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Abstract
In spite of accuracy, but due to computational complexity, Center of Gravity (CoG) defuzzification remained dormant for the
mathematical modeling of fuzzy controllers for a long time in the past. Recently, Arun and Mohan (ISA Trans 70:16–29,
2017) obtained the mathematical models of two simplest fuzzy PI/PD controllers using CoG defuzzification. In this study, the
mathematical models of another five simplest fuzzy PI/PD controllers are obtained, and their properties and computational
aspects are investigated. Sufficient conditions for Bounded-Input-Bounded-Output stability of a closed-loop system containing
one of these controllers in the loop are also established using the Small-Gain theorem. To justify the theoretical developments
made in this manuscript, the applicability of the controllers is shown in simulation and real-time.

Keywords Simplest fuzzy PI/PD controller · Mathematical modeling · Stability analysis · Computational aspects · Center of
gravity defuzzification · Larsen product inference · Real-time implementation

1 Introduction

Since inception, fuzzy logic has been a topic of significant
interest to the scientific community, and over the years, it has
been applied successfully in different fields of research. Con-
trol practitioners and the field of control systems engineering
are no exception to this. The merit of fuzzy logic controllers
lies in their ability to control ill-defined plants. By ill-defined,
we mean those systems which can not be represented by a
set of differential equations (for continuous-time systems)
or difference equations (for discrete-time systems). From lit-
erature, it appears to the authors that in most cases, fuzzy
logic controllers can provide improved response or at least
comparable response as compared to other control strate-
gies. Though the use of fuzzy logic is prominent in the field
of control systems engineering since 1970s, unfortunately,
till 1990, no specific mathematical model was available for
the fuzzy logic controllers. The development of systematic
mathematical approaches for fuzzy logic control systems is
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still on-going, and there is a wide scope to explore. This is
indeed the primary motivation for us to consider this field as
our area of research.

The concept of fuzzy sets was introduced by Zadeh (1965)
in 1965, and in 1972, the same author highlighted the sig-
nificance of fuzzy algorithms for the control of ill-defined
largeman-machine systems (Zadeh 1972). In the same paper,
the author argued that to provide a suitable environment for
the advancement of fuzzy algorithms, control theory must
become less preoccupied with mathematical rigor and exact-
ness, and more stress should be given to the advancement
of qualitative or approximate solutions to solve the real-
world control problems. Motivated by this, the very first
application of the fuzzy set theory was reported by Mam-
dani (1974) in 1974, where a laboratory-built steam engine
was controlled. In the same paper, the author indicated that
fuzzy logic-based controllers would be useful in controlling
the ill-defined plants, such as those present in the process
plants like cement, chemical, iron, and steel industries. After
Mamdani’s pioneering work, fuzzy logic controllers were
extensively used to provide solutions to various control engi-
neering problems. While the application of fuzzy logic was
prominent in the field of control systems, the underlying the-
ory and the mathematical models of fuzzy controllers were
not clear for a long time. The scenario started to changewhile
the firstmathematicalmodel of a fuzzyPI controller appeared
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in 1990 (Ying et al. 1990). This controller is termed as ‘the
simplest’ fuzzy controller as it employs minimum number of
fuzzy sets on the input and output variables. Subsequently,
by following the same basic approach, three more models of
the simplest fuzzy PI controller were found by Ying (1993).
Malki et al. (1994) found the mathematical model of the sim-
plest fuzzy PD controller. It will not be an exaggeration to
say that these research works (Ying et al. 1990; Ying 1993;
Malki et al. 1994) prepared the base for the subsequent devel-
opments of mathematical models of fuzzy logic controllers.
Mathematicalmodels of fewother simplest fuzzyPD (Mohan
and Patel 2002) and PI (Patel and Mohan 2002) controllers
were derived by Mohan and Patel using different t−norms,
t−conorms (also known as s-norms), inferencemethods, and
Center of Sums (CoS) defuzzification. From all these papers,
it is clear that fuzzy controllers do not have a single fixed
model. Depending on the choice of membership functions,
t−norms, t−conorms, inference methods, and defuzzifica-
tion strategies, different models are possible, and each model
is unique in terms of its control ability. In subsequent years,
this particular aspect of fuzzy controller modeling motivated
many researchers to develop new mathematical models of
fuzzy PI/PD controllers (Haj-Ali and Ying 2003; Mohan and
Sinha 2008; Neelimegham and Bosukonda 2015; Arun and
Mohan 2017). Apart from type-1 fuzzy PI/PD controllers,
presence of interval type-2 fuzzy PI/PD controllers (Du and
Ying 2010; Nie and Tan 2012; Yip et al. 2019; Zhou et al.
2002) can also be noticed in the literature. Though interval
type-2 fuzzy controllers are becoming popular day by day,
there is still an ample scope to explore themathematicalmod-
els of type-1 fuzzy controllers. This is because type-1 fuzzy
controllers are computationally simpler than interval type-2
fuzzy controllers. For the mathematical modeling of Takagi-
Sugeno type fuzzy PI/PD controllers, one may refer to Raj
and Mohan (2019), Raj and Mohan (2020).

It can be observed from the literature that except Arun and
Mohan, no one has found the mathematical models of the
simplest fuzzy PI/PD controllers using CoG defuzzification
(Arun and Mohan 2017) till date. Though CoG defuzzifica-
tion is more accurate as compared to the CoS defuzzification,
because of computational simplicity the CoS defuzzifica-
tion is more popular in finding the mathematical models of
fuzzy controllers. As CoG defuzzification offers more accu-
rate mathematical models of fuzzy controllers, in this study,
we aim to find themathematical models of the simplest fuzzy
PI/PD controllers via CoG defuzzification. Without further
ado, let us now state the overall objective of the present study.

In this study, our aim is to reveal the analytical structures
of five new simplest fuzzy PI/PD controllers using different
t-norms (Algebraic Product (AP) and Minimum (Min)) and
t-conorms (Bounded Sum (BS), Algebraic Sum (AS) and
Maximum (Max)), Larsen Product (LP) inference and CoG
defuzzification. The proposed classes of the simplest fuzzy

Table 1 Proposed classes of
fuzzy PI/PD controllers

Class t-norm t-conorm

1 AP BS

2 AP AS

3 Min BS

4 Min AS

5 Min Max

Fig. 1 Block diagram of a computer control system

PI/PD controllers developed in this study are summarized in
Table 1.

The analytical structure of the Class 6 controller using AP
t-norm, Max t-conorm, LP inference and CoG defuzzifica-
tion was already obtained by Arun and Mohan (2017). The
properties and computational aspects of the proposed sim-
plest fuzzy PI/PD controllers are addressed and sufficient
conditions for the BIBO stability of a closed loop system
containing one of these controllers in the loop are established
using the Small-Gain theorem. To justify the theoretical
development made in this manuscript, the applicability of
proposed fuzzy controllers is depicted by considering two
simulation examples and two real-time studies. Moreover,
performances of the proposed controllers are compared for
better understanding.

This manuscript is organized into nine sections. In Sec-
tions 2 and 3, details of the conventional PI/PD controllers
and the principal components of the simplest fuzzy PI/PD
controllers are provided, respectively. Analytical structures,
BIBO stability and computational aspects of the proposed
fuzzy controllers are discussed in Sections 4, 5 and 6. The
applicability of newly found controllers is depicted through
simulation and real-time studies on a few nonlinear plants
in Sections 7 and 8. Conclusions of the present study high-
lighting the future scope of research are presented in Section
9.

2 Conventional discrete-time PI/PD
controllers

In Fig. 1, the block diagram of a typical closed loop computer
control system is provided, where the plant under control is
Continuous-Time (CT) in nature and T represents the sam-
pling period. For brevity, henceforth we drop T from kT and
(k − 1)T .
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Fig. 2 Block diagram of a typical fuzzy PI/PD controller

The control effort generated by the Discrete-Time (DT)
linear PI controller at kth sampling instant is given by

uPI(k) = uPI(k − 1) + �uPI(k) (1)

where uPI(k − 1) and �uPI(k) represent the control effort at
(k − 1)th sampling instant and incremental control effort at
kth sampling instant, respectively.

In terms of error e(k) and change in error �e(k) (defined
as e(k) − e(k − 1)), the expression for �uPI(k) is given by

�uPI(k) = Kdt
P �e(k) + Kdt

I e(k) (2)

where Kdt
P and Kdt

I , respectively, represent the proportional
and integral gains of DT linear PI controller. In terms of the
scaled version of e(k) and �e(k), Eq. (2) can be rewritten as

�uPI(k) = �ês(k) + ês(k) (3)

where ês(k) and �ês(k) represent the scaled version of
e(k) and �e(k), respectively, and ês(k) = Kdt

I e(k) and
�ês(k) = Kdt

P �e(k).
On the other hand, DT linear PD controller output at kth

sampling instant is given by

uPD(k) = Kdt
P e(k) + Kdt

D �e(k) (4)

where proportional and derivative gains of DT linear PD
controller are represented by Kdt

P and Kdt
D , respectively.

Equation (4) can be rewritten as

uPD(k) = ẽs(k) + �ẽs(k) (5)

where ẽs(k) = Kdt
P e(k), �ẽs(k) = Kdt

D �e(k), and
respectively represent the scaled version of e(k) and �e(k).

3 Basic components of fuzzy PI/PD
controllers

The basic block diagram of a typical fuzzy PI/PD controller,
depicted in Fig. 2, consists of fuzzification, inference mech-
anism, rule base, and defuzzification modules.

