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Abstract
We consider polyhedral separation of sets as a possible tool in supervised classification. In particular, we focus on the
optimization model introduced by Astorino and Gaudioso (J Optim Theory Appl 112(2):265–293, 2002) and adopt its
reformulation in difference of convex (DC) form. We tackle the problem by adapting the algorithm for DC programming
known as DCA. We present the results of the implementation of DCA on a number of benchmark classification datasets.

Keywords Classification · Machine Learning · DC optimization

1 Introduction

The classification of an object is a decision-making process
whose outcome is the assignment of a specific class mem-
bership to the object under observation. Medical diagnosis
(Mangasarian et al. 1995), chemistry (Jurs 1986), cyberse-
curity (Astorino et al. 2017), image processing (Khalaf et al.
2017) are only some of the possible application areas of clas-
sification.

Each object (sample) is characterized by a finite number
of (quantitative and/or qualitative) attributes, usually referred
to as the features.

Construction of a classifier is a supervised learning activ-
ity, where a dataset of samples, whose class membership is
known in advance, is given as the input. The objective is
to gather a mathematical model capable to correctly classify

Communicated by Marcello Sanguineti.

B Massimo Di Francesco
mdifrance@unica.it

Annabella Astorino
annabella.astorino@icar.cnr.it

Manlio Gaudioso
gaudioso@dimes.unical.it

Enrico Gorgone
egorgone@unica.it

Benedetto Manca
bmanca@unica.it

1 ICAR - National Research Council, Rende, Italy

2 Dipartimento di Matematica e Informatica, Università di
Cagliari, Cagliari, Italy

newly incoming sampleswhose classmembership is, instead,
unknown.

Classification deals, mainly, with separation of sets of
samples in the feature space, which is assumed to be R

n .
Whenever classes are two, we are faced with a binary classi-
fication problem. In this paper, in fact, the training dataset is
partitioned into two subsets, sayA andB, and thus, the prob-
lem consists in finding a separation surface, if any, between
them.

Most of the models rely on setting an appropriate opti-
mization problem whose output is either a separating surface
or a nearly separating one, resulting in the minimization of
some measure of the classification error.

Starting from the pioneering works by Bennett and Man-
gasarian (1992) and (Vapnik 1995), the hyperplane has been
considered as the election surface to be looked for, although
the use of nonlinear separation surfaces has been pursued
too by Rosen (1965), Plastria et al. (2014) and Astorino and
Gaudioso (2005, 2009).

The literature on classification is huge. We cite Vapnik
(1995),Cristianini andShawe-Taylor (2000), Schölkopf et al.
(1999) and Sra et al. (2011) as basic references in support
vector machine (SVM) framework and Thongsuwan et al.
(2020) as a recent approach in the deep learning.

It is well known (see, e.g., Cristianini and Shawe-Taylor
(2000)) that if the convex hulls of the two setsA andB do not
intersect, there exists a separating hyperplane such that the set
A is on one side of such hyperplane andB is on the other side.
It can be calculated by linear programmingBennett andMan-
gasarian (1992), and the two sets are referred to as linearly
separable. On the other hand, if conv(A) ∩ conv(B) �= ∅, a
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number of algorithms can be adopted to determine a quasi-
separating hyperplane such that the related error functions
are minimized (see, for example, Mangasarian (1999)).

In this paper, we deal with binary classification based on
the use of a polyhedral surface. The concept of polyhedral
separability was introduced in Megiddo (1988) and applied
within the classification framework inAstorino andGaudioso
(2002) and Astorino and Fuduli (2015).

Whenever, in fact, the two sets A and B are not linearly
separable, it is possible to resort to polyhedral separation,
that is to determine h > 1 hyperplanes such that A is in the
convex polyhedron given by the intersection of h half-spaces
and B lies outside such polyhedron.

