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Abstract
In many engineering problems, the systems dynamics are uncertain, and then, the accurate dynamic modeling is required.

Type-2 fuzzy neural networks (T2F-NNs) are extensively used in system identification problems, because of their strong

estimation capability. In this paper, the application of T2F-NNs is reviewed and classified. First, an introduction to the

principles of system identification, including how to extract data from a system, persistency of excitation, preprocessing of

information and data, removal of outlier data, and sorting of data to learn the T2F-NNs, is presented. Then, various learning

methods for structure and parameters of the T2F-NNs are reviewed and analyzed. A number of different T2F-NNs that

have been used to system identification are reviewed, and their disadvantages and advantages are described. Also, their

efficiency in different applications is reviewed. Finally, we will look at the horizon ahead in this issue and analyze its

challenges.

Keywords Type-2 fuzzy logic � Fuzzy neural networks � System identification � Review

1 Introduction

By having mathematical relationships between the vari-

ables of a physical system, it is possible to improve per-

formance, predict behavior, and control that system. One

way to get the mathematical relationships of physical

systems is to use the basic laws of physics and chemistry

and so on. But today, with the complexity of systems and

the high mathematical calculations of these systems, as

well as the lack of information about the details of the

system, the method of using the basic rules is very limited.

Today, it is proposed to obtain mathematical relations of a

system (generally unknown) using the input–output data-

set, which is called system identification. By applying input

to a physical system, the output corresponding to that input

can be obtained, and then using this pair of input–output

data and various methods of system identification, the

mathematical input and output of the system can be

obtained. From the early 1970s, work began on identifying

systems in a serious and extensive manner. In these studies,

basic issues such as identifiableness, different identification

strategies, and their convergence and uniqueness of esti-

mation have been studied. The proposed algorithms are

more efficient in identifying linear systems and generally

do not show the required efficiency to identify nonlinear

systems (Nelles 2001).

In system identification, the structure of the model or the

so-called model framework must first be determined, and

then, the indefinite parameters of the model must be

determined. Different model choices lead to different sys-

tem identification methods, from classic multitasking

models to new fuzzy, and neural models are used to

identify nonlinear dynamic systems in various books and

papers have been discussed. In (Nelles (2001)), various

linear and nonlinear structures have been introduced and

analyzed. The mentioned book ranges from the classic

Kolmogorov–Gabor multi-sentence identification methods

and the Volterra series to modern fuzzy, neural, and fuzzy
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neural models. In Thoma et al. (2010), Wiener and Ham-

merstein block models are discussed to system identifica-

tion. In Ruano (2005) fuzzy, neural and fuzzy neural

models are discussed for system identification.

T2F-NNs have received much attention in the last ten

years with more capabilities and flexibility than type-1

counterpart Eyoh et al. Oct. 2018; Tavoosi et al. 2011a,

2016, 2017a, 2017b; Tavoosi xxxx. T2F-NNs have high

approximation accuracy, so these tools can be used wher-

ever an accurate model is needed. Unlike to the T1F-NNs,

the secondary membership in T2F-NNs is not a crisp value.

The secondary membership in T2F-NNs is also a fuzzy set.

Then T2FL systems have one more degree of freedom. The

application of T2F-NNs in many problems is more effi-

cient. For example, in the adaptive inverse control method,

it is necessary to have an exact inverse model, which T2F-

NNs can be used Kien et al. 2020; Tavoosi et al. 2011b;

Zhao et al. 2017. In predicting the future of a dynamic

system such as a stock market or a weather situation, a

recurrent type-2 fuzzy system could be a good model for

these purposes José Ángel Barrios 2020; Eyoh et al. 2020;

Narges Shafaei Bajestani 2017. In terms of data segrega-

tion and classification, a precise type-2 fuzzy system can

more accurately categorize and completely separate data,

and this is very common in telecommunications.