From the block diagram, it can be observed that like the
conventional DT linear PI and PD controllers, the inputs
to the fuzzy PI and PD controllers are the scaled version
of e(k) and �e(k) i.e., es(k) and �es(k). The scaled out-
puts of fuzzy PI and PD controllers are denoted by �us(k)
and us(k), respectively, and they are in general a nonlin-
ear function of es(k) and �es(k). The nature of nonlinearity
depends on the choice of membership functions, t-norms,
t-conorms, inference mechanisms and defuzzification strate-
gies. For the purpose of having normalized Universes of
Discourse (UoDs), input normalization and output denormal-
ization are required and they are achieved by using scaling
factors. In Fig. 2, the scaling factors of the simplest fuzzy
PI/PD controllers are represented by Se, S�e, S

−1
PI and S−1

PD .
Se and S�e are responsible for input normalization and S−1

PI
(for PI controller) and S−1

PD (for PD controller) take care of
output denormalization. The details of the principal compo-
nents of the simplest fuzzy PI/PD controllers are presented
in the following subsections.

3.1 Fuzzification

For the fuzzy sets on scaled input variables, L and � types of
membership functions (Driankov et al. 1993) are considered
and depicted in Fig. 3. The purpose of using the fuzzification
module is to convert the crisp values of the scaled process
variables into fuzzy variables to make them compatible with
the fuzzy set representation of the scaled process variables
used in the control rule base. The mathematical description
of the input membership functions is as follows:

μE−1(es(k)) =

⎧
⎪⎨

⎪⎩

1 if es(k) ≤ −he
−es (k)+he

2he
if − he ≤ es(k) ≤ he

0 if he ≤ es(k)

μE+1(es(k)) =

⎧
⎪⎨

⎪⎩

0 if es(k) ≤ −he
es (k)+he

2he
if − he ≤ es(k) ≤ he

1 if he ≤ es(k)

μ�E−1(�es(k))

=

⎧
⎪⎨

⎪⎩

1 if �es(k) ≤ −h�e
−�es (k)+h�e

2h�e
if − h�e ≤ �es(k) ≤ h�e

0 if h�e ≤ �es(k)

μ�E+1(�es(k))

=

⎧
⎪⎨

⎪⎩

0 if �es(k) ≤ −h�e
�es (k)+h�e

2h�e
if − h�e ≤ �es(k) ≤ h�e

1 if h�e ≤ �es(k)

Different UoDs for the input variables are considered as
the maximum values of |es(k)| and |�es(k)| are usually
unequal (Braae and Rutherford 1979). For the fuzzy sets on
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Fig. 3 Membership functions of
fuzzy sets on the scaled input
variables

Fig. 4 Membership functions of fuzzy sets on the scaled output variable

the scaled output variable, L , �, and � types of member-
ship functions are considered and shown in Fig. 4. Note that
the sum of membership functions of the fuzzy sets on the
scaled input and output variables at any point over the UoD
is unity. For computational simplicity, in some earlier works
only �-type membership functions were considered for the
fuzzy sets on the scaled output variable and their sum at some
points in the UoD is not unity. The parameter A of the fuzzy
set on the output variable can take any value in [0, B). Under
the condition A = 0, the trapezoids in Fig. 4 become a trian-
gle. This means that the analytical structures of the simplest
fuzzy PI/PD controllers with L , triangular (�) and � types
of membership functions (on the scaled output variable) can
be found by putting A = 0 in the expressions of the fuzzy
controllers obtained with L , �, and � types of membership
functions.

3.2 Rule base

The following four rules have been utilized for building the
rule base of the simplest fuzzy PI controller.

R1 : IF es(k) is E−1 AND�es(k) is�E−1 THEN�us(k)
is �U−1

R2a : IF es(k) is E−1 AND�es(k) is�E+1 THEN�us(k)
is �U 0

R2b : If es(k) is E+1 AND �es(k) is �E−1 THEN �us(k)
is �U 0

R3 : IF es(k) is E+1 AND�es(k) is�E+1 THEN�us(k)
is �U+1

For the most commonly encountered control problems i.e.
set-point problems, these four rules should be sufficient as
there are only four different scenarios, each of which will

be taken care of by one of these rules (Ying 2000). With the
help of Fig. 5, the reason behind choosing this rule base is
justified. In Fig. 5, r(k), y(k), es(k) and �es(k) represent
unit step input, unit step response, scaled error and scaled
change of error, respectively, of a second-order linear time
invariant system. From this figure we observe that at any time
instant the system response y(k) is either above or below the
reference r(k) and either it goes away from or approaches
r(k). This actually gives us the following four cases.

Case 1: y(k) is above r(k) and y(k) goes away from r(k)
(ex. point P1 in Fig. 5)

Case 2: y(k) is above r(k) and y(k) approaches r(k) (ex.
point P21 in Fig. 5)

Case 3: y(k) is below r(k) and y(k) approaches r(k) (ex.
point P22 in Fig. 5)

Case 4: y(k) is below r(k) and y(k) goes away from r(k)
(ex. point P3 in Fig. 5)

In these four cases the signs of es(k) and �es(k) along with
the corresponding rule are summarized in Table 2.

As the outcome of rules R2a and R2b is the same, we
merge these two rules into one using fuzzy OR operator, and
the modified rule is called R2 which is defined as follows:

R2 : IF (es(k) is E−1 AND �es(k) is �E+1) OR (es(k)
is E+1 AND �es(k) is �E−1) THEN �us(k) is �U 0.

To perform the AND operation in the rule base, AP and
Min t-norms are used. Whereas for performing the OR oper-
ation in rule R2, Max, BS and AS s-norms are utilized. For
the basic definitions, properties and details of the t-norms and
s-norms, one may refer to Klement et al. (2000). Note that
the same rule base is also applicable for finding the analyti-
cal structures of the simplest fuzzy PD controllers provided
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Fig. 5 Pictorial representation of rule base justification

Table 2 Signs of es(k) and �es(k) and corresponding rule under dif-
ferent cases

Case es(k) �es(k) Rule

1 Negative Negative R1

2 Negative Positive R2a

3 Positive Negative R2b

4 Positive Positive R3

�us(k) is replaced with us(k) and �U−1, �U 0 and �U+1

are replaced by U−1, U 0 and U+1, respectively.
All possible combinations of input variables, es(k) and

�es(k), are provided in Fig. 6 which can be obtained by
looking downward along the μ axis and considering the top
view of the 3D plot with axes es(k), �es(k) and μ. In each
region, the control rules R1 − R3 are exploited to obtain
appropriate control effort. In Table 3 (using AP AND) and
Table 4 (using Min AND), the resultant expressions (μ−1,
μ0 and μ+1) of the antecedent parts of all the three rules are
provided.

3.3 Inferencemechanism

By employing a particular type of inference mechanism, the
outcomes of antecedent parts of the rules i.e. μ−1, μ0 and
μ+1 are used to alter the reference output fuzzy sets�U−1 or
U−1 (in rule R1),�U 0 orU 0 (in rule R2) and�U+1 orU+1

(in rule R3), respectively. Throughout this study, LP infer-
ence mechanism is used. In Fig. 7, the modified membership
functions obtained via LP inference method are shown with
hatching.

3.4 Defuzzification

For the purpose of having a crisp value of the control
effort, the set of modified control output values is con-
verted by aprocess called defuzzification. In literature several
defuzzification strategies are available. Among the various

Fig. 6 Regions of scaled input plane

defuzzification strategies, from the control systems point of
view, CoS is the most explored one. Though CoG method is
more accurate as compared to the CoS method, because of
its computational complexity it has not almost been explored
and remained dormant for a long time for obtaining the ana-
lytical structures of the fuzzy controllers. Crisp value u∗
through CoG method is formally given by:

u∗ =
∫

U u · max
k

μ
(k)
U (u)du

∫

U max
k

μ
(k)
U (u)du

(6)

In a typical case the defuzzified value obtained via CoG and
CoS defuzzification methods is graphically represented in
Fig. 8. We observe that the defuzzified values are different
when CoG and CoS defuzzification methods are used. More-
over, we notice that in CoS defuzzification the overlapping
area of two adjacent regions is considered twice, while it
is accounted only once in CoG defuzzification. This clearly
indicates that the CoG defuzzification is more accurate than
the CoS method. From the literature survey, it seems to the
authors that till date, except Arun and Mohan (2017), no one
has obtained the analytical structures of the simplest fuzzy
PI/PDcontrollers usingCoGdefuzzificationmethod. InArun
and Mohan (2017), analytical structures of only two classes
of the simplest fuzzy PI/PD controllers (using AP t-norm,
Max t-conorm and LP inference; and Min t-norm, Max t-
conorm andMamdani Minimum (MM) inference) have been
obtained. In this paper, we reveal the exact analytical struc-
tures of another five classes of the simplest fuzzy PI/PD
controllers using CoG defuzzification.