In Astorino and Gaudioso (2002), an optimization model
was proposed to calculate a set of h hyperplanes generating a
polyhedral separation, whenever possible, for the setsA and
B. The model consists, as usual in classification, in minimiz-
ing an error function to cope with the case when the two sets
are not h-polyhedrally separable. Parallel to SVM, the model
was extended in Astorino and Fuduli (2015) to accommodate
for margin maximization.

The error function adopted in Astorino and Gaudioso
(2002) is neither convex nor concave, and it was dealt with
by means of successive linearizations.

In this paper, we focus on the numerical treatment of the
optimization problem to be solved in order to get a poly-
hedral separation surface. In particular, we fully exploit the
DC (difference of convex) nature of the objective function
(Hiriart-Urruty 1986), and thus, differently from Astorino
and Gaudioso (2002), we adopt an algorithm designed to
treat DC functions. In fact, the literature provides a wide set
of efficient algorithms in this area nowadays.

In PhamDinh (2005), PhamDinh andLeThiHoai (2014),
an iterative algorithm was introduced to minimize functions
of the form f = f1− f2, with g and h convex functions. The
algorithm, called DCA, considers at iteration t the lineariza-
tion f (t)

2 of function f2 at point xt and determines the next
iterate xt+1 as an optimal solution of the convex problem

min
x

f1(x) − f (t)
2 (x) (1)

DCA has proven to be an efficient method to tackle DC
problems, even non-smooth and different artificial intelli-
gence problems have been approached by means of the DCA
(Astorino et al. 2010, 2012, 2014; Astorino 2014; Khalaf
et al. 2017).

Several other methods have been more recently proposed
in the literature (see Gaudioso et al. (2018) and Joki et al.
(2017)) which allow to solve large-scale DC programs too.

In this paper, we build on the model Astorino and Gau-
dioso (2002) and adopt a decomposition of the error function
for the h-polyhedral separability problem as the difference of
two convex functions.We then apply the DCA to carry out an

extensive experimentation on several classes of benchmark
instances.

The paper is organized as follows. In Sect. 2, we describe
the h-polyhedral classification model and its reformulation
as a difference of convex optimization problem. In Sect. 3, we
describe how theDCAhas been adapted to theDC reformula-
tions. In Sect. 4, we present the results of our implementation
on a number of benchmark classification problems. Some
conclusions are drawn in Sect. 5.

2 The polyhedral separability model

Let A = {a1, . . . , am} and B = {b1, . . . , bk} be two finite
sets of Rn .

Definition 1 The setsA and B are h-polyhedrally separable
if there exist a set of h hyperplanes {(v j , η j )}, v j ∈ R

n ,
η j ∈ R, j = 1, . . . , h, such that

aTi v j < η j ∀i = 1, . . . ,m, j = 1, . . . , h

bTl v j > η j ∀l = 1, . . . , k, and at least one j ∈ {1, . . . , h}
(2)

The following proposition gives an equivalent characteri-
zation of h-polyhedral separability:

Proposition 1 The sets A and B are h-polyhedrally separa-
ble if and only if there exist h hyperplanes {(w j , γ j )} such
that

aTi w j ≤ γ j − 1 ∀i = 1, . . . ,m, j = 1, . . . , h

bTl w j ≥ γ j + 1 ∀l = 1, . . . , k, and at least one j ∈ {1, . . . , h}.
(3)

Proof [Astorino and Gaudioso (2002), Proposition 2.1] 	

Moreover, in Astorino and Gaudioso (2002) [Proposition

2.2] it is proven that a necessary and sufficient condition for
the sets A and B to be h-polyhedrally separable (for some
h ≤ |B|) is given by

conv(A) ∩ B = ∅. (4)

Remark 1 The roles of A and B in (4) are not symmetric.

