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Abstract
Weight determination is a popular research issue in the field of multicriteria analysis. Well-known approaches include the

analytic hierarchical/network process (AHP/ANP), ratio method, Delphi method, etc., and other modifications and

extensions have been proposed to address situations that are more complicated, e.g., fuzzy, grey, etc. Generally speaking,

the ANP is the most popular method and derives the weights of criteria by considering interdependent and feedback effects.

However, a problem with ANP is the cumbersome process of calculating the weights of the network relationships between

criteria. More critical problem with ANP is the issue of divergence when absorbing criteria exist. Although several

methods, such as the DEMATEL-based ANP and diminishing utility decision model, have been proposed to address these

issues, these approaches have several limitations. In this paper, we propose a novel way to overcome the limitations of the

above approaches and provide a possible solution for determining the weights of criteria via network influence maps

(NetIM) with pseudonodes. The results of the numerical examples show NetIM is more rational, flexible, and useful than

other methods.

Keywords Multiple criteria analysis � Analytic network process (ANP) � DEMATEL � Diminishing utility decision model

(DUDM) � Network relationship

Problem-solving and decision-making are critical skills for

a better life. Problem-solving and decision-making are

interdependent, and one essential issue of decision-making

is determining the weights of criteria. This issue has

received much attention for several decades, since the

weights of criteria have an important influence on decision-

making. Tzeng et al. (1998) divided the approaches to

determine weights into objective and subjective. Objective

approaches include the entropy method (Hwang and Yoon

1981), standard deviation method (Diakoulaki et al. 1995),

and maximizing deviation method (Wu and Chen 2007),

which determine the weights of criteria based on infor-

mation from decision tables but lack information from

subjective judgments by decision-makers. Subjective

approaches include the trade-off method, pricing-out

method (Keeney and Raiffa 1976), ratio method (Edwards

1977), swing method (Kirkwood 1997), analytic hierarchy

process (AHP) (Saaty 1980), point allocation method

(Doyle et al. 1997), and Delphi method (Hwang and Yoon

1981).

Among the previous approaches, the AHP, proposed by

Satty (1980), is clearly the most popular one and has been

widely applied in various applications. However, the

independent weights between criteria prevent the applica-

tion of the AHP to solving realistic network problems.

Hence, Saaty (1996) proposed the analytic network process

(ANP) to release the independence assumption between

criteria and derive the relative weights of criteria under a

network structure. Recently, the ANP has been successfully

used in solving various applications of multicriteria deci-

sion-making (MCDM), such as decision-making for solar

thermal power plants (Aragonés-Beltrán et al. 2014), green

supplier selection (Hashemi et al. 2015), asset maintenance

(Chemweno et al. 2015), renewable energy investment risk

assessment (Wu et al. 2019), and readiness assessment of

vendor-managed inventory in health care (Sumrit 2019).

However, not every network structure can be handled by

the ANP-based approaches. The major problem is that the
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steady-state distribution of a Markov chain usually requires

all criteria to be connected to each other, i.e., a regular

stochastic matrix. However, real-life problems are usually

complicated and varied. The limitation of this assumption

for the ANP restricts its possible applications in practice.

For example, the steady-state distribution is unavailable

when an absorbing criterion exists. Note that an absorbing

criterion is a criterion which is influenced by others and

does not influence others. In addition, a criterion gets

higher weight if its inflows are larger than its outflows. This

is arguably another problem since the influence of a cri-

terion might account for the inflows and/or outflows in

practice. Generally, the outflows might play a more

important role than the inflows, and this is opposite to what

the ANP does. We will discuss this issue in detail later.

Besides this, another major problem of the ANP is its

pairwise comparisons between criteria. Usually, it takes a

long time to collect the needed data, which is cumbersome

when large sets of criteria are considered. Several

approaches have been proposed, including the DEMATEL-

based ANP (DANP) (Chen et al. 2011; Liou and Tzeng

2012) and diminishing utility decision model (DUDM)

(Huang 2015), to simplify or modify the problem in the

ANP. For example, the DEMATEL-based ANP was pro-

posed to use the full direct and indirect influence matrix of

the DEMATEL approach as the input of the supermatrix,

instead of performing the pairwise comparisons. However,

these approaches have other problems, such as problems

with divergence and flexibility. For example, the result of

the DEMATEL will be divergent if the input matrix is

singular.

In this paper, we aim to solve the problems above and

propose a novel approach for determining the weights of

criteria from the perspective of network influence maps

(NetIM). The network influence of a criterion is measured

as a trade-off of the inflows, outflows, and feedback flows.

These flows can be calculated using the network influence

map, which contains the information of the interdepen-

dencies and feedback effects between criteria. Hence, we

can consider the network influence flows to determine the

weights of the criteria. Furthermore, we demonstrate the

proposed method by three numerical examples and com-

pare the results with the ANP, DANP, and DUDM. The

experimental results indicate that NetIM is more rational

and flexible than others and should be considered for more

practical applications of decision-making.

1 Problem description

Let us first consider an absorbing criterion in the network

structure, presented by Huang and Inuiguchi (2015) and

shown in Fig. 1, to illustrate the problem here. An

absorbing criterion indicates that a criterion is only influ-

enced by others and it never influences others. The problem

here is to derive the weights of the 4Ps of marketing (i.e.,

Product, Price, Promotion, and Place) under the given

network structure.

As we know, a successful marketing mix, i.e., 4Ps, is the

key point to providing a satisfactory product or service.

However, the limited marketing budget should be ration-

ally allocated to each component of the marketing mix.