When the scaled inputs lie in regions 13-20 (except points
(−he,−h�e) and (he, h�e)), the aggregated control output
(uac) corresponding to the LP inference is shown with shad-
ing in Fig. 9 where the membership grades of μ−1, μ0, and
μ+1 are provided in Tables 3 and 4. From now onward we
call regions 13-20 as inner regions. The crisp control output
u∗
s (k) of the fuzzy PD controller can be obtained from the
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Table 3 Resultants of antecedent parts of control rules using tAP , sBS , and sAS

Region μ−1 μ0 μ+1

BS OR AS OR

1, 3 0 1 1 0

2 1 0 0 0

4 0 0 0 1

5, 6 μE−1 μE+1 μE+1 0

7, 8 μ�E−1 μ�E+1 μ�E+1 0

9, 10 0 μE−1 μE−1 μE+1

11, 12 0 μ�E−1 μ�E−1 μ�E+1

13-20 μE−1 .μ�E−1 μE−1 .μ�E+1 + μE+1 .μ�E−1 μE−1 .μ�E+1 +
μE+1 .μ�E−1 −
μE−1 .μ�E+1 .μE+1 .μ�E−1

μE+1 .μ�E+1

Table 4 Resultants of
antecedent parts of control rules
using tMin , sBS , sAS and sMax

Region μ−1 μ0 μ+1

BS OR AS OR Max OR

1 – 12 Same as provided in Table 3

13, 14 μE−1 μE+1 + μ�E+1 μE+1 + μ�E+1 − μE+1 .μ�E+1 μE+1 μ�E+1

15, 16 μ�E−1 μE+1 + μ�E+1 μE+1 + μ�E+1 − μE+1 .μ�E+1 μ�E+1 μE+1

17, 18 μ�E−1 μE−1 + μ�E−1 μE−1 + μ�E−1 − μE−1 .μ�E−1 μE−1 μE+1

19, 20 μE−1 μE−1 + μ�E−1 μE−1 + μ�E−1 − μE−1 .μ�E−1 μ�E−1 μ�E+1

Fig. 7 Reference and inferred membership functions of the fuzzy sets
on output variable (�us(k) or us(k)) via LP inference

Fig. 8 Pictorial interpretation of CoG and CoS defuzzification strate-
gies

shaded region as

u∗
s (k) =

∫ A+B
−(A+B)

μ us dus
∫ A+B
−(A+B)

μ dus
(7)

We need to replace us(k) by �us(k) in Eq. (7) for obtain-
ing the crisp fuzzy PI controller output �u∗

s (k). When the

Fig. 9 uac via LP inference when es(k) and �es(k) lie in inner regions

scaled inputs es(k) and �es(k) lie in inner regions (except
points (−he,−h�e) and (he, h�e)), Eq. (7) can be calculated
by referring to Fig. 9 and Eqs. (8) and (9).

∫ A+B

−(A+B)

μ us dus =
∫ −B

−(A+B)

μ−1 us dus+
∫ −C

−B
μc us dus

+
∫ −A

−C
μa us dus +

∫ A

−A
μ0 us dus +

∫ D

A
μd us dus

+
∫ B

D
μb us dus +

∫ A+B

B
μ+1 us dus (8)

and

∫ A+B

−(A+B)

μ dus =
∫ −B

−(A+B)

μ−1 dus +
∫ −C

−B
μc dus

+
∫ −A

−C
μa dus +

∫ A

−A
μ0 dus +

∫ D

A
μd dus
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Table 5 Analytical structures of
proposed controllers (Classes
1–5) in regions 1–12 and at
points P and Q

Region/point �us or us

1, 3 0

2,4 ∓ 2(A2+B2)+5AB
3(A+B)

5, 6, 9, 10
[
h2e

(
11A2+20AB+5B2)±2eshe

(
A2+AB−2B2)−e2s (B−A)2

]
(∓he+es )

6he[h2e (7A+5B)±2eshe(B+A)+e2s (B−A)]

7, 8, 11, 12
[
h2�e

(
11A2+20AB+5B2

)±2�esh�e
(
A2+AB−2B2

)−�e2s (B−A)2
]
(∓h�e+�es )

6h�e
[
h2�e(7A+5B)±2�esh�e(B+A)+�e2s (B−A)

]

P , Q 2(A2+B2)+5AB
6(A+B)heh�e

(�eshe + esh�e)

Upper sign is used for regions 2, 5–8, and lower sign is for regions 4, 9–12. At point P , es = −he and
�es = −h�e and at point Q, es = he and �es = h�e

Table 6 Analytical structure of Class 1 controller in inner regions except at points P and Q

Region �us or us

13–20 e4s�e4s (−2A2 + 25AB − 14B2) + 2(�e2s h
2
e + e2s h

2
�e)[e2s�e2s (−8A2 + AB − 2B2) + heh�e{3heh�e

(−8A2 − 13AB − 6B2) + 4es�es(7A2 + 7AB + 4B2)}](�e4s h
4
e + e4s h

4
�e)(2A

2 + 5AB + 2B2) + he

h�e[4e2s�e2s {3heh�e(24A2 + 41AB − 2B2) + 2es�es(−7A2 − 19AB + 8B2)} + h2eh
2
�e{4es�es

(−110A2 − 182AB − 32B2) + 3heh�e(74A2 + 131AB + 38B2)}]
6(�e2s h

2
e + e2s h

2
�e)[e2s�e2s {es�es(B + A) − heh�e(19A + 3B)}h2eh2�e{es�es(53A + 13B) − 3heh�e

(13A + 5B)}] + (�e4s h
4
e + e4s h

4
�e){3es�es(−3A + B) + 3heh�e(5A + B)} + e3s�e3s {e2s�e2s (3A − 9B)

+heh�e{3es�es(A + 37B) − 4heh�e(81A + 117B)}} + 3h3eh
3
�e[es�es{4es�es(109A + 89B) − 3he

h�e(205A + 137B)}] + 27h2eh
2
�e(11A + 7B)

(�eshe + esh�e)

+
∫ B

D
μb dus +

∫ A+B

B
μ+1 dus (9)

where μc =
−μ−1(us + A)

B − A
, μa =

μ0(us + B)

B − A
, μd =

μ0(−us + B)

B − A
, μb =

μ+1(us − A)

B − A
, C =

Aμ−1 + Bμ0

μ−1 + μ0
, and

D =
Bμ0 + Aμ+1

μ0 + μ+1
.

Let us now discuss the reason behind excluding the
points (−he,−h�e) and (he, h�e).

∫ A+B
−(A+B)

μ us dus and
∫ A+B
−(A+B)

μ dus exist only when all the integrals defined on
the right hand side of Eq. (8) and Eq. (9) exist. For all the
proposed controllers we notice that at points P (−he,−h�e)

and Q (he, h�e), the values of μ−1, μ0, μ+1 are 1, 0, 0,
and 0, 0, 1, respectively. In these two points the values of

C and D have
0

0
form and are undefined. Subsequently the

integrations defined in Eq. (8) and Eq. (9) do not exist. The
crisp control output u∗

s (k) of the fuzzy PD controller at points
P and Q can be obtained by referring to Eqs. (10) and (11),
respectively.

u∗
s (k)|P =

∫ −B
−(A+B)

us dus + ∫ −A
−B μc|μ−1=1 us dus

∫ −B
−(A+B)

dus + ∫ −A
−B μc|μ−1=1 dus

(10)

u∗
s (k)|Q =

∫ B
A μb|μ+1=1 us dus + ∫ (A+B)

B us dus
∫ B
A μb|μ+1=1 dus + ∫ (A+B)

B dus
(11)

4 Mathematical models of the fuzzy PI/PD
controllers

The input–output structural relationships of the simplest
fuzzy PI or PD controllers (Class 1 to Class 5) are obtained
and the scaled control output (�us(k) or us(k)) expressions
are provided in Tables 5, 6, 7, 8, 9, 10. The control surfaces
along with the gain plots of the proposed fuzzy controllers
are depicted in Figs. 10, 11, 12, 13, 14, 15, 16, 17, 18 , 19
where the values of controller parameters are considered as:
A = 1, B = 2, he = 1, h�e = 1 and for both the scaled
inputs the UoD is [-2,2]. Note that for obtaining the gain
plots of all the classes of controllers, the inner regions are
only considered. From the controller structures, it is found
that the proposed simplest fuzzy PI/PD controllers are dif-
ferent nonlinear PI/PD controllers with variable gains.

4.1 Properties of the proposed simplest fuzzy PI/PD
controllers

The properties of the proposed simplest fuzzy PI/PD con-
trollers are summarized below:
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Table 7 Analytical structure of Class 2 controller in inner regions except at points P and Q

Region �us or us

13–20 [12heh�e(A2 + 2AB){e2s�e2s {e2s�e2s {e2s�e2s − 4(e2s h
2
�e + �e2s h

2
e)} + 6(e4s h

4
�e + �e4s h

4
e)} − 4(e6s h

6
�e

+�e6s h
6
e)} + (e8s h

8
�e + �e8s h

8
e)}] + [96es�esh2eh

2
�e(2A

2 + 5AB − B2){e2s�e2s {e2s�e2s {e2s�e2s − 3(e2s

h2�e + �e2s h
2
e)} + 3(e4s h

4
�e + �e4s h

4
e)} − (e6s h

6
�e + �e6s h

6
e)}] − [8h3eh3�e{2(e2s h2�e + �e2s h

2
e){2es�es{e2s

�e2s {es�es(29A2 + 185AB − 97B2) − heh�e(266A2 + 281AB + 155B2)} + h2eh
2
�e{heh�e(1234A2

+3085AB − 521B2) − es�es(347A2 + 1913AB − 685B2)}} − h4eh
4
�e(1237A

2 + 2284AB − 254B2)}−
{(e4s h4�e + �e4s h

4
e){4es�es{es�es(10A2 + 67AB − 41B2) − 3heh�e(26A2 + 129AB − 29B2)} + h2eh

2
�e

(281A21070AB − 100B2)} + 2(e6s h
6
�e + �e6s h

6
e)(5A

2 + 32AB − 10B2)}}] + [4h3eh3�e{4es�es{e2s�e2s

{2e2s�e2s {3es�es(6A2 + 35AB − 17B2) − heh�e(170A2 − 151AB + 251B2)} − h2eh
2
�e{es�es(1805A2

