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Abstract
The pipes as one of the main and important components of a water distribution network break during operation due to various

factors. Developing models for pipes failure rate prediction can be one of the most important tools for managers and

stakeholders during optimal operation of the water distribution network. In this study, the statistical and soft models such as

Linear Regression, Generalized Linear Regression, Support VectorMachine, Feed Forward Neural Network (FFNN), Radial-

Based Function Neural Network (RBFNN), and Adaptive Neuro-Fuzzy Inference System (ANFIS) were studied in order to

predict the pipes failure rate based on the characteristics of Gorgan city water distribution network including diameter, length,

age, installation depth, and number of failures of each pipe. In order to determine the optimal values of the parameters of each

model, appropriate error indices including correlation coefficient (R), Mean Square Error (MSE), and Correlation Mean

Square Error Ratio (CMSER) for training and test data were calculated, and the values of the parameters related to the model

with the highest value of the CMSER indexwere considered as themodel optimal values. Furthermore, in the validation stage,

the values of R and MSE error indices for each of the above models were considered as a criterion for selecting the most

appropriate model for predicting pipe failure rate. The findings show that among the soft and statistical models investigated,

ANFIS with MSE of 0.071 and R of 0.92 can predict the failure rate of the studied network pipes more efficiently and more

accurately than othermodels. Yet, despite the superiority of thismodel over othermodels, thismodel cannot accurately predict

the failure rate of the studied network pipes due to its relatively high MSE value. Therefore, a new approach was developed

based on the hybridization of trainedmodels to provide amore efficientmodel for amore accurate prediction of the pipe failure

rates ofwater distribution network. In this approach, the values of the network pipe failure rate predicted by each of the soft and

statistical models are considered as independent input variables, and the observational failure rate values are considered as the

dependent output variable of theANFISmodel. A comparison between the values of non-hybridmodel validation data indices

and the results of the proposed hybrid predictionmodel reveals that the use of the developed hybridmodel increased the R error

value from 8.1% (compared to the ANFIS model) to 260% (compared to the RBFNNmodel). It also decreased the MSE error

value from 37% (compared to the FFNN model) to 58% (compared to the RBFNN model). Moreover, the hybrid model,

compared to the superior non-hybrid ANFIS model, decreased MSE error rates by 45%. The findings show that the proposed

model can significantly raise the accuracy of predicting the failure rate of pipes, compared to other existing models.

Keywords Failure rate � Prediction � Gorgan � Water distribution network � Hybrid model � Adaptive neuro-fuzzy inference

system

1 Introduction

Nowadays, the majority of cities in different countries

provide the people with the facilities and services of water

distribution networks. These networks, which are among

the most vital infrastructures in residential areas, fulfill the

need for the drinking water in industrial and health sectors.

During the operation phase, water distribution network

pipes undergo physical failures for various reasons. The

breakage probability of older pipes in dispersive soil is

very high under unstable and harsh weather conditions.

There are many factors affecting the failure of pipes. TheyExtended author information available on the last page of the article
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can be divided into three categories: (1) Pipe characteristics

including diameter, material, age, coating, and defects

related to pipe construction; (2) Environmental conditions

including soil type, soil characteristics, corrosion, frost,

rainfall, climate change, and temperature, and (3) imple-

mentation conditions including pressure, loading condi-

tions, installation depth, etc. (Barton et al. 2019; Rajeev

et al. 2014). Economic, social, and environmental conse-

quences of the physical failure of urban water distribution

network pipes have always been a challenge for the man-

agement of water distribution networks. Therefore, the

correct prediction of the failure rate of network pipes

during the operation phase can solve many of the chal-

lenges managers and operators are facing with.

Over the past decades, a number of studies have used

various models to predict the failure rate of water distri-

bution network pipes. The comparison between physical

and statistical models shows that physical models are used

for very important parts of the network due to the high cost

of collecting the required input information such as internal

corrosion of the pipe and loads applied to the pipe. How-

ever, statistical models are mostly used for small networks

due to the availability of the required information (Rajani

and Kleiner 2001; Kleiner and Rajani 2002).

One of the first attempts in order to use statistical

models in pipe failure modeling of water distribution net-

work using linear regression was performed by Shamir and

Howard (1979). Then, based on the parameters affecting

the failure of pipes such as material, age, diameter, length,

temperature, and soil conditions, various researchers were

able to predict the failure rate of urban water distribution

network pipes with a relatively good accuracy. They used a

wide range of statistical models such as Multivariate Linear

Regression Models (MLRM), Generalized Linear Regres-

sion (GLR), Nonlinear Regression (NLR), Logistic

Regression (LR), Time Exponential Model (TEM), and

Proportional Hazard Model (PHM) (Soltanjalili et al. 2011;

Gasemnezhad et al. 2014; Shin et al. 2015; Faris Hamdala

and Sagar 2016; Kakoudakis et al. 2017; Robles-Velasco

et al. 2020).

In addition to statistical models, soft models such as

Artificial Neural Network (ANN), Genetic Algorithm

(GA), and Fuzzy Interference System (FIS) models are also

widely used in modeling and predicting pipe failure rates.

The use of these models has increased the accuracy of

predicting the failure rate of pipes. ANN model for mod-

eling the failure of water distribution network pipes was

initially used in 1999 by Sacluti. Afterward, other

researchers used this model in order to predict the pipe

failure rates, optimal water leakage management, decision-

making for investment, and modernizing the urban water

distribution network. They have shown that the ANN

model can be used to predict the failure rate of network

pipes with an appropriate precision (Sacluti 1999; Mounce

et al. 2002; Tabesh et al. 2009; Ho et al. 2010; Jafar et al.

2010; Asnaashari et al. 2013; Harvey et al. 2013; Sattar and

Gharabaghi 2015; Sattar et al. 2016, 2019; Kerwin et al.

2019).

Besides the ANN models, FIS models are widely used in

water science as well. The risk of water quality failure in

the water distribution network, the risk of failure of the

water distribution network pipes, and the potential for

leakage in the water distribution network have been

investigated by various researchers using FIS models

(Sadiq et al. 2007; Fares and Zayed 2010; Islam et al. 2011;

Valis 2013; Zangenehmadar and Moselhi 2016; Pandey

et al. 2020).

In recent decades, various studies have been carried out

on the application of statistical and soft models to finding

leak position, calibration of pipe roughness coefficient,

water quality prediction, and network pipe failure rate

prediction. The results of this research show that hybrid

models can be used with great precision in predicting

various phenomena (Kapelan et al. 2003; Tu et al. 2005;

Berardi et al. 2008; Xu et al. 2011, 2013; Soltani and

Tabari 2012; Farmani et al. 2017; Tabari and Malekpour

Shahraki 2018; Tavakoli et al. 2019; Malekpour and Tabari

2020; Tabari et al. 2020).