Recently, T2F-NNs are extensively used in various

applications. For example in Mohammadzadeh and Kaya-

can 2020, nonlinear system modeling by the use of T2F-

NNs is studied and it is proved that T2F-NNs outperform

than type-1 counterparts. In Sabzalian, et al. 2019, the

application of T2F-NNs in control problem is investigated

and an adaptive controller is designed and its robustness

against uncertainty is shown. In (Failed 2012), the appli-

cation of fuzzy rough systems in intrude detection problem

is studied and it is shown that by the use of fuzzy logic

systems (FLSs) the accuracy is improved and the rate of

false alarm is decreased. In (Kanimozhi 2019), a fuzzy

prediction systems is designed and it is used for cancer

prediction. In (Ganapathy, et al. 2014), a pattern classifi-

cation methodology is developed using FLSs and it is

concluded that FLSs improve the detection accuracy sig-

nificantly. In (Sethukkarasi 2014), a temporal mining pro-

cedure is designed and its reliability investigated. In

(Nancy et al. 2020), a feature selection mechanism on the

basis of FLSs is introduced and its application in attack

detection systems is studied.

In addition to structure, the learning method is also

effective in estimation performance of FNNs. Various

optimization methods have been applied on the tuning of

the both parameters and rules such as particle swarm

optimization (Deng et al. 2020a; Kacimi et al. 2020),

quantum-inspired differential evolution (Su and Yang

2011; Deng et al. xxxx; Deng et al. 2020b), differential

evolution (Deng et al. 2020c), extreme learning approach

(He et al. 2019), fractional-order learning rules (Moham-

madzadeh and Kumbasar 2020a), consensus learning (Shi

et al. 2020).

The contributions of this study are summaarized as:

(1) The systems identification methods are classified.

(2) Various learning methods for structure and param-

eters of T2F-NNs are reviewed and analyzed.

(3) The applications of type-1 and type-2 FLSs in

different problems are investigatedand, and their

superiorities and drawbacks are investigated.

2 The principles of system identification

System identification in one sentence means ‘‘finding the

mathematical relationship between the input and output of

a system, using the input–output pair of that system.’’ In

state space equations, in system identification process, the

input replaced with the current state and the output

replaced with the subsequent moment state. Dynamic

system identification is based on data observed from the

real system and has wide applications in many fields. In

systems control and engineering, systems identification

methods are used to extract appropriate models for con-

trolling, designing, predicting algorithms, or simulating

systems. Figure 1 shows the schematic of the model with

the system for system identification.

In Fig. 1, y is the system output, by is the model output,

and u is the input signal. e is the difference between the

output of the model and the output of the system and is

used to adjust the parameters of the model, and for this

purpose, different algorithms can be used, which are

described in detail in (Nelles 2001). It should be noted that

structural training can be used first, and after the structure

is stabilized, parametric training can be used to regulate it,

and the structure can be considered fixed and only

Fig.1 Schematic of system identification
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parametric training can be used. The system identification

process includes the steps described below.

2.1 Select model inputs

Which combination of delayed input and output signals is

used is very important in identifying a dynamic system.

This part is usually determined by trial and error and with

the help of previous knowledge of the system. Four

methods have been introduced for the initial selection of

inputs, which are: (A) Use of all inputs: In this case, the

dimensions of the problem will increase dramatically as the

large number of inputs leads to a large number of mem-

bership functions (MFs), and as a result, the parameters of

the model are very large, the number of data increases, and

the identification time increases. (B) Use of all compounds:

This method is very difficult in practice, because the

number of combinations is very large, and if more delays

are used, the dimensions of the problem become larger.

(C) Choosing unsupervised inputs: In this way, unrelated

inputs are not used less to perform calculations. One of the

methods proposed in this section is the analysis of basic

components. (D) Choosing supervised inputs: In this

method, categories of inputs are selected so that the dif-

ference between the model and the system is minimal. In

linear models, this method is the same as correlation

analysis, and in nonlinear models, it is a complex opti-

mization problem (Mohammadzadeh and Kayacan 2020).

2.2 Selection of excitation signals

This step requires knowledge of the system and its per-

formance, as well as the purpose of modeling. For black

box modeling, the input signals of the system are important

sources of information, so in this type of system, accuracy

is very important at this stage (Sabzalian et al. 2019; Failed

2012). The excitation signal must be such that it excites all

system modes and does not damage the system.

