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Abstract
The main contribution of this paper is to give a new axiomatic definition of entropy measure and provide a constructing
approach in the context of interval-valued intuitionistic fuzzy set (IVIFS). We give a new idea to define entropy on IVIFS:
From the graphical representation, we consider the difference between a given IVIFS and its corresponding two interval fuzzy
sets (IVFSs) by introducing a distance function that meets some specific conditions. The relationship between the distance
function and the distance measure has also been illustrated. Based on distance functions, we give an approach to construct
entropy measures on IVIFS. Then, a plenty of new entropies on IVIFS are introduced. Furthermore, we use a comparative
example to show the proposed measures outperform the existing measures and utilize a demonstrative example to explain the
application of the entropy measure in the multi-criteria decision making (MCDM), which verify the feasibility of our entropy
construction method.

Keywords Entropy measure · Distance function · Interval-valued intuitionistic fuzzy set · Interval-valued fuzzy set

1 Introduction

In the classical set theory, the concepts expressed by the set
attributes are clear and well defined. Therefore, the member-
ship of each object to the classical set is also clear. But there
are still many vague concepts in real life, such as “young”,
“old”, “warm”, “cold”, and so on. The object attributes
described by these concepts cannot be simply answered as
“yes” or “no”. Fuzzy set theory, founded by Zadeh (1965)
in 1965, is a method to describe fuzzy phenomena, which
takes the object and the corresponding fuzzy concept as a
fuzzy set, and establishes a membership function between
the fuzzy object and the fuzzy set. The difference between
classical set theory and fuzzy set theory is that in classical
set theory, the membership of elements in a set evaluates
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“whether the element belongs to the set”. On the other hand,
in fuzzy theory, a more fuzzy way of “degree” is used to
describe the relationship between elements and sets.

Fuzzy set (FS) and interval-valued fuzzy set (IVFS) were
proposed by Zadeh (1965), Zadeh (1975). The membership
of fuzzy set is a real number in [0, 1], while the member-
ship of interval-valued fuzzy set is a closed subinterval of
[0, 1]. In order to better describe the fuzzy variables in real
life, Atanassov (1986) proposed the notion of intuitionis-
tic fuzzy sets (IFS) in 1986. That is to say, IFS contains
two variables, representing the membership and the non-
membership, respectively. The more the element conforms
to the set’s attribute, the closer the membership value is
to 1. The more the element does not conform to the set’s
attribute, the closer the membership value is to 0, while the
non-membership is exactly the opposite.Moreover, these two
variables satisfy the constraint that their sum is less than or
equal to one. The difference between one and the sumof these
two variables is referred to as the hesitation index, indicating
that there is the lack of information to determine the relation-
ship between the element and the set. Later, interval-valued
intuitionistic fuzzy set (IVIFS) extended by Atanassov and
Gargov (1989) in 1989 generalized themembership and non-
membership of each element from real numbers to closed
subintervals of [0, 1]. Due to its better description for fuzzy
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variables, IVIFS has been widely studied and put into vari-
ous fields (Nguyen 2016; De Miguel et al. 2016; Park et al.
2009; Düğenci 2016; Chen 2013; Jin et al. 2014; Li 2010; Ye
2013).

Since Zadeh (1965) proposed the fuzzy entropy theory
firstly in 1965, entropy is an important research object in
fuzzy theory, which is used to characterize the uncertainty of
the information of fuzzy sets (Suo et al. 2021a; Li et al. 2020;
Deng 2020). Let us briefly review some existing research
results on entropy measure in the context of IFS, IVFS and
IVIFS here. Burillo and Bustince (1996) introduced the con-
cepts of entropy on IVFS and IFS with the consideration
of the degree of intuitionism. An intuitionistic fuzzy non-
probabilistic-type entropy had been advanced by Szmidt and
Kacprzyk (2001) from the geometric interpretation. Hung
and Yang (2006) based on the concept of probability gave
their own axiomatic definitions of entropies of IFS and IVFS.
Liu et al. (2005) generalized the axioms of intuitionistic
fuzzy entropy introduced by Szmidt and Kacprzyk (2001),
and proposed a set of axiomatic conditions which entropy
measures should satisfy in the context of IVIFS. Wei et al.
(2011) also extended entropy to IVIFS based on the result of
Szmidt andKacprzyk (2001), and presented amethod to gen-
erate similarity measure through entropy measure. Besides,
many scholars put forward different entropy formulae for
IFSs (Hung and Yang 2006; Xia and Xu 2012; Ye 2010b;
Vlachos and Sergiadis 2006, 2007; Xue et al. 2020), IVFSs
(Zeng and Li 2006; Zhang et al. 2009; Suo et al. 2021b),
and IVIFSs (Ye 2010a; Zhang et al. 2010; Zhang and Jiang
2010).

Compared with FS and IFS, there are not so many studies
on the entropy of IVIFS. Different from some existing stud-
ies, this paper not only gives the formula of entropy, but also
gives a new idea of constructing entropy. Under the guidance
of this idea, we can propose a family of entropy measure
formulae and then select one that best meets the intuitive
expectations. Inspired by the entropy proposed by Burillo
and Bustince that we abbreviate it to BB entropy (Burillo and
Bustince 1996), we shall give a new idea to define entropy
on IVIFS in this paper. For each IVIFS, the membership
and the non-membership can be considered as IVFS, respec-
tively. The graphically representation will be given below.
Since then, we can measure the entropy by calculating the
distance between the given IVIFS and its corresponding two
IVFSs. In this paper, we introduce the distance function to
consider the difference between IVIFS and its corresponding
two IVFSs, which should satisfy some specific conditions.
Based on these distance functions, we give an approach to
construct entropy measures on IVIFS. Then, a plenty of new
entropies on IVIFS are introduced. Our goal is to solve this
critical issue and provide new ideas for the study of entropy
measures on IVIFS.

To illustrate the construction process we mentioned
before, the background knowledge required in this paper is
given in Sect. 2. The new axiomatic definition and concrete
form of entropy are shown in Sect. 3. Moreover, the pro-
posed specific entropy measure is reasonably as illustrated
in the numerical example of multi-criteria decision making
in Sect. 4. Conclusion is presented in Sect. 5.