+1952AB − 202B2) − 2heh�e(950A2 − 313AB + 2405B2)}} + 2h4eh
4
�e{es�es(6194A2 + 10193AB

−1195B2) − heh�e(10970A2 + 18017AB + 3683B2)}} + 11h6eh
6
�e(3593A

2 + 6410AB + 1976B2)}]
(B + A)[−3e2s�e2s {e2s�e2s {e2s�e2s {e2s�e2s {e2s�e2s − 5(e2s h

2
�e + �e2s h

2
e)} + 10(e4s h

4
�e + �e4s h

4
e)} − 10

(e6s h
6
�e + �e6s h

6
e)} + 5(e8s h

8
�e + �e8s h

8
e)} + 3(e10s h10�e + �e10s h10e )] − 24es�esheh�e(3B + 2A)[e2s

�e2s {e2s�e2s {e2s�e2s {e2s�e2s − 4(e2s h
2
�e + �e2s h

2
e)} + 6(e4s h

4
�e + �e4s h

4
e)} − 4(e6s h

6
�e + �e6s h

6
e)} + (e8s

h8�e + �e8s h
8
e)] − 3h2eh

2
�e[es�es{es�es{es�es{es�es{es�es{es�es{es�es{es�es(209B + 41A)+

128heh�e(4B − 5A)} − 12h2eh
2
�e(205B + 301A)} − 32h3eh

3
�e(321B − 182A)} + 20h4eh

4
�e(1181B+

2709A)} + 128h5eh
5
�e(364B − 333A)} − h6eh

6
�e(230375B + 275559A)} + 88h7eh

7
�e(3353B + 5238A)}

−1331h8eh
8
�e(93B + 149A)] + 3h2eh

2
�e(e

2
s h

2
�e + �e2s h

2
e)[2es�es{es�es{es�es{es�es{es�es{es�es

(281B + 41A) − 32heh�e(B + 28A)} − 2h2eh
2
�e(2023B + 1271A)} + 32h3eh

3
�e(11B + 208A)} + h4eh

4
�e

(29529B + 11705A)} − 16h5eh
5
�e(2705B + 1974A)} + 11h6eh

6
�e(3055B + 2511A)] − 6h2eh

2
�e(e

4
s h

4
�e+

�e4s h
4
e)[es�es{es�es{es�es{es�es(241B + 25A) − 64heh�e(10B + 11A)} − h2eh

2
�e(2279B + 551A)}

+8h3eh
3
�e(673B + 350A)} − h4eh

4
�e(2947B + 1563A)] + 3h2eh

2
�e(e

6
s h

6
�e + �e6s h

6
e)[2h2eh2�e(261B + 149

A) + es�es{es�es(89B − 7A) − 160heh�e(5B + 2A)}] + 3h2eh
2
�e(e

8
s h

8
�e + �e8s h

8
e)(35B + 11A)

(�eshe + esh�e)

Table 8 Analytical structure of Class 3 controller in inner regions except at points P and Q

Region �us or us

13, 14, 17, 18 �e2s h
2
e{�eshe{{�eshe(11A2 + 20AB + 5B2) + esh�e(13A2 + 25AB − 2B2)} ± 3heh�e(33A2 + 59AB

+16B2)} ± h2�e{es{±es(2A2 + 17AB − 10B2) + 9he(11A2 + 19AB)} ± 3h2e(107A
2 + 190AB + 54B2)}}

−h3�e{�eshe{es{3es{es(A2 − 3AB + 2B2)∓he(7A2 + 23AB − 12B2)} − 3h2e(78A
2 + 130AB + 8B2)}

∓6h3e(74A
2 + 131AB + 38B2)} + h�e{e3s {es(B − A)2 ± 3he(A2 − 5AB + 4B2)} − h2e{±es{±3es(11A2

+26AB − 10B2) + 2he(86A2 + 143AB + 14B2)} + 3h2e(74A
2 + 131AB + 38B2)}}}

±3he{�e2s he{�esh2e{�es{2�eshe(5B + 7A) + esh�e(17B + 15A)} ± h�e{�eshe(107B + 157A) + 4es
h�e(37B + 38A)}} + 2h2�e{�eshe{9h2e(25B + 38A) + 7Be2s } + h�e{e2s {es(3B − 2A) ± 2he(23B + 4A)}
+h2e{es(238B + 275A) ± 3he(155B + 241A)}}}} + h4�e{es{±e2s {±es(B − A)(�es ± 3h�e) + 4�eshe(7
B − 4A)} + 2�esh2e{es(98B + 37A) ± 84he(4B + 5A)}} + he{2e2s h�e{3es(5B − 2A) ± 3he(23B + 13A)}
+27h2e{esh�e(13B + 17A) + (7B + 11A)(5�eshe ± 2heh�e)}}}}

(�eshe + esh�e)

15, 16, 19, 20 e2s h
2
�e{esh�e{{esh�e(11A2 + 20AB + 5B2) + �eshe(13A2 + 25AB − 2B2)} ± 3heh�e(33A2 + 59AB

+16B2)} ± h2e{�es{±�es(2A2 + 17AB − 10B2) + 9h�e(11A2 + 19AB)} ± 3h2�e(107A
2 + 190AB + 54

B2)}} − h3e{esh�e{�es{3�es{�es(A2 − 3AB + 2B2)∓he�(7A2 + 23AB − 12B2)} − 3h2�e(78A
2 + 130

AB + 8B2)}∓6h3�e(74A
2 + 131AB + 38B2)} + he{�e3s {�es(B − A)2 ± 3h�e(A2 − 5AB + 4B2)}

−h2�e{±�es{±3�es(11A2 + 26AB − 10B2) + 2h�e(86A2 + 143AB + 14B2)} + 3h2�e(74A
2 + 131AB

+38B2)}}}
±3h�e{e2s h�e{esh2�e{es{2esh�e(5B + 7A) + �eshe(17B + 15A)} ± he{esh�e(107B + 157A) + 4
�eshe(37B + 38A)}} + 2h2e{esh�e{9h2�e(25B + 38A) + 7B�e2s } + he{�e2s {�es(3B − 2A) ± 2h�e

(23B + 4A)} + h2�e{�es(238B + 275A) ± 3h�e(155B + 241A)}}}} + h4e{�es{±�e2s {±�es(B − A)

(es ± 3he) + 4esh�e(7B − 4A)} + 2esh2�e{�es(98B + 37A) ± 84h�e(4B + 5A)}} + h�e{2�e2s he{3
�es(5B − 2A) ± 3h�e(23B + 13A)} + 27h2�e{�eshe(13B + 17A) + (7B + 11A)(5esh�e ± 2heh�e)}}}}

(�eshe + esh�e)

Upper sign and lower sign are used for regions 13-16 and 17-20, respectively, in Tables 8-10
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Table 9 Analytical structure of Class 4 controller in inner regions except at points P and Q

Region �us or us

13, 14, 17, 18
{�es{�es{�es{�es{es{es{3 es{es(A2 + 2AB)∓2he(4A2 + 7AB + B2)} + 2h2e(31A

2 + 55AB + 13
B2)}∓2h3e(32A

2 + 59AB + 17B2)} + h4e(23A
2 + 44AB + 14B2)} + 2h�e{es{es{es{±3es(B2 − AB)

−2he(17A2 + 26AB + 11B2)} ± 2h2e(95A
2 + 161AB + 50B2)} − 2h3e(155A

2 + 278AB + 89B2)} ± h4e
(154A2 + 289AB + 97B2)}} − 2h2�e{es{es{es{es(5A2 − AB + 5B2)∓2he(13A2 + 13AB − 8B2)}−
2h2e(112A

2 + 214AB + 97B2)} ± 10h3e(89A
2 + 161AB + 56B2)} − h4e(709A

2 + 1315AB + 451B2)}}
±2h3�e{es{es{es{es(4A2 − 5AB + B2) ± 2he(17A2 + 14AB + 23B2)} − 2h2e(59A

2 + 53AB − 22B2)}
∓6h3e(119A

2 + 234AB + 97B2)} + h4e(1306A
2 + 2383AB + 811B2)}} + h4�e{es{es{es{es(−A2 + 8AB

+2B2)∓2he(14A2 − 19AB + 5B2)} − 2h2e(71A
2 + 59AB + 95B2)} ± 90h3e(2A

2 + AB − 3B2)} + 5h4e
(331A2 + 598AB + 196B2)}}
−3�es{�es{�es{�es{�es{es{es{es{es{es(B + A)∓he(9B + 11A)} + 4h2e(8B + 11A)}∓8h3e(7B
+10A)} + h4e(47B + 67A)}∓h5e(15B + 21A)} − heh�e{es{es{es{es(19B + 39A)∓56he(3B + 5A)}
+4h2e(118B + 189A)}∓h3e(553B + 855A)} + h4e(229B + 341A)}} − 4esh2�e{es{es{es{Aes∓2he(2B
+A)} − h2e(45B + 101A)} ± h3e(313B + 555A)} − h4e(579B + 956A)}}∓4heh2�e{{{{{�esh4e(331B+
519A)∓17Ae4s h�e} + e3s heh�e(21B + 43A)} ± e2s h

2
eh�e(247B + 483A)} − 7esh3eh�e(147B + 253A)}

±5h4eh�e(181B + 294A)}} − h4�e{es{es{es{es{es(B − 3A)∓he(9B − 13A)} + 20h2e(B + 16A)}∓4h3e
(47B + 103A)} − 5h4e(513B + 937A)} ± 25h5e(189B + 311A)}} ± 3h�e{es(B − A){e2s {e2s (�e4s − h4�e)+20h2eh