According to Proposition 1, a point ai ∈ A is well classi-
fied by the set of hyperplanes {w j , γ j } if aTi w j −γ j +1 ≤ 0
for all j = 1, . . . , h. Therefore, we can compute the classi-
fication error of the point ai with respect to {w j , γ j } as

max
1≤ j≤h

{0, aTi w j − γ j + 1}. (5)
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Analogously, if min1≤ j≤h{−bTl w j + γ j + 1} ≤ 0, a point
bl ∈ B is well classified by the set {w j , γ j }. Thus, the error
of classification of the point bl is

max

{
0, min

1≤ j≤h
{−bTl w j + γ j + 1}

}
. (6)

Given a set of h hyperplanes {w j , γ j }, we denote with
W = [w1 : · · · : wh] the matrix whose j th column is the
vector w j and with Γ = (γ 1, . . . , γ h) the vector whose
components are the γ j ’s. The classification error function
for the h-polyhedral separability problem for the sets A and
B, with respect to the hyperplanes {w j , γ j }, is then given by

e(W , Γ ) := e1(W , Γ ) + e2(W , Γ ), (7)

where

e1(W , Γ ) := 1

m

m∑
i=1

max
1≤ j≤h

{max{0, aTi w j − γ j + 1}} (8)

and

e2(W , Γ ) := 1

k

k∑
l=1

max

{
0, min

1≤ j≤h
{−bTl w j + γ j + 1}

}

(9)

represent the errors for points ofA andB, respectively. Func-
tion e(W , Γ ) is nonnegative and piecewise affine; e1(W , Γ )

is convex, and e2(W , Γ ) is quasi-concave; moreover, in
Astorino and Gaudioso (2002) it has also been proven that
the sets A and B are h-polyhedrally separable if and only
if there exists a set of h hyperplanes (W ∗, Γ ∗) such that
e(W ∗, Γ ∗) = 0 and, in that case,w j = 0 for all j = 1, . . . , h
cannot be the optimal solution.

In Astorino and Gaudioso (2002), the problem of mini-
mizing the error function (7) is tackled by solving, at each
iteration, a linear program providing a descent direction.
Here, instead, we rewrite e(W , Γ ) as difference of convex
functions, and then, we address its minimization through ad
hoc DC techniques.

To obtain such a reformulation, considert the following
identity, which is valid for any set of h affine functions z j (x),
j = 1, . . . , h:

max(0,min
j

z j (x)) = max(0,−max
j

(−z j (x)))

= max(0,max
j

(−z j (x))) − max
j

(−z j (x)).

(10)

By applying (10) to e2(W , Γ ), we obtain the following
DC decomposition of e(W , Γ ):

e(W , Γ ) = ê1(W , Γ ) − ê2(W , Γ ), (11)

where both

ê1(W , Γ ) = e1(W , Γ ) + 1

k

k∑
l=1

max[0,max
j

(bTl w j − γ j − 1)]}

(12)

and

ê2(W , Γ ) = 1

k

k∑
l=1

{max
j

(bTl w j − γ j − 1)} (13)

are convex.
The DC decomposition (11) has been already discussed

in Strekalovsky et al. (2015), where the authors suggested
an algorithm that combines a local and a global search in
order to find a global minimum of the error function. In the
numerical experience we are going to discuss in the next
sections, we confine ourselves to find just local minima of
the error functions involved.

3 Exploiting the function structure in the
DCA implementation

We have applied DCA to the minimization of the error
function (11). Before discussing our experiment setting, we
describe how we have adapted DCA to deal with polyhedral
separation applied to a number of datasets from the classifi-
cation literature.

At iteration t , in any possible configuration (Wt , Γt ) of
the h hyperplanes we can calculate for each l = 1, . . . , k the
index jl where the maximum in (13) is achieved:

jl = arg max
1≤ j≤h

(bTl w
j
(t) − γ

j
(t) − 1), l = 1, . . . , k (14)

and we define consequently the linearization of function ê2
at iteration t :

êt2(W , Γ ) := 1

k

k∑
l=1

(bTl w jl − γ jl − 1) (15)

which satisfies êt2(W , Γ ) ≤ ê2(W , Γ ). We observe that
the choice of the index (14) means selecting a subgradient
gt ∈ ∂ ê2(Wt , Γt ), which yields the construction of (15), the
linearization function of ê2(Wt , Γt ), according to the DCA
scheme.