2 Preliminaries

We briefly review several notions about fuzzy set theory
which we will use in this paper. Let X = {x1, x2, . . . , xn} be
a universe of discourse.

Definition 2.1 (Zadeh 1965) A fuzzy set (FS) A in X is
defined as the following form:

A = {〈x, μA(x)〉 |x ∈ X} ,

where μA(x) : X → [0, 1] is the membership degree of
x ∈ X .

Interval-valued fuzzy sets expand the membership of
fuzzy sets to interval forms.

Definition 2.2 (Zadeh 1975) An interval-valued fuzzy set
(IVFS) A′ in X is defined as the following form:

A′ = {〈x, μA′(x)〉|x ∈ X}
= {〈x, [μ−

A′(x), μ
+
A′(x)]〉|x ∈ X

}
,

where μA′(x) : X → L([0, 1]) are the membership degree
intervals of x ∈ X , μ−

A′ , μ
+
A′ : X → [0, 1] are two mem-

bership of A′ such that μ−
A′(x) ≤ μ+

A′(x) for any x , and
μA′(x) = [μ−

A′(x), μ
+
A′(x)]. Here, L([0, 1]) represents the

set of closed subintervals on [0, 1].
Suo et al. (2021b) explored the relative properties of

polygonal interval-value fuzzy sets approximating to general
interval-valued fuzzy sets in recent work.

Due to the lack of information, the intuitionistic fuzzy
set adds a parameter of non-membership on the basis of the
fuzzy set to measure the degree that x does not conform to
the attribute of A′.

Definition 2.3 (Atanassov 1986) An intuitionistic fuzzy
set(IFS) Ā in X is defined as the following form:

Ā = {〈
x, μ Ā(x), ν Ā(x)

〉 |x ∈ X
}
,

where μ Ā : X → [0, 1] and ν Ā : X → [0, 1] are the
membership and the non-membership, respectively, satisfy-
ing μ Ā(x) + ν Ā(x) ≤ 1 for any x ∈ X .
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Fig. 1 Graphical representation of IVIFS

In addition,we define another parameter of IFS tomeasure
the hesitation as π Ā(x) = 1 − μ Ā(x) − ν Ā(x) and name it
the intuitionistic fuzzy index, which indicates the lack of
information about whether x belongs to Ā. Obviously, for
any x ∈ X , 0 ≤ π Ā(x) ≤ 1. When μ Ā(x) = 1 − ν Ā(x) for
each element of X , A is reduced to FS.

Definition 2.4 (Atanassov 1986) For an intuitionistic fuzzy
set (IFS) Ā in X , the complement of Ā is defined as Āc ={〈
x, ν Ā(x), μ Ā(x)

〉 |x ∈ X
}
.

Subsequently, interval-valued intuitionistic fuzzy set is
extended from intuitionistic fuzzy set.At this time, the degree
of membership and non-membership is not a real value on
[0, 1], but a real number interval.

Definition 2.5 (Atanassov and Gargov 1989) An interval-
valued intuitionistic fuzzy set (IVIFS) Ã in X is defined as
the following form:

Ã = {〈
x, μ̃ Ã(x), ν̃ Ã(x)

〉 |x ∈ X
}
,

where μ̃ Ã(x) = [μL
Ã
(x), μU

Ã
(x)] ⊆ [0, 1] and ν̃ Ã(x) =

[νL
Ã
(x), νU

Ã
(x)] ⊆ [0, 1] are intervals, satisfying μU

Ã
(x) +

νU
Ã
(x) ≤ 1 for any x ∈ X . For the interval hesitation margin

π̃ Ã(x) = [π L
Ã
(x), πU

Ã
(x)], we have π L

Ã
(x) = 1 − μU

Ã
(x) −

νU
Ã
(x) and πU

Ã
(x) = 1−μL

Ã
(x)−νL

Ã
(x). IfμL

Ã
(x) = μU

Ã
(x)

and νL
Ã
(x) = νU

Ã
(x), then the IVIFS Ã is reduced to an IFS.

In addition,
(
μ̃ Ã(x), ν̃ Ã(x)

)
is named interval-valued intu-

itionistic fuzzy value (IVIFV).

In order to better understand IVIFS and the following dis-
cussion, here we present its graphical representation. When
the universe X is a singleton space, an IVIFS Ã can be rep-
resented by the image as a rectangular region in Fig. 1. The

three vertices of the triangle are (0, 0), (0, 1), and (1, 0),
where (0, 0) corresponds to π Ã(x) = 1, and (0, 1), (1, 0)
represent the cases of classic sets. The hypotenuse of the tri-
angle, that is, the segment from (0, 1) to (1, 0), corresponds
to ν Ã(x) = 1 − μ Ã(x), i.e., π Ã(x) = 0. Because of the lim-
itation of IVIFS μ Ã(x) + ν Ã(x) ≤ 1, we can know that the
upper right vertex of the rectangular area in Fig. 1 must not
exceed the hypotenuse of the triangle.

In order to express more simply in the following defini-
tions, use FS(X) to represent the set of FSs on X , I V FS(X)

to represent the set of IVFSs on X , I FS(X) to represent the
set of IFSs on X , I V I FS(X) to represent the set of IVIFSs
on X .

Definition 2.6 (Xu 2007) For any two IVIFSs Ã = {〈x,
[μL

Ã
(x), μU

Ã
(x)], [νL

Ã
(x), νU

Ã
(x)]〉|x ∈ X} and B̃ = {〈x,

[μL
B̃
(x), μU

B̃
(x)], [νL

B̃
(x), νU

B̃
(x)]〉|x ∈ X},

(1) Ã ⊆ B̃ iff μL
Ã
(x) ≤ μL

B̃
(x), μU

Ã
(x) ≤ μU

B̃
(x), νL

Ã
(x) ≥

νL
B̃
(x) and νU

Ã
(x) ≥ νU

B̃
(x) for any x ∈ X ,

(2) Ã = B̃ iff Ã ⊆ B̃ and Ã ⊇ B̃,i.e., μL
Ã
(x) =

μL
B̃
(x), μU

Ã
(x) = μU

B̃
(x), νL

Ã
(x) = νL

B̃
(x), νU

Ã
(x) =

νU
B̃

(x) for any x ∈ X ,

(3) Ãc = {〈
x, ν̃ Ã(x), μ̃ Ã(x)

〉 |x ∈ X
}
.