2.3 Model structure selection

Model structure selection is one of the most important steps

in identifying nonlinear systems. To choose the structure of

the model, the following should be considered: -The type

of system (static systems or dynamic systems). The pur-

pose of the problem (simulation, optimization, control,

etc.).—Number of inputs and number of outputs of the

problem and their range. -Pay attention to the values and

quality of data (for example, if the data are scattered and

associated with noise, general optimization methods work

better than local optimization).—Paying attention to the

constraints of the problem (for example, model training

time can be important in some issues).—Offline and online

learning methods.—Simplicity and applicability of the

model (hardware and software). In a dynamic system, the

output can depend on the input and output at any time. For

example, the NARX model (nonlinear ARX) is described

as (1).

ŷ kð Þ ¼ f u k � 1ð Þ; . . .; u k � mð Þ; y k � 1ð Þ; . . .; y k � mð Þð Þ
ð1Þ

The purpose of nonlinear dynamic system identification

is to find an approximation of the unknown function f (.) in

Eq. (1).

The system discussed in Eq. (1) is considered as single

input–single output (SISO), which can be generalized to

multi-input–multi-output (MIMO) systems. In a SISO

system, the input u kð Þ is applied to the system and the

output y kð Þ is taken from the system. But if the system is

dynamic, in order to be able to model the transient and

permanent modes of the system well, this dynamic must be

provided for the system. In other words, the inputs and

outputs of the previous moments must also be used (Kan-

imozhi 2019). There are two ways to do this, known as

external dynamics and internal dynamics.

2.4 Parallel and series–parallel models

A nonlinear dynamic model can be used in two ways: 1) as

a prediction model (parallel), or 2) as a simulation model

(series–parallel). In the predictive mode, all input and

output data of the system are used in the previous moments

to predict the output in each moment, but in the simulation

mode, only the input and output of the model are used

(Nelles 2001; Ganapathy, et al. 2014). Figure 2 shows both

model modes.

2.5 Sampling frequency

In computer control systems, sampling of continuous sig-

nals causes information to be lost. Therefore, it is necessary

to select the sampling frequency in such a way that there is

no problem in controlling the system. Although higher

frequencies look better for sampling, they can still cause

the following problems (Sethukkarasi 2014; Nancy et al.

2020; Deng et al. 2020a): The amount of learning data is

very large, and the training time is long. Where data do not

change much, the same learning data are repeated and

result in nothing more than memory and extra time to learn.

However, sampling time can be optimized for simple

problems. But in the case of real systems, this is not

practical. Here are three commonly used methods for

determining sampling time (Kacimi et al. 2020).
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The smallest time constant: If smin is the smallest time

constant of the system, then the sampling time is selected

as follows:

Ts ¼
smin
3

secð Þ ð2Þ

Bandwidth: If f0 is the cutoff frequency of a system, a

good choice for sampling frequency is:

fs ¼ 10f0 ð3Þ

Settling time: If Tst is the sitting time of a system, the

sampling time can be selected as follows:

Ts ¼
Tst
30

to
Tst
20

ð4Þ

2.6 Nonlinear state space identification

In a category, a system model can be a state space model or

an input–output model. Each of these two models has

advantages and disadvantages that are preferred to each

other according to the purpose of modeling (Su and Yang

2011). However, it should be noted that using the input–

output model, a wider range of nonlinear systems can be

approximated. On the other hand, most nonlinear control

theory methods are defined based on the state space

method. In many cases, space method is effective. For

example, in multitasking control issues, the state-of-the-art

space method usually performs better, and fewer parame-

ters are needed to identify these systems with the state-of-

the-art space method (Deng et al. xxxx). It should also be

noted that the state space model can always be converted to

the input–output model, but the opposite of this conversion

is not always possible. Despite the above advantages for

the mode space mode, the mode systems of the state space

are reversible and it is very difficult and laborious to

identify the return systems. Therefore, it is usually

preferred to identify the input–output model system

because it includes both a wide range of nonlinear dynamic

systems and is easier to work with the input–output model

(Deng et al. 2020b). To identify the state space model,

consider the following system.

x k þ 1ð Þ ¼ f x kð Þ; u kð Þð Þ ð5Þ

In Eq. (5), u kð Þ is the input of the system and x kð Þ is the
state of the system and x k þ 1ð Þ is the state of the system at

a later moment which is considered as the output. There-

fore, like the input–output model, this system can be

identified. Thus, x kð Þ and u kð Þ are considered as inputs and

x k þ 1ð Þ as output.

