4

)〉
,

E =
〈(

f1 f2
s4

,
f1 f4
s3

,
f1 f5
s4

,
f1 f6
s4

,
f2 f3
s3

,
f3 f4
s3

,
f4 f5
s2

)
,
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(
f1 f2
s6

,
f1 f4
s3

,
f1 f5
s4

,
f1 f6
s5

,
f2 f3
s6

,
f3 f4
s5

,
f4 f5
s5

)〉
.

Clearly, M = (L,E) shown in Fig. 4, is a L3-ROFG.
The adjacency matrix of the above Lq-ROFG A(M ) is as
follows:

A(M ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

(s0, s0) (s4, s6) (s0, s0) (s3, s3) (s4, s4) (s4, s5)
(s4, s6) (s0, s0) (s3, s6) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s3, s6) (s0, s0) (s3, s5) (s0, s0) (s0, s0)
(s3, s3) (s0, s0) (s3, s5) (s0, s0) (s2, s5) (s0, s0)
(s4, s4) (s0, s0) (s0, s0) (s2, s5) (s0, s0) (s0, s0)
(s4, s5) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Nowwe put forward some new concepts of spectral graph
theory including product-connectivity energy, generalized
product-connectivity energy, Laplacian energy and signless
Laplacian energy in Lq-ROF environment based on Einstein
operator.

3.1 Generalized product-connectivity energy of
Lq-ROFGs

This subsection defines and investigates the product-
connectivity energy and generalized product-connectivity
energy of a Lq-ROFG and provides its properties in
detail.

Definition 7 LetM = (L,E) be a Lq-ROFG on n vertices.
The product-connectivity matrix, PC(M ) = (PC(saE (ri
r j )), PC(sbE (rir j ))) = [di j ], ofM is a n×nmatrix defined
as:

di j =

⎧⎪⎨
⎪⎩

s0 if i = j,
s 1√

dM (ri )dM (r j )

if the vertices ri and r j of the Lq-ROFGM are adjacent,

s0 if the vertices ri and r j of the Lq-ROFGM are non-adjacent.

Definition 8 Theproduct-connectivity energyof aLq-ROFG
M = (L,E) is defined as:

PCE(M ) = (PCE(saE (rir j )),PCE(sbE (rir j )
)

=

⎛
⎜⎜⎜⎝s n∑

i=1
κi∈NPC

|κi |
, s n∑

i=1
χi∈OPC

|χi |

⎞
⎟⎟⎟⎠ ,

where NPC and OPC are the sets of product-connectivity
eigenvalues of PC(saE (rir j )) and PC(sbE (rir j )), respec-
tively.

Now, we define generalized product-connectivity energy
of the Lq-ROFG and provide its properties in detail.

Definition 9 Let M = (L,E) be a Lq-ROFG on n ver-
tices. The general product-connectivity matrix, PCα(M ) =
(PCα(saE (rir j )), (PCα(sbE (rir j )))) = [di j ], of M is a
n × n matrix defined as:

di j =
⎧⎨
⎩
s0 if i = j,
s(dM (ri )dM (r j ))α if the vertices ri and r j of the Lq-ROFGM are adjacent,
s0 if the vertices ri and r j of the Lq-ROFGM are non-adjacent.

Definition 10 The general product-connectivity energy of a
Lq-ROFGM = (L,E) is defined as:

PCEα(M ) = (PCEα(saE (rir j )), (PCEα)(sbE (rir j ))
)

=

⎛
⎜⎜⎜⎝s n∑

i=1
κi∈NPC

|κi |
, s n∑

i=1
χi∈OPC

|χi |

⎞
⎟⎟⎟⎠ .

where NPC and OPC are the sets of general product-
connectivity eigenvalues of PCα(saE (rir j )) and PCα(saE (ri
r j )), respectively.

Example 2 Let M = (L,E) be a L3-ROFG on V =
{ f1, f2, f3, f4, f5, f6} and E = { f1 f2, f1 f4, f1 f5, f1 f6, f2
f3, f3 f4, f3 f5, f3 f6, f5 f6} with CLTS as S = {s0 = very
poor, s1 = poor, s2 = slightly poor, s3 = medium, s4 =
slightly good, s5 = good, s6 = very good}, as shown in
Fig. 5.

The adjacency matrix of a Lq-ROFG A(M ), shown in
Fig. 5, is:
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Fig. 5 Linguistic 3-rung orthopair fuzzy graphwithCLTS S = {sγ |γ ∈
[0, 6]}

A(M ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

(s0, s0) (s3, s4) (s0, s0) (s1, s3) (s2, s4) (s2, s3)
(s3, s4) (s0, s0) (s3, s5) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s3, s5) (s0, s0) (s3, s4) (s2, s5) (s2, s2)
(s1, s3) (s0, s0) (s3, s4) (s0, s0) (s0, s0) (s0, s0)
(s2, s4) (s0, s0) (s2, s5) (s0, s0) (s0, s0) (s1, s4)
(s2, s3) (s0, s0) (s2, s2) (s0, s0) (s1, s4) (s0, s0)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The product-connectivity matrix with α = −1/2 of a Lq-
ROFG PC(M ), shown in Fig. 5, is:

PC(−1/2)(M )

=

⎡
⎢⎢⎢⎢⎢⎢⎣

(s0, s0) (s0.1443, s0.0891) (s0, s0) (s0.1768, s0.1010) (s0.1581, s0.0741) (s0.1581, s0.0891)
(s0.1443, s0.0891) (s0, s0) (s0.1291, s0.0833) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0.1291, s0.0833) (s0, s0) (s0.1581, s0.0945) (s0.1414, s0.0693) (s0.1414, s0.0833)
(s0.1768, s0.1010) (s0, s0) (s0.1581, s0.0945) (s0, s0) (s0, s0) (s0, s0)
(s0.1581, s0.0741) (s0, s0) (s0.1414, s0.0693) (s0, s0) (s0, s0) (s0.2000, s0.0925)
(s0.1581, s0.0891) (s0, s0) (s0.1414, s0.0833) (s0, s0) (s0.2000, s0.0925) (s0, s0)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The spectrum and the energy values of a Lq-ROFGM , given
in Fig. 5, are as follows:

Spec(saE (rir j ))

= {s−0.3915, s−0.2000, s−0.0000, s0.0000, s0.0968, s0.4947},
Spec(sbE (rir j ))

= {s−0.2283, s−0.0920, s−0.0000, s0.0000, s0.0516, s0.2687}.

Therefore,

Spec(M ) = {(s−0.3915, s−0.2283), (s−0.2000, s−0.0920),

(s−0.0000, s−0.0000), (s0.0000, s0.0000),

(s0.0968, s0.0516), (s0.4947, s0.2687)}.

Now, PCE(−1/2)(saE (rir j )) = s1.1831 and PCE(−1/2)(sbE
(rir j )) = s0.6407.

Therefore, PCE(−1/2)(M ) = (s1.1831, s0.6407).

Now, we firstly determine the trace of the general product-
connectivity matrices PCα(M ), PC2

α(M ), PC3
α(M ), and

PC4
α(M ) under Lq-ROF environment, i.e., str(PCα(M )),

str(PC2
α(M )), str(PC3

α(M )), and str(PC4
α(M )). Moreover, using

these equalities the upper and lower bounds for general
product-connectivity energy are obtained.

Lemma 1 Let M = (L,E) be a Lq-ROFG on n vertices
and PCα(M ) = (PCα(saE (rir j )), PCα(sbE (rir j ))) be the
general product-connectivity matrix ofM . Then,

1. str(PCα(M )) = s0,
2. str(PC2

α(M )) = s2
∑
i∼ j

(dM (ri )dM (r j ))2α ,

3. str(PC3
α(M )) = s

2
∑
i∼ j

(dM (ri )dM (r j ))2α

⎛
⎜⎜⎝
∑
k∼i
k∼ j

d2αM (rk )

⎞
⎟⎟⎠

,

4. str(PC4
α(M )) = s

n∑
i=1

(
∑
i∼ j

(dM (ri )dM (r j ))2α

)2 +

∑
i = j

(dM (ri )dM (r j ))2α

⎛
⎜⎝∑

k∼i
k∼ j

d2αM (rk)

⎞
⎟⎠

2

.

Proof 1. Obvious.

2. For matrix PC2
α(M ). If i = j

sPC2
α(saE (ri ri )) = s n∑

j=1
(PCα(saE (ri r j )))(PCα(saE (r j ri )))

= s n∑
j=1

(PCα(saE (ri r j )))2

= s∑
i∼ j

(PCα(saE (ri ri )))2

= s∑
i∼ j

(dsa (ri )dsa (r j ))2α .

whereas if i = j
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sPC2
α(saE (ri ri )) = s n∑

k=1
(PCα(saE (ri rk )))(PCα(saE (rkr j )))

= s ∑
k∼i
k∼ j

(PCα(saE (ri rk )))(PCα(saE (rkr j )))

= s(dsa (ri )dsa (r j ))α
∑
k∼i
k∼ j

d2αsa (rk ).

Therefore, str(PC2
α(saE )) = s n∑

i=1
PC2

α(saE (ri ri ))

= s n∑
i=1

∑
i∼ j

(dsa (ri )dsa (r j ))2α
= s2

∑
i∼ j

(dsa (ri )dsa (r j ))2α .

Similarly, we can show that

str(PC2
α(sbE (ri ri ))) = s2

∑
i∼ j

(dsb (ri )dsb (r j ))2α .

Hence, str(PC2
α(M )) = s2

∑
i∼ j

(dM (ri )dM (r j ))2α .

3. The diagonal elements of PC3
α(M ) are

sPC3
α(saE (ri ri )) = s n∑

j=1
(PCα(saE (ri r j )))(PC2

α(saE (r j ri )))

= s∑
j∼i

(dsa (ri )dsa (r j ))α(PC2
α(saE (ri r j )))

= s
∑
i∼ j

(dsa (ri )dsa (r j ))2α

⎛
⎜⎜⎝
∑
k∼i
k∼ j

d2αsa (rk )

⎞
⎟⎟⎠

.

Therefore,

str(PC3
α(saE (ri r j )))

= s n∑
i=1

PC3
α(saE (ri ri ))

= s
n∑

i=1

⎛
⎜⎜⎝
∑
i∼ j

(dsa (ri )dsa (r j ))2α
∑
k∼i
k∼ j

d2αsa (rk )

⎞
⎟⎟⎠

= s

2
∑
i∼ j

(dsa (ri )dsa (r j ))2α

⎛
⎜⎜⎝
∑
k∼i
k∼ j

d2αsa (rk )

⎞
⎟⎟⎠

.

Similarly, we can show that

str(PC3
α(sbE (ri ri )))

= s

2
∑
i∼ j

(dsb (ri )dsb (r j ))2α

⎛
⎜⎜⎝
∑
k∼i
k∼ j

d2αsb (rk )

⎞
⎟⎟⎠

.

Hence, str(PC3(M )) = s

2
∑
i∼ j

(dM (ri )dM (r j ))2α

⎛
⎜⎜⎝
∑
k∼i
k∼ j

d2αM (rk )

⎞
⎟⎟⎠

.