Here, we review the definition of distance measure and
some widely used distance measures of IVIFSs.

Definition 2.7 (Liu and Jiang 2020) For any Ã, B̃, C̃ ∈
I V I FS(X), let D be a mapping D : I V I FS(X) ×
I V I FS(X) → [0, 1]. D( Ã, B̃) is called a distance measure
if it satisfies the following properties:

(1) D( Ã, B̃) = 0 iff Ã = B̃,
(2) D( Ã, B̃) = D(B̃, Ã),
(3) D( Ã, C̃) ≤ D( Ã, B̃) + D(B̃, C̃),
(4) If Ã ⊆ B̃ ⊆ C̃ , then max{D( Ã, B̃), D(B̃, C̃)} ≤

D( Ã, C̃).

For any two IVIFSs A and B on X , the following dis-
tance measures were discussed in Zhang et al. (2014). Let
Ã = {〈x, [μL

Ã
(x), μU

Ã
(x)], [νL

Ã
(x), νU

Ã
(x)]〉|x ∈ X} and

B̃ = {〈x, [μL
B̃
(x), μU

B̃
(x)], [νL

B̃
(x), νU

B̃
(x)]〉|x ∈ X}.

1. Hamming distance

DH ( Ã, B̃) = DH

(
(μL

Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)),

(μL
B̃
(x), μU

B̃
(x), νL

B̃
(x), νU

B̃
(x))

)

= 1

4n

n∑

i=1

[∣∣∣μL
Ã
(xi ) − μL

B̃
(xi )

∣∣∣
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+
∣∣∣μU

Ã
(xi ) − μU

B̃
(xi )

∣∣∣

+
∣∣∣νL

Ã
(xi ) − νL

B̃
(xi )

∣∣∣ +
∣∣∣νU

Ã
(xi ) − νU

B̃
(xi )

∣∣∣
]
.

(1)

2. Normalized Hamming distance induced by Hausdorff
metric

DNH ( Ã, B̃) = DNH

(
(μL

Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)),

(μL
B̃
(x), μU

B̃
(x), νL

B̃
(x), νU

B̃
(x))

)

= 1

2n

n∑

i=1

[∣∣∣μL
Ã
(xi ) − μL

B̃
(xi )

∣∣∣

∨
∣∣∣μU

Ã
(xi ) − μU

B̃
(xi )

∣∣∣

+
∣∣∣νL

Ã
(xi ) − νL

B̃
(xi )

∣∣∣ ∨
∣∣∣νU

Ã
(xi ) − νU

B̃
(xi )

∣∣∣
]
.

(2)

3. Normalized distance induced by Hausdorff metric

DN ( Ã, B̃) = DN

(
(μL

Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)),

(μL
B̃
(x), μU

B̃
(x), νL

B̃
(x), νU

B̃
(x))

)

= 1

2n

n∑

i=1

max
{∣∣∣μL

Ã
(xi ) − μL

B̃
(xi )

∣∣∣

+
∣∣∣μU

Ã
(xi ) − μU

B̃
(xi )

∣∣∣ ,
∣∣∣νL

Ã
(xi ) − νL

B̃
(xi )

∣∣∣ +
∣∣∣νU

Ã
(xi ) − νU

B̃
(xi )

∣∣∣
}

.

(3)

3 Entropymeasure for IVIFS

The main content of this section is divided into two subsec-
tions. The first subsection gives a new axiomatic definition of
entropy, and the second subsection shows the specific entropy
measure construction method.

3.1 A new axiomatic definition of entropy on IVIFS

Firstly, we recall the definition of entropy on IFS proposed
by Burillo and Bustince.

Definition 3.1 (Burillo and Bustince 1996) For any Ā, B̄ ∈
I FS(X), a mapping I : I FS(X) → [0, 1] is called an
entropy on I FS(X), if I satisfies the following conditions:

(IP1) I ( Ā) = 0 iff Ā ∈ FS(X),
(IP2) I ( Ā) = 1 iff μ Ā(x) = ν Ā(x) = 0 for all x ∈ X ,
(IP3) I ( Ā) = I ( Āc),

Fig. 2 Graphical relationship between Ã and Ã+, Ã−

(IP4) I ( Ā) ≥ I (B̄) if μ Ā(x) ≤ μB̄(x) and ν Ā(x) ≤ νB̄(x)
for all x ∈ X .

We abbreviate this entropy to BB entropy (Burillo and
Bustince 1996). It measures the intuitive degree of IFS, that
is, the difference between IFS and FS. In the definition of
BB entropy, we can see that (IP1) means the entropy is zero
if and only if IFS degrades to FS, i.e., the hesitation index is
zero. The second condition indicates that the entropy reaches
the maximum if and only if the hesitation index is one, i.e.,
the complete lack of information. Moreover, (IP3) states that
the entropy is symmetric under complementary conditions,
while (IP4) means the more hesitant, the higher the entropy
value.

Inspired by BB entropy of IFS, we can give the similar
axiomatic definition of entropy on IVIFS, which is used to
measure the difference between IVIFS and IVFS.

Definition 3.2 For any Ã, B̃ ∈ I V I FS(X), a mapping E :
I V I FS(X) → [0, 1] is called entropy on IVIFS(X), if E
satisfies the following conditions:

(E1) E( Ã) = 0 iff Ã ∈ I V FS(X),
(E2) E( Ã) = 1 iff μ̃ Ã(x) = ν̃ Ã(x) = [0, 0] for all x ∈ X ,
(E3) E( Ã) = E( Ãc),
(E4) E( Ã) ≥ E(B̃) if μ̃ Ã(x) ≤ μ̃B̃(x), ν̃ Ã(x) ≤ ν̃B̃(x),

i.e., μL
Ã
(x) ≤ μL

B̃
(x), μU

Ã
(x) ≤ μU

B̃
(x), νL

Ã
(x) ≤

νL
B̃
(x), νU

Ã
(x) ≤ νU

B̃
(x) for all x ∈ X .