A review of studies on the application of hybrid models

in various sciences shows that these models have a very

high ability to predict phenomena with acceptable accu-

racy. The use of combination models to predict the failure

rate of water distribution network pipes has been studied by

a few researchers in the last decade. A review of their

studies shows that, firstly, the number of models used in the

hybrid model is limited to only two models, and secondly,

only a combination of neural network and genetic models

is used, and thirdly, none of the capable statistical models

have not been used in previous hybrid models.

Using more models, according to the specific strengths

of each model, can increase the accuracy of the hybrid

model to predict the pipe failure rate. In addition, the use of

statistical models along with intelligent models, due to the

high ability of statistical models in predicting phenomena

based on statistical data, can also improve the prediction

accuracy of the hybrid model.

Therefore, the main purpose of the present study is to

develop a new hybrid model in order to more accurately

and acceptably predict of the pipes failure rate. In the

hybrid model developed in this study, in order to overcome

the limitations of combination models of previous studies

and thus increase the accuracy of pipe failure rate predic-

tion, the number of models used in the hybrid model is

increased to six models. Also, statistical models have also

been used. The statistical and intelligent models which are

used in the study include Linear Regression (LR),
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Generalized Linear Regression (GLR), Support Vector

Machine (SVR), Feed Forward Neural Network (FFNN),

Radial-Based Function Neural Network (RBFNN), and

Adaptive Neuro-Fuzzy Inference System (ANFIS). There-

fore, the innovation of the proposed hybrid model com-

pared to other developed models, which will improve the

prediction accuracy, can be expressed as follows:

• Development of an approach based on the hybrid use of

the capabilities of soft simulation models

• Simultaneous application of statistical models in the

simulation model developed to cover the weaknesses of

soft models

• Determination of the degree of uncertainty of the

proposed model in predicting the failure rate of pipes

• Extraction of parameters affecting the uncertainty of

prediction of failure rate

In this study, the single prediction models along with the

proposed hybrid model were used to predict the failure rate

of pipes in the real water distribution network of Gorgan

City. Among the parameters affecting the failure of water

distribution network pipes, in this study, due to the lack of

access to the values of all parameters affecting the pipe

failure rate, only information on diameter, length, instal-

lation depth, age, and number of historical failures has been

used as effective variables. In order to compare the results

of different models and the proposed hybrid model, the

appropriate error indices were performed. The results

obtained from the implementation of the innovated model

show an increase in the accuracy of the hybrid model in

predicting the failure rate of water distribution network

pipes. Based on this correct prediction, the failure rate of

pipes can significantly reduce the cost of operation and

maintenance of urban water distribution networks.

2 Case study

The Gorgan City with a longitude of 54� 260 3800 E and

latitude of 36� 500 3300 N is located in the north of Iran. This

city has a population of about 48,054 people and is

3000 years old. Statistics pipe failure events in Gorgan

water distribution network show that the number of pipe

failures in this city’s network is relatively high due to

network wear-out. This has caused many problems in the

operation of the water distribution network. This study

focused on part of Gorgan water distribution network due

to its high number of failures and selected as case study.

Thus, the prediction of failure rate in this area can lead to

improved management of water distribution network in the

future (Fig. 1). According to the statistics available in

Golestan Water and Sewage Company, this study used the

network pipe information in a period of four years

(2015–2018), which includes diameter (D), length (L), age

(Ag), depth of installation (DI), and the number of failures

of each pipe. The characteristics of the water distribution

network are presented in Table 1.

3 The structure of the proposed
methodology

In order to development of model for predicting the failure

rate of water distribution network pipes in the study area,

the hybrid of statistical and soft models was applied. The

models used in the combination of the hybrid model pro-

posed in this research include two statistical models (linear

regression, generalized linear regression and support vector

machine) and four intelligent models including Support

Vector Machine, Feedforward Neural Network, Radial-

based Neural Network, and System Neuro-Fuzzy Inference

(adaptive). The structure of the proposed approach is

shown in Fig. 2.

According to this figure, the proposed methodology

consists of three parts:

• Extract the failure rates of the water distribution

network pipes: In this stage, the specifications of the

network pipes including length, diameter, age, depth of

installation, and number of previous failures are

collected, and then, the failure rate of network pipes

is calculated based on Eq. (1).

• Development soft and statistical model and their

simulation: Using the failure rate data obtained from

the previous step, the optimal parameters of each

statistical and intelligent model are calculated, and then,

the best mode of each model (for each of the studied six

models) is extracted. According to the selected superior

models, the failure rate of the pipes is predicted based

on the input data set (specified from the first stage). It

should be noted that in this step, the most efficient

structure of the prediction model is introduced for use

in the hybrid model.

• Implementation of the proposed hybrid model: In this

stage, the innovated hybrid model is implemented using

the predicted failure rate values with each of the

intelligent soft and statistical models (as input param-

eters) and the observed failure rate values (as output

parameter).

• Compare models and uncertainty analysis: Finally, in

order to evaluate the performance of the hybrid model

to predict the failure rate of pipes and compare it with

other models, the values of error indices of intelligent,

statistical, and proposed hybrid models are calculated

and the superior model is selected. Also, using the

Monte Carlo simulation method (MCS), the uncertainty
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of the proposed model is determined and the effect of

each of the input parameters to the forecast model in

creating uncertainty of model is determined.

3.1 Parameters affecting pipe failure

The first step in developing simulation model for predicting

a phenomenon is to identify the parameters or variables

that affect the phenomenon and to convert those variables

into quantitative measures to be used in the model. The

phenomenon in this study is to predict the failure rate of

urban water distribution network pipes. The main problem

in developing simulation models for predicting the failure

rate of water distribution network pipes is the lack of data

or lack of access to the required and accurate data.

Sattar et al. (2016) focused on the prediction of pipe

failure rate. They considered the pipe failure time to be just

a function of the five parameters of diameter, length,

Fig. 1 Location of a part of Gorgan city water distribution network

Table 1 Characteristics of the studied water distribution network

Parameters Value

Number of reservoirs 1

The time period studied (year) 2014–2018

Diameter range (mm) 63–500

Total length of pipes (m) 80,072

Number of pipes 1547

Number of failures 169

Installation depth range (m) 0.4–2.8

7462 S. M. Jafari et al.
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Fig. 2 Structure of the proposed approach to predict the pipe failure rates
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number of failures, cathodic protection, and lining of each

pipe. Aydogdu and Firat (2015) used three parameters

length, diameter, and age of the pipe as the parameters

affecting the failure rate of the network pipes in order to

predict the failure rate of water distribution network pipes.