Wenowcalculate str(PC4
α)(saE (ri r j )). Because tr(PC

4
α)(saE

(rir j )) = ‖(PC2
α)(saE (rir j ))‖2F ,where‖(PC2

α)(saE (rir j ))‖F
denotes the Frobenius norm of (PC2

α(saE (riri ))), we obtain

str(PC4
α)(saE (ri r j ))

= s n∑
i, j=1

|(PC2
α)(saE (ri r j ))|2

= s∑
i= j

|(PCα)2(saE (ri r j ))|2+∑
i = j

|(PC2
α)(saE (ri r j ))|2

= s
n∑

i=1

(
∑
i∼ j

(dsa (ri )dsa (r j ))2α

)2
+∑
i = j

(dsa (ri )dsa (r j ))2α

⎛
⎜⎜⎝
∑
k∼i
k∼ j

d2αsa (rk )

⎞
⎟⎟⎠

2 .

Similarly, we can show that

str(PC4
α)(sbE (ri ri ))

= s
n∑

i=1

(
∑
i∼ j

(dsb (ri )dsb (r j ))2α

)2
+∑
i = j

(dsb (ri )dsb (r j ))2α

⎛
⎜⎜⎝
∑
k∼i
k∼ j

d2αsb (rk )

⎞
⎟⎟⎠

2 .

Hence, str(PC4
α(M )) =

s
n∑

i=1

(
∑
i∼ j

(dM (ri )dM (r j ))2α

)2
+∑
i = j

(dM (ri )dM (r j ))2α

⎛
⎜⎜⎝
∑
k∼i
k∼ j

d2αM (rk )

⎞
⎟⎟⎠

2 . ��

Theorem 1 Let M = (L,E) be a Lq-ROFG on n vertices.
Then,

sPCEα(M ) ≤ s√
2n
∑
i∼ j

(dM (ri )dM (r j ))α
.

Furthermore, sPCEα(M ) = s√
2n
∑
i∼ j

(dM (ri )dM (r j ))α
if and

only ifM is a graph with only isolated vertices, or end ver-
tices.

Proof The variance of the numbers |κ(α)
i | = 1

n

n∑
i=1

|κ(α)
i |2 −

(
1
n

n∑
i=1

|κ(α)
i |
)2

≥ 0, i = 1, 2, . . . , n, therefore

s 1
n tr(PC

2
α(saE (ri r j )))

− s(
1
n (PCEα(saE (ri r j )))

)2 ≥ 0

⇐⇒ sntr((PCα)2(saE (ri r j ))) ≥ s((PCEα)(saE (ri r j )))2

⇐⇒ s(PCEα(saE (ri r j ))) ≤ s√
n tr((PC2

α(saE (ri r j ))))

⇐⇒ s(PCEα(saE (ri r j ))) ≤ s√
2n
∑
i∼ j

(dsa (ri )dsa (r j ))α
.

If M is a graph with only isolated vertices, i.e., with-
out edges, then κ

(α)
i = 0 for all i = 1, 2, . . . , n, and

therefore PCE(saE (rir j )) = 0. Since no vertices are adja-
cent,

∑
i∼ j

(dsa (ri )dsa (r j ))
α = 0. If M is a graph with only

123



Group decision-making framework under linguistic q-rung orthopair fuzzy Einstein models 10317

end vertices, i.e., having degree one, then κ
(α)
i = ±dα

sa (ri ),

so the variance of |κ(α)
i | = 0, i = 1, 2, . . . , n. Thus,

s(PCEα)(saE (ri r j )) = s√
2n
∑
i∼ j

(dsa (ri )dsa (r j ))α
.

Analogously, we can show that sPCEα(sbE (ri r j )) ≤
s√

2n
∑
i∼ j

(dsb (ri )dsb (r j ))α
.

Hence, sPCEα(M ) ≤ s√
2n
∑
i∼ j

(dM (ri )dM (r j ))α
. ��

Theorem 2 Let M = (L,E) be a Lq-ROFG on n vertices
and at least one edge. Then,

sPCEα(M ) ≥ s

2
∑
i∼ j

(dM (ri )dM (r j ))2α

√√√√√√√√√√

2
∑
i∼ j

(dM (ri )dM (r j ))
2α

n∑
i=1

(
∑
i∼ j

(dM (ri )dM (r j ))
2α

)2
+ ∑
i = j

(dM (ri )dM (r j ))
2α

⎛
⎜⎜⎜⎝
∑
k∼i
k∼ j

d2αM (rk )

⎞
⎟⎟⎟⎠

2

.

Proof According to the Hölder inequality

n∑
i=1

limi ≤
(

n∑
i=1

l pi

) 1
p
(

n∑
i=1

mq
i

) 1
q

,

which holds for any real numbers li ,mi ≥ 0, i = 1, 2, . . .,

n. Setting li = |κ(α)
i | 23 , mi = |κ(α)

i | 43 , p = 3
2 , and q = 3, we

obtain

n∑
i=1

|κ(α)
i |2 =

n∑
i=1

|κ(α)
i | 23 |κ(α)

i | 43

≤
(

n∑
i=1

|κ(α)
i |
) 2

3
(

n∑
i=1

|κ(α)
i |4
) 1

3

.

If the Lq-ROFG M has at least one edge, then all κ
(α)
i ’s

are not equal to zero. Then,
n∑

i=1
|κ(α)

i |4 = 0 and

sPCEα(saE (ri r j ))

= s n∑
i=1

|κ(α)
i |

≥ s√√√√√√√

(
n∑

i=1
|κ(α)
i |2

)3

n∑
i=1

|κ(α)
i |4

= s√
(tr(PC2

α)(saE (ri r j )))
3

tr((PC4
α)(saE (ri r j )))

.

By using Lemma 1, we get

sPCEα(saE (ri r j ))≥ s

2
∑
i∼ j

(dsa (ri )dsa (r j ))2α

√√√√√√√√√√

2
∑
i∼ j

(dsa (ri )dsa (r j ))
2α

n∑
i=1

(
∑
i∼ j

(dsa (ri )dsa (r j ))
2α

)2
+ ∑
i = j

(dsa (ri )dsa (r j ))
2α

⎛
⎜⎜⎜⎝
∑
k∼i
k∼ j

d2αsa (rk )

⎞
⎟⎟⎟⎠

2

sPCEα(sbE (ri r j )) ≥ s
∑
i∼ j

(dsb (ri )dsb (r j ))2α

√√√√√√√√√√

2
∑
i∼ j

(dsb (ri )dsb (r j ))
2α

n∑
i=1

(
∑
i∼ j

(dsb (ri )dsb (r j ))
2α

)2
+ ∑
i = j

(dsb (ri )dsb (r j ))
2α

⎛
⎜⎜⎜⎝
∑
k∼i
k∼ j

d2αsb
(rk )

⎞
⎟⎟⎟⎠

2

sPCEα(M ) ≥ s

2
∑
i∼ j

dM (ri )dM (r j )

√√√√√√√√√√

2
∑
i∼ j

(dM (ri )dM (r j ))
2α

n∑
i=1

(
∑
i∼ j

(dM (ri )dM (r j ))
2α

)2
+ ∑
i = j

(dM (ri )dM (r j ))
2α

⎛
⎜⎜⎜⎝
∑
k∼i
k∼ j

d2αM (rk )

⎞
⎟⎟⎟⎠

2

.

��
Theorem 3 Let M = (L,E) be a Lq-ROFG on n vertices.
IfM is regular of degree (p, q), p, q > 0, then

sPCEα(M ) = s(p(2α),q(2α))E(M ).

Proof Suppose that M is a regular Lq-ROFG of degree
(p(2α), q(2α))(p, q > 0), i.e., dsa (r1) = dsa (r2) = . . . =
dsa (rn) = p2α . Then, all nonzero entries of (PCα)(saE (riri ))
are equal to p(2α), implying that (PCα)(saE (riri )) =
p(2α)A(saE (riri )). Therefore, for all i = 1, 2, . . . , n
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s
κ

(α)
i

= sp(2α)κi

s n∑
i=1

κ
(α)
i

= s
p(2α)

n∑
i=1

κi

s(PCEα)(saE (ri r j ))

= sp(2α)E(saE (ri r j )).

Similarly,we can show that sPCEα(sbE (ri r j )) = sq(2α)E(sbE (ri r j )).

Hence

PCEα(M ) = s(p(2α),q(2α))E(M ).

��

3.2 Laplacian energy of Lq-ROFGs

This subsection describes and determines Laplacian energy
of Lq-ROFGs and provides descriptions of its properties.

Definition 11 The degree matrix, D(M ) = (D(saE (rir j )),
D(sbE (rir j ))) = [di j ], of a Lq-ROFG M = (L,E) on n
vertices, is a n × n diagonal matrix defined as:

di j =
{
sdM (ri ) if i = j,
s0 otherwise.

Definition 12 The Laplacian matrix (LM) of a Lq-ROFG
M = (L,E) is defined as:

L(M ) = (L(saE (rir j )), L(sbE (rir j ))) = D(M ) − A(M ),

where A(M ) and D(M ) are the adjacency matrix and the
degree matrix of a Lq-ROFGM , respectively.

Definition 13 The Laplacian energy of a Lq-ROFG M =
(L,E) is defined as:

LE(M ) = (LE(saE (rir j )), LE(sbE (rir j ))
)

=

⎛
⎜⎜⎜⎝s n∑

i=1

i∈NL

|
i |
, s n∑

i=1
ηi∈OL

|ηi |

⎞
⎟⎟⎟⎠ ,

where NL and OL are the sets of Laplacian eigenvalues of
L(saE (rir j )) and L(sbE (rir j )), respectively, and


i = ςi −
2
∑

1≤i< j≤n
saE (rir j )

n
,

ηi = υi −
2
∑

1≤i< j≤n
sbE (rir j )

n
,

where ςi and υi represent eigenvalues of LM.

Fig. 6 Linguistic 6-rung orthopair fuzzy graphwithCLTS S = {sγ |γ ∈
[0, 8]}

Theorem 4 LetM = (L,E) be a Lq-ROFG with CLTS S =
{sγ |γ = 0, 1, . . . , τ }, and let L(M ) be the LM of M . If
ς1 ≥ ς2 ≥ . . . ≥ ςn and υ1 ≥ υ2 ≥ . . . ≥ υn are the
eigenvalues of L(saE (rir j )) and L(sbE (rir j )), respectively,

and
i = ςi −
2
∑

1≤i< j≤n
saE (ri r j )

n , ηi = υi −
2
∑

1≤i< j≤n
sbE (ri r j )

n ,

then

s n∑
i=1


i

= s0, s n∑
i=1

ηi
= s0,

s n∑
i=1


 2
i

= sMN , s n∑
i=1

η2i

= s2MO ,

where
MN =

∑
1≤i< j≤n

(saE (rir j ))
2

+ 1

2

n∑
i=1

⎛
⎜⎝dsaE (ri r j )(ri ) −

2
∑

1≤i< j≤n
saE (rir j )

n

⎞
⎟⎠

2

,

MO =
∑

1≤i< j≤n

(sbE (rir j ))
2

+ 1

2

n∑
i=1

⎛
⎜⎝dsbE (ri r j )(ri ) −

2
∑

1≤i< j≤n
sbE (rir j )

n

⎞
⎟⎠

2

.

Example 3 Let M = (L,E) be a L6-ROFG on V =
{ f1, f2, f3, f4, f5, f6, f7, f8, f9, f10} and E = { f1 f2, f1
f6, f1 f7, f2 f3, f2 f8, f3 f4, f3 f10, f4 f5, f4 f10, f5 f6, f5 f9,
f6 f7, f7 f8, f8 f9, f9 f10} with CLTS as S = {s0 = worst,
s1 = very bad, s2 = bad, s3 = below average, s4 = average,
s5 = above average, s6 = good, s7 = very good, s8 =
exceptional}, as shown in Fig. 6.