Accordingly, the first property (E1) indicates that the
entropy is zero if and only if IVIFS degenerates to IVFS.
(E2), (E3) and (E4) have the same meaning as BB-entropy
expression on IFS(X).

In this part, we will propose an approach to construct
entropy measures using the distance function of IVIFSs.
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Given Ã ∈ I V I FS(X), in the light of the image represen-
tation of the IVIFS discussed in the previous section, the
closer the rectangular area of Ã to the hypotenuse of the
triangle, the smaller the entropy value E( Ã), the closer to
the point (0, 0), the greater the entropy E( Ã). The rectan-
gular area represented by IVIFS Ã is projected vertically
on the hypotenuse of the triangle to get the set Ã+, and pro-
jected horizontally on the hypotenuse of the triangle to obtain
the set Ã−, as shown in Fig. 2. Because the hypotenuse
means μ̃(x) + ν̃(x) = 1, and the sets Ã+, Ã− satisfy
μ̃ Ã+(x) = μ̃ Ã(x), ν̃ Ã−(x) = ν̃ Ã(x), so

Ã+ = {〈x, μ̃(x), 1 − μ̃(x)〉|x ∈ X}
= {〈x, [μL

Ã
(x), μU

Ã
(x)], [1 − μU

Ã
(x), 1 − μL

Ã
(x)]〉|x ∈ X},

Ã− = {〈x, 1 − ν̃(x), ν̃(x)〉|x ∈ X}
= {〈x, [1 − νU

Ã
(x), 1 − νL

Ã
(x)],

[νL
Ã
(x), νU

Ã
(x)]〉|x ∈ X}.

Obviously, the sets Ã+ and Ã− are IVFSs. The entropy value
of Ã is related to the distance between Ã and two IVFSs Ã+
and Ã−.

To facilitate the calculation of the distance between
IVIFS and IVFS, we write the parameters of Ã, Ã+, Ã−
as vector form, i.e., the parameters of Ã are (μL

Ã
(x),

μU
Ã
(x), νL

Ã
(x), νU

Ã
(x)), then the parameters of Ã+ are

(μL
Ã
(x), μU

Ã
(x), 1−μU

Ã
(x), 1−μL

Ã
(x)), and the parameters

of Ã− are (1 − νU
Ã
(x), 1 − νL

Ã
(x), νL

Ã
(x), νU

Ã
(x)).

Example 3.3 Given Ã ∈ I V I FS(X), Ã = {〈x, [0.1, 0.2],
[0.3, 0.4]〉|x ∈ X}}, then the corresponding IVFSs Ã+ =
{〈x, [0.1, 0.2], [0, 8, 0.9]〉|x ∈ X}, Ã− = {〈x, [0.6, 0.7],
[0.3, 0.4]〉|x ∈ X}. Expressed as a vector form: Ã =
(0.1, 0.2, 0.3, 0.4), Ã+ = (0.1, 0.2, 0, 8, 0.9), and Ã− =
(0.6, 0.7, 0.3, 0.4).

So we use a function g to measure the distances from Ã
to Ã+ and Ã to Ã−, respectively, then an external binary
function f aggregates these two distances to describe the
entropy of Ã. Here we give the definitions of the distance
function g and the external binary function f .

The domain I of the function g to be used in the following
construction is given by:

I =
{
( Ã, Ã+), ( Ã, Ã−)

}

=
{(

(μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)),

(μL
Ã
(x), μU

Ã
(x), 1 − μU

Ã
(x), 1 − μL

Ã
(x))

)
,

(
(μL

Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)),

(1 − νU
Ã
(x), 1 − νL

Ã
(x), νL

Ã
(x), νU

Ã
(x))

)}
,

where Ã ∈ I V I FS(X), Ã+, Ã− ∈ I V FS(X).

Definition 3.4 For any Ã ∈ I V I FS(X), a function g : I →
[0, 1] is called a distance function, if g satisfies the following
conditions:

(i) g( Ã, Ã+) = 0 and g( Ã, Ã−) = 0 iffμL
Ã
(x) = 1−νU

Ã
(x),

μU
Ã
(x) = 1 − νL

Ã
(x),

(ii) g( Ã, Ã+) = 1 and g( Ã, Ã−) = 1 iff μL
Ã
(x) = μU

Ã
(x) =

νL
Ã
(x) = νU

Ã
(x) = 0,

(iii) The membership and non-membership in g are commu-
tative, i.e.,

g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)), (μL

Ã
(x), μU

Ã
(x),

1 − μU
Ã
(x), 1 − μL

Ã
(x)))

= g((νL
Ã
(x), νU

Ã
(x), μL

Ã
(x), μU

Ã
(x)), (1 − μU

Ã
(x),

1 − μL
Ã
(x), μL

Ã
(x), μU

Ã
(x))),

g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)), (1 − νU

Ã
(x),

1 − νL
Ã
(x), νL

Ã
(x), νU

Ã
(x)))

= g((νL
Ã
(x), νU

Ã
(x), μL

Ã
(x), μU

Ã
(x)),

(νL
Ã
(x), νU

Ã
(x), 1 − νU

Ã
(x), 1 − νL

Ã
(x))),

(iv) g( Ã, Ã+) and g( Ã, Ã−) decrease with respect to
μL

Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x).

Condition (i) states that if the distances from Ã to Ã+
and Ã to Ã− are 0, it means that Ã, Ã+, and Ã− overlap
in Fig. 2. At this time, Ã is an IVFS. Condition (i i) shows
that when the distances from Ã to Ã+ and Ã to Ã− reach
1, the distance between IVIFS Ã and two IVFSs Ã+, Ã−
is the farthest, which Ã is at point (0, 0) in Fig. 2. Condi-
tion (i i i) shows that the position of μ̃ and ν̃ is equal when
measuring the distance between Ã and Ã+, so the position
of membership and non-membership is commutative in the
formula, the same as the distance between Ã and Ã−. More-
over, condition (iv) indicates that when the membership and
non-membership parameters increase, that is, when the rect-
angular area represented by Ã in Fig. 2 becomes larger or
close to the hypotenuse of the triangle, the distance between
IVIFS Ã and two IVFSs Ã+, Ã− becomes smaller, that is, the
distance is related to the parameters of membership degree
and non-membership degree decrease.