4
�e} + 125h4eh

4
�e}∓h4�e{e2s he{e2s (3B − 13A) + 20h2e(B + 24A)} − 125h5e(19B + 31A)}}

(�eshe + esh�e)

15, 16, 19, 20
{es{es{es{es{�es{�es{3 �es{�es(A2 + 2AB)∓2h�e(4A2 + 7AB + B2)} + 2h2�e(31A

2 + 55AB + 13
B2)}∓2h3�e(32A

2 + 59AB + 17B2)} + h4�e(23A
2 + 44AB + 14B2)} + 2he{�es{�es{�es{±3�es(B2

−AB) − 2h�e(17A2 + 26AB + 11B2)} ± 2h2�e(95A
2 + 161AB + 50B2)} − 2h3�e(155A

2 + 278AB + 89
B2)} ± h4�e(154A

2 + 289AB + 97B2)}} − 2h2e{�es{�es{�es{�es(5A2 − AB + 5B2)∓2h�e(13A2+
13AB − 8B2)} − 2h2�e(112A

2 + 214AB + 97B2)} ± 10h3�e(89A
2 + 161AB + 56B2)} − h4�e(709A

2+
1315AB + 451B2)}} ± 2h3e{�es{�es{�es{�es(4A2 − 5AB + B2) ± 2h�e(17A2 + 14AB + 23B2)}−
2h2�e(59A

2 + 53AB − 22B2)}∓6h3�e(119A
2 + 234AB + 97B2)} + h4�e(1306A

2 + 2383AB + 811B2)}}
+h4e{�es{�es{�es{�es(−A2 + 8AB + 2B2)∓2h�e(14A2 − 19AB + 5B2)} − 2h2�e(71A

2 + 59AB+
95B2)} ± 90h3�e(2A

2 + AB − 3B2)} + 5h4�e(331A
2 + 598AB + 196B2)}}

−3es{es{es{es{es{�es{�es{�es{�es{�es(B + A)∓h�e(9B + 11A)} + 4h2�e(8B + 11A)}∓8h3�e(7
B + 10A)} + h4�e(47B + 67A)}∓h5�e(15B + 21A)} − h�ehe{�es{�es{�es{�es(19B + 39A)∓56h�e

(3B + 5A)} + 4h2�e(118B + 189A)}∓h3�e(553B + 855A)} + h4�e(229B + 341A)}} − 4�esh2e{�es{�es
{�es{A�es∓2h�e(2B + A)} − h2�e(45B + 101A)} ± h3�e(313B + 555A)} − h4�e(579B + 956A)}}
∓4h�eh2e{{{{{esh4�e(331B + 519A)∓17A�e4s he} + �e3s h�ehe(21B + 43A)} ± �e2s h

2
�ehe(247B+

483A)} − 7�esh3�ehe(147B + 253A)} ± 5h4�ehe(181B + 294A)}} − h4e{�es{�es{�es{�es{�es(B−
3A)∓h�e(9B − 13A)} + 20h2�e(B + 16A)}∓4h3�e(47B + 103A)} − 5h4�e(513B + 937A)} ± 25h5�e
(189B + 311A)}} ± 3he{�es(B − A){�e2s {�e2s (e

4
s − h4e) + 20h2�eh

4
e} + 125h4�eh

4
e}∓h4e{�e2s h�e

{�e2s (3B − 13A) + 20h2�e(B + 24A)} − 125h5�e(19B + 31A)}}

(�eshe + esh�e)

Table 10 Analytical structure of Class 5 controller in inner regions except at points P and Q

Region �us or us

13, 14, 17, 18 4�e2s h
4
e(2A

2 + 5AB + 2B2) − e2s h�e{{es(�eshe + esh�e)(B − A)2 ± 3�esh2e(B
2 − A2)} + heh�e{±

es(A2 − 8AB + 7B2) − he(17A2 + 26AB − 7B2)}} + h3eh�e{�es{es(25A2 + 34AB + 13B2) ± he(37A2

+76AB + 31B2)} ± h�e{es(49A2 + 76AB + 19B2) ± he(40A2 + 76AB + 28B2)}}
±6h2e{2�e3s h

3
e(B + A) ± h�e{�eshe{�eshe{±4es(B + 2A) + he(13B + 19A)} ± 2esh�e{2es(2B + A)

±he(11B + 21A)}} ± e2s h
2
�e{2es(3B − A) ± he(17B + 15A)}}} + {6e2s heh�e{e2s h2�e + �eshe(�eshe

+2esh�e)}}(B − A) ± {12h4eh2�e{5(�eshe + esh�e) ± 4heh�e}}(3B + 5A)

(�eshe + esh�e)

15, 16, 19, 20 4e2s h
4
�e(2A

2 + 5AB + 2B2) − �e2s he{{�es(�eshe + esh�e)(B − A)2 ± 3esh2�e(B
2 − A2)} + heh�e{±

�es(A2 − 8AB + 7B2) − h�e(17A2 + 26AB − 7B2)}} + heh3�e{es{�es(25A2 + 34AB + 13B2) ± h�e

(37A2 + 76AB + 31B2)} ± he{�es(49A2 + 76AB + 19B2) ± h�e(40A2 + 76AB + 28B2)}}
±6h2�e{2e3s h3�e(B + A) ± he{esh�e{esh�e{±4�es(B + 2A) + h�e(13B + 19A)} ± 2�eshe{2�es(2B
+A) ± h�e(11B + 21A)}} ± �e2s h

2
e{2�es(3B − A) ± h�e(17B + 15A)}}} + {6�e2s heh�e{�e2s h

2
e + es

h�e(esh�e + 2�eshe)}}(B − A) ± {12h2eh4�e{5(�eshe + esh�e) ± 4heh�e}}(3B + 5A)

(�eshe + esh�e)
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Fig. 10 Gain of the Class 1 controller

Fig. 11 Scaled control output (Class 1)

Fig. 12 Gain of the Class 2 controller

Fig. 13 Scaled control output (Class 2)

Fig. 14 Gain of the Class 3 controller

Fig. 15 Scaled control output (Class 3)
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Fig. 16 Gain of the Class 4 controller

Fig. 17 Scaled control output (Class 4)

Fig. 18 Gain of the Class 5 controller

1. All the controllers are nonlinear and variable structure in
nature.

2. They are variable gain controllers as the gain of each
controller is a nonlinear function of the scaled input
es(k) or �es(k) or both. For all the classes of con-
trollers, the scaled control output �us(k) or us(k) in
the inner regions can be written as �us(k) or us(k) =

Fig. 19 Scaled control output (Class 5)

γ (�es(k)he + es(k)h�e). This indicates that as in linear
PI/PD controllers, the gains associated with es(k) and
�es(k) of the simplest fuzzy PI/PD controllers are dif-
ferent.

3. The minimum control effort produced by the controllers

is −[2(A2+B2)+5AB]
3(A+B)

and it occurs at point P .
4. The maximum control effort produced by the controllers

is [2(A2+B2)+5AB]
3(A+B)

and it occurs at point Q.
5. Control effort of the controllers is zero at (es(k),�es(k))

= (0, 0) and along the line �es(k) = − h�e
he

es(k).
6. The control effort is continuous.When he = h�e, control

effort is symmetric about the line �es(k) = h�e
he

es(k).
7. The magnitude of control effort increases monotonically

from the minimum value to the maximum value.

5 BIBO stability analysis

Ensuring stability is one of themost important aspects of con-
trol systems engineering. Several approaches have emerged
over time to analyze the stability of a feedback control sys-
tem. Small-Gain theorem (Khalil 2015) is one of them. In
this section, with the help of Small-Gain theorem the suf-
ficient conditions for BIBO stability of a feedback control
system containing one of the proposed fuzzy PI controllers
in the loop are established. For analyzing the stability, let us
consider a feedback system depicted in Fig. 20. The gains
of two systems G1 and G2 are considered as �1 and �2,
respectively. As per the Small-Gain theorem, in response to
any bounded input pair u1 and u2, a bounded output pair
y1 and y2 is produced only when the product of system gains
�1 and �2 is less than unity i.e. �1�2 < 1.

Now by defining u1(k) = r(k), e1(k) = e(k), y1(k) =
�u(k) = G1e1(k), u2(k) = u(k − 1), e2(k) = u(k) and
y2(k) = y(k) = G2e2(k) in Fig. 20, we get an equivalent
representation of the closed loop system depicted in Fig. 1
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Fig. 20 A feedback system

where the digital controller is assumed to be a fuzzy PI con-
troller. Under this set up, G1 and G2 become the controller
and plant, respectively. We consider a general case where the
plant under consideration is nonlinear and assume that the
signal u2 is bounded.

Let Ne = sup
k≥0

|e(k)|; Se · Ne = he and N�e = sup
k≥0

|�e(k)|
= sup

k≥0
|e(k) − e(k − 1)| ≤ 2Ne; S�e · N�e = h�e.

In the inner regions, from the analytical structures of the
proposed fuzzy PI controllers it can be shown that

‖�u(k)‖ ≤ [2(A2 + B2) + 5AB](he + h�e)

6(A + B)SPIheh�e
‖e1(k)‖

+ constant, for Classes 1 to 5.

From the above inequality, the value of �1 is found to be

�1 = [2(A2 + B2) + 5AB](he + h�e)

6(A + B)SPIheh�e
,

for Classes 1 − 5.