The parameters of diameter, material, and age of the pipe

were considered by Rogers (2011) and Wang et al. (2009)

to estimate the risk of pipe failure and to predict pipe

failure rate in the water distribution networks, respectively.

Therefore, according to the available information related to

the characteristics of the studied network and the effective

parameters that proposed in previous research, this study

considered the parameters of diameter (D), length (L),

depth of installation (DI), and age (Ag) as independent

variables affecting pipe failure. Then, the failure rate of

each pipe (FR) is calculated (in terms of the number of

failures per length unit in each year) with Eq. (1) and based

on the data obtained from the number of failures of each

pipe in the study area during the four-year period:

FR ¼ Total number of failures during study period

Length of pipe � study period
ð1Þ

3.2 Introducing the soft models used in hybrid
model

In this study, various regression and soft models including

Linear Regression Model (LR), Generalized Linear

Regression Model (GLR), Support Vector Regression

(SVR), Feedforward Neural Network (FFNN), Radial-

Based Function Neural Network (RBFNN), and Adaptive

Neuro-Fuzzy Inference System (ANFIS) were used to

predict the failure rate of water distribution network pipes.

3.2.1 Linear regression model (LR)

In linear regression, the parameters of a linear model are

estimated via an objective function and the value of the

variables. The coefficients of independent variables are

determined by the least square method. Due to the presence

of extreme values in some observational data, in order to

reduce the effects of extreme data and to search for the

appropriate function simultaneously, the use of the bal-

anced weight (BW) squares method to calculate robust

least square (RLS) provides a better solution compared to

other methods.

In this method, it is important to select the appropriate

weight function from different weight functions such as

Andrews, Bisquare, Cauchy, etc., to calculate the weight of

each independent variable. The relationships related to this

method are as follows:

wi ¼
1; uij j\1

0; uij j � 1

�
ð2Þ

ui ¼
radj
K � S ð3Þ

radj ¼ ri=
ffiffiffiffiffiffiffiffiffiffiffiffi
1� hi

p
ð4Þ

where ri: the calculated error using the least squares

method, hi: the leverage parameter. This parameter adjusts

the error calculated by the square method by reducing the

weight of data containing high hi. K: compatibility con-

stant. This parameter is determined by the type of weight

function. S: smart variance. This parameter is equal to
MAD
0:6745 (the MAD is the mean absolute deviation), ui: the

standardized error, wi: the smart weight of each indepen-

dent variable.

3.2.2 Generalized linear regression (GLR)

Linear regression models describe a linear relationship

between a response and one or more predictive terms.

Many times, however, a nonlinear relationship exists.

Nonlinear regression describes general nonlinear models.

A special class of nonlinear models, called generalized

linear models, uses linear methods.

In generalized linear models, these characteristics are

generalized as follows:

• At each set of values for the predictors, the response has

a distribution that can be normal, binomial, Poisson,

gamma, or inverse Gaussian, with parameters including

a mean l.
• A coefficient vector b defines a linear combination Xb

of the predictors X.

• A link function f defines the model as f lð Þ ¼ Xb

In this study, the probability distribution curve of the

pipe failure rate was drawn to determine the type of dis-

tribution function governing the response or dependent

variable (the failure rate of the water distribution network

pipes). This shows that this variable is relatively well

compatible with the Poisson distribution function. Its link

function is considered also a Log function (f lð Þ ¼ log lð Þ).

3.2.3 Support vector regression model (SVR)

The SVR model is a version of the support vector machine

(SVM) model that performs regression instead of data

classification. In modeling a phenomenon using the SVR

method for an observational set with N observations where

xn is the number of input parameters and yn is the number

of output parameter, the goal is to find the best linear

function as follows:
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f xð Þ ¼ yn ¼ WXT
n þ b ð5Þ

To find the best function f xð Þ, the following optimiza-

tion problem must be solved:

Minimize
1

2
WWT þ C

XN
n¼1

nn þ n�n
� �( )

Constrain:

yn � WXT
n þ b

� �
� eþ nn

WXT
n þ b

� �
� yn � eþ n�n

n�n; nn � 0

ð6Þ

where e is the range of soft margin; n�n and nn are slack

variables; C is a positive number that controls the amount

of penalty. It is obtained by using from Eq. (7) if the

Gaussian kernel function is used. Otherwise, the best value

is obtained through trial and error method and by using the

values of error indices. The W is the optimal weight vector,

and b is the optimum oblique vectors.

C ¼ iqr Yð Þ
1=349

ð7Þ

In Eq. (8), iqr is equal to the difference between the

75th and 25th quarter of the target vector. In order to solve

the problem of linear and nonlinear optimization in SVR

problems, in addition to the quadratic programming

method, in cases where the number of observations is high,

one of the decomposition methods, sequential minimal

algorithm, and interactive single data algorithm can be

used. In this study, to select the optimal parameter values

of the SVR model, this model was developed in

MATLAB2018b program and it was executed 100 times.

Then, the optimal values of the model parameters were

determined based on the CMSER error index.

3.2.4 Feedforward neural network (FFNN)

ANN is a relatively new method for soft computing. It is

inspired by the structure of the human brain, and it models

the brain synaptic connections and neural structure. With

the advancement of artificial neural networks, various types

of neural networks have been developed such as Adaline

Network, Multilayer Perceptron Network, Feedforward

Network, Radial-Based Function Neural Network,

Regression-Based Network, etc. Each of them is suit-

able for specific applications. The FFNN network often has

an input layer containing input variables, i.e., independent

variables, and one or more hidden layers of sigmoid neu-

rons. Each layer is receptive the output of the previous

layer, and the last layer is the network output containing

output variables or dependent variables with linear

functions.

In order to create an FFNN network, it is necessary to

determine the network characteristics such as network

dimensions, the number of hidden layers, the number of

neurons in each layer, the type of transfer functions, and

network training methods. The transfer functions are used

in the feedforward network such as Logsig, Tansig, and

Purelin, which are selected depending on the data type and

problem specifications. To train the FFNN network, vari-

ous algorithms such as gradient descent, gradient descent

with momentum, variable learning rate, conjugated gradi-

ent, and quasi-newton algorithms are used. Although

determining the network specifications has a great impact

on the efficiency of the network, there is no specific

method to determine these specifications. Therefore, the

most appropriate network dimensions can be obtained by

comparing between the simulation results of different

networks with real values.