Definition 3.5 (Bustince et al. 2019)A function f : [0, 1]2 →
[0, 1] is called a binary aggregation function if it satisfies the
following conditions:

(I) f is component-wise increasing,
(II) f (0, 0) = 0,
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(III) f (1, 1) = 1,
(IV) f (x, y) = f (y, x).

We provide a detailed discussion about the construction
process and present it in the form of theorem in the context
of these concepts.

Theorem 3.6 Let g : I → [0, 1] be a distance function and
f : [0, 1]×[0, 1] → [0, 1] be a binary aggregation function.
For any Ã ∈ I V I FS(X), the function E : I V I FS(X) →
[0, 1] defined by:

E( Ã) = 1

n

∑

x∈X
f (g( Ã, Ã+), g( Ã, Ã−)) (4)

is an entropy on I V I FS(X).

Proof In the following, we will prove the proposed formula
satisfies four conditions in Definition 3.2.

(1) Let E( Ã) = 0, i.e., for any x ∈ X

f (g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)), (μL

Ã
(x), μU

Ã
(x),

1 − μU
Ã
(x), 1 − μL

Ã
(x))),

g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)), (1 − νU

Ã
(x),

1 − νL
Ã
(x), νL

Ã
(x), νU

Ã
(x))) = 0.

From (I I ), it is equivalent to

g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x),

νU
Ã
(x)), (μL

Ã
(x), μU

Ã
(x), 1 − μU

Ã
(x), 1 − μL

Ã
(x))) = 0

and

g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x),

νU
Ã
(x)), (1 − νU

Ã
(x), 1 − νL

Ã
(x), νL

Ã
(x), νU

Ã
(x))) = 0,

which by (i) is equivalent to μL
Ã
(x) = 1 − νU

Ã
(x) and

μU
Ã
(x) = 1 − νL

Ã
(x). So Ã is an IVFS.

(2) We can find that

E( Ã) = 1⇔ f (g( Ã, Ã+), g( Ã, Ã−))

= 1 ⇔ g( Ã, Ã+) = g( Ã, Ã−) = 1

⇔g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)), (μL

Ã
(x), μU

Ã
(x),

1 − μU
Ã
(x), 1 − μL

Ã
(x))) = 1,

g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)), (1 − νU

Ã
(x),

1 − νL
Ã
(x), νL

Ã
(x), νU

Ã
(x))) = 1.

⇔μL
Ã
(x) = μU

Ã
(x) = νL

Ã
(x) = νU

Ã
(x) = 0.

(3) From (i i i), we have

f (g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)), (μL

Ã
(x), μU

Ã
(x),

1 − μU
Ã
(x), 1 − μL

Ã
(x))),

g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)),

(1 − νU
Ã
(x), 1 − νL

Ã
(x), νL

Ã
(x), νU

Ã
(x))))

= f (g((νL
Ã
(x), νU

Ã
(x), μL

Ã
(x), μU

Ã
(x)),

(1 − μU
Ã
(x), 1 − μL

Ã
(x), μL

Ã
(x), μU

Ã
(x))),

g((νL
Ã
(x), νU

Ã
(x), μL

Ã
(x), μU

Ã
(x)), (νL

Ã
(x), νU

Ã
(x),

1 − νU
Ã
(x), 1 − νL

Ã
(x)))).

Therefore, taking (iv) into account, it follows that:

f (g((νL
Ã
(x), νU

Ã
(x), μL

Ã
(x), μU

Ã
(x)),

(1 − μU
Ã
(x), 1 − μL

Ã
(x), μL

Ã
(x), μU

Ã
(x))),

g((νL
Ã
(x), νU

Ã
(x), μL

Ã
(x), μU

Ã
(x)), (νL

Ã
(x), νU

Ã
(x),

1 − νU
Ã
(x), 1 − νL

Ã
(x))))

= f (g((νL
Ã
(x), νU

Ã
(x), μL

Ã
(x), μU

Ã
(x)), (νL

Ã
(x), νU

Ã
(x),

1 − νU
Ã
(x), 1 − νL

Ã
(x))),

g((νL
Ã
(x), νU

Ã
(x), μL

Ã
(x), μU

Ã
(x)), (1 − μU

Ã
(x),

1 − μL
Ã
(x), μL

Ã
(x), μU

Ã
(x)))).

Thus, E( Ã) = E( Ãc).
(4) Take Ã, B̃ ∈ I V I FS(X) such that μ̃ Ã(x) ≤ μ̃B̃(x),

ν̃ Ã(x) ≤ ν̃B̃(x). By condition (iv), it holds that:

g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)), (μL

Ã
(x), μU

Ã
(x),

1 − μU
Ã
(x), 1 − μL

Ã
(x)))

≥ g((μL
B̃
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)), (μL

B̃
(x), μU

Ã
(x),

1 − μU
Ã
(x), 1 − μL

B̃
(x)))

≥ g((μL
B̃
(x), μU

B̃
(x), νL

Ã
(x), νU

Ã
(x)), (μL

B̃
(x), μU

B̃
(x),

1 − μU
B̃
(x), 1 − μL

B̃
(x)))

≥ g((μL
B̃
(x), μU

B̃
(x), νL

B̃
(x), νU

Ã
(x)), (μL

B̃
(x), μU

B̃
(x),

1 − μU
B̃
(x), 1 − μL

B̃
(x)))

≥ g((μL
B̃
(x), μU

B̃
(x), νL

B̃
(x), νU

B̃
(x)), (μL

B̃
(x), μU

B̃
(x),

1 − μU
B̃
(x), 1 − μL

B̃
(x))).
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Similarly, it can be proved that

g((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)),

(1 − νU
Ã
(x), 1 − νL

Ã
(x), νL

Ã
(x), νU

Ã
(x)))

≥ g((μL
B̃
(x), μU

B̃
(x), νL

B̃
(x), νU

B̃
(x)),

(1 − νU
B̃

(x), 1 − νL
B̃
(x), νL

B̃
(x), νU

B̃
(x))).