(12)

Now for a finite gain L∞ stable nonlinear system, we have

‖y2(k)‖ = ‖G2e2(k)‖ ≤ ‖N‖‖e2(k)‖ so that

�2 = ‖N‖ (13)

From the analytical structures of the proposed controllers we
observe that in regions 1 and 3, ‖�u(k)‖ = 0 and there-
fore �1 = 0. To ensure �1�2 < 1, it is sufficient to have
�2 < ∞, and it is natural as the nonlinear system under
consideration is finite gain L∞ stable. Based on the previous
discussions, the sufficient conditions for the nonlinear fuzzy
PI feedback control system to be BIBO stable are:

1. The nonlinear process under consideration has a bounded
norm and

2. The parameters A, B, he, h�e, and SPI of the fuzzyPI con-
troller should satisfy the inequality
[2(A2+B2)+5AB](he+h�e)

6(A+B)SPIheh�e
‖N‖ < 1.

By replacing SPI by SPD in the above inequality and con-
sidering y1(k) = u(k) and u2(k) = 0, the conditions for

Table 11 Computational aspects of fuzzy and linear PI/PD controllers
(Class 1 - Class 5)

Controller class 1 2 3 4 5 Linear PI / PD

On-line operations 113 490 106 149 75 1

Off-line operations 104 251 169 280 83 0

Memory locations 34 73 51 82 34 0

the BIBO stability of nonlinear fuzzy PD feedback control
system can also be obtained and stated as follows:

1. The nonlinear process under consideration has a bounded
norm and

2. The parameters A, B, he, h�e, and SPD of the fuzzy PD
controller should satisfy the inequality
[2(A2+B2)+5AB](he+h�e)

6(A+B)SPDheh�e
‖N‖ < 1.

These stability conditions can be used as additional con-
straints during the design of proposed controllers, and the
parameters obtained via these constraints will ensure the
BIBO stability of the closed loop control system. But as
finding the L∞ norm of any arbitrary nonlinear dynamical
system itself is a real challenging problem, in this study the
stability results are not utilized in the numerical examples.
This should not be viewed as the drawback of the proposed
controllers.

6 Computational aspects of fuzzy PI/PD
controllers

From the implementation point of view, it is of extreme
importance to know the computational aspects of the con-
trollers as the computational delay directly depends on it and
affects the system performance. In spite of its importance,
from literature it seems that not muchwork has been reported
on the computational aspects of fuzzy PI/PD controllers.
For different classes of controllers the required number of
mathematical operations and memory locations have been
calculated. The findings are summarized in Table 11 and
graphically represented in Fig. 21. By on-line operations we
mean those operations which need to be performed at every
sampling instant. Whereas the off-line operations are per-
formed once, stored and utilized as and when required. The
mathematical operations which are common for both linear
and fuzzy controllers are neglected as our target is to find
additional computational burden incurred by the fuzzy PI/PD
controllers. From Table 11, we notice that among the con-
trollers that we have discussed, linear PI/PD controllers are
the most attractive ones. But we should also understand that
the additional computational burden encountered by the pro-
posed fuzzy PI/PD controllers can easily be handled by high
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Fig. 21 Computational aspects of different controllers

Table 12 Optimized fuzzy PI controller parameters (Class 1–Class 5,
Example 1)

Parameter Class 1 Class 2 Class 3 Class 4 Class 5

A 0 0 0 0 0

B 0.0075 0.0099 0.0100 0.0100 0.0099

he 58.5161 58.3060 58.6579 58.0450 58.2082

h�e 0.9803 0.9803 1.0071 0.9802 1.0098

Se 0.2759 0.2971 0.3087 0.2791 0.3078

S�e 7.3900 9.9707 7.0000 9.9736 7.0029

S−1
PI 8.0039 9.9844 9.9257 9.9804 9.9629

Note: During optimization, the lower and upper bounds of the parame-
ters B, he, h�e, Se, S�e, and S−1

PI are considered as 0.0075 − 0.01, 58
− 59, 0.98 − 1.01, 0.275 − 0.31, 7 − 10, and 8 − 10, respectively

speed computers. For efficient control, an important issue is
to maintain the calculation time of a controller expression
less than the sampling time T , and we have followed this
particular constraint in simulation and real-time studies dis-
cussed in Sects. 7 and 8.

7 Simulation study

In this section, we consider two examples and demonstrate
the applicability of proposed simplest fuzzy PI/PD con-
trollers. For comparison purpose, both the examples are
considered fromMudi and Pal (1999). The cost function con-
sidered in this study is as follows:

J = T

Tf

Tf
T

−1
∑

k=0

{e2(k) + u2(k)} (14)

where e(k) and u(k) represent the error signal and control
signal at kth sampling instant, respectively, and Tf represents
the final time of interest.

All the simulations are performed using a personal com-
puter with Windows 10 pro operating system, Intel Core

Fig. 22 Step responses of the closed loop system (Example 1)

Fig. 23 Control efforts due to different PI controllers (Example 1)

i5-7500, 3.4 GHz processor, 12 GB RAM and the software
package MATLAB/Simulink 8.5.0.197613 (R2015a). The
ode45 (Dormand-Prince) simulation solver is used for per-
forming the simulations. The objective function, depicted in
Eq. (14), has been minimized using Genetic Algorithm (GA)
for obtaining the optimal values of controller parameters.
For the details of GA, one may refer to Goldberg (1989).
Note that any other optimization algorithm can also be used
in place of GA, but as the aim here is to show the appli-
cability of the proposed controllers, other algorithms are not
explored. The ranges of controller parameters have beenfixed
after a number of trial runs. At the beginning a wider solu-
tion space is considered and after getting the initial solution,
the search space has been narrowed down in the subsequent
steps. The final ranges of parameters used during optimiza-
tion are provided in the footnotes of Tables 12, 15, 19 and
22. During optimization, population size, bit size, number of
iterations, crossover probability andmutation probability are
considered as 20, 10, 25, 0.8, and 0.05, respectively. Based
on the complexity of a problem and desired precision, the
population size, number of iterations, and bit size are usually
decided. In this study, crossover probability is considered as
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Table 13 Performance
comparison of different PI
controllers (Example 1)

Controller MO (%) ts(s) tr (s) ess

Class 1 Fuzzy PI 34.6 29.49 2.431 0

Class 2 Fuzzy PI 11.06 14.084 3.6430 0

Class 3 Fuzzy PI 2.15 12.155 5.63 0

Class 4 Fuzzy PI 2.52 9.96 4.6285 0

Class 5 Fuzzy PI 17.98 14.185 3.634 0

Linear PI 36.08 16.36 3.42 0

Fuzzy PI (Mudi and Pal 1999) 30.97 11.30 5.6 0

Self tuned Fuzzy PI (Mudi and Pal 1999) 25.22 14.80 5.5 0

Table 14 Performance indices of the system with different PI con-
trollers (Example 1)

Controller IAE ITAE ISE ITSE ue J

Class 1 Fuzzy PI 7.378 106.4 2.874 15.89 4.075 0.1158

Class 2 Fuzzy PI 5.908 51.83 3.818 12.48 2.778 0.1099

Class 3 Fuzzy PI 7.366 79.35 4.631 17.97 2.603 0.1206

Class 4 Fuzzy PI 6.423 83.79 3.603 15.46 2.763 0.1061

Class 5 Fuzzy PI 6.893 55.73 4.572 15.62 2.884 0.1243

Linear PI 7.674 75.64 4.392 18.16 3.4 0.1299

0.8 so that most of the parents can take part in the crossover
and exchange their properties. To maintain diversity in the
population, and to avoid the search turning into a primitive
random search, the mutation probability is set low.

Example 1 To demonstrate the applicability of proposed
simplest fuzzy PI controllers, we consider a second-order
nonlinear plant with a dead-time. The corresponding differ-
ential equation governing the dynamics of the plant is as
follows:

ÿ + ẏ + 0.25y2 = u(t − L) (15)

where the system input and output are represented by u(t)
and y(t), respectively, and L = 0.5 s.

Considering sampling time T = 1ms,GA is used to obtain
the parameters of the simplest fuzzy and linear PI controllers
by optimizing the cost function in Eq. (14). The fuzzy PI
controller parameters are listed in Table 12. The linear PI
controller parameters are obtained as Kdt

P = 0.0015 and
Kdt

I = 0.0001. The value of the parameter A, for simplicity,
is considered zero in the output fuzzy set for all the classes of
controllers. Simulation is continued for Tf = 60 s. The step
responses of the closed loop system along with the controller
outputs due to different PI controllers are provided in Figs.
22 and 23. A step signal with amplitude 0.2, i.e. 20% of the
input signal, is applied at t = 30 s to check the disturbance
rejection ability of the proposed fuzzy PI controllers. In terms
of maximum overshoot (MO), settling time (ts), rise time (tr )

and steady state error (ess), the performance of different PI
controllers are compared and the results are listed in Table 13.
The performance indices like Integral Absolute Error (IAE),
Integral Time Absolute Error (ITAE), Integral Squared Error
(ISE), Integral Time Squared Error (ITSE), control energy
(ue = T

∑(Tf/T )−1
k=0 u2(k)) and cost function (J ) have also

been found and provided in Table 14. From Fig. 22 and Table
13, we can conclude that except Class 1 controller, all other
four classes of proposed controllers have the ability to control
the nonlinear plant in Eq. (15) in a better way as compared
to the linear PI and self tuned fuzzy PI (Mudi and Pal 1999)
controllers.

Example 2 To demonstrate the applicability of proposed sim-
plest fuzzy PD controllers, we again consider a second-order
nonlinear plant with a dead-time. The corresponding differ-
ential equation governing the dynamics of the plant is as
follows:

ÿ + 0.3y ẏ = u(t − L) (16)

where u(t) and y(t) denote the system input and output,
respectively, and L = 0.5 s.