Hence, we should first derive the weights of the marketing

mix before we start the marking project.

However, if we simply use the ANP-based approach to

consider the above problem, the result will produce the

irrational conclusion that only the criterion Place should be

considered in the marketing mix, because Place is an

absorbing criterion. This result violates the beginning

assumption that all of the 4Ps are important and affect the

success of the marketing strategy.

Next, we give another example to illustrate the problems

with the ANP, as shown in Fig. 2. We assume that five

criteria/clusters, C1–C5, are the criteria of a problem and

Product

Price Promotion

Place

Fig. 1 The influence map of the 4P’s (Product, Price, Promotion, and

Place) of marketing

C1

C4C2

C3 C5

Fig. 2 Criteria with a star structure
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that the criterion C1 influences others while others are only

influenced by C1.

If the network structure is as shown in Fig. 2, the result

of the ANP will conclude that C1 is of no importance and

that the others share importance equally. The reason for

this is that the weight of a criterion in the ANP equals the

sum of the inflows from others minus the outflows to

others. The greater a criterion’s net inflow, the more

important it becomes. Note that since C1 and the other

criteria are not in a hierarchical structure, we cannot simply

use the AHP or other independent methods to derive their

weights.

We should highlight that in Markov chain theory (the

method that the ANP uses to calculate the global weights of

criteria), the network structure describes the probability of

transition from one state to another. Hence, greater inflows

to a state indicate a higher probability that the state will

happen. However, if we shift this concept to consider

weights of criteria, sometimes we might think that the

criteria which influence others are more important than the

criteria which are influenced by others. The ANP only

considers the power of the inflows and ignores the

importance of the outflows.

1.1 Deriving weights by the ANP

The ANP was proposed by Saaty (1996) to generalize the

AHP to consider interdependencies and feedback effects

between criteria. First, we determine the network structure

of the problems. Then, we calculate the local weights

derived from the AHP several times and form the super-

matrix based on the network structure. Finally, we can

calculate the limiting power of the supermatrix to obtain

the weights of criteria.

The mathematical view of the ANP is presented as

follows. Let the normalized supermatrix W represent the

influence degree between criteria, from column headers to

row headers, and ensure that the sum of each column

equals unity exactly, where W is irreducible and nonneg-

ative. That is, each criterion of a matrix is strongly con-

nected such that ðI þWÞn�1 [ 0; for an n� n nonnegative

matrix. Therefore, an irreducible matrix cannot have source

or sink criteria. The detailed properties of calculating

lim
k!1

WðkÞ can refer to Appendix. Then, we raise the

supermatrix to the limiting power to obtain the global

weight matrix as follows:

U ¼ lim
k!1

WðkÞ; ð1Þ

where (k) denotes the power operator. Then, any column of

U is the global weight vector. Instead of solving Eq. (1),

we also can solve the following equation to obtain the

global weight vector:

/ ¼ W/ ð2Þ

where / is the global vector and named the steady-state

vector for W; the condition for the steady state is that W is

a regular stochastic matrix.

It can be seen that the way to calculate the global weight

vector in the ANP is via Markov chain theory. The major

difference is that the transition probabilities of the ANP are

derived from the AHP to reflect the influence from column

headers to row headers. The advantages of the ANP are that

it is appropriate for both quantitative and qualitative data

types, and it can handle the problems of interdependencies

and feedback effects between criteria (Saaty 1996).

However, the ANP may result in irrational results when

absorbing criteria are presented, as shown in Fig. 3.

In Fig. 3, C2 is an absorbing criterion, which means that

C3 is only affected by others. In this situation, the weight

of C3 will be 1, and those of the others will be 0, whatever

the elements of the supermatrix are. However, the result

above is irrational because we think that the three criteria

all have some influence on the decision problem.

To determine the result of an absorbing state, we first

consider the following problem: to determine the weights

of the five criteria depicted in Fig. 4. Note that C2, C3, and

C4 are interdependent and C1 and C5 have the feedback

effect. Among the criteria, C5 is an absorbing criterion,

which means that this criterion is only influenced by others

and has no influence on others. In addition, we should

highlight that since all five criteria are indicated as influ-

encing factors of the problem, their weights should be

larger than zero, or they should not be considered in the

network structure.

Here, we assume that all influences are equal for sim-

plicity. Then, we can formulate the supermatrix based on

Fig. 4 as follows:

C1

C2 C3

Fig. 3 Absorbing situation of the analytic network process (ANP)
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C1 C2 C3 C4 C5

W ¼

C1

C2

C3

C4

C5

1=4 0 0 0 0

1=4 0 1=3 1=3 0

1=4 1=3 0 1=3 0

1=4 1=3 1=3 0 0

0 1=3 1=3 1=3 1

2
6666664

3
7777775
:

Then, we raise the supermatrix to the limiting power to

obtain the following result:

C1 C2 C3 C4 C5

lim
n!1

WðnÞ ¼

C1

C2

C3

C4

C5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 1 1 1 1

2
6666664

3
7777775
:

Finally, we can conclude that the weights of C1 to C5

via this method are 0, 0, 0, 0, and 1, respectively.

The concept of the ANP can be viewed as the process of

determining the nodes’ inflows from others. Hence, the

node that receives greater net inflow will get the higher

weight. Clearly, since C5 is the only absorbing criterion, all

flows will eventually go to C5 until the flows of other

criteria become zero. Hence, we do not need to consider the

concrete values of the elements in the supermatrix wij, and

the conclusion can easily be inferred. However, the result

of the ANP is not satisfactory because the result indicates

that C5 is the only consideration and other weights should

be cast aside.