The feedforward network of this research consists of a

hidden layer with Tansig transfer function and an output

layer with linear Purelin transfer function. To determine

the best values of the FFNN model parameters, the

developed model was executed 100 times, and then, the

best values of the model parameters were determined based

on the CMSER error index.

3.2.5 Radial-based function neural network

These types of networks are a type of monitored neural

network that has a feedforward structure and consists of an

input layer, a hidden layer, and an output layer. In this

network, the number of neurons in the hidden layer is

determined based on the input parameters. The main

advantage of RBF networks is their hidden layer, which has

nodes called RBF. In each RBF unit, there are factors that

determine the position, deviation, or width of the center of

functions. Equation (8) shows the transfer function for a

radial basis neuron:

a ¼ radbase nð Þ ¼ e�n2 ð8Þ

where n is the vector distance between its weight vector

(w) and the input vector (P), multiplied by bias (b), and a is

the output value of the RBF function, which provides a

value between zero and one.

The output layer in the RBF network has a linear

transfer function (purelin). The output of the RBF network

is estimated through the following equations:

output ¼
XM
j¼1

�WjF Dj

� �
þ �b ð9Þ

F Dj

� �
¼ exp � Djbj

� �2h i
ð10Þ
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Dj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

wij � xi
� �2

vuut ð11Þ

bj ¼
0:8326

r
ð12Þ

where �Wj is the weight vector that connects the output layer

to the hidden layer; F Dj

� �
is the output of neuron j from

hidden layer, which is considered as the transfer function of

the hidden layer. r is the smoothing factor; �b is the bias

vector related to the output layer; and M and N are the

number of input and the number of neurons in the hidden

layer, respectively.

To develop a Radial-Based Function Neural Network, it

is necessary to determine the value of smoothing factor and

the desired error index. The smoothing factor determines

the width of an area in the input space to which each

neuron responds. This factor should be large enough that

neurons respond strongly to overlapping regions of the

input space. However, smoothing factor should not be so

large that each neuron is effectively responding in the same

large area of the input space.

3.2.6 Adaptive neuro-fuzzy inference system (ANFIS)

Adaptive Neuro-Fuzzy Inference System is a type of arti-

ficial neural network based on Sugeno fuzzy inference

system. This method was developed in the early 1990s. It

combines the capabilities of an artificial neural network

and a fuzzy inference system. An ANFIS model has five

layers. The first layer captures the inputs and determines

the membership functions of the inputs according to the

defined rules. In the second layer, in each rule, the degrees

of membership of the inputs are multiplied to determine the

weight of rule. The normalization of the obtained weights

from the previous stage is performed in the third layer

using Eq. (13). In the fourth layer, depending on the weight

of each rule and the corresponding output value, the

weighted output is calculated using Eq. (15), and finally,

the output of ANFIS model in the fifth layer is calculated

based on Eq. (15).

�wi ¼
wiPn
i¼1 wi

ð13Þ

�wi � fi ¼
wiPn
i¼1 wi

� ai � x1 þ bi � x2 þ � � � þ cið Þ ð14Þ

y ¼
Xn
i¼1

�wi � fi ð15Þ

where i is counter of rules; n is the number of rules; wi is

the weight of each rule; �wi is the normalized weight of each

rule; fi is the output linear function of the Sugeno system;

ai, bi and ci are the constant coefficients of the output linear

function; x and y vector are the input and output parame-

ters, respectively.

To create an ANFIS model, the correct choice of

parameters of membership functions and introducing

appropriate fuzzy rules to the model is very important. For

this purpose, the use of classification methods can be

effective. There are various algorithms such as grid parti-

tioning (GP), subtractive clustering (SC), and fuzzy clus-

tering method (FCM) for data clustering. The most

appropriate method is chosen depending on the type of

problem. In addition, according to the structure of the

ANFIS model, the appropriate training algorithm is chosen

from two methods. The first method is back propagation

that is based on the gradient descent of the total error

squares, and the second method is the hybrid method which

is a combination of the gradient descent method and the

minimum error squares.

In this research, the network was trained by using a

combination of gradient descent method and minimum

error squares. The data were clustered by using FCM

algorithm. This method works based on minimizing the

following objective function:

Jm ¼
XD
i¼1

XN
j¼1

lmij xi � cj
�� ��2 ð16Þ

where D is the number of data point; N refers to the number

of clusters; m is fuzzy partition matrix exponent for con-

trolling the degree of fuzzy overlap; xi is the ith data point;

cj is the center of the jth cluster; and lij is the degree of

membership of xi in the jth cluster.

3.3 The proposed innovative hybrid model

Due to the complexity of some phenomena as well as the

impact of various factors on that phenomenon, the per-

formance of soft and statistical models in predicting a

phenomenon always has limitations. These limitations lead

to inconsistencies in modeling results using soft and sta-

tistical models with observational values. As a result, the

accuracy of individual prediction models decreases. In

addition, the hybrid models proposed by the researchers

also have limitations such as the number of models used in

the hybrid model and the non-use of statistical models.

In the present study, six different models including two

statistical models and four smart soft models, which were

introduced in the previous section, have been used to

develop a innovative hybrid model. The use of different

models in this research has eliminated the limitations and

weaknesses of previous hybrid models. Therefore, the

innovation of the proposed hybrid model of the present

study is the use of more models (including six models), the
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use of statistical models, and the use of a combination of

statistical and intelligent models in the hybrid model. The

executive steps of hybrid developed model are as follows

(Fig. 3):

• Gathering the urban water distribution network data

including pipe diameter, pipe length, number of failures

per pipe, pipe age, and pipe installation depth, as well

as their division into three data sets entitled training,

testing, and validation data.

• Training single models and predicting failure rate:

using observational values related to independent and

dependent variables, statistical and soft models were

performed 100 times. The best prediction models were

selected based on CMSER index values related to

training and test data sets.

• Generation of input–output data sets for the innovative

hybrid model: the failure rates values predicted based

on the best selected single models from the previous

step are considered as input variables to the hybrid

model.

• Extract the parameters of the hybrid model: by running

the hybrid model 100 times and comparing the MSE

and R error indices of the training and testing stage, the

model with the highest R and the lowest MSE was

presented as the best hybrid model.