Considering sampling time T = 1ms,GA is used to obtain
the controller parameters of the simplest fuzzy and linear
PD controllers by optimizing the cost function in Eq. (14).
The values of linear PD controller parameters are obtained
as Kdt

P = 0.0500 and Kdt
D = 0.0941. For simplicity, the

parameter A of the output fuzzy set is considered zero for all
the classes of controllers. The optimized fuzzy PD controller
parameters are summarized in Table 15.

The simulation is carried out for Tf = 80 s. Along with
controller outputs, the unit step responses of the closed loop
system due to different PD controllers are provided in Figs.
24 and 25. A step signal with amplitude 0.2, i.e. 20% of
input signal, is applied at t = 40 s to check the disturbance
rejection capability of the proposed fuzzy PD controllers.
In terms of MO, ts , tr and ess , the performance of different
PD controllers are compared and the results are provided in
Table 16. IAE, ITAE, ISE, ITSE, ue and J have also been
calculated and summarized in Table 17. From Fig. 24 and

123



Modeling, analysis and real-time implementation of five new simplest fuzzy nonlinear PI/PD… 7449

Table 15 Optimized fuzzy PD controller parameters (Class 1–Class 5,
Example 2)

Parameter Class 1 Class 2 Class 3 Class 4 Class 5

A 0 0 0 0 0

B 16.2630 15.0137 16.9941 16.9629 16.3177

he 79.3021 79.0039 79.1945 79.0567 79.0332

h�e 0.3746 0.3749 0.3729 0.3749 0.3741

Se 1.6973 1.6998 1.7000 1.6967 1.6959

S�e 14.5059 14.5870 14.7170 14.5313 14.5626

S−1
PD 8.5024 8.0762 9.9883 9.9668 8.9208

Note: During optimization, the lower and upper bounds of the parame-
ters B, he, h�e, Se, S�e, and S−1

PD are considered as 15 − 17, 79 − 80,
0.365 − 0.375, 1.5 − 1.7, 14.5 − 15.5, and 8 − 10, respectively

Fig. 24 Step responses of the closed loop system (Example 2)

Fig. 25 Control efforts due to different PD controllers (Example 2)

Table 16, we can conclude that the proposed fuzzy PD con-
trollers have better control ability as compared to the linear
PD and self tuned fuzzy PD (Mudi and Pal 1999) controllers
in controlling the nonlinear plant in Eq. (16).

Fig. 26 Digital control system diagram

8 Real-time study

In this section, with the help of two nonlinear Single Input
Single Output (SISO) plants, the real-time application of
the proposed fuzzy PI/PD controllers is studied. In the first
example a coupled tanks systemwith model no. 33-230 from
Feedback Instruments is considered for showing the appli-
cability of the proposed fuzzy PI controllers. Whereas, a
Magnetic levitation (Maglev) system with model no. 33-210
fromFeedback Instruments is considered in the second exam-
ple for showing the applicability of the proposed fuzzy PD
controllers. Apart from simulation examples, the purpose of
providing the real-time studies is to comprehend the appli-
cability of the proposed fuzzy controllers in a more realistic
sense.

The digital control diagram used for performing the real-
time control of both the examples is depicted in Fig. 26
(Coupled 2011b). The real-time digital control system con-
sists of four main elements which are PC with a clocked
control algorithm, analog to digital (A/D) and digital to
analog (D/A) converters - serving as an interface between
external environment and the PC, controlled process and sen-
sor. The control algorithm and the A/D and D/A converters
work depending on the time pulses generated by the clock.

Sampling time is defined as the time duration between
two consecutive time pulses. When the clock delivers an
interrupt, an interrupt service routine is called. During the
interrupt service routine, an A/D converter provides a dis-
crete representation of the sensor measurement. Based on
the measurement, the control signal value is calculated via
the control algorithm. At the end of the interrupt service rou-
tine, the control signal value is updated and set by the D/A
converter to be held for the next sampling interval.

Example 3 Control of liquid level in a tank is considered as
one of the most important issues in the process control indus-
tries. In order to ensure safety in production and quality and
quantity of products, effective and timely control of liquid
level is essential. In this study, we aim to control the water
level of a single tank with the help of proposed fuzzy PI con-
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Table 16 Performance
comparison of different PD
controllers (Example 2)

Controller MO (%) ts(s) tr (s) ess

Class 1 Fuzzy PD 0.82 3.554 1.945 0

Class 2 Fuzzy PD 1.33 3.464 1.909 0

Class 3 Fuzzy PD 5.49 8.130 2.438 0

Class 4 Fuzzy PI 1.65 3.852 2.127 0

Class 5 Fuzzy PD 1.06 3.494 1.920 0

Linear PD 22.91 25.60 5.295 0

Fuzzy PD (Mudi and Pal 1999) 30.31 8.6 2.8 0

Self tuned Fuzzy PD (Mudi and Pal 1999) 15.49 7.6 2.8 0

Table 17 Performance indices
of the system with different PD
controllers (Example 2)

Controller IAE ITAE ISE ITSE ue J

Class 1 Fuzzy PD 2.461 21.06 1.651 4.153 0.3586 0.02512

Class 2 Fuzzy PD 2.441 21 1.635 4.113 0.375 0.02513

Class 3 Fuzzy PD 3.134 27.77 1.981 5.46 0.1567 0.02672

Class 4 Fuzzy PD 2.646 22.42 1.758 4.544 0.267 0.02531

Class 5 Fuzzy PD 2.446 21.07 1.638 4.125 0.372 0.02512

Linear PD 9.337 134.8 4.704 25.54 0.01177 0.05895

Table 18 Single tank parameters

Parameter Value

ηt 2.2 × 10−3 ms−1V−1

At 0.01389 m2

at 50.265 × 10−6 m2

g 9.81 m/s2

trollers. The nonlinear dynamics relating the water level h1
and the voltage u p applied to the pump is given by

ḣ1(t) = ηt u p(t) − at
At

√
2gh1(t) (17)

where h1, ηt , u p, At , at , and g, respectively, represent water
level in tank, a constant relating the control voltage with
the water flow from pump, voltage applied to pump, cross-
sectional area of the tank, tank outlet area and acceleration
due to gravity.

In Table 18, the parameters of the single tank system are
provided and the real-time set-up for the water level control
system is depicted in Fig. 27.

For performing the real time experimentation, we have
considered the sampling time T = 0.1 s. With the help of
GA, the proposed fuzzyPI controller parameters are found by
optimizing the cost function in Eq. (14) and listed in Table 19.
For simplicity the following assumptions are made: A = 0
and he = h�e. The DT linear PI controller parameters are
considered as Kdt

P = 100 and Kdt
I = 0.1 (Coupled 2011a)

Fig. 27 Water level control system real-time set-up

which is equivalent to consider Kct
P = 100 and Kct

I = 1 for
the CT linear PI controller.

Considering a multi-step signal as reference, the real-time
experimentation is continued for Tf = 500 s. The first 46
seconds have been spared to bring the water level near to
the operating point by applying maximum voltage (5V) to
the pump. Once the response reaches the desired level, fuzzy
PI controller starts to operate. The closed loop responses
of the system along with control efforts due to different PI
controllers are depicted in Figs. 28, 29, 30, 31, 32, 33, 34.

To check the disturbance rejection ability of the proposed
fuzzy PI controllers, disturbance tap has been opened from
200 to 250 s. Performance indices like IAE, ITAE, ISE, ITSE,
ue and J for thewater level control systemhavebeenobtained
and summarized in Table 20. From Fig. 28 and Table 20, we
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Table 19 Optimized fuzzy PI
controller parameters (Class
1–Class 5, Example 3)

Parameter Class 1 Class 2 Class 3 Class 4 Class 5

A 0 0 0 0 0

B 204.0323 203.9932 195.2346 204.9316 204.8729

he 19.1202 19.0059 21.1085 19.0235 19.0381

Se 1.9076 1.9170 1.9152 1.9012 1.9047

S�e 99.8925 99.6970 99.5259 99.8338 100

S−1
PI 1.0479 1.0480 0.9504 1.0450 1.0428

During optimization, the lower and upper bounds of the parameters B, he, Se, S�e, and S−1
PI are considered

as 195 − 205, 19 − 22, 1.9 − 2.1, 95 − 100, and 0.95 − 1.05, respectively

Fig. 28 Responses of water level control system with different PI con-
trollers (Example 3)

Fig. 29 Control effort of Class 1 fuzzy PI controller (Example 3)

can observe that in terms of performance and disturbance
rejection ability, the proposed fuzzy PI controllers outper-
form linear PI controller.