1.2 Deriving weights by the DANP

Given the previously mentioned problems with the ANP,

several papers have proposed ways to overcome the huge

number of questionnaire problems in the ANP, e.g.,

DEMATEL-based ANP (Chen et al. 2011; Liou and Tzeng

2012). The original concept of DEMATEL comes from

Leontief’s input and output model (Leontief 1949), which

describes the processes of how one sector distributes its

output to the other sectors of the economy. The process of

DEMATEL can be described as follows. First, a respondent

gives the influence degree from row headers to column

headers in the range of 0 to 4, where 0 means no influence

and 4 is the most influence. Then, the initial direct influ-

ence matrix D can be obtained by normalizing the direct

influence matrix X ¼ ½xij� such that

D ¼ s � X; s[ 0 ð3Þ

where.

s ¼ min 1

,
max

1� i� n

Xn
j¼1

xij
�� ��; 1

,
max

1� j� n

Xn
i¼1

xij
�� ��

 !
: ð4Þ

Then, the full (direct and indirect) influence matrix F

can be calculated by.

F ¼
X1
i¼1

Di ¼ D I � Dð Þ�1: ð5Þ

The full influence matrix describes the influence degree

from one factor (row-header) to another (column-header).

Furthermore, we can depict the interrelationships among

factors contained in the problematique. We omit the

complete concept of DEMATEL because the purpose here

is to discuss its extension to the DEMATEL-based ANP.

Readers can refer to Tzeng and Huang (2011) for a more

detailed description of the processes and results of

DEMATEL.

The DEMATEL-based ANP is described as follows.

First, the supermatrix of the ANP is derived by normalizing

the transpose of DEMATEL, i.e., FT. Then, we raise the

supermatrix to the limiting power for the result. Recently,

the DANP approach has been used in reliability-based

product optimization (Feng et al. 2018), renewable energy

resources selection (Büyüközkan and Güleryüz 2016), and

project risk management (Chen et al. 2019). However, the

DEMATEL approach will produce an infinite matrix if the

direct influence matrix is singular. Let us consider the

following direct influence matrix:

C2

C1

C3

C4 C5

Fig. 4 Demonstrating the

Problem with the ANP
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X ¼
0 1 3

3 0 1

1 3 0

2
4

3
5:

The matrix seems to be normal in describing the direct

influence between three elements in practice. However, if

we derive the full influence matrix, it will be as follows:

F ¼ D I � Dð Þ�1¼
inf inf inf

inf inf inf

inf inf inf

2
4

3
5:

Hence, the major problem of the DEMATEL is that if

D is a singular matrix, the inverse of D is unavailable.

We return to our problem in Fig. 4 and construct the

direct relation matrix, D, as the following matrix, where the

degrees of all influencing relationships between criteria are

set to 1 for simplicity:

D ¼

C1 C2 C3 C4 C5

C1

C2

C3

C4

C5

1 1 1 1 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

0 0 0 0 1

2
66664

3
77775

:

Then, we can normalize the direct relation matrix and

calculate the full influence matrix by Eq. (3) as follows:

F ¼

0.333 0.667 0.667 0.667 0.667

0 0.200 0.400 0.400 0.667

0 0.400 0.200 0.400 0.667

0 0.400 0.400 0.200 0.667

0 0 0 0 0.333

2
66664

3
77775
:

Next, we can transpose F and then normalize FT to the

stochastic matrix as follows:

W ¼

0.111 0 0 0 0

0.222 0.120 0.240 0.240 0

0.222 0.240 0.120 0.240 0

0.222 0.240 0.240 0.120 0

0.222 0.400 0.400 0.400 1

2
66664

3
77775
:

Similar to the ANP, we can calculate the limiting power

of W to obtain the weight vector of the criteria as [C1, C2,

C3, C4, C5]T = [0, 0, 0, 0, 1]T. The result is the same as

that from the ANP and shows the method’s uselessness in

handling the demonstrated problem, since it also considers

the inflows of criteria to be the weights.

2 Weight determination by DUDM

DUDM was proposed by Huang and Inuiguchi (2015) to

derive the weights of criteria by the integration of the AHP

and modified DEMATEL. The procedure of the DUDM

can be described as follows:

Step 1 Deriving the main weight vector, v, by the AHP.

Step 2 Formulating the interaction matrix, P. The

interaction matrix is given by the following:

C1 C2 � � � Cn

P ¼

C1

C2

..

.

Cn

p11 p12 � � � p1n
p21 p22 � � � p2n

..

. ..
. . .

. ..
.

pn1 pn2 � � � pnn

2
66664

3
77775

where each pij is derived by conditional pairwise com-

parison as follows. Let aij ¼ wi

�
wj and akj ¼ wk

�
wj. The

conditional pairwise comparison of wi=wk given by Cj can

be derived as follows:

wi

wk

����
Cj

¼ aij
akj

: ð6Þ

Then, we can derive the column vectors of P by using

the AHP, and each column vector will be derived by a run

of the AHP.

Step 3 Calculating the interaction weights of criteria.

The sum of the interaction matrix of criteria can be cal-

culated as follows:

SIM ¼ lim
n!1

½Pþ ð1� aÞP2 þ � � � þ ð1� aÞn�1Pn�
¼ P½I � ð1� aÞP��1; ð7Þ

where a 2 ð0; 1Þ denotes the psychological coefficient,

which determines the level of decreasing psychological

utility. Then, we can calculate the sum of the row of SIM as

the interaction impact power of criteria and normalize it as

the interaction weight.