Hence, from (I ), we conclude E( Ã) ≥ E(B̃). �

3.2 Construct entropy with distance function on
IVIFS

In this part, we first give the relationship between the distance
function and the distancemeasure, and then give the concrete
method of constructing the entropy of the distance function.

If D( Ã, B̃) is a distance measure, then the relationship
between distance function g and distance measure D is:

D( Ã, B̃) = 1

n

∑

x∈X
g( Ã, B̃)

= 1

n

∑

x∈X
g

(
(μL

Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)),

(μL
B̃
(x), μU

B̃
(x), νL

B̃
(x), νU

B̃
(x))

)

for any Ã, B̃ ∈ I V I FS(X).
From Theorem 3.6, a plenty of formulae of entropy mea-

sure can be derived by using different distance functions g
and binary aggregation functions f with the aforementioned
conditions. Next, we review some well-known distance mea-
sures of IVIFSs that can help understand the process of our
entropy construction clearly.
Example 3.7 For any Ã, B̃ ∈ I V I FS(X), from the distance
functions gH , gNH , gN given below:

gH ( Ã, B̃) = gH ((μL
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x)),

(μL
B̃
(x), μU

B̃
(x), νL

B̃
(x), νU

B̃
(x)))

= 1

2

[∣∣∣μL
Ã
(xi ) − μL

B̃
(xi )

∣∣∣ +
∣∣∣μU

Ã
(xi ) − μU

B̃
(xi )

∣∣∣

+
∣∣∣νL

Ã
(xi ) − νL

B̃
(xi )

∣∣∣ +
∣∣∣νU

Ã
(xi ) − νU

B̃
(xi )

∣∣∣
]
,

gNH ( Ã, B̃) = gNH ((μL
Ã
(x), μU

Ã
(x), vL

Ã
(x), vU

Ã
(x)),

(μL
B̃
(x), μU

B̃
(x), νL

B̃
(x), νU

B̃
(x)))

=
[∣∣∣μL

Ã
(xi ) − μL

B̃
(xi )

∣∣∣ ∨
∣∣∣μU

Ã
(xi ) − μU

B̃
(xi )

∣∣∣

+
∣∣∣νL

Ã
(xi ) − νL

B̃
(xi )

∣∣∣ ∨
∣∣∣νU

Ã
(xi ) − νU

B̃
(xi )

∣∣∣
]
,

gN ( Ã, B̃) = gN ((μL
Ã
(x), μU

Ã
(x), vL

Ã
(x), vU

Ã
(x)),

(μL
B̃
(x), μU

B̃
(x), νL

B̃
(x), νU

B̃
(x)))

= 1

2
max

{∣∣∣μL
Ã
(xi ) − μL

B̃
(xi )

∣∣∣

+
∣∣∣μU

Ã
(xi ) − μU

B̃
(xi )

∣∣∣ ,
∣∣∣νL

Ã
(xi ) − νL

B̃
(xi )

∣∣∣ +
∣∣∣νU

Ã
(xi ) − νU

B̃
(xi )

∣∣∣
}

.

Combined with the relationship between distance function
g and distance measure D, we can get the corresponding
distance measures DH , DNH , DN , that is, Eqs. (1)–(3) men-
tioned in Sect. 2.

In addition, it is easy to prove that the formulae gH and gN
satisfy conditions (i) − (iv), but gNH does not satisfy (i i).
When gNH ( Ã, Ã+) = 1 and gNH ( Ã, Ã−) = 1, the result of
μL

Ã
(x) = μU

Ã
(x) = νL

Ã
(x) = νU

Ã
(x) = 0 cannot be derived.

Next, we use gH and gN to calculate the distances from
Ã to Ã+ and Ã to Ã−, respectively.

Example 3.8 Consider two distance functions gH and gN , for
any Ã ∈ I V I FS(X),

gH ( Ã, Ã+) = 1

2

[∣∣∣μL
Ã
(xi ) − μL

Ã
(xi )

∣∣∣ +
∣∣∣μU

Ã
(xi ) − μU

Ã
(xi )

∣∣∣

+
∣∣∣νL

Ã
(xi ) − (1 − μU

Ã
(xi ))

∣∣∣ +
∣∣∣νU

Ã
(xi ) − (1 − μL

Ã
(xi ))

∣∣∣
]

=
π L
Ã
(x) + πU

Ã
(x)

2
,

gH ( Ã, Ã−) = 1

2

[∣∣∣μL
Ã
(xi ) − (1 − νU

Ã
(xi ))

∣∣∣

+
∣∣∣μU

Ã
(xi ) − (1 − νL

Ã
(xi ))

∣∣∣

+
∣∣∣νL

Ã
(xi ) − νL

Ã
(xi )

∣∣∣ +
∣∣∣νU

Ã
(xi ) − νU

Ã
(xi )

∣∣∣
]

=
π L
Ã
(x) + πU

Ã
(x)

2
,

In the same way,

gN ( Ã, Ã+) = gN ( Ã, Ã−) =
π L
Ã
(x) + πU

Ã
(x)

2
.

In the above calculation, we have shown that the distance
between IVIFS Ã and the corresponding two IVFSs Ã+ and
Ã− based on gH and gN , respectively, is the same. Thus, we
can draw a conclusion: combined with binary aggregation
function f : [0, 1] × [0, 1] → [0, 1], the distance functions
gH and gN induce the same entropy, given by:

EH ( Ã)=1

n

∑

x∈X
f

(
π L
Ã
(x) + πU

Ã
(x)

2
,
π L
Ã
(x)+πU

Ã
(x)

2

)

.

(5)

In particular, we consider f as:

(1) f1(u, v) = u + v

2
,
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(2) f2(u, v) = p

√
u p + v p

2
(p > 1),

(3) f3(u, v) = 1 − (1 − u + v

2
)k (k > 0),

(4) f4(u, v) = u + v

2e
exp(

√
u + v

2
).