The adjacency matrix, degree matrix and LM of the L6-
ROFG given in Fig. 6 are as follows:
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A(M ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s0, s0) (s3, s4) (s0, s0) (s0, s0) (s0, s0) (s6, s6) (s4, s5) (s0, s0) (s0, s0) (s0, s0)
(s3, s4) (s0, s0) (s2, s5) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s2, s4) (s0, s0) (s0, s0)
(s0, s0) (s2, s5) (s0, s0) (s5, s6) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s5, s7)
(s0, s0) (s0, s0) (s5, s6) (s0, s0) (s4, s7) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s6, s7)
(s0, s0) (s0, s0) (s0, s0) (s4, s7) (s0, s0) (s5, s7) (s0, s0) (s0, s0) (s2, s7) (s0, s0)
(s6, s6) (s0, s0) (s0, s0) (s0, s0) (s5, s7) (s0, s0) (s4, s6) (s0, s0) (s0, s0) (s0, s0)
(s4, s5) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s4, s6) (s0, s0) (s2, s5) (s0, s0) (s0, s0)
(s0, s0) (s2, s4) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s2, s5) (s0, s0) (s1, s5) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s2, s7) (s0, s0) (s0, s0) (s1, s5) (s0, s0) (s3, s7)
(s0, s0) (s0, s0) (s5, s7) (s6, s7) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s3, s7) (s0, s0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

D(M ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s13, s15) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s7, s13) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s12, s18) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s15, s20) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s11, s21) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s15, s19) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s10, s16) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s5, s14) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s6, s19) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s14, s21)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

L(M ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s13, s15) (−s3,−s4) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s6,−s6) (−s4,−s5) (−s0,−s0) (−s0,−s0) (−s0,−s0)
(−s3,−s4) (s7, s13) (−s2,−s5) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s2,−s4) (−s0,−s0) (−s0,−s0)
(−s0,−s0) (−s2,−s5) (s12, s18) (−s5,−s6) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s5,−s7)
(−s0,−s0) (−s0,−s0) (−s5,−s6) (s15, s20) (−s4,−s7) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s6,−s7)
(−s0,−s0) (−s0,−s0) (−s0,−s0) (−s4,−s7) (s11, s21) (−s5,−s7) (−s0,−s0) (−s0,−s0) (−s2,−s7) (−s0,−s0)
(−s6,−s6) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s5,−s7) (s15, s19) (−s4,−s6) (−s0,−s0) (−s0,−s0) (−s0,−s0)
(−s4,−s5) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s4,−s6) (s10, s16) (−s2,−s5) (−s0,−s0) (−s0,−s0)
(−s0,−s0) (−s2,−s4) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s2,−s5) (s5, s14) (−s1,−s5) (−s0,−s0)
(−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s2,−s7) (−s0,−s0) (−s0,−s0) (−s1,−s5) (s6, s19) (−s3,−s7)
(−s0,−s0) (−s0,−s0) (−s5,−s7) (−s6,−s7) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s3,−s7) (s14, s21)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The Laplacian spectrum and the Laplacian energy of a L6-
ROFGM , given in Fig. 6, are as follows:

Laplacian Spec(M )

= {(s0.0000, s−0.0000), (s2.2714, s4.8435),

(s4.5784, s9.3620), (s5.6234, s11.1148),

(s8.0286, s16.8117), (s10.1418, s19.7963),

(s15.8350, s23.7238), (s17.9427, s25.9566),

(s20.6269, s28.7939), (s22.9518, s35.5974))},

and LE(M ) = (s68.3128, s91.7360).
Furthermore, we have

s 10∑
i=1


i

= 0, s 10∑
i=1

ηi

= s0.

s 10∑
i=1


 2
i

= s583.6 = s2(291.8) = s2MN ,

s 10∑
i=1

η2i

= s1144.4 = s2(572.2) = s2MO .

Theorem 5 LetM = (L,E) be a Lq-ROFG, and let L(M )

be the LM of M with CLTS S = {sγ |γ = 0, 1, . . . , τ }. If
ς1 ≥ ς2 ≥ . . . ≥ ςn and υ1 ≥ υ2 ≥ . . . ≥ υn are the
eigenvalues of L(saE (rir j )) and L(sbE (rir j )), respectively,
then

(i) s n∑
i=1

ςi∈NL

ςi
= s2

∑
1≤i< j≤n

saE (ri r j ), s n∑
i=1

υi∈OL

υi
= s2

∑
1≤i< j≤n

sbE (ri r j ).

(ii) s n∑
i=1

ςi∈NL

ς2
i

= s
2
∑

1≤i< j≤n
(saE (ri r j ))2+

n∑
i=1

d2saE (ri r j )
(ri )

, s n∑
i=1

υi∈OL

υ2
i

= s
2
∑

1≤i< j≤n
(sbE (ri r j ))2+

n∑
i=1

d2sbE (ri r j )
(ri )

.

Proof (i) Since LM of Lq-ROFG L(M ) is symmetric and
its eigenvalues are nonnegative, we have

s n∑
i=1

ςi∈NL

ςi
= str(L(M ))

= s n∑
i=1

dsaE (ri r j )(ri )
= s2

∑
1≤i< j≤n

saE (ri r j ).
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Therefore, s n∑
i=1

ςi∈NL

ςi
= s2

∑
1≤i< j≤n

saE (ri r j ).

Analogously, s n∑
i=1

υi∈OL

υi
= s2

∑
1≤i< j≤n

sbE (ri r j ).

(ii) Utilizing Definition 12, we get:

L(saE (rir j ))

=

⎡
⎢⎢⎢⎢⎣

dsaE (ri r j )(r1) −saE (r1r2) . . . −saE (r1rn)
−saE (r2r1) dsaE (ri r j )(r2) . . . −saE (r2rn)
...

...
. . .

...

−saE (rnr1) −saE (rnr2) . . . dsaE (ri r j )(rn)

⎤
⎥⎥⎥⎥⎦

.

Based on matrix trace properties, we have

str((L(saE (ri r j )))2) = s n∑
i=1

ςi∈NL

ς2
i

where

str((L(saE (ri r j )))2)

= (d2saE (ri r j )(r1) + s2aE (r1r2) + · · · + s2aE (r1rn))

+ (s2aE (r2r1) + d2saE (ri r j )(r2) + · · · + s2aE (r2rn))

+ · · · + (s2aE (rnr1) + s2aE (rnr2) + · · · + d2saE (ri r j )(rn))

= s
2
∑

1≤i< j≤n
(saE (ri r j ))2+

n∑
i=1

d2saE (ri r j )
(ri )

.

So,

s n∑
i=1

ςi∈NL

ς2
i

= s
2
∑

1≤i< j≤n
(saE (ri r j ))2+

n∑
i=1

d2saE (ri r j )
(ri )

.

Similarly, we can easily show that

s n∑
i=1

υi∈OL

υ2
i

= s
2
∑

1≤i< j≤n
(sbE (ri r j ))2+

n∑
i=1

d2sbE (ri r j )
(ri )

.

��

Theorem 6 If the Lq-ROFG M = (L,E) with CLTS S =
{sγ |γ = 0, 1, . . . , τ } is regular, then

(i) sLE(saE (ri r j )) ≤ s
|
1|+

√√√√(n−1)

(
2
∑

1≤i< j≤n
(saE (ri r j ))2−
 2

1

);

(ii) sLE(sbE (ri r j )) ≤ s
|η1|+

√√√√(n−1)

(
2
∑

1≤i< j≤n
(sbE (ri r j ))2−η21

).

3.3 Signless Laplacian energy of Lq-ROFGs

In this subsection, we introduce a novel concept of signless
Laplacian energy of Lq-ROFGs and provide descriptions of
its properties.

Definition 14 The signless Laplacian matrix (SLM) of a Lq-
ROFGM = (L,E) is defined as L+(M ) = 〈L+(sa)(rir j )),
L+(sb(rir j ))〉 = D(M )+A(M ), where D(M ) is the degree
matrix and A(M ) is the adjacency matrix ofM .

Definition 15 The signless Laplacian energy of Lq-ROFG
M = (L,E) is defined as

LE+(M )

= (LE+(sa(rir j )), LE
+(sb(rir j ))

)

=

⎛
⎜⎜⎜⎜⎝
s n∑

i=1

+

i ∈NL+

|
+
i |

, s n∑
i=1

η+
i ∈OL+

|η+
i |

⎞
⎟⎟⎟⎟⎠

where NL+ and OL+ are the sets of signless Laplacian eigen-
values of L+(sa(rir j )), L+(sb(rir j )), respectively, and


+
i = ς+

i −
2
∑

1≤i< j≤n
sa(rir j )

n
,

η+
i = υ+

i −
2
∑

1≤i< j≤n
sb(rir j )

n
,

where ς+
i and υ+

i are the eigenvalues of SLM.

Theorem 7 Let M = (L,E) be a Lq-ROFG with CLTS
S = {sγ |γ = 0, 1, . . . , τ } and let L+(M ) be the SLM of
M . If ς+

1 ≥ ς+
2 ≥ . . . ≥ ς+

n and υ+
1 ≥ υ+

2 ≥ . . . ≥ υ+
n are

the eigenvalues of L+(sa(rir j )) and L+(sb(rir j )), respec-

tively, and 
+
i = ς+

i −
2
∑

1≤i< j≤n
sa(ri r j )

n , η+
i = υ+

i −
2
∑

1≤i< j≤n
sb(ri r j )

n . Then

s n∑
i=1


+
i

= s0, s n∑
i=1

η+
i

= s0,

s n∑
i=1

(
+
i )2

= s2M+
N
, s n∑

i=1
(η+

i )2
= s2M+

O
,

where

M+
N =

∑
1≤i< j≤n

(sa(rir j ))
2

+1

2

n∑
i=1

⎛
⎜⎝dsa(ri r j )(ri ) −

2
∑

1≤i< j≤n
sa(rir j )

n

⎞
⎟⎠

2

,
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M+
O =

∑
1≤i< j≤n

(sb(rir j ))
2

+1

2

n∑
i=1

⎛
⎜⎝dsb(ri r j )(ri ) −

2
∑

1≤i< j≤n
sb(rir j )

n

⎞
⎟⎠

2

.

Example 4 Let M = (L,E) be a L6-ROFG on V =
{ f1, f2, f3, f4, f5, f6, f7, f8} and E = { f1 f2, f1 f6, f1 f7,
f2 f3, f2 f8, f3 f4, f3 f8, f4 f5, f4 f8, f5 f6, f5 f7, f6 f7} with
CLTS as S = {s0 = worst, s1 = very bad, s2 = bad,
s3 = below average, s4 = average, s5 = above average,
s6 = good, s7 = very good, s8 = exceptional}, as shown in
Fig. 7.