3 T2F-NNs

T2FL has shown better performance than T1FL (Deng

et al. 2020c; He et al. 2019; Mohammadzadeh and Kum-

basar 2020a; Shi et al. 2020; Son et al. 2020). T2F-NNs are

divided into feedforward and recurrent, Mamdani (Lin-

guistic) (Ayala et al. 2020) and TSK (Tim Oliver Heinz

2017) and finally interval and general, in different cate-

gories. Each of these categories has its own characteristics

and features. Depending on the type of system to be

identified, each of these categories can be used. For

example, if the system had a strong dynamic, that is, its

output was highly dependent on past moments; the per-

formance of the recurrent T2F-NN would be better (Hong

et al. 2008). Or if more qualitative information is available

from the system, the Mamdani model will work better.

Finally, if the model must be very accurate (and time is less

important), the general model will be better (Prawin et al.

2020). In continue, first, the type-2 fuzzy sets (T2FSs) are

described, and then, the type-2 fuzzy neural structures of

are reviewed.

Fig. 2 a Series–Parallel model. b Parallel model
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3.1 T2FSs

T2FSs have more parameters than type-1 fuzzy and

therefore have a higher ability to face uncertainties. These

sets are divided into two types, interval (Fig. 3) and general

(Fig. 4).

Interval T2FSs are more commonly used due to their

smaller computational volume and user-friendliness.

However, in these sets, the third dimension is equal to 1,

and therefore, their display is two-dimensional, but in

general T2FSs, the third dimension is a fuzzy set, and

therefore, its display is three-dimensional. A general T2FS

formula is as follows:

~A ¼ r
x2X

l ~A xð Þ=x ¼
r x2X rl2Jx

fx lð Þ
l

h i

x
ð6Þ

~A is a T2FS, l ~A xð Þ is initial MF, Jx is sum of initial

membership value for x [ X and [ fx lð Þ[0,1] is secondary
MF. Interval T2FSs are special types of general T2FSs that

are maintained under the following conditions: fx lð Þ ¼ 1.

3.2 T2F-NNs

Given the advantages of T2FL over T1FL, it is necessary to

upgrade T1F-NNs (T1F-NNs) to T2F-NNs (Schoukens

et al. 2017). T2F-NNs respond well under uncertain con-

ditions and inaccurate data and are able to approximate a

variety of systems. These networks are well able to dra-

matically reduce the uncertainty effects of modeling. Major

work on T2F-NNs dates back to 2008 (Yukai et al. 2020).

For example, in (Zhao et al. 2016) a T2F-NN has been used

to nonlinear dynamical system identification. In the men-

tioned paper, the asymmetric type-2 fuzzy MFs are used. In

(Tsimbinos and Lever 1994), a T2F-NN has been used to

approximating functions that uses the PSO-based combi-

nation training algorithm and recursive least squares. Also,

in the mentioned paper, an uncertainty in degree of mem-

bership has been used for MFs. A class of T2F-NNs is

named interval T2F-NNs because it uses interval T2FSs.

Interval T2F-NNs are divided into two categories, simpli-

fied (singleton) type-2 neural network and TSK T2F-NNs.

Due to the type-2 fuzzy problems and the type reduction

(from type-2 to type-1), Mamdani (general/ linguistic)

models have not received much attention. In the following,

some of the most widely used T2F-NNs are introduced.

3.2.1 Singleton T2F-NNs

This structure is zero-order Takagi–Sugeno–Kang (TSK)

T2F-NNs. The output of this network is a single crisp

number. A fuzzy rule for this network is written as follows:

Rk : ifu1is ~A
k
1andifu2is

~Ak
2theny1isw

k

Fig. 3 A singleton T2F-NN

(Schüssler et al. 2019)
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where u1 and u2 are the inputs, ~Af
1 and ~Af

2 are interval

T2FSs. The network output is y1, and wf is a crisp number.

Figure 3 shows a singleton T2F-NN.

3.2.2 Two-valued T2F-NNs

This structure is a kind of Takagi–Sugeno–Kang (TSK)

T2F-NNs. The difference between this structure and sin-

gleton (zero-order TSK) is that in this structure, the output

of each fuzzy rule is two numeric values, but in zero-order

TSK, the output is a single crisp number. A fuzzy rule for

these networks is written as follows:

Rk : ifu1is ~A
k
1andifu2is

~Ak
2thenykis wk

L;w
k
R

� �

The symbols are the same as Sect. 3.2.1; only wf
L;w

f
R are

left and right values of the output. Figure 4 shows a two-

valued T2F-NN.