Step 4 Synthesizing the weights of criteria. By setting

the main and interaction weights, we can use a simple

weighted method to calculate the final weights of criteria as

follows:

p¼bvþ ð1� bÞP½I � ð1� aÞP��1; ð8Þ

where b denotes the weights of the main weight and v is the

main weight.

To conclude, DUDM used the simple weighted sum of

the main and interaction weights to synthesize the finally

weights of criteria. The main weights are derived by the

AHP, and the interaction weights are modified by the

DEMATEL approach by incorporating the psychological

coefficient. In addition, it also suggested to use the AHP to

determine the importance between the main and interaction

weights.

It can be seen that the DUDM method modifies the

DEMATEL approach to avoid possible divergence by

adding the psychological coefficient a. However, the pro-

cedures of the DUDM still need to process the AHP many
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times to form the interaction matrix. In addition, the psy-

chological coefficient may significantly affect the weights

of criteria and still needs to be carefully chosen. Further-

more, like the ANP, it cannot reflect the importance of

outflows of criteria. Next, we describe how the above

issues are handled by developing the concept of network

influence maps in this project.

3 Network influence Maps

Assume that a network structure is as shown in Fig. 5,

where the circles denote different nodes (criteria), and q

values denote the flows between nodes. We consider the

importance of a criterion in terms of three factors: the

amounts of inflows, outflows, and feedback flow. The

weight of a criterion should consider a trade-off between

the three factors. In addition, we also define the reference,

R, of criterion i as the criteria which link to criterion i (e.g.,

criteria r and s). For example, in the link from r to i,

denoted by r ! i, the criterion r is the reference of crite-

rion i.

Let the status quo of criterion i be vi. The weight of the

ith criterion at time t can be represented as a function:

dwiðtÞ
dt

¼ f
X
r 6¼i

qriwrðtÞ;
X
j6¼i

qijwjðtÞ; qii; vi

 !
; 8i; ð9Þ

where qij denotes the flow from the ith node to the jth node,

f ð�Þ is a specific function which transfers the parameters to

the weight, and wjðtÞ is the weight of the jth node at time t.

The network importance of the ith criterion is then calcu-

lated by.

pi ¼ lim
t!1

dwiðtÞ
dt

; ð10Þ

where pi denotes the steady state of the criterion and will

be viewed as the weight of the criterion.

The inflow weight from criterion r to criterion i at time t

in this paper can be defined as follows:

win
t ði; rÞ ¼

Ii � 1=p � !P
r!p

Ip
; 8r 6¼ i; r 6¼ p; r ! i; ð11Þ

where win
t ði; rÞ 2 ð0; 1� and Ii indicates the input degree

(number of inflows) of criterion i. ! ¼ f0; 1g denotes an

indicator variable where ! ¼ 1 if criterion i has the feed-

back effect, and the feedback flow of criterion i is mea-

sured by.

win
t ði; iÞ ¼

1P
r!p

Ip
; 8r 6¼ i; r 6¼ p; r ! i: ð12Þ

Then, the outflow weight from criterion i to criterion j at

time t here can be calculated as

wout
t ði; jÞ ¼

Oi � 1=p � !P
p!j

Op
; 8i 6¼ j; p ! i ð13Þ

where wout
t ði; jÞ 2 ð0; 1� and Oi indicates the output degree

(number of outflows) of criterion i. ! ¼ f0; 1g denotes an

indicator variable where ! ¼ 1 if criterion i has the feed-

back effect, and the feedback flow of criterion i is mea-

sured by.

wout
t ði; iÞ ¼ 1P

p!j

Op
; 8i 6¼ p; p 6¼ j; p ! i: ð14Þ

After obtaining the above indices, we can construct the

inflow and outflow matrices, respectively, as follows:

r

i

j

k m

l

s

Fig. 5 An example network to

illustrate the concept of the

weight of a node
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W inðtÞ ¼

win
t ð1; 1Þ win

t ð1; 2Þ � � � win
t ð1; nÞ

win
t ð2; 1Þ win

t ð2; 2Þ � � � win
t ð2; nÞ

..

. ..
. . .

. ..
.

win
t ðn; 1Þ win

t ðn; 2Þ � � � win
t ðn; nÞ

2
6664

3
7775;

WoutðtÞ ¼

wout
t ð1; 1Þ wout

t ð1; 2Þ � � � wout
t ð1; nÞ

wout
t ð2; 1Þ wout

t ð2; 2Þ � � � wout
t ð2; nÞ

..

. ..
. . .

. ..
.

wout
t ðn; 1Þ wout

t ðn; 2Þ � � � wout
t ðn; nÞ

2
6664

3
7775;

where we reflect the influence of the feedback flows in the

inflow and outflow matrices. Hence, we can rewrite

Eqs. (9) and (10) as

p ¼ lim
t!1

WðtÞ ¼ f W inðtÞ;WoutðtÞ; v
� �

; ð15Þ

where p denotes the weight vector in the steady state, and v

denotes the status quo vector of criteria, which is calculated

by the AHP here.

We use the following example to demonstrate the

indices defined here. This example has six criteria that

contain interdependency and feedback effects between

criteria, as shown in Fig. 6.

The initial inflow and outflow matrices can be derived,

respectively, as.