The adjacency matrix, degree matrix and SLM of the L6-
ROFG given in Fig. 7 are as follows:

A(M ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s0, s0) (s4, s6) (s0, s0) (s0, s0) (s0, s0) (s4, s4) (s3, s6) (s0, s0)
(s4, s6) (s0, s0) (s3, s4) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s3, s5)
(s0, s0) (s3, s4) (s0, s0) (s5, s7) (s0, s0) (s0, s0) (s0, s0) (s4, s5)
(s0, s0) (s0, s0) (s5, s7) (s0, s0) (s4, s7) (s0, s0) (s0, s0) (s5, s6)
(s0, s0) (s0, s0) (s0, s0) (s4, s7) (s0, s0) (s1, s6) (s2, s6) (s0, s0)
(s4, s4) (s0, s0) (s0, s0) (s0, s0) (s1, s6) (s0, s0) (s2, s5) (s0, s0)
(s3, s6) (s0, s0) (s0, s0) (s0, s0) (s2, s6) (s2, s5) (s0, s0) (s0, s0)
(s0, s0) (s3, s5) (s4, s5) (s5, s6) (s0, s0) (s0, s0) (s0, s0) (s0, s0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

D(M ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s11, s16) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s10, s15) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s12, s16) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s14, s20) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s7, s19) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s7, s15) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s7, s17) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s12, s16)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

L+(M ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s11, s16) (s4, s6) (s0, s0) (s0, s0) (s0, s0) (s4, s4) (s3, s6) (s0, s0)
(s4, s6) (s10, s15) (s3, s4) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s3, s5)
(s0, s0) (s3, s4) (s12, s16) (s5, s7) (s0, s0) (s0, s0) (s0, s0) (s4, s5)
(s0, s0) (s0, s0) (s5, s7) (s14, s20) (s4, s7) (s0, s0) (s0, s0) (s5, s6)
(s0, s0) (s0, s0) (s0, s0) (s4, s7) (s7, s19) (s1, s6) (s2, s6) (s0, s0)
(s4, s4) (s0, s0) (s0, s0) (s0, s0) (s1, s6) (s7, s15) (s2, s5) (s0, s0)
(s3, s6) (s0, s0) (s0, s0) (s0, s0) (s2, s6) (s2, s5) (s7, s17) (s0, s0)
(s0, s0) (s3, s5) (s4, s5) (s5, s6) (s0, s0) (s0, s0) (s0, s0) (s12, s16)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The signless Laplacian spectrum and the signless Laplacian
energy of a L6-ROFGM , shown in Fig. 7, are as follows:

Signless Laplacian Spec(M )

= {(s2.1844, s3.8768), (s4.3714, s9.8139), (s5.9818, s10.8682),
(s6.9401, s11.3698), (s8.0000, s11.9107), (s12.5861, s23.2483),

(s16.4815, s28.4615), (s23.4547, s34.4509)},

Fig. 7 Linguistic 6-rung orthopair fuzzy graphwithCLTS S = {sγ |γ ∈
[0, 8]}

and LE+(M ) = (s45.0446, s71.8214).
Furthermore,

s 8∑
i=1


+
i

= s0, s 8∑
i=1

η+
i

= s0.

s 8∑
i=1

(
+
i )2

= s352 = s2(176) = s2M+
N
,
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s 8∑
i=1

(η+
i )2

= s793.5 = s2(396.75) = s2M+
O
.

Theorem 8 Let M = (L,E) be a graph with CLTS S =
{sγ |γ = 0, 1, . . . , τ } and let L+(M ) be the SLM of M . If
ς+
1 ≥ ς+

2 ≥ . . . ≥ ς+
n and υ+

1 ≥ υ+
2 ≥ . . . ≥ υ+

n are the
eigenvalues of L+(sa(rir j )) and L+(sb(rir j )), respectively.
Then

(i) s n∑
i=1

ς+
i ∈NL+

ς+
i

= s2
∑

1≤i< j≤n
sa(ri r j ),

s n∑
i=1

υ+
i ∈OL+

υ+
i

= s2
∑

1≤i< j≤n
sb(ri r j )

(ii) s n∑
i=1

ς+
i ∈NL+

(ς+
i )2

= s
2
∑

1≤i< j≤n
(sa(ri r j ))2+

n∑
i=1

d2sa (ri r j )
(ri )

,

s n∑
i=1

υ+
i ∈OL+

(υ+
i )2

= s
2
∑

1≤i< j≤n
(sb(ri r j ))2+

n∑
i=1

d2sb(ri r j )
(ri )

.

Proof Proof of this theorem follows Theorem 5. ��

4 Spectra of Lq-ROFDGs

Concepts of product-connectivity energy, generalizedproduct-
connectivity energy, Laplacian energy and signlessLaplacian
energy of Lq-ROFGs to Lq-ROFDGs are generalized in
this section. As adjacency matrix of Lq-ROFDG is not
necessarily symmetric, its eigenvalues might be complex
numbers.

4.1 Generalized product-connectivity energy of
Lq-ROFDGs

Definition 16 Let D = (L,
−→
E ) be a Lq-ROFDG on n ver-

tices. The general product-connectivity matrix, PCα(D) =
(PCα(sa−→

E
(rir j )), PCα(sb−→

E
(rir j ))) = [di j ], ofD is a n×n

matrix defined as:

di j =

⎧⎪⎨
⎪⎩

s0 if i = j,
s(doutM (ri )doutM (r j ))α if the vertices ri and r j of the Lq-ROFDG D are adjacent,

s0 if the vertices ri and r j of the Lq-ROFDG D are non-adjacent.

Definition 17 Let D = (L,
−→
E ) be a Lq-ROFDG on n

vertices. The general product-connectivity energy of D is
defined as:

PCEα(D) =
(
PCEα(sa−→

E
(rir j )), PCEα(sb−→

E
(rir j ))

)

Fig. 8 L5-ROFDG with CLTS S = {sγ |γ ∈ [0, 8]}

=

⎛
⎜⎜⎜⎝s n∑

i=1
t̃i∈N

|Re(t̃i )|
, s n∑

i=1
w̃i∈O

|Re(w̃i )|

⎞
⎟⎟⎟⎠

whereN andO are the sets of eigenvalues of PCα(sa−→
E

(rir j ))

and PCα(sb−→
E

(rir j )), respectively, and Re(t̃i ) and Re(w̃i )

represent the real part of eigenvalues t̃i and w̃i , respectively.

Theorem 9 Let D = (L,
−→
E ) be a Lq-ROFDG with CLTS

S = {sγ |γ = 0, 1, . . . , τ } and PCα(D) be its adjacency
matrix. If t̃1 ≥ t̃2 ≥ . . . ≥ t̃n and w̃1 ≥ w̃2 ≥ . . . ≥ w̃n

are the eigenvalues of PCα(sa−→
E

(rir j )) and PCα(sb−→
E

(rir j )),
respectively, then

s n∑
i=1
t̃i∈N

Re(t̃i )
= s0 and s n∑

i=1
w̃i∈O

Re(w̃i )
= s0.

Example 5 Consider a digraph D = (V ,
−→
E ), where V =

{ f1, f2, f3, f4, f5, f6, f7, f8, f9} and
−→
E = { f1 f2, f1 f6,

f1 f7, f2 f3, f3 f8, f3 f9, f4 f3, f5 f4, f5 f7, f6 f5, f6 f8, f7 f9,
f8 f1, f8 f2, f8 f9, f9 f4, f9 f5} with CLTS as S = {s0 =
worst, s1 = very bad, s2 = bad, s3 = below average,
s4 = average, s5 = above average, s6 = good, s7 =

very good, s8 = exceptional}. Let D = (L,
−→
E ) be a L5-

ROFDG on V , as shown in Fig. 8.
The adjacency matrix of a L5-ROFDG given in Fig. 8 is:
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A(D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s0, s0) (s4, s5) (s0, s0) (s0, s0) (s0, s0) (s6, s5) (s4, s6) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s3, s4) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s4, s6) (s3, s5)
(s0, s0) (s0, s0) (s2, s5) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s2, s6) (s0, s0) (s0, s0) (s3, s7) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s5, s6) (s0, s0) (s0, s0) (s5, s7) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s2, s6)
(s4, s7) (s3, s7) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s1, s7)
(s0, s0) (s0, s0) (s0, s0) (s1, s6) (s3, s6) (s0, s0) (s0, s0) (s0, s0) (s0, s0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The generalized product-connectivity matrix with α = −1/2 of a L5-ROFDG PC(D), shown in Fig. 8, is:

PC−1/2(D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s0, s0) (s0.1543, s0.1250) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0.2182, s0.1508) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0.2673, s0.1348) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0.3162, s0.1240) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0.1414, s0.0769)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0.0945, s0.0546) (s0.2041, s0.1091) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0.3536, s0.1291) (s0.2236, s0.0801)

(s0.0845, s0.0693) (s0.1890, s0.1021) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0.1336, s0.0658) (s0.1890, s0.0870)
(s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0.3162, s0.1132) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0.1118, s0.0605) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0.3536, s0.1179)
(s0, s0) (s0, s0) (s0, s0) (s0.1768, s0.0630)
(s0, s0) (s0, s0) (s0, s0) (s0, s0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The spectrum and the energy values of a Lq-ROFDG D ,
given in Fig. 8, are as follows:

Spec(saE (rir j ))

= {s0.4053, s−0.1328+0.3164i , s−0.1328−0.3164i ,

s−0.1027+0.1367i , s−0.1027−0.1367i ,

s0.0843+0.0631i , s0.0843−0.0631i , s−0.1029, s0},

Spec(sbE (rir j ))

= {s0.1754, s−0.0524+0.1372i , s−0.0524−0.1372i ,

s−0.0732, s−0.0412+0.0696i ,

s−0.0412−0.0696i , s0.0425+0.0254i , s0.0425−0.0254i , s0}.

Therefore,

Spec(D) = {(s0.4053, s0.1754),
(s−0.1328+0.3164i , s−0.0524+0.1372i ),

(s−0.1328−0.3164i , s−0.0524−0.1372i ),

(s−0.1027+0.1367i , s−0.0732),

(s−0.1027−0.1367i , s−0.0412+0.0696i ),

(s0.0843+0.0631i ,

s−0.0412−0.0696i ), (s0.0843−0.0631i , s0.0425+0.0254i ),

(s−0.1029, s0.0425−0.0254i ), (s0, s0)}.

Now, PCE−1/2(saE (rir j )) = s1.1481 and PCE−1/2

(sbE (rir j )) = s0.5209.
Therefore, PCE−1/2(D) = (s1.1481, s0.5209).
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Furthermore,

s 9∑
i=1
t̃i∈N

Re(t̃i )
= s0 and s 9∑

i=1
w̃i∈O

Re(w̃i )
= s0.

4.2 Laplacian energy of Lq-ROFDGs

This subsection discusses the Laplacian energy of Lq-
ROFDGs.

Definition 18 Let D = (L,
−→
E ) be a Lq-ROFDG on n

vertices. The degree matrix, D(D) = (D(sa−→
E

(rir j )),
D(sb−→

E
(rir j ))) = [di j ], of D is a n × n diagonal matrix

defined as:

di j =
{
sdoutD (ri ) if i = j,

s0 otherwise.

Definition 19 The Laplacian matrix (LM) of a Lq-ROFDG

D = (L,
−→
E ) is defined as L(D) = (L(sa−→

E
(rir j )),

L(sb−→
E

(rir j ))) = Dout(D) − A(D), where A(D) is an adja-

cency matrix and Dout(D) is an out-degree matrix of D .

Definition 20 The Laplacian energy of a Lq-ROFDG D =
(L,

−→
E ) is defined as:

LE(D) =
(
LE(sa−→

E
(rir j )),LE(sb−→

E
(rir j ))

)

=

⎛
⎜⎜⎜⎝s n∑

i=1
℘i∈NL

|℘i |
, s n∑

i=1
si∈OL

|si |

⎞
⎟⎟⎟⎠

where NL and OL are the sets of Laplacian eigenvalues of
L(sa−→

E
(rir j )) and L(sb−→

E
(rir j )), respectively, and

℘i = Re(�i ) −

∑
1≤i< j≤n

sa−→
E

(rir j )

n
,

si = Re(h̄i ) −

∑
1≤i< j≤n

sb−→
E

(rir j )

n
,

where Re(�i ) and Re(h̄i ) are the real parts of the eigenvalues
of LM.