3.4 The model evaluation indices

There are various error indices in order to measure the

accuracy and appropriateness of the fitted models. Due to

the importance of R (for investigating the goodness of

model data fit) and MSE (for examining the difference

between observational and predicted values), among the

available error indices, these indices were used in this

study to evaluate the suitability and accuracy of the model

in predicting the failure rate of water distribution network

pipes. Equations (17) and (18) are used to measure R and

MSE error indices, respectively.

R ¼
Pn

i¼1 xmi � �xmð Þ xci � �xcð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xci � �xcð Þ2

Pn
i¼1 xmi � �xmð Þ2

q ð17Þ

MSE ¼
Pn

i¼1 xmi � xcið Þ2

n
ð18Þ

where xmi is the observed value; xci is the predicted value; n

is the number of observations data; �xm and �xc are the

arithmetic mean of the observed and predicted values,

respectively.

According to the definitions of the above indices, the

lower value of MSE index and the higher value of R index

lead to the higher accuracy of the prediction model. The

value of R-indicator only shows that the behavioral status

of the predicted values matches with the actual values. As a

result, based on this error index, the magnitude of the error

value, i.e., the difference between the prediction and

observation values, cannot be examined. Therefore, it is

necessary to be considered the MSE error index properly in

measuring the accuracy of the prediction models.

In this research, the CMSER error index (Eq. (19)),

which is defined by the ratio R to MSE, was proposed in

Fig. 3 Structure of the proposed

hybrid model to predict pipe

failure rates
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order to simultaneous use of the benefits of the R and MSE

error indicators.

CMSER ¼ R

MSE
ð19Þ

In this study, in order to measure the accuracy of dif-

ferent models and also to prevent overfitting, the obser-

vational data are divided into three sub-sets: training

dataset (including 70 percent of data), testing dataset (in-

cluding 15 percent of data), and validation dataset (in-

cluding 15 percent of data). Therefore, according to the

proposed approach, each model was re-iterated 100 times,

and R, MSE, and CMSER error index values were esti-

mated in each iteration in order to select the best values for

the parameters of each model. Then, based on the sum of

the CMSER index related to training and testing dataset of

each iteration, the model that has the highest CMSERm
i

value is selected as the most appropriate prediction model.

CMSERm
i ¼ Rm

i

MSEm
i

; i ¼ 1; 2; . . .; 100; m ¼ 1; 2; . . .;M

ð20Þ

where Rm
i and MSEm

i are the correlation coefficient and

root square error related to the ith iteration of the mth

model, respectively.

After selecting the best models, the following three

indices were used to evaluate the predictive power of the

models based on the validation data (Tropsha et al. 2003):

a) The K or K0 index, which indicates the slope of the

regression line passing through the origin of the

coordinates between the observed and predicted

values or between the predicted and observed values.

From the above two indices, at least one of the values

of K or K 0 should be close to one.

K ¼
Xn
i¼1

xci � xmið Þ=x2ci ð21Þ

K 0 ¼
Xn
i¼1

xci � xmið Þ=x2mi ð22Þ

b) The m or n index, which indicates the coefficient of

determination of the regression line between

observed and predicted values, or vice versa. m and

n values should be less than 0.1.

m ¼ R2 � R2
o

� �
=R2 ð23Þ

n ¼ R2 � R
02
o

� �
=R2 ð24Þ

where

R2
o ¼ 1�

Xn
i¼1

x2ci 1� Kð Þ2=
Xn
i¼1

xci � �xcð Þ2
 !

ð25Þ

R
02
o ¼ 1�

Xn
i¼1

x2mi 1� K 0ð Þ2=
Xn
i¼1

xmi � �xmð Þ2
 !

ð26Þ

c) The Rm1 or Rm2 indices, which indicate the cross-

validation condition, should be greater than 0.5 and

are defined as follows:

Rm1 ¼ R2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

o

		 		q
 �
ð27Þ

Rm1 ¼ R2 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R02

o

		 		q
 �
ð28Þ

Given that each of the above indices shows a part of the

model’s ability to prediction, therefore, it is necessary to

examine the above three indicators and simultaneously

satisfy their conditions to demonstrate the ability of the

prediction models (Golbraikh and Tropsha 2002).

3.5 Model uncertainty analysis

As previously mentioned, the failure rate of water distri-

bution network pipes depends on various independent

parameters such as length, diameter, material, installation

depth, and number of previous failures. The pipe failure in

different water distribution networks does not occur simi-

larly and at a constant rate, and according to different

effective parameter values, the occurrence of this phe-

nomenon is different in miscellaneous networks.

The uncertainty of the independent input parameters of

the model, such as length, installation depth, environmental

conditions, and especially the number of failures of the

network pipes, causes the uncertainty of the model output,

i.e., the failure rate of network pipes. Therefore, it is nec-

essary and important to measure the uncertainty of the

failure rate predicted by the model for correct decision-

making in the operation of the network.

There are several ways to determine the uncertainty of

the prediction model output. In this study, the Monte Carlo

Simulation method (MCS) is used. The MCS method is a

numerical method for calculating output uncertainty, and it

was developed by Ulma and Neuman in 1946 for military

uses (Frey and Patil 2002). In this method, in order to

measure the model output uncertainty, it is necessary to

know the uncertainty of the input variables or, in other

words, the type of probability density function of the input

parameters.

The model must be run several times before preforming

the statistical analysis using MCS method. Each time the
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model is run, a definite output is obtained. Then, by using

the definite outputs, the probability density function of the

model output and its uncertainty are estimated. The model

output uncertainty is measured via using Eq. (29) (Walker

1931):

Uncertainty% ¼ 100�MAD

median Pð Þ ð29Þ

where P is the mean values of the model output and MAD

is the mean absolute deviation, which is estimated from

Eq. (30):

MAD ¼ 1

J

XJ
i¼1

Pi �median Pð Þj j ð30Þ

where J is the number of times the model was run.

Equation (31) estimates the model output uncertainty,

which is a result of the uncertainties of the independent

input variables. The contribution of each input variable to

the model output uncertainty is different and can be cal-

culated through least square linearization method (Ver-

beeck et al. 2006). Equation (31) is the general form of the

equation used in this method. This equation is a multiple

regression between the deviation of each input parameter

from the mean value of that parameter and the output of the

model.

y ¼ w1Dv1 þ w2Dv2 þ � � � þ wiDvi þ b ð31Þ

where vi is the model input parameter; y is the model

output; Dvi is the difference of each random sample of

input variable i (i.e., vi) with the mean value of all random

samples of parameter i (i.e., mvi); wi is the regression

coefficient between the calculated model output and the

input parameters; and b is the regression constant

coefficient.