W inð0Þ ¼

0:00 0:40 0:00 0:40 0:00 0:00
0:00 0:00 0:00 0:00 0:25 0:00
0:29 0:00 0:20 0:00 0:00 0:30
0:29 0:00 0:30 0:00 0:00 0:00
0:42 0:60 0:00 0:00 0:00 0:50
0:00 0:00 0:50 0:60 0:75 0:20

2
6666664

3
7777775
;

Woutð0Þ ¼

0:00 0:00 0:60 0:60 0:42 0:00
0:50 0:00 0:00 0:00 0:29 0:00
0:00 0:00 0:00 0:40 0:00 0:28
0:50 0:00 0:00 0:00 0:00 0:28
0:00 1:00 0:00 0:00 0:00 0:28
0:00 0:00 0:40 0:00 0:29 0:16

2
6666664

3
7777775
:

By using the information in W inðtÞ and WoutðtÞ, we can

account for both the inflow and outflow influences of cri-

teria and reflect these influences in the weight vector.

However, the above method cannot overcome the

problem in Fig. 2. Before explaining the reason for this, we

should introduce the definition of a regular stochastic

matrix.

Definition 1 A stochastic matrix is called a regular

stochastic matrix if there is a power of the matrix that

contains only positive entries.

In other words, a stochastic matrix is regular if the nodes

are connectable (irreducible) and at least one entry of the

main diagonal is nonzero. Then, we can calculate the

inflow and outflow matrices, respectively, for Fig. 2 as

follows:

W inð0Þ ¼

0 0 0 0 0

0:25 0 0 0 0

0:25 0 0 0 0

0:25 0 0 0 0

0:25 0 0 0 0

2
66664

3
77775
;

Woutð0Þ ¼

0 0:25 0:25 0:25 0:25
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2
66664

3
77775
:

Clearly, the above two matrices are not regular. Next,

we describe how to handle this situation by adding

pseudonodes. We can reconsider Fig. 2 and add two

pseudonodes, P1 and P2, as shown in Fig. 7.

The function of pseudonodes is to provide unlimited

inflows or an unlimited container to receive outflows. The

setting of pseudonodes is done to avoid the flow of a node

being exhausted or a node becoming an absorbing criterion.

The use of pseudonodes avoids the weight of a criterion

becoming zero or one and ensures W inð0Þ and Woutð0Þ are
stochastic and regular. Hence, the flow information of the

pseudonodes should be added into the inflow and outflow

matrices, but they should not be considered in the result.

Before introducing the proposed method, we first

explain the properties of a Markov chain as follows. Let W

be a column stochastic matrix and p, where eTp ¼ 1, be the

steady-state vector of a Markov chain. To find p, we solve

the following equation:

p ¼ Wp: ð15Þ

Definition 2 Any linear combination of two stochastic

matrices is a stochastic matrix.

Proof. Let P1 and P2 be two column stochastic matrices.

Any linear combination of the two matrices can be

presented as.

A

B

C

D

E

F

Fig. 6 A network structure
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P ¼ aP1 þ ð1� aÞP2;

where a 2 ½0; 1�. Then, we multiply both sides by eT , where

e is the column vector of all ones:

eTP ¼ eTðaP1 þ ð1� aÞP2Þ
¼ aeTP1 þ ð1� aÞeTP2

¼ aeT þ ð1� aÞeT

¼ eT : Q:E:D:

Since W inðtÞ, WoutðtÞ, and veT are stochastic matrices,

any linear combination of them is also a stochastic matrix.

Hence, we can present the problem of finding p here as

equivalent to solving the following equation:

p ¼ h aW inðtÞ þ ð1� aÞWoutðtÞ
� �

þ ð1� hÞveT
� �

p ð17Þ

where a denotes the importance of the inflow matrix, h is

the importance of the network influence, and ð1� hÞ is the
importance of the status quo of criteria.

Let WðtÞ¼aW inðtÞ þ ð1� aÞWoutðtÞ; we can rewrite

Eq. (17) as

p ¼ hWðtÞ þ ð1� hÞveT
� �

p

¼ hWðtÞpþ ð1� hÞveTp
¼ hWðtÞpþ ð1� hÞv

ð18Þ

where h 2 ½0; 1� denotes the importance of the network

influence, v is a column stochastic vector, and eTv ¼ 1.

We can rewrite Eq. (18) as

ðI � hWðtÞÞp ¼ ð1� hÞv ð19Þ

and if h 2 ð0; 1Þ, we can derive the weight vector of the

criteria by.

p ¼ ð1� hÞðI � hWðtÞÞ�1v: ð20Þ

It is well known that ðI � hWðtÞÞ�1
is invertible (Seneta

2006) and ensures the existence and convergence of p. In
addition, the NetIM method reduces to the ANP if a ¼ 1

and h ! 1, with the same stochastic matrix, and reduces to

the AHP if h ! 0.

4 Numerical examples

Here, we give three numerical examples to demonstrate the

NetIM and compare the results with those from the ANP,

DANP, and DUDM.

Example 1. In this example, we reconsider Fig. 6 to derive

the weights of the criteria via the NetIM and compare the

result with those from the ANP and DUDM. Note that we

assume that all criteria of the status quo are equal to sim-

plify the comparisons between the methods. In addition, we

set all influence levels in the ANP, DANP, and DUDM to

be equal for simplicity.