Then, we consider the convexification of the original DC
function:

et (W , Γ ) = ê1(W , Γ ) − êt2(W , Γ ), (16)
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so that next configuration (Wt+1, Γt+1) is obtained by solv-
ing the convex program

min
W ,Γ

et (W , Γ ),

which in turn can be put in the form of the following linear
program, thanks to the introductionof the additional variables
ξi , i = 1, . . . ,m and ζl , l = 1, . . . , k:

(Wt+1, Γt+1) = argmin
1

m

m∑
i=1

ξi

+ 1

k

k∑
l=1

(ζl − bTl w jl + γ jl + 1)

ξi ≥ 0 i = 1, . . . ,m

ξi ≥ aTi w j − γ j + 1, j = 1, . . . , h, i = 1, . . . ,m

ζl ≥ 0 l = 1, . . . , k

ζl ≥ bTl w j − γ j − 1, j = 1, . . . , h, l = 1, . . . , k.

(17)

Summing up, the DCA-based algorithm for the minimiza-
tion of (11) can be stated as follows:

0. Choose W0 ∈ R
n×h, Γ0 ∈ R

h and a tolerance ε. Set t = 0;
1. Compute gt ∈ ∂ ê2(Wt , Γt ) and construct (15);
2. Set (Wt+1, γt+1) as a solution of (17);
3. If |e(Wt+1, Γt+1) − e(Wt , Γt )| ≤ ε terminate.

Otherwise, increase t by 1 and return to step 1.

The above algorithm is a descent method. It is easy to
verify that if e(Wt+1, Γt+1) = e(Wt , Γt ), then (Wt , Γt ) is a
critical point, i.e.,

∂ ê1(Wt , Γt ) ∩ ∂ ê2(Wt , Γt ) �= ∅ .

Hence, this result provides the stopping criterion at step 3.
For more theoretical details and the convergence theorem,
see Pham Dinh and Le Thi Hoai (2014), Pham Dinh (2005).

Following the SVM paradigm, aimed at obtaining a good
generalization capability, we have added to ê1(W , Γ ) in (11)
the margin term:

1

2

h∑
j=1

‖w j‖2, (18)

thus coming out with the following DC model:

ē(W , Γ ) =
⎛
⎝C

2

h∑
j=1

‖w j‖2 + ê1(W , Γ )

⎞
⎠ − ê2(W , Γ ),

(19)

Table 1 Datasets

# Dataset Space dimension #Samples

1 Cancer 9 699

2 Diagnostic 30 569

3 Heart 13 297

4 Pima 8 769

5 Ionosphere 34 351

6 Sonar 60 208

7 Galaxy 14 4192

8 g50c 50 550

9 g10n 10 550

10 Mushrooms 22 8124

11 Prognosis 32 110

12 Tic-Tac-Toe 9 958

13 Votes 16 435

14 Letter-a 16 20,000

15 a9a 123 1605

Table 2 The number of variables/constraints

Dataset # of vars # of constrs

1 649 1887

2 574 1536

3 295 801

4 710 2076

5 386 948

6 309 561

7 3803 11,319

8 597 1485

9 517 1485

10 7358 21,936

11 165 297

12 882 2586

13 426 1176

14 18,034 54,000

15 1693 4335

whereC > 0 is a trade-off parameter between the two objec-
tives of maximizing the margin and minimizing the classifi-
cation error. The minimization of (19) can be addressed by
DCA, too. In this case, at each iteration we have to solve a
quadratic program that differs from the linear program (17)
only for the quadratic margin term (18). Consequently, the
algorithmic scheme is unchanged except for the step 2 where
a quadratic program has to be solved.