Using multiple regression analysis, the regression

coefficients are determined between the calculated model

output (pipes failure rate) and the input variables. Thus, the

sensitivity coefficients of each input variable i can be

obtained by Eq. (32):

Svi ¼ 100�
w2
i � r2DviPn

i¼1 w
2
i � r2Dvi

ð32Þ

where rDvi is the variance of Dvi and n is the number of the

model input variables.

4 Results and discussion

In this section, the optimal values of each prediction model

parameters in order to make the appropriate model, and

predict the failure rate of water distribution network pipes

are presented. Then, using the proposed approach, the

results of the hybrid model were investigated in compar-

ison with individual soft models. Finally, the uncertainty of

the superior model was discussed in detail.

4.1 Linear regression model (LR)

According to the explanations provided in the linear

regression section, multiple linear regression method with

RLS method and dual weighted squares were used in this

study in order to calculate the minimum prediction error

value. In the first step of linear regression modeling, the

appropriate fitness function was selected from the follow-

ing functions: linear, quadratic, pure quadratic, and inter-

action functions. This selection was performed by running

the multiple linear regression model for different functions

and by calculating the value of the CMSER index for each

of the functions. As shown in Fig. 4, the best function was

the pure quadratic function with the highest value of the

CMSER index.

In order to select the type of weight function in the dual

weighted squares method, the linear regression model of

this study was performed for different weight functions,

and then, the values of CMSER error index were calcu-

lated. Finally, as shown in Fig. 5, the Cauchy weight

function was selected as the best weight function of the

linear regression model due to having the highest value of

CMSER index.

Based on the results obtained from the LR model, the

multiple linear regression model was developed and per-

formed to predict the failure rate of network pipes with the

pure quadratic fitness function and Cauchy weight func-

tion. The MSE and R values for the validation data were

obtained equal to 0.0863 and 0.51, respectively.

Fig. 4 CMSER error index values for different fitness functions in

multiple linear regression model
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4.2 Generalized linear regression model (GLR)

There are three sections in the structure of a generalized

linear regression model. The first section involves selecting

the type of distribution function governing the independent

variable. According to the failure rate date recorded for the

water distribution network in this study, the Poisson

probability distribution function is considered. Therefore,

Log function is the suitable as link function for the Poisson

distribution function.

According to the Poisson probability distribution func-

tion and the Log link function, the generalized linear model

for predicting the water distribution network pipe failure

rate was developed. The MSE and R error index of the

validation data were obtained equal to 0.0897 and 0.35,

respectively.

4.3 Support vector regression model (SVR)

In order to establish the best SVR model, it is necessary to

determine various parameters such as C coefficient, kernel

function type, kernel function scale, e value. Due to the

multiplicity of model parameters, choosing the best values

for the mentioned parameters is only possible using the

optimization method. For this purpose, the SVR model was

prepared and implemented for different optimization

methods and kernel function. Then, CMSER index values

were calculated for each situation. Based on CMSER error

index, the best optimization method in the SVR model is

the LIQP method with the Gaussian kernel function

(Fig. 6). The optimal values of the other parameters of the

SVR model are shown in Table 2.

4.4 Feedforward neural network (FFNN)

To select the appropriate training algorithm, the feedfor-

ward neural network with a one hidden layer, the number

of different neurons, and ten training algorithms were

created in the MATLAB-R2018b. The value of the MSE

and R indicators related to the training and testing dataset

was calculated for 100 times the execution of each of the

different structures of the FFNN, and the best model of

each structure was extracted based on the CMSER index.

The results show that among the studied training algo-

rithms, the algorithm called Trainlm leads to the creation of

a FFNN model with the highest value of the CMSER index.

Based on this algorithm, the number of neurons suitable for

the hidden layer of the selected structure is selected to be

20 (Fig. 7).

Therefore, the specifications of the trained FFNN are: an

input layer with 4 input variables (diameter, length, depth

of installation, and age), a hidden layer with 20 neurons

with tansig transfer function, an output layer with a

dependent variable (failure rate of each pipe) and purelin

linear transfer function, and the type of algorithm used to

train the FFNN model being the Trainglm algorithm.

It should be noted that the initial weight and oblique

vectors are considered the same for different structures of

the FFNN model to compare the results of the models and

have the same initial conditions. The results of MSE and R

error index of the validation data for the best structure were

obtained equal to 0.060 and 0.69, respectively.

4.5 Radial-based function neural network
(RBFNN)

Two parameters of smoothing factor and desired error

index should be determined in the construction of RBF

neural network model in order to stop the training process.

In this algorithm, two conditions are considered for stop-

ping the training process, which include: minimum error,

which is considered zero, and the number of hidden layer

neurons. The maximum allowable number of neurons in

the hidden layer is equal to the number of observation

dataset.

To determine the most appropriate smoothing factor, the

RBF neural network model was developed and run in the

MATLABR2018b for different values of smoothing factor

Fig. 5 CMSER index values of multiple linear regression model with

different weight functions

Fig. 6 CMSER index value for different optimization methods and

Kernel functions
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(1-100) and number of neurons. Studies in this research

show that if the smoothing factor is chosen to be greater

than 49, overfitting occurs. Therefore, to prevent overfit-

ting, the range of smoothing factor was considered to be

between 1 and 49.

The value of the CMSER index obtained for different

values of the smoothing factor and the number of hidden

layer neurons shows that the maximum values of the

CMSER index occur in the smoothing factor values

between 6 and 18 (Fig. 8).

Investigation of CMSER error index versus the number

of different hidden layer neurons for smoothing factor

between 6 and 18 shows that with the increasing number of

neurons, the CMSER index values increase and MSE

related to training dataset decreases. This analysis is not

true for testing dataset and for the number of neurons over

9, and the CMSER error index for the testing dataset is

reduced. This means that there is an overfitting in the

process of model training. Therefore, the range of the

number of hidden layer neurons for model training in this

study is considered to be between 2 and 9 (Fig. 9).

Then, the structure of RBF neural network model was

prepared and implemented with a smoothing factor

between 6 and 18 for different amounts of hidden layer

neurons between 1 and 9. The result of trained RBFNN

model indicates that the value of R and MSE error indices

of the validation was obtained equal to 0.276 and 0.0931,

respectively. Therefore, the specifications of the RBFNN

model for predicting the failure rate of water distribution

network pipes in this research have five input parameters, a

hidden layer with a maximum of 9 neurons and a Radbase

transfer function and a smoothing factor equal to 10 and an

output layer with one output and purelin linear transfer

function.