Hence, the supermatrix of the ANP and the P of the

DUDM can be represented as:

0 1=2 0 1=2 0 0

0 0 0 0 1=2 0

1=3 0 1=3 0 0 1=3
1=3 0 1=3 0 0 0

1=3 1=2 0 0 0 1=3
0 0 1=3 1=2 1=2 1=3

2
6666664

3
7777775

and the direct relation matrix of the DANP is given as:

X ¼

0 0 1 1 1 0

1 0 0 0 1 0

0 0 1 1 0 1

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 0 1 1

2
6666664

3
7777775
:

On the other hand, we can use NetIM to derive the

weights of the criteria. Note that the NetIM considers both

the inflow and outflow matrices (Fig. 6), unlike the other

methods which use only the inflow matrix. The comparison

results are presented in Table 1.

C1

C4C2

C3 C5

P1 P2

Fig. 7 Star structure with

pseudonodes
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Example 2. Let us again reconsider Fig. 1. The weights

given by the ANP and DANP have been explained, and in

them, the criterion Place takes all the importance. How-

ever, these results are useless. Hence, we compare the

NetIM method with DUDM as follows.

First, we assume that the pairwise comparison weights

between the criteria are as follows:

product price promotion place

product

price

promotion

place

1 1=3 1=4 3

3 1 1=2 5

4 2 1 6

1=3 1=5 1=6 1

2
6664

3
7775

Then, we can use the AHP to obtain the result as

follows:

v ¼

Product

Price

Promotion

Place

2
664

3
775 ¼

0:1336
0:3102
0:4948
0:0614

2
664

3
775;

where kmax = 4.0788, and consistency ratio (CR) = 0.029.

By setting the different parameters of a and b, we can

derive the weight vectors of the criteria by DUDM as

shown in Table 2.

On the other hand, we can calculate the inflow and

outflow matrices based on the network structure of Fig. 1,

respectively, as follows:

W inð0Þ ¼

product

price

promotion

place

0:1667 0 0 0

0:1111 0 0 0

0:2778 0:4 0 0

0:4444 0:6 1 1

2
664

3
775;

Woutð0Þ ¼

product

price

promotion

place

1 1 0:6 0:4444
0 0 0:4 0:2778
0 0 0 0:1111
0 0 0 0:1667

2
664

3
775:

Then, we can calculate the weight vectors via the NetIM

method by setting different parameters, as shown in

Table 2.

From Table 2, it can be seen that the proposed approach

can obtain a more reasonable result than the ANP and

DANP if an absorbing criterion exists. Although the

DUDM approach produced results that also seem reason-

able, it loses the information of the outflow matrix and

results in the criterion Product being less important in any

situation. By contrast, the NetIM approach can consider the

information of the inflow and outflow matrices and displays

different results across the weight vectors.

Example 3. Here, we complete the problem in Fig. 2. We

added two pseudonodes as shown in Fig. 7 to obtain inflow

and outflow matrices, respectively, as follows:

W inð0Þ ¼

P1

C1

C2

C3

C4

C5

P2

0:5 0 0 0 0 0 0

0:5 0 0 0 0 0 0

0 0:25 0 0 0 0 0

0 0:25 0 0 0 0 0

0 0:25 0 0 0 0 0

0 0:25 0 0 0 0 0

0 0 1 1 1 1 1

2
666666664

3
777777775
;

Table 1 Comparison results for

Example 1
Weights A B C D E F

ANP 0.0968 0.0922 0.2074 0.1014 0.1843 0.3180

DANP 0.0793 0.0772 0.2290 0.1120 0.1799 0.3226

DUDM (a; b ¼ 0:5) 0.1497 0.1280 0.1760 0.1376 0.1786 0.2301

NetIM (a ¼ 0:3; h ¼ 0:7) 0.1046 0.0901 0.1595 0.1047 0.2293 0.3142

NetIM (a; h ¼ 0:5) 0.1757 0.1317 0.1480 0.1437 0.1955 0.2083

Table 2 Results of a comparison of DUDM, ANP, and NetIM

Method Product Price Promotion Place

ANP 0 0 0 1

DANP 0 0 0 1

DUDM (a ¼ 0:8,b ¼ 0:5) 0.1224 0.1779 0.3728 0.3271

DUDM (a ¼ 0:6,b ¼ 0:5) 0.1137 0.1743 0.3481 0.3639

DUDM (a ¼ 0:4,b ¼ 0:5) 0.1025 0.1697 0.3203 0.4075

DUDM (a ¼ 0:2,b ¼ 0:5) 0.0877 0.1637 0.2877 0.4611

DUDM (a ! 0,b ¼ 0:5) 0.0668 0.1551 0.2474 0.5307

NetIM (a ¼ 0:2; h ¼ 0:5) 0.4064 0.2150 0.2720 0.1066

NetIM (a ¼ 0:4; h ¼ 0:5) 0.3112 0.2123 0.2880 0.1886

NetIM (a ¼ 0:6; h ¼ 0:5) 0.2233 0.2017 0.2964 0.2786

NetIM (a ¼ 0:8; h ¼ 0:5) 0.1436 0.1838 0.2969 0.3756

NetIM (a ¼ 1:0; h ¼ 0:5) 0.0729 0.1591 0.2894 0.4786
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Woutð0Þ ¼

P1

C1

C2

C3

C4

C5

P2

1 1 0 0 0 0 0

0 0 1 1 1 1 0

0 0 0 0 0 0 0:125
0 0 0 0 0 0 0:125
0 0 0 0 0 0 0:125
0 0 0 0 0 0 0:125
0 0 0 0 0 0 0:5

2
666666664

3
777777775
:

Next, we calculate the status quo vector of criteria via

the AHP. Assume that the comparison matrix is given as.