Example 4 Maglev techniques have gained immense popu-
larity over the years because of their environment friendly
and cost-effective approaches, and applied successfully in
different fields of research such as high-speed transporta-
tion system, industrial furnaces, energy generating units of
wind turbines, biomedical instrumentation, spacecraft and

Fig. 30 Control effort of Class 2 fuzzy PI controller (Example 3)

Fig. 31 Control effort of Class 3 fuzzy PI controller (Example 3)

Fig. 32 Control effort of Class 4 fuzzy PI controller (Example 3)
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Table 20 Performance indices
of the water level control system
with different PI controllers
(Example 3)

Controller IAE ITAE ISE ITSE ue J

Class 1 Fuzzy PI 698.9 7.136×104 7737 4.69×105 7000 29.47

Class 2 Fuzzy PI 716.7 7.294×104 8142 4.889×105 6923 30.13

Class 3 Fuzzy PI 746.6 8.043×104 8014 4.885×105 6926 29.88

Class 4 Fuzzy PI 709.3 7.328×104 7845 4.75×105 6952 29.6

Class 5 Fuzzy PI 713.7 7.229×104 8144 4.819×105 6881 30.05

Linear PI 917.7 1.289×105 9555 5.677×105 6625 32.36

Fig. 33 Control effort of Class 5 fuzzy PI controller (Example 3)

Fig. 34 Control effort of linear PI controller (Example 3)

rocket launching systems etc. Because of such extensive
applications, it becomes an important task for the control sys-
tem practitioners to develop a proper control strategy which
can control the Maglev system efficiently. Because of its
nonlinear and unstable behaviour, the control task becomes
extremely difficult. From literaturewe find that different con-
trol strategies such as 1 and 2 Degree of Freedom (DOF)
control (Ghosh et al. 2014), integer and fractional order con-
trol (Sain et al. 2016; Swain et al. 2017) etc. have been used
for the purpose of controlling the Maglev system. In this
study, we make an attempt to design the proposed fuzzy PD
controllers for the control ofMaglev system in real-time. The

Table 21 Maglev system parameter details (Swain et al. 2017)

Parameter Value

Mass of the steel ball (m) 0.02 kg

Acceleration due to gravity (g) 9.81 m/s2

Equilibrium value of current (i0) 0.8 A

Equilibrium value of position (x0) 0.009 m

Control voltage to coil current gain (kc) 1.05 A/V

Sensor gain (ks ), offset (η) 143.48 V/m, -2.8 V

Control voltage input level (u) ± 5 V

Sensor output voltage level (xv) + 1.25 V to -3.75V

nonlinear dynamics of the Maglev system is given by

mẍ = mg − ki2x−2 (18)

where m, x, g and i , respectively, represent the mass of the
ball, ball position, accelerationdue to gravity and coil current,
and k is a constant and its value depends on coil (electromag-
net) parameters.

The Maglev system parameters are listed in Table 21
(Swain et al. 2017). The schematic diagram and real-time
Maglev control set-up is depicted in Figs. 35 and 36.

The fuzzy PD controller parameters are obtained by opti-
mizing the cost function in Eq. (14) with the help of GA and
provided in Table 22. The sampling time is considered as 1
ms. For simplicity the value of parameter h�e is considered
same as he i.e. he = h�e. Utilizing the same cost function
as depicted in Eq. (14), using GA, the linear PD controller
parameters are obtained as Kdt

P = 3.7 and Kdt
D = 96.8which

is equivalent to consider Kct
P = 3.7 and Kct

D = 0.0968 for
the CT linear PD controller.

The real-time experimentation has been performed for
Tf = 45 s where a square wave is chosen as the reference
signal. From the linearized model of the Maglev system we
observe that it is a type zero system and occurrence of steady
state error with PD controller is natural. A gain block has
been inserted after the reference signal to reduce the steady
state error. Along with the control efforts, the closed loop
responses of the Maglev system due to different PD con-
trollers are provided in Figs. 37, 38, 39, 40, 41, 42, 43, 44. In
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Fig. 35 Schematic diagram of the Maglev system

Fig. 36 Real-time control set-up of the Maglev system

Table 22 Optimized parameters of fuzzy PD controllers (Classes 1-5,
Example 4)

Parameter Class 1 Class 2 Class 3 Class 4 Class 5

A 0.5043 0.5090 0.5095 0.5086 0.5059

B 1.0495 1.0467 1.0479 1.0483 1.0496

he 0.1852 0.1850 0.1852 0.1850 0.1851

Se 0.8954 0.8935 0.8987 0.8981 0.8982

S�e 15.0434 15.0237 15.0403 15.0011 14.9567

S−1
PD 2.8963 2.8995 2.8974 2.8945 2.8988

During optimization, the lower and upper bounds of the parameters A,
B, he, Se, S�e, and S−1

PD are considered as 0.49 − 0.51, 0.95 − 1.05,
0.185 − 0.195, 0.85 − 0.9, 14.95 − 15.05, and 2.85 − 2.9, respectively

the graphs we have indicated the ball position in volts as the
position of the ball gets converted into an equivalent volt-
age signal. The response of the Maglev system with Class
3 fuzzy PD controller is provided separately along with the
response due to linear PD controller in Fig. 38 because of the
presence of comparatively large oscillations as compared to
other fuzzy PD controllers. We notice that except for Class
4 fuzzy and linear PD controllers, the control effort is in
the permissible range i.e. in between ±5V. Before applying
the controller output to the plant, in general the control sig-
nal is passed through a saturation block to restrict the high
amplitude of the control signal, if any, for the purpose of
plant safety. From the response of closed loop Maglev sys-
tem, IAE, ITAE, ISE, ITSE, ue and J have been found and
summarized in Table 23. From Table 23, it is found that in

Fig. 37 Closed loop responses of Maglev system with different fuzzy
PD controllers (Classes 1, 2, 4 and 5, Example 4)

Fig. 38 Closed loop response of Maglev systemwith Class 3 fuzzy and
linear PD controller (Example 4)

terms of IAE, ITAE, ISE, and ITSE, the Class 1, Class 2 and
Class 4 fuzzy PD controllers outperform Class 3 and Class
5 fuzzy PD and linear PD controllers. Moreover, it is also
observed that in terms of control energy and cost function
value, the proposed fuzzy PD controllers outperform the lin-
ear PD controller.

During the real-time experimentation, between 15 and
20 s hand held disturbance has been applied to check the
robustness capability of the proposed fuzzy PD controllers.
Moreover, for better understanding, input and output distur-
bances have also been applied simultaneously. A step signal
with an amplitude 0.155 V i.e. 10 % of the average value of
the reference signal has been considered as input disturbance
and as output disturbance a pulse signal with an amplitude
0.31 V i.e. 20 % of the average value of the reference signal
and a period of 12 s has been considered. We observe that
except Class 3 fuzzy PD controller, all other classes of fuzzy
PD controllers can withstand these simultaneous input and
output disturbances. By reducing both input and output dis-
turbances by a factor of two, we notice that Maglev system
with Class 3 fuzzy PD controller can also withstand input
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Table 23 Performance indices
of the Maglev system with
different PD controllers
(Example 4)

Controller IAE ITAE ISE ITSE ue J

Class 1 Fuzzy PD 0.6838 12.18 0.06921 0.2045 19.37 0.432

Class 2 Fuzzy PD 0.6772 11.8 0.06866 0.1938 22.17 0.4941

Class 3 Fuzzy PD 1.78 34.14 0.2084 1.843 39.13 0.8742

Class 4 Fuzzy PD 0.5938 11.73 0.02039 0.1865 9.344 0.2081

Class 5 Fuzzy PD 1.116 22.13 0.08085 0.6479 31.88 0.7102

Linear PD 0.8221 15.67 0.1658 0.3822 55.96 1.247

Fig. 39 Class 1 fuzzy PD controller output (Example 4)

Fig. 40 Class 2 fuzzy PD controller output (Example 4)

and output disturbances. The closed loop responses of the
Maglev system in presence of different disturbances are pro-
vided in Figs. 45, 46, 47, 48 which confirm the robustness of
the proposed fuzzy PD controllers.

In spite of using the gain block after the reference sig-
nal it can be observed from Figs. 47 and 48 that the steady
state error has comparatively increased. This is because of the
input disturbance signal which changes the level of control
signal continuously. With the help of a PID controller the
issues related to the steady state error can be handled effi-
ciently. We plan to do this in near future. It has further been

Fig. 41 Class 3 fuzzy PD controller output (Example 4)

Fig. 42 Class 4 fuzzy PD controller output (Example 4)

noticed that the Maglev system with linear PD controller can
withstand the hand held and input disturbances, but not the
output pulse disturbance. In presence of the hand held, and
input disturbances the responses of the closed loop Maglev
systemwith linear PD controller are provided in Figs. 49 and
50, respectively.
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Fig. 43 Class 5 fuzzy PD controller output (Example 4)

Fig. 44 Conventional linear PD controller output (Example 4)

Fig. 45 Closed loop responses of Maglev system in presence of hand
held disturbance (Classes 1, 2, 4 and 5 fuzzy PD controllers, Example 4)

9 Conclusions

In this paper, the exact analytical structures of five new
simplest fuzzy PI/PD controllers are obtained using CoG
defuzzification. Properties and computational aspects of the
proposed fuzzy PI/PD controllers are studied, and sufficient

Fig. 46 Closed loop response of Maglev system in presence of hand
held disturbance (Class 3 fuzzy PD controller, Example 4)

Fig. 47 Closed loop responses of Maglev system in presence of both
input andoutput disturbances (Classes 1, 2, 4 and5 fuzzyPDcontrollers,
Example 4)

Fig. 48 Closed loop response of Maglev system in presence of reduced
input and output disturbances (Class 3 fuzzy PD controller, Example 4)

conditions for the stability of a closed loop system contain-
ing one of the controllers in the loop are established using
the Small-Gain theorem. For better understanding, the appli-
cability of the proposed simplest fuzzy PI/PD controllers is
substantiated through simulation and real-time studies. In
future, as a further scope of research, other optimization
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Fig. 49 Closed loop response of theMaglev system in presence of hand
held disturbance (DT linear PD controller, Example 4)

Fig. 50 Closed loop response of theMaglev system in presence of input
disturbance (DT linear PD controller, Example 4)

algorithms will be explored for the design of proposed fuzzy
PI/PD controllers and the performances of the proposed con-
trollers will be compared with that of the other controllers
already reported in the literature. Moreover, for ensuring sta-
bility, BIBO stability conditions obtained in this study can
also be utilized for the design of proposed fuzzy controllers.
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