4 Numerical experiments

In the numerical experiments, we have implemented two
DCA codes:
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Table 3 Training and testing
correctness percentage

# 2-PolSep 2-PolSepDC 2-PolSepDC-QP SVM-LINEAR
Train Test Train Test Train Test Train Test

1 97.77 97.36 97.77 97.37 97.72 97.66 97.72 97.21

2 98.54 97.18 99.53 95.78 98.22 97.89 98.79 97.53

3 86.31 84.18 86.34 83.84 85.52 84.84 86.16 84.51

4 76.62 75.12 76.98 75.12 76.68 75.64 76.65 75.38

5 96.11 87.76 97.97 87.23 92.24 88.94 93.38 87.20

6 99.04 67.16 100.00 69.61 88.35 70.99 94.50 62.84

7 94.56 94.08 95.76 95.35 95.09 94.63 95.59 95.30

8 100.00 94.38 100.00 91.63 96.61 95.29 99.01 92.38

9 100.00 94.38 100.00 91.63 96.61 95.29 99.01 92.38

10 80.06 72.66 85.80 77.23 83.47 80.28 80.07 72.85

11 71.92 69.11 90.39 63.65 68.39 69.18 78.79 64.65

12 61.89 53.22 81.00 81.04 81.00 81.04 63.02 55.43

13 96.68 94.25 96.91 94.95 96.14 95.19 96.25 94.25

14 98.30 98.24 96.31 96.23 97.24 97.24 96.31 96.24

15 – – 78.83 78.47 77.99 77.88 79.83 79.56

Table 4 CPU time (secs) # 2-PolSep 2-PolSepDC 2-PolSepDC-QP SVM-LINEAR
Time Time Time Time

1 0.82 0.09 1.39 0.05

2 2.13 0.46 1.16 0.12

3 0.48 0.02 0.19 0.22

4 4.74 0.17 1.62 0.32

5 1.21 0.18 1.41 0.31

6 1.41 0.05 0.47 0.28

7 266.47 54.25 19.00 1.81

8 4.61 0.42 0.85 0.43

9 4.63 0.41 0.82 0.42

10 303.69 5.93 7.06 4.82

11 0.13 0.02 0.08 0.15

12 2.90 0.13 1.73 0.25

13 0.18 0.08 0.95 0.11

14 696.62 287.96 573.72 29.22

15 - 954.32 381.12 1230.74

– h-PolSepDC, where we minimize (11) (the separation
problem with no separation margin) by solving at each
iteration the linear program (17);

– h-PolSepDC-QP, where we minimize (19) (a margin
has been accounted for) by solving at each iteration a
quadratic program.

In particular, we have chosen h = 2 according to the
hyperparameter tuning performed in Astorino and Gaudioso
(2002).

Moreover, since the role of the sets A and B is not sym-
metric in the definition of polyhedral separability, in the

numerical experiments one has to define which isA and B in
any dataset. So, we have called setA the one with less num-
ber of points, following, also for this issue, the rule adopted
in Astorino and Gaudioso (2002).

We have used MATLAB R2015b calling CPLEX library,
under a 2,6 GHz Intel Core i7 processor, on an OS X 10.12.6
operating system.

To evaluate the impact of the DC decomposition of the
error function (7) with respect to the classic non-smooth opti-
mization approach, we have reimplemented, in MATLAB,
the algorithm proposed in Astorino and Gaudioso (2002) (2-
PolSep code). Finally, for sake of completeness we have also
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Table 5 Numerical results # Code Training set Testing set

Rec. Sp. Pr. F1s. Rec. Sp. Pr. F1s.