A ¼

C1

C2

C3

C4

C5

1 1=5 5 3 3

5 1 5 3 3

1=5 1=5 1 1=3 1

1=3 1=3 3 1 1

1=3 1=3 1 1 1

2
66664

3
77775
:

Then, we can use the eigenvalue method (EM) to obtain

the eigenvector as.

v ¼

P1

C1

C2

C3

C4

C5

P2

0

0:2380
0:4848
0:0631
0:1186
0:0954

0

2
666666664

3
777777775
; k ¼ 5.4303; CR ¼ 0:0960:

The result of the CR (\ 0.1) indicates that the status quo

vector is rational and can be processed further. Note that

since the pseudonodes should not be considered in the final

result, we set the status quo values of the pseudonodes to be

equal to zero. Assume that a ¼ 0:5 and h ¼ 0:5. We can

calculate the weight vector here as

p ¼ ð1� 0:5ÞðI � 0:5

�

0:75 0:5 0 0 0 0 0

0:25 0 0:5 0:5 0:5 0:5 0

0 0:125 0 0 0 0 0:0625

0 0:125 0 0 0 0 0:0625

0 0:125 0 0 0 0 0:0625

0 0:125 0 0 0 0 0:0625

0 0 0:5 0:5 0:5 0:5 0:75

2
666666666664

3
777777777775

Þ�1

0

0:2380

0:4848

0:0631

0:1186

0:0954

0

2
666666666664

3
777777777775

¼

P1

C1

C2

C3

C4

C5

P2

0:0992

0:2480

0:2637

0:0529

0:0806

0:0690

0:1865

2
666666666664

3
777777777775

:

Finally, we ignore the weights of the pseudonodes and

normalize the other weights to 1 to obtain the final weight

vector as.

p ¼

C1

C2

C3

C4

C5

2
66664

3
77775
¼

0:3472
0:3693
0:0740
0:1129
0:0966

2
66664

3
77775
:

Figure 2 is a simple and common network structure in

practice. For example, Yilmaz and O’Connor (2012) sug-

gested the social capital can affect helpfulness, communi-

cation transparency, social relations, and regular meetings.

Labonte et al. (2016) proposed the switching behavior

model which indicates demography and economy will

affect service use, health status, and satisfaction. These

examples showed social capital or demography and econ-

omy should play the major role in their model rather than

the minor role as shown in the ANP. To our knowledge,

this is the first MCDM method able to handle the problem;

hence, we present only our result without other methods for

comparison.

5 Discussions

Weight determination is an important issue in MCDM for

correct decision-making. However, this problem is very

hard due to the often-complex relationships between cri-

teria. Although many methods, e.g., AHP, ANP, and

DANP, have been proposed to capture the complex struc-

ture of criteria, these methods have different limitations in

different applications.

Here, we propose a new method to deal with the prob-

lem of weight determination in a more complete and

flexible way. First, we divide the influence of criteria into

their inflow and outflow influences, which account for the

importance of the in-degree and out-degree of a criterion.

Next, we incorporate the status quo of criteria to reflect the

initial weights of criteria without considering the network

influence. Furthermore, we add the concept of pseudonodes

to avoid situations of divergence in the method. Finally, we

can derive our weight formulation and ensure the solution’s

existence and uniqueness.

In addition, we demonstrated the proposed method using

three numerical examples and compared the results with

those from the ANP, DANP, and DUMD. The results of the

examples indicate that the ANP and DANP cannot handle

the absorbing criterion situation, like in Example 2, as they

derived useless weights of the criteria. Although the

DUMD approach can deal with the problem in Example 2,

it cannot reflect the influence of the outflow matrix and

loses flexibility for practical problems. Furthermore, the

convergence condition of DUMD requires the interaction

matrix,P, to be regular. This condition also restricts the
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applications of DUMD to exclude possible applications

like Example 3.

Hence, the advantages of NetIM can be described as

follows. First, it is a complete method able to consider all

available information from the network structure, including

inflow and outflow matrices. Second, our method adds

pseudonodes to handle the problem of a nonregular

stochastic matrix, which cannot be handled by the existing

methods. Third, NetIM provides the flexibility for decision-

makers to adjust the parameters, i.e., a and h, to derive a

satisfactory result. Fourth, the two most popular MCDM

methods, i.e., AHP and ANP, are special forms of NetIM.

Finally, our model ensures weight vector existence and

uniqueness.

Since a and h play important roles in determining the

final result of criteria, we should provide some possible

methods to determine the appropriate values of these

parameters in practice. First, if the decision problem is

uncertain or ambiguous, and the decision-maker’s prefer-

ence is unsure, a; h ¼ 0:5 are rational guesses without loss

any possible information. Second, if expert’s opinions are

available, we can use the AHP to derive the values of a and

h. Then, an expert should answer the question like ‘‘factors

which affect others are __ important than affected factors‘‘

and ‘‘network influence is __ important than the initial

status.’’ Third, if the rank or scores of alternatives are

available, e.g., collected by sample data or expert’s opin-

ions, we can estimate the value of a and h such that the

rank/scores of criteria are most consistent with the sug-

gested rank/scores.

In further research, NetIM can be applied to the han-

dling of more practical problems to check its rationality

and usefulness. In addition, more complicated situations,

e.g., fuzzy, can be considered in the model. Finally, more

MCDM methods can be compared with NetIM to verify the

advantages of the model.

6 Conclusion

In this paper, we propose a novel approach, called NetIM,

to determine the weights of criteria using the information

of the inflow and outflow matrices with pseudonodes. We

divide our model into two parts. The first part measures the

network influence by considering the inflow and outflow

weights. The second part considers the status quo of cri-

teria, which is determined using the AHP. Then, we inte-

grate the two parts to form the NetIM approach. Note that

the results obtained using the proposed method may be

very sensitive to values of two parameters of the method.