Theorem 10 Let D = (L,
−→
E ) be a Lq-ROFDG with CLTS

S = {sγ |γ = 0, 1, . . . , τ }, and let L(D) be the LM of D .
If �1 ≥ �2 ≥ . . . ≥ �n and h̄1 ≥ h̄2 ≥ . . . ≥ h̄n are the
eigenvalues of L(sa−→

E
(rir j )) and L(sb−→

E
(rir j )), respectively,

then

s n∑
i=1

�i∈NL

Re(�i )
= s ∑

1≤i< j≤n
sa−→

E
(ri r j ),

s n∑
i=1

h̄i∈OL

Re(h̄i )
= s ∑

1≤i< j≤n
sb−→

E
(ri r j ).

Theorem 11 Let D = (L,
−→
E ) be a Lq-ROFDG with CLTS

S = {sγ |γ = 0, 1, . . . , τ }, and let L(D) be the LM of D .
If �1 ≥ �2 ≥ . . . ≥ �n and h̄1 ≥ h̄2 ≥ . . . ≥ h̄n are
the eigenvalues of L(sa−→

E
(rir j )) and L(sb−→

E
(rir j )), respec-

tively, and ℘i = Re(�i ) −
∑

1≤i< j≤n
sa−→

E
(ri r j )

n , si = Re(h̄i ) −∑
1≤i< j≤n

sb−→
E

(ri r j )

n , then s n∑
i=1

℘i

= s0, s n∑
i=1

si
= s0.

Example 6 The adjacency matrix is given in Example 5, but
out-degreematrix and LMof the Lq-ROFDG shown in Fig. 8
are as follows:
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Dout(D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s14, s16) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s3, s4) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s7, s11) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s2, s5) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s5, s13) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s10, s13) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s2, s6) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s8, s21) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s4, s12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

L(D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s14, s16) (−s4,−s5) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s6,−s5) (−s4,−s6) (−s0,−s0) (−s0,−s0)
(−s0,−s0) (s3, s4) (−s3,−s4) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0)
(−s0,−s0) (−s0,−s0) (s7, s11) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s4,−s6) (−s3,−s5)
(−s0,−s0) (−s0,−s0) (−s2,−s5) (s2, s5) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0)
(−s0,−s0) (−s0,−s0) (−s0,−s0) (−s2,−s6) (s5, s13) (−s0,−s0) (−s3,−s7) (−s0,−s0) (−s0,−s0)
(−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s5,−s6) (s10, s13) (−s0,−s0) (−s5,−s7) (−s0,−s0)
(−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (s2, s6) (−s0,−s0) (−s2,−s6)
(−s4,−s7) (−s3,−s7) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (−s0,−s0) (s8, s21) (−s1,−s7)
(−s0,−s0) (−s0,−s0) (−s0,−s0) (−s1,−s6) (−s3,−s6) (−s0,−s0) (−s0,−s0) (−s0,−s0) (s4, s12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The Laplacian spectrum and the Laplacian energy of a
Lq-ROFDG D , given in Fig. 8, are as follows:

Laplacian Spec(D)

= {(s13.1598+3.5023i , s19.6057+4.5379i ),

(s13.1598−3.5023i , s19.6057−4.5379i ), (s6.8303+1.3240i ,

s13.0597+6.6373i ), (s6.8303−1.3240i , s13.0597−6.6373i ),

(s5.4910+2.5200i , s15.7977),

(s5.4910−2.5200i , s0), (s0, s9.3916), (s2.0190+0.4356i , s6.6055),

(s2.0190−0.4356i , s3.8743)},

and LE(D) = (s31.0714, s50.0349).
Furthermore, we have

s 9∑
i=1

℘i

= s0, s 9∑
i=1

si

= s0.

4.3 Signless Laplacian energy of Lq-ROFDGs

We now discuss the signless Laplacian energy of Lq-
ROFDGs and its properties.

Definition 21 The SLM of a Lq-ROFDG D = (L,
−→
E ) is

defined as L+(D) = (L+(sa−→
E

(rir j )), L+(sb−→
E

(rir j ))) =
Dout(D) + A(D), where A(D) and Dout(D) are the adja-
cency matrix and out-degree matrix of D , respectively.

Definition 22 The spectrum of the SLM of a Lq-ROFDG
L+(D) is defined as (NL+ ,OL+), where NL+ and OL+ are
the sets of signless Laplacian eigenvalues of L+(sa−→

E
(rir j ))

and L+(sb−→
E

(rir j )), respectively.

Definition 23 The energy of signless Laplacian of a Lq-

ROFDG D = (L+,
−→
E ) is defined as:

LE+(D) =
(
LE+(sa−→

E
(rir j )), LE

+(sb−→
E

(rir j ))
)

=

⎛
⎜⎜⎜⎜⎝
s n∑

i=1
℘+
i ∈NL+

|℘+
i |

, s n∑
i=1

s+
i ∈OL+

|s+
i |

⎞
⎟⎟⎟⎟⎠

whereNL+ andOL+ are the sets of signless Laplacian eigen-
values of L+(sa−→

E
(rir j )) and L+(sb−→

E
(rir j )), respectively,

and

℘+
i = Re(�+

i ) −

∑
1≤i< j≤n

sa−→
E

(rir j )

n
,

s+
i = Re(h̄+

i ) −

∑
1≤i< j≤n

sb−→
E

(rir j )

n

where Re(�+
i ) and Re(h̄+

i ) are the real parts of eigenvalues
of SLM.

Theorem 12 Let D = (L,
−→
E ) be a Lq-ROFDG with CLTS

S = {sγ |γ = 0, 1, . . . , τ }, and let L+(D) be the SLM of
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D . If �+
1 ≥ �+

2 ≥ . . . ≥ �+
n and h̄+

1 ≥ h̄+
2 ≥ . . . ≥ h̄+

n
are the eigenvalues of L+(sa−→

E
(rir j )) and L+(sb−→

E
(rir j )),

respectively, then

n∑
i=1

�+
i ∈N +

L

Re(�+
i ) = s ∑

1≤i< j≤n
sa−→

E
(ri r j ),

s n∑
i=1

h̄+
i ∈O+

L

Re(h̄+
i )

= s ∑
1≤i< j≤n

sb−→
E

(ri r j ).

Theorem 13 Let D = (L,
−→
E ) be a Lq-ROFDG with CLTS

S = {sγ |γ = 0, 1, . . . , τ }, and let L+(D) be the SLM of
D . If �+

1 ≥ �+
2 ≥ . . . ≥ �+

n and h̄+
1 ≥ h̄+

2 ≥ . . . ≥ h̄+
n

are the eigenvalues of L+(sa−→
E

(r+
i r j )) and L+(sb−→

E
(r+
i r j )),

respectively, and ℘+
i = Re(�+

i ) −
∑

1≤i< j≤n
sa−→

E
(r+
i r j )

n , s+
i =

Re(h̄+
i ) −

∑
1≤i< j≤n

sb−→
E

(r+
i r j )

n , then s n∑
i=1

℘+
i

= s0, s n∑
i=1

s+
i

= s0.

Example 7 The adjacency matrix and out-degree matrix are
shown in Examples 5 and 6, respectively, but SLM of the
Lq-ROFDG shown in Fig. 8 is as follows:

L+(D) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s14, s16) (s4, s5) (s0, s0) (s0, s0) (s0, s0) (s6, s5) (s4, s6) (s0, s0) (s0, s0)
(s0, s0) (s3, s4) (s3, s4) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s7, s11) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s4, s6) (s3, s5)
(s0, s0) (s0, s0) (s2, s5) (s2, s5) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s2, s6) (s5, s13) (s0, s0) (s3, s7) (s0, s0) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s5, s6) (s10, s13) (s0, s0) (s5, s7) (s0, s0)
(s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s2, s6) (s0, s0) (s2, s6)
(s4, s7) (s3, s7) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s0, s0) (s8, s21) (s1, s7)
(s0, s0) (s0, s0) (s0, s0) (s1, s6) (s3, s6) (s0, s0) (s0, s0) (s0, s0) (s4, s12)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The signless Laplacian spectrum and the signless Laplacian
energy of a Lq-ROFDG D , given in Fig. 8, are as follows:

Signless Laplacian Spec(D)

= {(s16.4749, s25.0539), (s7.7464+3.3079i , s16.6484),

(s7.7464−3.3079i ,

s12.2291+4.3870i ), (s6.8156, s12.2291−4.3870i ),

(s4.6676+1.1182i , s7.1516+5.6459i ),

(s4.6676−1.1182i , s7.1516−5.6459i ),

(s2.4384+1.7303i , s4.4982+0.5709i ),

(s2.4384−1.7303i , s4.4982−0.5709i ), (s2.0047, s11.5399)},

and LE+(D) = (s28.6778, s43.1785).

Furthermore, we have

s 9∑
i=1

ri
= s0, s 9∑

i=1
si

= s0.

5 A graph-basedMAGDM approach with
linguistic q-rung orthopair fuzzy
information

In this section, the Lq-ROF Einstein averaging (Lq-ROFEA)
operator is utilized to develop a novel graph-basedMAGDM
model.

In the MAGDM problems, let  = {1, 2, . . . , n} be
a discrete set of alternatives, e = {e1, e2, . . . , em} be the
set of organization composed of many experts, and ω =
(ω1, ω2, . . . , ωm)T be the weight vector satisfying

m∑
k=1

ωk =
1 and ωk ≥ 0, k = 1, 2, . . . ,m. Each expert in an organiza-
tion provides preference relation for each pair of alternatives,
so for each organization its linguistic q-rung orthopair fuzzy
preference relation (Lq-ROFPR) is constructed with H (k) =
(p(k)

i j )n×n = (s(k)
ai j , s

(k)
bi j

)n×n .

Step 1. We utilize the Lq-ROFEA operator to aggregate all
p(k)
i j ( j = 1, 2, . . . , n) that correspond to the alterna-

tive i . We get the Lq-ROFN p(k)
i of the alternative

i over all the other alternatives for the organization
ek .

p(k)
i = Lq-ROFEA(p(k)

i1 , p(k)
i2 , . . . , p(k)

in )

=

⎛
⎜⎜⎝s

τ

(∏n
i=1

(
1+
( ai

τ

)q)ωi −∏n
i=1

(
1−
( ai

τ

)q)ωi
∏n
i=1

(
1+
( ai

τ

)q)ωi +∏n
i=1

(
1−
( ai

τ

)q)ωi

)1/q ,

s

τ

⎛
⎜⎝

21/q
∏n
i=1

(
bi
τ

)ωi

(∏n
i=1

(
2−
(
bi
τ

)q)ωi +∏n
i=1

(
bi
τ

)qωi
)1/q

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎠

.
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Step 2. If the weight vector ω = (ω1, ω2, . . . , ωm)T of all
organizations is known, then go to Step 4;
otherwise, the weight of each organization needs to
be accounted for. To calculate the weights of deci-
sion organization, it proceeds as follows:

(i) We first use the linguistic q-rung orthopair fuzzy
Hamming distance (Lq-ROFHD) between two Lq-
ROFNs to find out the weights of the experts

D(p1, p2) = τ

2

(∣∣∣
(ap1

τ

)q −
(ap2

τ

)q ∣∣∣

+
∣∣∣∣
(
bp1
τ

)q
−
(
bp2
τ

)q ∣∣∣∣

+
∣∣∣∣
(
sπp1

τ

)q
−
(
sπp2

τ

)q ∣∣∣∣
)

wheresπp1
= q
√

τ q − aqp1 − bqp1 ,

sπp2
= q
√

τ q − aqp2 − bqp2 (3)

to obtain the difference matrices,

Dlk = (d(lk)
i j )n×n = d(p(l)

i j , p(k)
i j )n×n,

l, k = 1, 2, . . . ,m

where
(a) d(lk)

i j ≥ 0, especially, if l = k, then d(lk)
i j =

0, i, j = 1, 2, . . . , n;
(b) d(lk)

i j = 0, i = j ;

(c) d(lk)
i j = d(lk)

j i .
Dlk is a symmetric matrix and the values of diagonal
elements are zero.