Then, we get the following four entropies:

EH1( Ã) = 1

n

∑

x∈X

π L
Ã
(x) + πU

Ã
(x)

2
, (6)

EH2( Ã) = 1

n

∑

x∈X

π L
Ã
(x) + πU

Ã
(x)

2
, (7)

EH3( Ã) = 1 − 1

n

∑

x∈X

[
μL

Ã
(x) + μU

Ã
(x) + νL

Ã
(x) + νU

Ã
(x)

]k

2k(k > 0), (8)

EH4( Ã) = 1

n

∑

x∈X

π L
Ã
(x) + πU

Ã
(x)

2e
exp(

√
π L
Ã
(x) + πU

Ã
(x)

2
).

(9)

In the next example, we give amore general distance func-
tion.

Example 3.9 For any Ã, B̃ ∈ I V I FS(X), consider a distance
function gλ : I → [0, 1],

gλ( Ã, B̃) = gλ(μ
L
Ã
(x), μU

Ã
(x), νL

Ã
(x), νU

Ã
(x), μL

B̃
(x),

μU
B̃
(x), νL

B̃
(x), νU

B̃
(x))

=
∣∣∣λ

(
μU

Ã
(x) − μU

B̃
(x)

)

+(1 − λ)
(
μL

Ã
(x) − μL

B̃
(x)

)∣∣∣

+
∣∣∣λ

(
νU
Ã
(x) − νU

B̃
(x)

)

+(1 − λ)
(
νL
Ã
(x) − νL

B̃
(x)

)∣∣∣ ,

and a binary aggregation function f : [0, 1] × [0, 1] →
[0, 1], they induce an entropy, given by: for any Ã ∈
I V I FS(X),

Eλ( Ã) = 1

n

∑

x∈X
f
(
λ

(
1 − μL

Ã
(x) − νU

Ã
(x)

)

+(1 − λ)
(
1 − μU

Ã
(x) − νL

Ã
(x)

)
,

λ
(
1 − μU

Ã
(x) − νL

Ã
(x)

)

+(1 − λ)
(
1 − μL

Ã
(x) − νU

Ã
(x)

))
.

(10)

For Eλ, we can reflect the difference in the distance cal-
culation method by transforming the value of the parameter

λ, or we can transform the external aggregation function to
reflect the difference between these two distance normal-
ization methods. Through our discussion on the geometric
representation of IVIFS, a series of entropy measures of
IVIFS can be proposed under this method.

If λ = 1/2, Eq. (5) is recovered. If we consider f (u, v) =
p
√

u p+v p

2 (p > 1) we mentioned previously, then we get the
following entropy:

Eλ2( Ã) = 1

n

∑

x∈X

1
p
√
2

[ [
λ

(
1 − μL

Ã
(x) − νU

Ã
(x)

)

+(1 − λ)
(
1 − μU

Ã
(x) − νL

Ã
(x)

)]p

+
[
λ

(
1 − μU

Ã
(x) − νL

Ã
(x)

)

+(1 − λ)
(
1 − μL

Ã
(x) − νU

Ã
(x)

)]p ]1/p
.

For instance, if λ = 1/4, p = 2, then

E∗
λ2

( Ã) = 1

4n

∑

x∈X

[
5

(
1 − μL

Ã
(x) − νU

Ã
(x)

)2

+5
(
1 − μU

Ã
(x) − νL

Ã
(x)

)2

+9
(
1 − μL

Ã
(x) − νU

Ã
(x)

) (
1 − μU

Ã
(x) − νL

Ã
(x)

)] 1
2

.

(11)

In the following, we will use some proposed entropy for-
mulae as examples and apply them to numerical examples to
prove that the newly entropy construction method is effec-
tive.

4 Demonstrative example

In this part, we first present a comparison with the exist-
ing IVIFS entropy measures, which is adapted from Nguyen
(2016), to demonstrate the effectiveness of the newly pro-
posed measures.

Example 4.1 Three pairs of singleton IVIFSs are given
below:

Ã1 = {〈x, [0.1, 0.2], [0.3, 0.4]〉},
B̃1 = {〈x, [0.2, 0.3], [0.4, 0.5]〉},
Ã2 = {〈x, [0.5, 0.5], [0.1, 0.1]〉},
B̃2 = {〈x, [0.6, 0.6], [0.2, 0.2]〉},
Ã3 = {〈x, [0.5, 1], [0, 0]〉},
B̃3 = {〈x, [0, 0], [1, 1]〉}.

We compare the performance between the proposed mea-
sures EH1, EH2, EH3, EH4, E∗

λ2
, that is, Eqs. (6)–(9), (11),
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and the existing measures EY (Ye 2010b), EZ J J L (Zhang
et al. 2010), EZ (Zhang et al. 2014), EWZ (Wei and Zhang
2015) with the above three pairs of IVIFSs. The calculation
results are presented in Table 1.

It is obvious inTable 1 that from the perspective of entropy,
all proposed measures are superior to the listed existing
measures. Compared with the measures we proposed, EY ,
EZ J J L , EZ , EWZ cannot achieve the desired results. Ãi is
more fuzzy than B̃i in each pair of IVIFSs, i.e., the entropy of
Ãi should be greater than the entropy of B̃i for i = 1, 2, 3. In
the first pair of IVIFSs, EY provides the same value for differ-
ent IVIFSs, while the results of H and EZ are contrary to our
expectations. A similar situation happens in the second pair
of comparison, in which EY , EZ J J L , EZ do not work well.
Ã2, B̃2 and B̃3 are reverted to IFSs, when μL(xi ) = μU (xi ),
νL(xi ) = νU (xi ). In particular, B̃3 is a classic set, that is,
its entropy should be 0. All of the models except EZ J J L

perform well, meeting the requirement mentioned before,
while EZ J J L cannot distinguish between Ã3 and B̃3. Obvi-
ously, our proposed measures all produce the intuitive and
persuading results that they can reasonably distinguish these
IVIFSs.

In the next example, we will introduce the practical appli-
cation of entropy measure and put our outcomes into a
multi-criteria decision making (MCDM) problem. We uti-
lize the example adapted from Das et al. (2016) to clarify the
applicability of entropy in solving criteria weights.