Therefore, the choice of the parameters should be very

careful. The proposed approach can overcome the prob-

lems of the (DEMATEL-based) ANP and shows more

flexibility than the DUDM approach based on the results of

the numerical examples.

Appendix

In Saaty’s suggestion (Saaty 1996), three conditions should

be considered to obtain the limit of Wk as: 1) kmax ¼ 1 is a

simple root and no other roots of unity exist, or, 2) there are

other roots of unity that cause cycling, whether kmax ¼ 1

simple or multiple, and 3) kmax ¼ 1 is a multiple root.

In the first situation, the limiting priorities can be

derived according to Sylvester’s formula as:

Wk !

Q
j 6¼i

ðkjI �WÞ
Q
j 6¼i

ðkj � kjÞ
ðA1Þ

where f ðkÞ ¼ kk and the only root to the power k that does

not tend to zero as k ! 1 in Sylvester’s formula is

1k ! 1.

The above formula can be transformed as the following

description that if the nonnegative matrix W is primitive,

we can derive lim
k!1

Wk ¼ weT , where w is the normalized

right principal eigenvector of W, i.e., 10w ¼ 1, and eT is the

left eigenvector of W which will be the one vector, i.e.,

eT ¼ 10.
For example, let

W ¼
0:4 0:5 0:5
0:3 0:3 0:1
0:3 0:2 0:4

2
4

3
5;

we can calculate the normalized right and left eigen-

vectors with kmax ¼ 1 as:

w ¼
0:4545
0:2386
0:3068

2
4

3
5; and e ¼

1

1

1

2
4
3
5:

Then, we can derive the limiting priorities of the criteria

as:

lim
k!1

Wk ¼ weT ¼
0:4545 0:4545 0:4545
0:2386 0:2386 0:2386
0:3068 0:3068 0:3068

2
4

3
5:

Situation 2) involves the cycling case of a stochastic

matrix which can be handled by the Cesaro sum to obtain

the limiting priorities. Surely, the proposed method can

avoid the cycling problem, since we transform our problem

from calculating the limiting priorities of W into deriving

the inverse matrix of ðI � hWðtÞÞ.
For situation 3), if kmax ¼ 1 is a multiple root, we can

use Sylvester’s formula with kmax ¼ 1 a multiple root of

multiplicity n1 to obtain the limiting priorities as follows:

Determining weights of criteria via network influence maps with pseudonodes 9635

123



lim
k!1

Wk ¼ n1
dðn1�1Þ

dkðn1�1Þ ðkI �WÞ�1DðkÞ= dn1

dkn1
DðkÞjk¼1

¼n1
Xn�1

k¼n1�1

Xk�n1þ1

h¼0

ðk � hÞ!
ðk � n1 þ 1� hÞ! phW

n�1�k=
Xn�n1

h¼0

ph
ðn� hÞ!

ðn� n1 � hÞ!

ðA2Þ

where.

DðkÞ ¼ DetðkI �WÞ ¼ kn þ p1k
n�1 þ � � � þ pn:

However, in practical way, we can derive the limiting

priorities by directly calculating lim
k!1

Wk or ðI �WÞ�1
.

However, the situation is only suitable for handling the

hierarchical goal–criteria–alternative structure, i.e., a AHP

problem, which is not the focus in this paper.

For example, we can consider a goal–criteria–alternative

structure example as follows (Fig. 8 ):

If the stochastic matrix can be represented as:

W ¼

G
C1

C2

C3

C4

A1

A2

0 0 0 0 0 0 0

0:15 0 0 0 0 0 0

0:30 0 0 0 0 0 0

0:25 0 0 0 0 0 0

0:30 0 0 0 0 0 0

0 0:40 0:25 0:65 0:55 1 0

0 0:60 0:75 0:35 0:45 0 1

2
666666664

3
777777775
;

we can derive the limiting priorities as:

lim
k!1

Wk ¼

G
C1

C2

C3

C4

A1

A2

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0:4625 0:40 0:25 0:65 0:55 1 0

0:5375 0:60 0:75 0:35 0:45 0 1

2
666666664

3
777777775
;

where 0.4625 and 0.5375 denote the priorities of A1 and A2,

respectively. Or, we can let

W ¼

G
C1

C2

C3

C4

A1

A2

0 0 0 0 0 0 0

0:15 0 0 0 0 0 0

0:30 0 0 0 0 0 0

0:25 0 0 0 0 0 0

0:30 0 0 0 0 0 0

0 0:40 0:25 0:65 0:55 0 0

0 0:60 0:75 0:35 0:45 0 0

2
666666664

3
777777775

and calculate

ðI �WÞ�1 ¼

G

C1

C2

C3

C4

A1

A2

1 0 0 0 0 0 0

0:15 1 0 0 0 0 0

0:30 0 1 0 0 0 0

0:25 0 0 1 0 0 0

0:30 0 0 0 1 0 0

0:4625 0:40 0:25 0:65 0:55 1 0

0:5375 0:60 0:75 0:35 0:45 0 1

2
666666666664

3
777777777775

to conclude the same result.

Funding This study was not funded by any organizations.

Declarations

Conflict of interest I declare no conflict of interest.

Ethical approval This article does not contain any studies with human

participants performed by any of the authors.

References

Aragonés-Beltrán P, Chaparro-González F, Pastor-Ferrando JP, Pla-
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