Table 2 Optimal parameters of

LIQP method in SVR model
Optimization method Kernel function Kernel Scale Standard Epsilon(r) Bias(b) BoxCo. (C)

LIQP Gaussian 0.0023 Yes 0.005 0.014 309.98

Fig. 7 Comparison of the

results of different training

algorithms per different number

of hidden layer neurons based

on the CMSER index

Fig. 8 Variation in CMSER

index in comparison with

different values of the

smoothing factor and the

number of neurons in the hidden

layer
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4.6 Adaptive neuro-fuzzy inference system
(ANFIS)

By running 100 times of ANFIS model, it can be found that

training by using a combination of gradient descent and

error squares provides the highest value of the CMSER

index. Therefore, the hybrid training method was used to

train the ANFIS model. In addition, to select the appro-

priate clustering method, the selected ANFIS model was

iterated 100 times for each of the network grid partitioning,

subtractive clustering, and fuzzy clustering. The CMSER

index values for each iteration were estimated. The results

showed that the fuzzy clustering method had the highest

value of CMSER index; thus, it was selected as the

appropriate method for data clustering.

In the fuzzy clustering method, it is very important to

determine the number of clusters and the overlap of the

clusters to create a matrix for cluster separation. After 100

iterations of ANFIS model for different the number of

clusters and the power of the matrix, and the estimation of

CMSER index, seven clusters were chosen as the best

number of clusters, and power equal to 10 was considered

as the best power for ANFIS model. After selecting the

optimal values of the ANFIS model parameters, the failure

rate of the studied network pipes for the validation data was

predicted, and the values of R and MSE error indices were

estimated as 0.92 and 0.071, respectively.

4.7 Proposed hybrid prediction model

Based on the first and second steps described in the pro-

posed hybrid model, the gathering of water distribution

network datasets, as well as training and development of

the best model related to each of the soft and statistical

models, was carried out.

Using the data collected in the first stage, including the

values of the input parameters (diameter, length,

installation depth, age, and number of pipe failures), and

the best developed models in the second stage, including

FFNN, RBFN, SVR, GLR, LR, and ANFIS, in the third

step, the values of the failure rate predicted by mentioned

six soft models were considered as input data to hybrid

model.

The basic model of hybrid prediction model was chosen

based on the comparison of CMSER index of the predicted

values of pipe failure rate and based on the best soft and

regression models. In this study, ANFIS soft model had the

highest CMSER index value (12.95) of the validation data

and it has been selected as the base model of the hybrid

prediction model.

In the fourth step, based on the results of the previous

step, the input datasets of the hybrid model were divided

into three sub-sets: training, testing, and validation. Then,

the optimal parameters of the hybrid model were obtained

using 100 times hybrid model execution and comparison of

the CMSER error index of the training and testing dataset

in different executions. Finally, the MSE and R error

indices related to validation data of the hybrid model are

calculated and compared with the result of singular soft

models. The values of CMSER error index, related to the

validation data of the hybrid prediction model, were esti-

mated to be 5.61. Comparing the results of the proposed

model with the results of the best selected soft model (i.e.,

the ANFIS model) shows that the use of the proposed

approach can reduce the prediction error of the failure rate

of network pipes up to 56.7%.

4.8 Uncertainty analysis of pipeline failure rate
prediction model

To evaluate the uncertainty of the developed prediction

model, it is first necessary to determine the probability

density function (PDF) of each of the input parameters to

the model. In order to choose the best PDF, various PDFs

Fig. 9 Variation in MSE error

index versus the number of

hidden layer neurons for

smoothing factor values

between 6 and 18
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were fitted for the observation data of the studied water

distribution network. The best PDFs were obtained for the

length, diameter, age, and depth of installation of the pipes

parameters as follows: Gaussian, log-logistic, normal and

log-logistic functions.

After selecting the PDFs for each of the input parame-

ters, for each iteration of MCS method, a random sample of

each input parameter value including length, diameter, age,

and depth of installation was selected and given to the best

soft model for predicting pipe failure rate. Finally, the

failure rate was determined based on the values predicted

by the six soft models (which are considered as inputs to

the hybrid model). In order to determine the appropriate

number of simulation iterations in the MCS method, the

output variance (i.e., the rate of pipe failure) was estimated

in each simulation (Verbeeck et al. 2006). As shown in

Fig. 10, the output variance of the model is converged for

over 100,000 times simulations. In other words, for the

number of simulations over 100,000 times, the variance is

constant. Therefore, increasing the number of simulations

more than this number does not have any effect on the

resulting uncertainty of the model. So, in this study the

number of simulations in MCS procedures is considered to

be 100,000.

According to the values of random samples in each of

the input variables, the MAD value for the hybrid predic-

tion model is equal to 2.72. This shows an uncertainty of

43.59% of the hybrid model for predicting the failure rate

of distribution network pipes.

Estimating the contribution of each input variable to the

uncertainty of the predicted failure rate shows that pipe

length had the largest effect (with a contribution of 71%)

on the pipe failure rate uncertainty. After that, the age of

pipe, diameter, and installation depth had the next largest

impact with a contribution of 24%, 4.5%, and 0.5%,

respectively.

4.9 Evaluation of the accuracy and performance
of the developed prediction models

This section discusses the accuracy and performance of

various developed models to predict the pipe failure rate.

The models were compared and analyzed in terms of the

error indices mentioned in the previous sections. The val-

ues of MSE, R, Nash Sutcliffe (NS), mean absolute error

(MAE) for each developed prediction model and for three

datasets (training, testing and validation) are calculated and

presented in Tables 3, 4 and 5.

The validation data are a part of the observation data,

which did not participate in the training process. Therefore,

in order to select the best prediction model, the error

indices of the validation data in different models are

compared with each other. The comparison between the

error indices of the hybrid model and six statistical and soft

models shows that the use of the hybrid model increases

the R index rate by 8.1% (compared to the ANFIS model)

to 260% (Compared to the RBFNN model). It also

decreases the MSE index rate by 45% (compared to the

ANFIS model) to 58% (compared to the RBFNN model).

As a result, the use of hybrid model improved the perfor-

mance and accuracy of the pipe failure rate prediction. The

CMSER error index was used to consider the simultaneous

effect of R and MSE indices in order to select the superior

model. As shown in Fig. 11, the developed hybrid model

has the highest CMSER index (25.51) compared to studied

soft and regression (statistical) models.