(ii) Determine the average value of the matrix Dlk from

d̄lk = 1

n2

n∑
i=1

n∑
j=1

d(lk)
i j (4)

(iii) Afterward, let d̄ =
m∑

k=1,k =l
d̄lk , then

d̄l = 1

n2

m∑
k=1,k =l

n∑
i=1

n∑
j=1

d(lk)
i j , (5)

which denotes the deviation of the organization el
from the rest organizations.

(iv) The weight vector ωl of the organizations el can be
calculated as

ωl = (d̄l)−1

m∑
l=1

(d̄l)−1
, l = 1, 2, . . . ,m (6)

Fig. 9 The specific steps of the proposed approach to MAGDM

Step 3. To aggregate all p(k)
i (k = 1, 2, . . . ,m) into a col-

lective Lq-ROFN p(k)
i for the alternative i , use Lq-

ROF Einstein weighted averaging (Lq-ROFEWA)
operator.

Step 4. Compute the score functions of pi (i = 1, 2, . . . , n)

by Eq. (1) to rank all the alternatives i (i =
1, 2, . . . , n) according to S(i )(i = 1, 2, . . . , n).

The specific steps of this proposed approach toMAGDM are
depicted in Fig. 9.
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5.1 Illustrative example and comparative analysis

In the following, a numerical example related to “mobile
payment platform selection” is given to describe the validity
of our approach:

5.1.1 Mobile payment platform selection

The advancement of disruptive technologies has made
mobile devices acquire new functionalities that support
multiple mobile financial services including bill payments,
account transfers, person-to-person proximity payments,
exchanges, remote payments, and other forms of services
such as mobile ticketing and discounts (Liana-Cabanillas
et al. 2018). There is a development, called “mobile payment
technology,” which is undergoing rapid growth among the
different mobile applications offered today. Mobile payment
can be seen as an application between mobile devices and a
payment mechanism that helps the user to pay for transaction
through mobile devices. In sub-Saharan Africa, the adoption
of mobile payment technology has been impressive, with
various operators offering diverse services. As the benefi-
cial impact mobile payment has on organizations, numerous
mobile payment platforms have proliferated around the
world. Assessment and selection of numerous mobile pay-
ment platforms is often difficult, as they require detailed
identification. Also, because of uncertainty and vagueness
in real-life situations, decision makers can find it difficult
to examine the mobile payment platforms accurately. How-
ever, this problem can be solved using Lq-ROF MAGDM.
An example related to selected mobile payment platform
is used to illustrate proposed decision-making approach. A
group of five decision makers {e1, e2, e3, e4, e5}, are invited
to evaluate six mobile payment platforms MTN Mobile
Money (MTN MM), M-Pesa (MP), Tigo Pesa (TP), Voda-
fone Cash (VC), Orange Money (OM), and Airtel Money
(AM), i.e., alternatives i (i = 1, 2, . . . , 6). Here, we sup-
pose that the decision makers have equal weights. In order
to completely communicate the experts’ appreciation, lin-
guistic variables can be added within the predefined LTS
S = {s0 = extremely bad, s1 = very bad, s2 = bad, s3 =
relatively bad, s4 = normal, s5 = relatively good, s6 = good,
s7 = very good, s8 = extraordinary}. The five decision mak-
ers ek(k = 1, 2, , , , . . . , 5) presented their assessments in
L4-ROFPRs as follows:

The L4-ROFDGs Di corresponding to L4-ROFPRs
Rk (k = 1, 2, . . . , 5) given in Tables 3, 4, 5, 6 and 7 are
shown in Fig. 10.

Compute the averaged Lq-ROFN p(k)
i of an alternative

i over all the other alternatives for the experts ek(k =
1, 2, . . . , 5) using Lq-ROFEA operator, as in Table 8.

We first utilize Eq. (3) between two Lq-ROFNs to find out
the weights of the experts to compute d(p(l)

i j , p(k)
i j ), i, j =

Table 3 L4-ROFPR given by decision organization (e1)

R1 1 2 3 4 5 6

1 (s4, s4) (s2, s7) (s2, s6) (s5, s3) (s3, s4) (s2, s5)

2 (s7, s2) (s4, s4) (s4, s2) (s1, s5) (s5, s4) (s3, s2)

3 (s6, s2) (s2, s4) (s4, s4) (s3, s5) (s3, s3) (s6, s2)

4 (s3, s5) (s5, s1) (s5, s3) (s4, s4) (s1, s6) (s7, s1)

5 (s4, s3) (s4, s5) (s3, s3) (s6, s1) (s4, s4) (s3, s4)

6 (s5, s2) (s2, s3) (s2, s6) (s1, s7) (s4, s3) (s4, s4)

Table 4 L4-ROFPR given by decision organization (e2)

R2 1 2 3 4 5 6

1 (s4, s4) (s5, s2) (s4, s3) (s3, s6) (s6, s2) (s7, s1)

2 (s2, s5) (s4, s4) (s2, s4) (s2, s3) (s5, s4) (s4, s2)

3 (s3, s4) (s4, s2) (s4, s4) (s5, s1) (s3, s3) (s2, s3)

4 (s6, s3) (s3, s2) (s1, s5) (s4, s4) (s1, s7) (s6, s1)

5 (s2, s6) (s4, s5) (s3, s3) (s7, s1) (s4, s4) (s3, s5)

6 (s1, s7) (s2, s4) (s3, s2) (s1, s6) (s5, s3) (s4, s4)

Table 5 L4-ROFPR given by decision organization (e3)

R3 1 2 3 4 5 6

1 (s4, s4) (s4, s1) (s1, s5) (s2, s4) (s7, s2) (s3, s1)

2 (s1, s4) (s4, s4) (s1, s6) (s2, s2) (s3, s2) (s5, s2)

3 (s5, s1) (s6, s1) (s4, s4) (s1, s3) (s6, s3) (s3, s7)

4 (s4, s2) (s2, s2) (s3, s1) (s4, s4) (s3, s5) (s4, s3)

5 (s2, s7) (s2, s3) (s3, s6) (s5, s3) (s4, s4) (s5, s5)

6 (s1, s3) (s2, s5) (s7, s3) (s3, s4) (s5, s5) (s4, s4)

Table 6 L4-ROFPR given by decision organization (e4)

R4 1 2 3 4 5 6

1 (s4, s4) (s5, s2) (s3, s7) (s4, s3) (s5, s5) (s3, s3)

2 (s2, s5) (s4, s4) (s4, s3) (s1, s6) (s7, s2) (s2, s4)

3 (s7, s3) (s3, s4) (s4, s4) (s4, s1) (s1, s5) (s7, s1)

4 (s3, s4) (s6, s1) (s1, s4) (s4, s4) (s3, s6) (s5, s3)

5 (s5, s5) (s2, s7) (s5, s1) (s6, s3) (s4, s4) (s5, s4)

6 (s3, s3) (s4, s2) (s1, s7) (s3, s5) (s4, s5) (s4, s4)

Table 7 L4-ROFPR given by decision organization (e5)

R5 1 2 3 4 5 6

1 (s4, s4) (s3, s4) (s4, s5) (s6, s4) (s3, s5) (s6, s3)

2 (s4, s3) (s4, s4) (s7, s3) (s2, s7) (s5, s6) (s3, s2)

3 (s5, s4) (s3, s7) (s4, s4) (s3, s3) (s1, s7) (s6, s1)

4 (s4, s6) (s7, s2) (s3, s3) (s4, s4) (s5, s1) (s2, s4)

5 (s5, s3) (s6, s5) (s7, s1) (s1, s5) (s4, s4) (s4, s5)

6 (s3, s6) (s2, s3) (s1, s6) (s4, s2) (s5, s4) (s4, s4)
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1, 2, . . . , 6; l, k = 1, 2, . . . , 5 and obtained the difference
matrices as follows:

D12 = D21 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0 s4.6582 s2.3730 s2.3730 s2.3730 s4.6582
s4.6582 s0 s0.4688 s1.0625 s0 s0.3418
s2.3730 s0.4688 s0 s1.2187 s0 s2.5000
s2.3730 s1.0625 s1.2187 s0 s2.1582 s2.1582
s2.3730 s0 s0 s2.1582 s0 s0.7207
s4.6582 s0.3418 s2.5000 s2.1582 s0.7207 s0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D13 = D31 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0 s4.6875 s1.3398 s1.1895 s4.5313 s1.2188
s4.6875 s0 s2.5000 s1.1895 s1.5312 s1.0625
s1.3398 s2.5000 s0 s1.2187 s2.3730 s4.6582
s1.1895 s1.1895 s1.2187 s0 s1.3105 s4.1895
s4.5313 s1.5312 s2.3730 s1.3105 s0 s1.7832
s1.2188 s1.0625 s4.6582 s4.1895 s1.7832 s0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D14 = D41 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0 s4.6582 s2.2852 s0.7207 s1.7832 s1.0625
s4.6582 s0 s0.1270 s1.3105 s3.4688 s0.4687
s2.2852 s0.1270 s0 s1.2187 s1.0625 s2.1582
s0.7207 s1.3105 s1.2187 s0 s0.1562 s3.4688
s1.7832 s3.4688 s1.0625 s0.1562 s0 s1.0625
s1.0625 s0.4687 s2.1582 s3.4688 s1.0625 s0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D15 = D51 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0 s4.1895 s1.3105 s1.6523 s0.7207 s2.5000
s4.1895 s0 s4.3164 s3.4980 s2.0313 s0
s1.3105 s4.3164 s0 s1.0625 s4.5313 s0.0293
s1.6523 s3.4980 s1.0625 s0 s2.5293 s4.6582
s0.7207 s2.0313 s4.5313 s2.5293 s0 s1.0625
s2.5000 s0 s0.0293 s4.6582 s1.0625 s0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D23 = D32 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0 s0.7500 s1.0625 s2.1582 s2.1582 s4.5313
s0.7500 s0 s2.0313 s0.1270 s1.5312 s0.7207
s1.0625 s2.0313 s0 s1.2188 s2.3730 s4.6582
s2.1582 s0.1270 s1.2188 s0 s3.4688 s2.0313
s2.1582 s1.5312 s2.3730 s3.4688 s0 s1.0625
s4.5313 s0.7207 s4.6582 s2.0313 s1.0625 s0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D24 = D42 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0 s0 s4.5313 s2.3730 s1.3105 s4.5313
s0 s0 s0.4688 s2.3730 s3.4688 s0.4688
s4.5313 s0.4688 s0 s0.7207 s1.0625 s4.6582
s2.3730 s2.3730 s0.7207 s0 s2.1582 s1.3105
s1.3105 s3.4688 s1.0625 s2.1582 s0 s1.0625
s4.5313 s0.4688 s4.6582 s1.3105 s1.0625 s0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D25 = D52 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0 s1.0625 s1.0625 s2.3730 s2.3730 s2.1582
s1.0625 s0 s4.6582 s4.5313 s2.0313 s0.3418
s1.0625 s4.6582 s0 s1.0625 s4.5313 s2.5000
s2.3730 s4.5313 s1.0625 s0 s4.6875 s2.5000
s2.3730 s2.0313 s4.5313 s4.6875 s0 s0.3418
s2.1582 s0.3418 s2.5000 s2.5000 s0.3418 s0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D34 = D43 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0 s0.7500 s3.6250 s0.4688 s3.4688 s0.1562
s0.7500 s0 s2.3730 s2.5000 s4.5313 s1.1895
s3.6250 s2.3730 s0 s0.4980 s2.5293 s4.6875
s0.4688 s2.5000 s0.4980 s0 s1.3105 s0.7207
s3.4688 s4.5313 s2.5293 s1.3105 s0 s0.7207
s0.1562 s1.1895 s4.6875 s0.7207 s0.7207 s0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D35 = D53 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0 s0.4980 s0.4980 s2.5000 s4.5313 s2.5293
s0.4980 s0 s4.6875 s4.6582 s3.5625 s1.0625
s0.4980 s4.6875 s0 s0.1562 s4.5312 s4.6875
s2.5000 s4.6582 s0.1562 s0 s1.2187 s0.4688
s4.5313 s3.5625 s4.5312 s1.2187 s0 s0.7207
s2.5293 s1.0625 s4.6875 s0.4688 s0.7207 s0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D45 = D54 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0 s1.0625 s3.4688 s2.3730 s1.0625 s2.3730
s1.0625 s0 s4.1895 s2.1875 s3.4688 s0.4687
s3.4688 s4.1895 s0 s0.3418 s3.4687 s2.1582
s2.3730 s2.1875 s0.3418 s0 s2.5293 s1.1895
s1.0625 s3.4688 s3.4687 s2.5293 s0 s0.7207
s2.3730 s0.4687 s2.1582 s1.1895 s0.7207 s0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