1 2-PolSep 0.98 0.97 0.95 0.97 0.98 0.97 0.95 0.96

2-PolSepDC 0.99 0.97 0.95 0.97 0.98 0.97 0.95 0.96

2-PolSepDC-QP 0.98 0.98 0.96 0.97 0.98 0.97 0.95 0.97

SVM-LINEAR 0.98 0.97 0.95 0.97 0.97 0.97 0.95 0.96

2 2-PolSep 0.99 0.98 0.99 0.99 0.97 0.97 0.98 0.98

2-PolSepDC 0.99 1.00 1.00 1.00 0.96 0.96 0.98 0.97

2-PolSepDCQP 0.99 0.97 0.98 0.99 0.99 0.96 0.98 0.98

SVM-LINEAR 0.99 0.98 0.99 0.99 0.98 0.97 0.98 0.98

3 2-PolSep 0.85 0.90 0.96 0.90 0.84 0.85 0.94 0.88

2-PolSepDC 0.85 0.90 0.96 0.90 0.84 0.84 0.93 0.88

2-PolSepDC-QP 0.85 0.88 0.95 0.89 0.84 0.87 0.94 0.89

SVM-LINEAR 0.85 0.90 0.96 0.90 0.84 0.85 0.94 0.89

4 2-PolSep 0.73 0.79 0.65 0.68 0.69 0.79 0.64 0.66

2-PolSepDC 0.73 0.79 0.65 0.69 0.69 0.78 0.63 0.66

2-PolSepDC-QP 0.73 0.79 0.65 0.69 0.71 0.78 0.64 0.67

SVM-LINEAR 0.72 0.79 0.65 0.68 0.69 0.79 0.64 0.66

5 2-PolSep 0.96 0.97 0.98 0.97 0.92 0.81 0.90 0.90

2-PolSepDC 0.98 0.98 0.99 0.98 0.90 0.82 0.90 0.90

2-PolSepDC-QP 0.96 0.86 0.92 0.94 0.96 0.75 0.88 0.92

SVM-LINEAR 0.95 0.91 0.95 0.95 0.93 0.76 0.88 0.90

6 2-PolSep 1.00 0.99 0.98 0.99 0.64 0.70 0.66 0.64

2-PolSepDC 1.00 1.00 1.00 0.75 1.00 0.65 0.68 0.70

2-PolSepDC-QP 0.90 0.87 0.86 0.88 0.79 0.65 0.70 0.72

SVM-LINEAR 0.96 0.94 0.93 0.94 0.63 0.63 0.61 0.61

7 2-PolSep 0.94 0.95 0.95 0.95 0.94 0.95 0.95 0.94

2-PolSepDC 0.96 0.95 0.95 0.96 0.95 0.96 0.96 0.95

2-PolSepDC-QP 0.95 0.95 0.95 0.95 0.94 0.95 0.95 0.94

SVM-LINEAR 0.96 0.95 0.95 0.96 0.95 0.96 0.96 0.95

8 2-PolSep 1.00 1.00 1.00 0.93 1.00 0.95 0.95 0.94

2-PolSepDC 1.00 1.00 1.00 0.92 1.00 0.92 0.92 0.92

2-PolSepDC-QP 0.96 0.97 0.97 0.97 0.95 0.96 0.96 0.95

SVM-LINEAR 0.99 0.99 0.99 0.99 0.93 0.91 0.92 0.92

9 2-PolSep 1.00 1.00 1.00 0.93 1.00 0.95 0.95 0.94

2-PolSepDC 1.00 1.00 1.00 0.92 1.00 0.92 0.92 0.92

2-PolSepDC-QP 0.96 0.97 0.97 0.97 0.95 0.96 0.96 0.95

SVM-LINEAR 0.99 0.99 0.99 0.99 0.93 0.91 0.92 0.92

10 2-PolSep 0.75 0.85 0.85 0.80 0.64 0.82 0.83 0.66

2-PolSepDC 0.83 0.89 0.89 0.86 0.76 0.79 0.84 0.76

2-PolSepDC-QP 0.74 0.93 0.92 0.82 0.70 0.92 0.92 0.77

SVM-LINEAR 0.75 0.85 0.85 0.80 0.65 0.82 0.83 0.66

11 2-PolSep 0.70 0.73 0.61 0.65 0.68 0.70 0.67 0.62

2-PolSepDC 0.93 0.89 0.84 0.88 0.62 0.65 0.51 0.62

2-PolSepDC-QP 0.66 0.70 0.57 0.61 0.68 0.70 0.64 0.62

SVM-LINEAR 0.79 0.79 0.69 0.73 0.61 0.67 0.54 0.61
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Table 5 continued # Code Training set Testing set