NS error index is used as a criterion for evaluating the

predictive power of models which can range from �1 to

one. An efficiency of 1 (NS=1) corresponds to a perfect

match of predicted to the observed data. As shown in

Table 5, the hybrid model had the maximum value of the

NS index of the validation data (equal to 0.985). In addi-

tion, the MAE error index is a measure of average absolute

deviation between the predicted and observed values. The

Fig. 10 Variation in output

variance of the hybrid model for

different simulations
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lower value of this index means higher precision and

accuracy of the model. According to Table 5, the hybrid

model has the lowest value of this index for the validation

data (equal to 0.0012).

In addition to the indices presented in Tables 3, 4 and 5

and Fig. 11, in order to compare the prediction power of

statistical and soft models to estimate the failure rate of

water distribution network pipes, the values of the valida-

tion criteria that recommended by Tropsha et al. (2003) for

validation data were estimated (Table 6).

Based on the description provided in Sect. 3.4, devel-

oped soft models are considered valid for prediction the

failure rate of pipes if they satisfy some or all of the

required conditions. As observed in Table 5, only the

hybrid model satisfies all of the related validation criteria;

thus, proposed hybrid model has strong prediction power

and was not random correlations.

The above error indices only show the mean value of the

errors of the predicted models and cannot reveal the

accurate assessment of the distribution of errors. Therefore,

for a more efficient evaluation of the models, cumulative

distribution functions (CDF) of the simulated and observed

values of pipe failure rates of various soft models in vali-

dation stage were used (Tabari and Zarif Sanayei (2019);

Yoon et al. (2011)). As shown in Figs. 12, 13, 14, 15, 16,

17 and 18, the lowest deviation of the predicted values

from the observed values was related to the hybrid model.

This shows the accuracy, performance, and more reliability

of this model compared to the other soft models. The CDF

deviation of ANFIS model was almost equal and slightly

higher than the hybrid model, which shows the great sim-

ilarity of CDFs of these two models. The highest deviation

of CDFs is related to the SVR model.

5 Conclusion

In order to eliminate the limitations, deficiencies and thus

improve the predicting accuracy of pipe failure rate in the

water distribution network of this research, the new hybrid

model with combination of six different models (four soft

models and two statistical models) including Adaptive

Neural Fuzzy Inference System (ANFIS), Fit Forward

Neural Network (FFNN), Radial-Based Function Neural

Network (RBFNN), Support Vector Regression (SVR),

Generalized Linear Regression (GLR) and Polynomial

Linear Regression (LR) models was developed. The

development process of the proposed hybrid model consists

Table 3 Comparison of error indices of different soft models in the

training stage

Model/error index MSE R NS MAE

LR 0.0907 0.49 - 1.917 0.0045

GLR 0.0868 0.59 - 1.32 0.0044

SVR 0.0921 0.55 0.13 0.0036

FFNN 0.0826 0.68 0.46 0.202

RBFNN 0.0624 0.91 0.788 0.0024

ANFIS 0.037 0.98 0.976 0.00088

Hybrid 0.035 0.974 0.987 0.035

Table 4 Comparison of error indices of different soft models in the

testing stage

Model/error index MSE R NS MAE

LR 0.0597 0.71 0.493 0.0027

GLR 0.56 0.75 0.407 0.0024

SVR 0.067 0.93 0.58 0.003

FFNN 0.055 0.84 0.417 0.031

RBFNN 0.077 0.49 0.23 0.0045

ANFIS 0.078 0.62 0.098 0.0052

Hybrid 0.033 0.993 0.97 0.001

Table 5 Comparison of error indices of different soft models in the

validation stage

Model/error index MSE R NS MAE

LR 0.0863 0.51 - 1.77 0.005

GLR 0.0897 0.35 - 3.53 0.0057

SVR 0.066 0.62 0.43 0.0026

FFNN 0.062 0.69 0.44 0.0453

RBFNN 0.0931 0.276 - 12.67 0.0051

ANFIS 0.071 0.92 0.732 0.0044

Hybrid 0.039 0.995 0.985 0.0012

Fig. 11 Comparison of validation data CMSER error index for

different developed soft models
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of three parts. First, the failure rate values are extracted

based on the characteristics of network pipes such as

diameter, length, age, installation depth, and number of

previous failures. Then, the best model is determined based

on the optimal parameters values of each soft model and

the values of the predicted failure rate. Finally, the hybrid

model is developed and implemented by combining the

results of superior soft models as input.

In order to study the accuracy, performance, and pre-

diction power of proposed hybrid model and compare with

different developed models, in this research, different error

indices and validity criteria were used. These error indices

examine the accuracy and ability of the soft models from

two perspectives, the average value of the errors and dis-

tribution of errors. In terms of mean error, the new hybrid

model increased the R index from 8.1% (compared to the

ANFIS model) to 260% (compared to the RBFNN model),

and it reduced the MSE error by 37%-45% compared to

other soft models. Therefore, the hybrid model had the

highest value of the CMSER index, which simultaneously

Table 6 External validation

statistical measures for

developed soft models based on

the validation dataset

Model/error index Rm2 Rm1 n m K0 K

LR 0.264 0.267 - 0.197 - 0.184 1.27 0.62

GLR 0.219 0.44 0.614 - 0.0132 0.95 0.84

SVR 0.43 0.59 0.23 0.057 1.53 0.59

FFNN 0.58 0.66 - 0.0025 - 0.035 1.046 0.88

RBFNN 0.0187 0.0288 0.99 - 6.23 1.43 0.37

ANFIS 0.52 0.59 0.10 0.29 0.982 0.838

Hybrid 0.918 0.929 0.0038 0.0025 0.96 1.032

Fig. 12 Cumulative distribution function of the observed and pre-

dicted pipe failure rates using hybrid model

Fig. 13 Cumulative distribution function of the observed and pre-

dicted pipe failure rates using ANFIS model

Fig. 14 Cumulative distribution function of the observed and pre-

dicted pipe failure rates using RBFNN model

Fig. 15 Cumulative distribution function of the observed and pre-

dicted pipe failure rates using FFNN model
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shows the effect of two indicators R and MSE. In addition,

based on validation criteria, the hybrid model simultaneous

satisfies all of the related validation criteria. Therefore, in

terms of mean error, the proposed hybrid model has more

accuracy and ability to predict the pipe failure rate com-

pared to other soft models.

From the point of view of distribution error, the CDF of

the values predicted by the new developed hybrid model

was more consistent with the CDFs of observed values.

Therefore, in terms of distribution error, the hybrid model

had a better performance and accuracy compared to other

soft models. Therefore, due to the appropriate performance

and capability of the hybrid model in this research, this

model has been selected as the most appropriate model and

can detect the pipe failure rate of the urban water distri-

bution network with a very high accuracy.
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