D11 = D22 = D33 = D44 = D55 =

⎡
⎢⎢⎢⎢⎢⎢⎣

s0 s0 s0 s0 s0 s0
s0 s0 s0 s0 s0 s0
s0 s0 s0 s0 s0 s0
s0 s0 s0 s0 s0 s0
s0 s0 s0 s0 s0 s0
s0 s0 s0 s0 s0 s0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Utilize Eq. (4) to determine the average values of the differ-
ence matrices, as in Table 9.

Use Eq. (5) to determine the deviation of the expert e1
from the remaining experts as follows:

d1 = s6.7195, d2 = s6.8700, d3 = s7.2503,

d4 = s6.4501, d5 = s7.6489.

Utilizing Eq. (6), we determine the weights of the experts.

ω1 = s0.1923, ω2 = s0.1966, ω3 = s0.2075,

ω4 = s0.1846, ω5 = s0.2189.

Compute a collective Lq-ROFN pi (i = 1, 2, . . . , 6) of
the alternative i over all the other alternatives using Lq-
ROFEWA operator.

p1 = (s4.7348, s3.3786), p2 = (s4.5951, s3.4232),

p3 = (s4.8233, s2.8875),

p4 = (s4.7003, s2.8788), p5 = (s4.8156, s3.5688),

p6 = (s4.0637, s3.9677).

Compute the score function ofLq-ROFNbyEq. (1) of pi (i =
1, 2, . . . , 6), and rank all the alternatives i (i = 1, 2, . . . , 6)
according to the values of S(pi )(i = 1, 2, . . . , 6).

S(p1) = s6.8751, S(p2) = s6.8504, S(p3) = s6.9130,

S(p4) = s6.8931, S(p5) = s6.8763, S(p6) = s6.7374.

Then, 3 � 4 � 5 � 1 � 2 � 6. Thus, the optimal
choice is 3. The curiosity of this decision-making approach
is that by comparing graphical structures with Lq-ROF data,
we have built up a MAGDM model with the interrelated
organizations and depicted various connections among the
organizations.
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Fig. 10 L4-ROFDG with CLTS S = {sγ |γ ∈ [0, 8]}
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Table 8 Overall assessment
values of the experts
ek (k = 1, 2, . . . , 5)

Experts Assessment values Experts Assessment values

e1 p(1)
1 (s3.6062, s4.7065) e4 p(4)

1 (s4.2353, s3.7407)

p(1)
2 (s5.0628, s2.9470) p(4)

2 (s4.8346, s3.7991)

p(1)
3 (s4.7683, s3.1518) p(4)

3 (s5.6178, s2.5058)

p(1)
4 (s5.1756, s2.6956) p(4)

4 (s4.4646, s3.2640)

p(1)
5 (s4.4087, s3.0066) p(4)

5 (s4.9077, s3.5041)

p(1)
6 (s3.7406, s3.8677) p(4)

6 (s3.5299, s4.0747)

e2 p(2)
1 (s5.4352, s2.5897) e5 p(5)

1 (s4.8566, s4.1157)

p(2)
2 (s3.7525, s3.5359) p(5)

2 (s5.0675, s3.8677)

p(2)
3 (s3.8508, s2.5755) p(5)

3 (s4.4646, s3.7425)

p(2)
4 (s4.7320, s3.1233) p(5)

4 (s5.0675, s2.9080)

p(2)
5 (s4.8862, s3.5255) p(5)

5 (s5.4152, s3.4089)

p(2)
6 (s3.5793, s4.0554) p(5)

6 (s3.7912, s3.9279)

e3 p(3)
1 (s4.8579, s2.3420)

p(3)
2 (s3.5793, s3.0487)

p(3)
3 (s4.9580, s2.5520)

p(3)
4 (s3.5440, s2.5029)

p(3)
5 (s4.0578, s4.4941)

p(3)
6 (s4.9858, s3.9256)

Table 9 Average values of the difference matrices

d̄12 = d̄21 = s54.1286
s36

= s1.5036

d̄13 = d̄31 = s69.5664
s36

= s1.9324

d̄14 = d̄41 = s50.0234
s36

= s1.3895

d̄15 = d̄51 = s68.1836
s36

= s1.8940

d̄23 = d̄32 = s59.7660
s36

= s1.6602

d̄24 = d̄42 = s60.9962
s36

= s1.6943

d̄25 = d̄52 = s72.4298
s36

= s2.0119

d̄34 = d̄43 = s59.0586
s36

= s1.6405

d̄35 = d̄53 = s72.6208
s36

= s2.0172

d̄45 = d̄54 = s62.1250
s36

= s1.7257

5.2 Validity analysis of the developed approach

In this subsection, to show the effectiveness and superiority of
our developed approach, we utilize other existing techniques
to handle with this example and compare the results with the
developed approach.

From this analysis, it is easy to see that our devel-
oped method based on graph theory and Lq-ROF Einstein
weighted averaging operator is more versatile and reason-
able to solve MAGDM problems.

Following are the figures which best describe the above
evaluations.

5.2.1 Further discussion

It can be seen from the above analysis that the ranking results
of the above methods are same and the best alternative is 3.
This verifies that the developed approach is reasonable and
useful for MAGDM problems with Lq-ROFNs. Lq-ROFS
is more and more general and contains more information in
theMAGDMprocess. Therefore, our developedmethod pro-
vides more general and powerful information in MAGDM.

1. Comparing with the Lq-ROF weighted averaging (Lq-
ROFWA) operator (i.e., taking algebraic t-norm and t-
conorm) proposed by Lin et al. (2020): According to Lq-
ROF weighted averaging operator, the ranking results are
obtained as: 3 � 4 � 5 � 1 � 2 � 6. Clearly, the
approach in the literature has the same ranking result as
ours. However, our approach adopted the Einstein t-norm
and t-conorm, and the literature utilized the algebraic t-
norm and t-conorm.As the algebraic t-norm and t-conorm
are just a special case of the Einstein t-norm and t-conorm,
the approach developed in this paper is more general than
the approach given in Lin et al. (2020).

2. Comparing with the Lq-ROF weighted geometric (Lq-
ROFWG) operator proposed by Lin et al. (2020): Accord-
ing to Lq-ROF weighted geometric operator, the ranking
results are obtained as: 3 � 4 � 5 � 1 � 2 �
6. The results corresponding to these approaches are
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Table 10 Comparative analysis

Methods Score of alternatives Ranking of alternatives

Lin et al. (2020) Lq-ROFWA operator s6.8967 s6.8762 s6.9339 s6.9138 s6.8981 s6.7533 3 � 4 � 5 � 1 � 2 � 6

Lin et al. (2020) Lq-ROFWG operator s6.8751 s6.8504 s6.9130 s6.8931 s6.8763 s6.7374 3 � 4 � 5 � 1 � 2 � 6

Proposed (Lq-ROFEWA operator) s6.6152 s6.6074 s6.6489 s6.6475 s6.6310 s6.4775 3 � 4 � 5 � 1 � 2 � 6

Proposed (Lq-ROFEWG operator) s6.6256 s6.6218 s6.6604 s6.6600 s6.6438 s6.4992 3 � 4 � 5 � 1 � 2 � 6

summarized in Table 10. These results are graphically
represented in Fig. 11,12.

3. Comparing with the LIF Einstein weighted averaging
operator (i.e., taking q = 1): According to LIF Ein-
stein weighted averaging operator, the ranking results are
obtained as: 3 � 4 � 5 � 1 � 2 � 6. The LIF
Einstein weighted averaging operator just aggregates the
LIFNs, and the LIFN must satisfy the conditional limit of
0 ≤ a + b ≤ τ , a, b ∈ [0, τ ] . Therefore, the application
range of the LIF Einstein weighted averaging operator
is limited. Obviously, most of the evaluation values do
not satisfy the conditional limit of 0 ≤ a + b ≤ τ in this
example, so the LIF Einstein weighted averaging operator
is not suitable in this example.

4. Comparing with the LPF Einstein weighted averaging
operator (i.e., taking q = 2) in the literature proposed by
Rong et al. (2020): According to LPF Einstein weighted
averaging operator, the ranking results are obtained as:
3 � 4 � 5 � 1 � 2 � 6. The LPF Ein-
stein weighted averaging operator aggregates only the
LPFNs and the LPFN must satisfy the conditional limit
of 0 ≤ a2 + b2 ≤ τ 2, a, b ∈ [0, τ ]. Therefore, the
application range of the LPF Einstein weighted averaging
operator is wider than the LIF Einstein weighted averag-
ing operator but limited than the Lq-ROFEWA operator
in our proposed method. Most of the evaluation values in
this decision-making problem meet the conditional limit
of 0 ≤ a2 + b2 ≤ τ 2. So in this example, the LPF Ein-
stein weighted averaging operator presented in Rong et al.
(2020) cannot cope entirely with the decision-making
problem.

In summary, under Lq-ROF setting, the approach built
in this paper blends the Einstein t-norm and t-conorm with
Einstein operator. This not only takes into account the inter-
relationship of aggregation arguments but also provides a
broad and robust method for dealing with MAGDM prob-
lems in Lq-ROF environment.

5.2.2 Advantages of the proposed work

The merits of our developed approach are summarized as
follows:

(1) Apparently, proposed approach is clear and has less loss
of data and can be easily utilized to otherMAGDMprob-
lems in Lq-ROF setting.

(2) One of the superiorities of the created approach is utiliz-
ing graph theory.

(3) The Lq-ROFSs of developed technique can accessibly
depict more general decision-making circumstances.