Rec. Sp. Pr. F1s. Rec. Sp. Pr. F1s.

12 2-PolSep 0.62 0.62 0.76 0.68 0.49 0.62 0.69 0.56

2-PolSepDC 0.71 1.00 1.00 0.83 0.71 1.00 1.00 0.82

2-PolSepDC-QP 0.71 1.00 1.00 0.83 0.71 1.00 1.00 0.82

SVM-LINEAR 0.63 0.64 0.77 0.69 0.51 0.64 0.72 0.58

13 2-PolSep 0.98 0.96 0.93 0.96 0.95 0.94 0.91 0.93

2-PolSepDC 0.98 0.96 0.94 0.96 0.95 0.95 0.92 0.94

2-PolSepDC-QP 0.99 0.94 0.92 0.95 0.98 0.94 0.91 0.94

SVM-LINEAR 0.98 0.95 0.92 0.95 0.95 0.94 0.91 0.93

14 2-PolSep 0.96 0.95 1.00 0.98 0.96 0.95 1.00 0.98

2-PolSepDC 0.96 0.95 1.00 0.98 0.96 0.95 1.00 0.98

2-PolSepDC-QP 0.97 0.94 1.00 0.99 0.97 0.94 1.00 0.99

SVM-LINEAR 0.96 0.95 1.00 0.98 0.96 0.95 1.00 0.98

15 2-PolSepDC 0.89 0.75 0.54 0.67 0.89 0.75 0.53 0.67

2-PolSepDC-QP 0.89 0.74 0.53 0.66 0.89 0.74 0.52 0.66

SVM-LINEAR 0.87 0.78 0.55 0.67 0.86 0.78 0.55 0.67

Table 6 Percentage of
correctness with h-PolSepDC
(h ≥ 2)

# h = 2 h = 3 h = 5 h = 10
Train Test Train Test Train Test Train Test

1 97.77 97.37 97.91 97.07 97.91 97.22 97.91 97.22

2 99.53 95.78 99.92 94.55 99.92 94.39 99.92 94.39

3 86.34 83.84 86.34 83.84 – – – –

4 76.98 75.12 74.86 73.43 – – 74.83 73.56

5 97.97 87.23 97.63 87.49 100.00 86.33 100.00 87.76

6 100.00 69.61 100.00 70.61 100.00 70.61 100.00 70.61

7 95.76 95.35 95.76 95.35 – – 95.74 95.30

8 100.00 94.03 100.00 89.46 100.00 89.46 – –

9 100.00 94.03 100.00 89.46 – – – –

10 85.80 77.23 86.00 77.38 86.93 77.97 86.93 77.97

11 90.39 63.65 90.39 64.65 90.39 64.65 90.39 64.65

12 81.00 81.04 81.00 81.04 – – – –

13 96.91 94.95 96.99 94.49 97.09 94.49 97.09 94.49

14 96.31 96.23 96.31 96.23 – – – –

used the standard MATLAB SVM package to run the linear
separability classification problem (SVM-LINEAR code).

We have considered several test problems drawn from the
binary classification literature which are described in Table
1. In particular, all datasets are taken from the LIBSVM
(Library for Support VectorMachines) repository Chang and
Lin (2011), except for g50c and g10n, which are described
in Chapelle and Zien (2005).