Example 4.2 Acouplewants to buy a house in a certain place.
They have selected four sets. Now they have to choose one of
the four houses that bestmeets their requirements. These four
sets they selected are not in the same housing estate, denoted
as A1, A2, A3 and A4, respectively. The couple’s four criteria
for the house are: C1: house prices, C2: school district, C3:
location, C4: transport facilities. They are hesitant about the
preferences of the alternatives, so they can use IVIFSs to
score. The weight vector written as w = (w1, w2, w3, w4)

T

is unknown. According to the above criteria, the four houses
are rated to obtain the matrix D below:

D =

⎛

⎜⎜
⎝

C1 C2 C3 C4

A1 〈[0.1, 0.2], [0.1, 0.2]〉 〈[0.25, 0.5], [0.25, 0.5]〉 〈[0.4, 0.5], [0.3, 0.5]〉 〈[0.5, 0.5], [0.5, 0.5]〉
A2 〈[0.5, 0.6], [0.2, 0.3]〉 〈[0.2, 0.5], [0.2, 0.4]〉 〈[0, 0], [0.25, 0.75]〉 〈[0.3, 0.4], [0.4, 0.6]〉
A3 〈[0.25, 0.5], [0.25, 0.5]〉 〈[0.2, 0.4], [0.2, 0.4]〉 〈[0.2, 0.3], [0.4, 0.7]〉 〈[0.2, 0.3], [0.5, 0.6]〉
A4 〈[0.2, 0.3], [0.6, 0.7]〉 〈[0.4, 0.7], [0.2, 0.3]〉 〈[0.2, 0.5], [0.2, 0.5]〉 〈[0.5, 0.7], [0.1, 0.3]〉

⎞

⎟⎟
⎠

Since theweights of criteria are estimated based on knowl-
edgemeasures in Das et al. (2016), wewill modify the part of
the knowledgemeasure in the originalmethod to the entropy-

based criteria weight determination method as shown below
(Montes et al. 2018):

Step 1We compute the amount of entropy E(C j ) with D
for each C j .

Step 2 The weight of each criterion is obtained by nor-
malizing the difference between one and the entropy value
E(C j ).

w j = 1 − E(C j )
∑4

j=1

(
1 − E(C j )

)w j ∈ [0, 1],
4∑

j=1

w j = 1.

Byusing the proposed entropy formulae, the entropy value
of each criterion can be easily calculated.Generally, if a crite-
rionhas a small entropyvalue amongall alternatives, decision
makers can obtain more useful information from this crite-
rion. Therefore, the criterionwhich has theminimumentropy
value should be given priority as the most important criterion
for decision makers. And then further calculate the weighted
average value of IVIFS for each alternative, and finally get
the alternative ranking, as shown in Table 2.

It is observed from Table 2 that in terms of the weights of
criteria, ELZX (Liu et al. 2005), EZ J J L (Zhang et al. 2010),
EWWZ (Wei et al. 2011), EJ PCZ (Jin et al. 2014), and E∗

λ2
all

get the similar result that the weight of C2 is largest , while
EH1 , EH2 , EH3 , EH4 get that the weight of C4 is largest.
Additionally, the rankings of the alternatives we obtained are
exactly the same, and all entropymeasures indicate that A4 is
themost ideal choice,which ensures the entropymeasureswe
proposed is reasonable. Therefore, from the above numerical
problems, it is feasible and meaningful to construct a new
entropy measure by distance functions.

In summary, in Example 4.1, the performance of the pro-
posed entropy measures is preferable to that of some existing
measures in the comparison of the entropy values of the three
pairs of IVIFSs. From Example 4.2, we can see the proposed
entropy measures perform well and can reach the ranking
level of the existing entropy measures, where E∗

λ2
obtains

the analogous result both in weight value and alternatives
ranking. As a consequence, combining two examples, E∗

λ2

is the best performer that best fits the intuitive expectation
among the entropy measures listed under our construction
method.
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Table 1 Comparison results of
entropy measures

IVIFSs EY EZ J J L EZ EW Z EH1,EH2 EH3 EH4 Eλ2

Ã1 0.9580 0.4286 0.5 0.9781 0.5 1 − 0.5k 0.3731 0.5449

B̃1 0.9580 0.5556 0.7 0.9709 0.3 1 − 0.7k 0.1909 0.3269

Ã2 0.8329 0.2 0.6 0.9010 0.4 1 − 0.6k 0.2770 0.4359

B̃2 0.8329 0.3333 0.6 0.8660 0.2 1 − 0.8k 0.1151 0.2179

Ã3 0.4246 0 0.25 0.5878 0.7 1 − 0.75k 0.5945 0.2795

B̃3 0 0 0 0 0 0 0 0

Table 2 Weights of criteria and
alternatives’ ranking of entropy
measures

Entropy measures Weight vector Ranking of alternatives

ELZX , EWWZ , EJ PCZ w = (0.2274, 0.2860, 0.2370, 0.2496)T

EZ J J L w = (0.2366, 0.3159, 0.1859, 0.2616)T

EH1 , EH2 w = (0.2311, 0.2395, 0.2395, 0.2899)T A4 > A1 > A2 > A3

EH3 w = (0.2279, 0.2013, 0.2150, 0.3558)T

EH4 w = (0.2325, 0.2459, 0.2439, 0.2777)T

E∗
λ2

w = (0.1993, 0.2778, 0.2587, 0.2643)T

5 Conclusions

This paper introduces a newly method to construct some
entropy measures on IVIFS. Specifically, we give a set of
new axiomatic definitions that entropy measures need to
meet and then build some models that follow these axioms
to implement measures. The construction of our proposed
new entropy measure is based on the geometric representa-
tion of IVIFS, obtained by the distance aggregation of IVIFS
Ã with its two IVFSs Ã+ and Ã−. Since then, we can con-
struct entropy measures using distance functions. Finally, an
example is used to show that our proposed entropy measures
performbetter in the comparison of some special IVIFSs, and
a demonstrative example is utilized to explain the application
of entropy measure in MCDM. In future, we will continue to
explore more reasonable and better entropy measures.
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