(4) The Einstein operator is more valid to deal MAGDM
problems under Lq-ROF circumstances.

6 Conclusions

To qualitatively describe the evaluation values and provide
greater freedom for the decision makers in MAGDM prob-
lems, the concept of Lq-ROFS has been developed under
Lq-ROF environment. In fuzzy information systems, cor-
relations between attributes via edges between vertices are
well expressed by fuzzy graphs. A q-ROFG model is capa-
ble of illustrating the problems with ambiguity, imprecision
and inconsistent information in contrast to the classical fuzzy
graph models. However, the simplicity and flexibility which
arise becauseof linguistic degreehavenot been accomplished
by q-ROFG. In this paper, we have introduced the concept of
Lq-ROFSs concentrating on the theory of graphs and put
forward the innovative concept of the Lq-ROFGs on the
basis of Einstein operator which is an effective and flexible
operator to the algebraic system. Lq-ROFG model gives the
framework with more precision, versatility and consistency
than others. The Lq-ROFG can well define the complex-
ity of networks of any kind. Further, the theory of graph
spectra has been researched in the context of Lq-ROFSs
and the product-connectivity energy, generalized product-
connectivity energy, Laplacian energy and signlessLaplacian
energy of Lq-ROFGs as well as Lq-ROFDGs have been
proposed. Moreover, the proposed concept of Lq-ROFGs
is applied to solve the MAGDM problems with Lq-ROF
information. We have represented a graph-based MAGDM
approach with Lq-ROF information. Finally, an illustrative
example regarding the selection of mobile payment platform
is given to demonstrate its validity and effectiveness. Com-
parison analysis has been conducted, and the superiorities
have been illustrated.
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Fig. 11 The graph depicts the
results of Lq-ROFWA operator
and Lq-ROFEWA operator,
plotted between the alternatives
and ranking index

Fig. 12 The graph depicts the
results of Lq-ROFWG operator
and Lq-ROFEWG operator,
plotted between the alternatives
and ranking index

It is observed that some important topics still remain in
terms of possible futureworks that are good enough to justify.
In future, our researchworkwill be extended to: (1) linguistic
interval-valued q-rung orthopair fuzzy graphs; (2) linguistic
complex q-rung orthopair fuzzy graphs; and (3) complex 2-
tuple linguistic q-rung orthopair fuzzy graphs.

Declarations

Conflict of interest The authors declare no conflict of interest.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

Abdullah S, AslamM (2020) Newmulti-criteria group decision support
systems for small hydropower plant locations selection based on

intuitionistic cubic fuzzy aggregation information. Int J Intell Syst
35(6):983–1020

AkramM, Ilyas F, Garg H (2020) Multi-criteria group decision making
based on ELECTRE I method in Pythagorean fuzzy information.
Soft Comput 24:3425–3453

AkramM, Luqman A (2020) Granulation of ecological networks under
fuzzy soft environment. Soft Comput 24:11867–11892

AkramM, Habib A, Alcantud JCR (2021) An optimization study based
on Dijkstra algorithm for a network with trapezoidal picture fuzzy
numbers. Neural Comput Appl 33:1329–1342

AkramM, ShahzadiG (2020)A hybrid decisionmakingmodel under q-
rung orthopair fuzzyYager aggregation operators. Granul Comput.
https://doi.org/10.1007/s41066-020-00229-z

Akram M, Alsulami S, Karaaslan F, Khan A (2021) q-Rung orthopair
fuzzy graphs under Hamacher operators. J Intell Fuzzy Syst
40(1):1367–1390

Akram M, Shahzadi G, Peng X (2020) Extension of Einstein geo-
metric operators to multiattribute decision making under q-rung
orthopair fuzzy information. Granul Comput. https://doi.org/10.
1007/s41066-020-00233-3

AkramM,Naz S (2019) A novel decision-making approach under com-
plex Pythagorean fuzzy environment.MathComputAppl 24(3):73

123

https://doi.org/10.1007/s41066-020-00229-z
https://doi.org/10.1007/s41066-020-00233-3
https://doi.org/10.1007/s41066-020-00233-3


10334 M. Akram et al.

Akram M, Naz S (2018) Energy of Pythagorean fuzzy graphs with
applications. Mathematics 6(8):136

Akram M, Naz S, Shahzadi S, Ziaa F (2021) Geometric-arithmetic
energy and atom bond connectivity energy of dual hesitant q-rung
orthopair fuzzy graphs. J Intell Fuzzy Syst 40:1287–1307

Ashraf S, Mahmood T, Abdullah S, Khan Q (2019a) Different
approaches to multi-criteria group decision making problems
for picture fuzzy environment. Bull Braz Math Soc, New Ser
50(2):373–397

Ashraf S, Abdullah S, Smarandache F (2019b) Logarithmic hybrid
aggregation operators based on single valued neutrosophic sets
and their applications in decision support systems. Symmetry
11(3):364

Ashraf S, Abdullah S, Mahmood T, Ghani F, Mahmood T (2019c)
Spherical fuzzy sets and their applications in multi-attribute deci-
sion making problems. J Intell Fuzzy Syst 36(3):2829–2844

Amin F, Fahmi A, Aslam M (2020) Approaches to multiple attribute
group decision making based on triangular cubic linguistic uncer-
tain fuzzy aggregation operators. Soft Comput 24:11511–11533

Anjali N, Mathew S (2013) Energy of a fuzzy graph. Ann Fuzzy Math
Inform 6:455–465

Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–
96

DuttaB,GuhaD (2015) PartitionedBonferronimean based on linguistic
2-tuple for dealing with multi-attribute group decision making.
Appl Soft Comput 37:166–179

Feng F, Zheng Y, Sun B et al (2021) Novel score functions of gen-
eralized orthopair fuzzy membership grades with application to
multiple attribute decision making. Granul Comput. https://doi.
org/10.1007/s41066-021-00253-7

Garg H (2018) Linguistic Pythagorean fuzzy sets and its applica-
tions in multi attribute decision-making process. Int J Intell Syst
33(6):1234–1263

Gutman I (2001) The energy of a graph: old and new results. In:
Algebraic combinatorics and applications. Springer, Berlin, Hei-
delberg, pp 196–211

Gutman I, Robbiano M, Martins EA, Cardoso DM, Medina L, Rojo O
(2010) Energy of line graphs. Linear Algebra Appl 433(7):1312–
1323

Gutman I, Zhou B (2006) Laplacian energy of a graph. Linear Algebra
Appl 414(1):29–37

Habib A, Akram M, Farooq A (2019) q-Rung orthopair fuzzy compe-
tition graphs with application in the soil ecosystem. Mathematics
7(1):91

Koczy LT, Jan N, Mahmood T, Ullah K (2020) Analysis of social net-
works and Wi-Fi networks by using the concept of picture fuzzy
graphs. Soft Comput 24:16551–16563 (2020)

Liana-Cabanillas F, Marinkovic V, de Luna IR, Kalinic Z (2018) Pre-
dicting the determinants of mobile payment acceptance: a hybrid
SEM-neural network approach. Technol Forecast Soc Change
129:117–130

Lin M, Li X, Chen L (2020) Linguistic q-rung orthopair fuzzy sets and
their interactional partitioned Heronian mean aggregation opera-
tors. Int J Intell Syst 35(2):217–249

Lin M, Wei J, Xu Z, Chen R (2018) Multi attribute group decision-
making based on linguistic Pythagorean fuzzy interaction par-
titioned Bonferroni mean aggregation operators. Complexity.
https://doi.org/10.1155/2018/9531064

Liu H, Liu Y, Xu L, Abdullah S (2021) Multi-attribute group decision-
making for online education live platform selection based on
linguistic intuitionistic cubic fuzzy aggregation operators. Com-
put Appl Math 40(1):1–34

Liu Z, XuH, YuY, Li J (2019) Some q-rung orthopair uncertain linguis-
tic aggregation operators and their application to multiple attribute
group decision making. Int J Intell Syst 34(10):2521–2555

Naz S, AkramM, Alsulami S, Ziaa F (2021) Decision-making analysis
under interval-valued q-rung orthopair dual hesitant fuzzy envi-
ronment. Int J Comput Intell Syst 14(1):332–357

Naz S,Ashraf S, AkramM (2018)A novel approach to decision-making
with Pythagorean fuzzy information. Mathematics 6(6):95

Qiyas M, Abdullah S, Liu Y, Naeem M (2020) Multi-criteria deci-
sion support systems based on linguistic intuitionistic cubic fuzzy
aggregation operators. J Ambient Intell Hum Comput. https://doi.
org/10.1007/s12652-020-02563-1

Rong Y, Pei Z, Liu Y (2020) Linguistic Pythagorean Einstein operators
and their application to decision making. Information 11(1):46

Rosenfeld A (1975) Fuzzy graphs. In: Zadeh LA, Fu KS, Shimura M
(eds) Fuzzy sets and their applications.AcademicPress,NewYork,
pp 77–95

Senapati T, Yager RR (2020) Fermatean fuzzy sets. J Ambient Intell
Hum Comput 11(2):663–674

WangW, Liu X (2011) Intuitionistic fuzzy geometric aggregation oper-
ators based on Einstein operations. Int J Intell Syst 26(11):1049–
1075

Wang H, Ju Y, Liu P (2019) Multi-attribute group decision-making
methods based on q-rung orthopair fuzzy linguistic sets. Int J Intell
Syst 34(6):1129–1157

Yager RR, Abbasov AM (2013) Pythagorean membership grades, com-
plex numbers, and decisionmaking. Int J Intell Syst 28(5):436–452

Yager RR (2016) Generalized orthopair fuzzy sets. IEEE Trans Fuzzy
Syst 25(5):1222–1230

Yue N, Xie J, Chen S (2020) Some new basic operations of probabilistic
linguistic term sets and their application in multi-criteria decision
making. Soft Comput 24:12131–12148

Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353
Zhang H (2014) Linguistic intuitionistic fuzzy sets and application in

MAGDM. J Appl Math. https://doi.org/10.1155/2014/432092
Zhan J, Akram M, Sitara M (2018) Novel decision-making

method based on bipolar neutrosophic information. Soft Comput
23(20):9955–9977

Zhang H, Li Q (2019) Intuitionistic fuzzy filter theory on residuated
lattices. Soft Comput 23(16):6777–6783

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/s41066-021-00253-7
https://doi.org/10.1007/s41066-021-00253-7
https://doi.org/10.1155/2018/9531064
https://doi.org/10.1007/s12652-020-02563-1
https://doi.org/10.1007/s12652-020-02563-1
https://doi.org/10.1155/2014/432092

	Group decision-making framework under linguistic q-rung orthopair fuzzy Einstein models
	Abstract
	1 Introduction
	2 Preliminaries
	3 Linguistic q-rung orthopair fuzzy Einstein graphs
	3.1 Generalized product-connectivity energy of Lq-ROFGs
	3.2 Laplacian energy of Lq-ROFGs
	3.3 Signless Laplacian energy of Lq-ROFGs

	4 Spectra of Lq-ROFDGs
	4.1 Generalized product-connectivity energy of Lq-ROFDGs
	4.2 Laplacian energy of Lq-ROFDGs
	4.3 Signless Laplacian energy of Lq-ROFDGs

	5 A graph-based MAGDM approach with linguistic q-rung orthopair fuzzy information
	5.1 Illustrative example and comparative analysis
	5.1.1 Mobile payment platform selection

	5.2 Validity analysis of the developed approach
	5.2.1 Further discussion
	5.2.2 Advantages of the proposed work


	6 Conclusions
	References