For all datasets, we have performed a standard tenfold
cross-validation protocol and in Table 2, we summarize the
LP/QP problems solved at each fold, in terms of number of
variables and constraints.

For each approach, in the columns train and test of Table
3 we report the average percentage of training and testing
correctness, respectively. The best results in terms of testing
correctness have been underlined.

A preliminary tuning for the parameterC in 2-PolSepDC-
QP and SVM-LINEAR codes has been performed, and we
have selected, for each dataset, that value optimizing the per-
formance on the testing set.

The numerical results indicate the good performance, in
terms of correctness, of the DC-based approaches w.r.t. both
the algorithm Astorino and Gaudioso (2002) and standard
SVM. In particular, the DC model equipped with margin
maximization (Code 2-PolSepDC-QP) has provided the best
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Table 7 Percentage of
correctness with
h-PolSepDC-QP (h ≥ 2)

# h = 2 h = 3 h = 5 h = 10

Train Test Train Test Train Test Train Test

1 97.72 97.66 97.72 97.65 – – – –

2 98.22 97.89 98.26 97.89 – – – –

3 85.52 84.84 85.52 84.84 – – – –

4 76.68 75.64 75.39 73.69 76.53 74.22 76.79 73.43

5 92.24 88.94 93.26 88.35 93.19 88.10 – –

6 88.35 70.99 88.56 71.01 – – – –

7 95.59 95.30 95.07 94.58 – – – –

8 96.61 95.29 96.61 95.29 – – – –

9 96.61 95.29 96.61 95.29 – – – –

10 83.47 80.28 83.47 80.28 – – – –

11 68.39 69.18 68.39 69.18 68.39 69.18 68.39 69.18

12 81.00 81.04 81.00 81.04 – – – –

13 96.14 95.19 96.09 95.19 96.07 95.19 – –

14 97.24 97.24 97.21 97.11 – – – –

testing correctness in 13 out of 15 datasets. By compar-
ing 2-PolSepDC and 2-PolSepDC-QP, we can observe that
the addition of margin provides a better testing correct-
ness except for galaxy and a9a datasets. On the contrary,
2-PolSepDC has a better performance in terms of training
correctness except for Tic-Tac-Toe and letter-a datasets. This
means that the classifier coming out from 2-PolSepDC-QP
has a higher generalization capability.

As for computation time (see Table 4), the DC decompo-
sition has been much more effective than 2-PolSep method.
Moreover, the increase in computation time with respect to
single-hyperplane separation model SVM-LINEAR has not
been particularly severe.

2-PolSep and the 2-PolSepDC are different algorithms to
solve the same problem, i.e., the minimization of (11). By
comparing the objective function values obtained by the two
codes starting from the same initial point, we note that the
second approach provides better solutions, but the difference
is not so significant.

Since in the definition of polyhedral separability the role
of the setsA and B is not symmetric, we compare the results
also in terms of recall, specificity, precision and F1-score
(see Table 5). The trend of these key performance indicators
confirms the goodness of the DC-based approaches.

For completeness, we have launched both the codes h-
PolSepDC and h-PolSepDC-QP with h > 2. The running
time is not dramatically larger, but the numerical experi-
ments show that there is no significant improvement in terms
of correctness. Even worse, in some cases the improve-
ment of training performance is not accompanied with an
improvement of testing one. This proves that a high value
of h—number of hyperplanes—provides classifiers with a

smaller generalization capability. For instance, we report
some results (see Tables 6 and 7).

5 Conclusions

We have adopted a difference of convex decomposition of
the error function in polyhedral separation and have tackled
the resulting optimization problem via DCA algorithm.

The numerical results we have obtained demonstrate the
good performance of the approach both in terms of classifi-
cation correctness and computation time.

Future research would investigate the integration between
feature selection Gaudioso et al. (2017) and polyhedral sep-
aration aimed at detecting a possibly smaller subsets of
significant attributes in terms of classification correctness.
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