3.2.3 TSK T2F-NNs

Various structures have been introduced for this category.

A fuzzy rule for these networks is written as follows:

Rk : ifu1is ~A
k
1and. . .andunis

~Ak
nthen~yk

¼ Ck;0 þ Ck;1u1 þ . . .þ Ck;nun

The antecedent parameters and variables are the same as

Sect. 3.2.1. The coefficients (Ck;i) can be expressed in

different ways. For example, they can be crisp number,

interval number, and type-1 fuzzy sets (T1FSs). If the

interval numbers have been chosen for the coefficients

(Ck;i), they can be written as:

Ck;i ¼ ck;i � sk;i; ck;i þ sk;i
� �

where ck;i and sk;i are the canter and spread of ith input

coefficient in the rule k, respectively. In (Tavoosi et al.

2016), the coefficients (Ck;i) have been chosen as T1FSs.

This improves network accuracy, but also increases train-

ing time. If T1FSs have been chosen for the coefficients,

the fuzzy rules can be written as (Tavoosi et al. 2016):

Rk : ifu1is ~A
k
1andu2is

~Ak
2thenthen~yk ¼ ~rk þ ~pku1 þ ~qku2

where ~rk, ~pk, and ~qk are T1FSs.

3.2.4 Nonlinear TSK T2F-NNs

The consequent part of the fuzzy rules can be nonlinear

functions. Some nonlinear functions such as triangular,

exponential, and Volterra series can be used in the Then

part of the fuzzy rules; for example, some nonlinear Then

part type-2 fuzzy rule can be written as follows:

Rk : ifu1is ~A
k
1andu2is

~Ak
2thenthenyk

¼ rk þ pku1 þ qku2 þ sku1u2 þ tku
2
1 þ . . .

Or

Rk : ifu1is ~A
k
1andu2is

~Ak
2thenthenyk

¼ rkcos u1ð Þ þ qksin u1ð Þ þ skcos u2ð Þ þ tksin u2ð Þ þ . . .

But it should be noted that in this case, the existential

philosophy of the fuzzy system throws into question,

because the goal of fuzzy logic was to eliminate or reduce

complex mathematical relationships. Therefore, the use of

these models should be avoided as much as possible, unless

other models do not work properly and the use of nonlinear

consequent part models is inevitable.

3.2.5 Mamdani (Linguistic) T2F-NNs

Unlike the TSK model, there is no mathematical equation

in the Mamdani model, both if and then of the fuzzy rules

Fig. 4 A two-valued T2F-NN

(Liu and Liu 2019)
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are completely qualitative. This model is closer to the

human thinking model.

Rk : ifu1is ~A
k
1andu2is

~Ak
2thenthen~ykis ~Bk

where ~Bk is a T2FS. The calculations of these networks are

very large and require type reduction algorithms (such as

Karnik–Mendel), so they are not widely used. The fol-

lowing is how to calculate the output in a Mamdani type-2

fuzzy system. Consider a Mamdani type-2 fuzzy system

with the following two rules:

ifxis ~Ak
1andyis

~Bk
1thenzis

~Gk
1

ifxis ~Ak
2andyis ~B

k
2thenzis

~Gk
2

Suppose the above two rules are shown in Fig. 3.

Suppose two inputs x and y are applied to the system. In

this case, how to calculate the output is shown in Figs. 5, 6,

7, 8, 9, 10, 11.

At this stage, the lowest membership degree is selected.

In other words, the lowest values above and the lowest

values are selected and multiplied by the result.

As can be seen in Fig. 5, the distance between the below

minimum values and the above minimum values in the then

part the rules in the form of the hash part is a type-2 fuzzy

number. Then the maximum amount of MFs of the then

part are calculated (Fig. 6).

The final output of the Mamdani type-2 fuzzy system

(Fig. 6) is a type-2 fuzzy number, and to use this number,

you have to convert it to a real number (type reduction).

Figure 10 shows the KM algorithm for type reduction

process.

In Fig. 10, the Cl and Cr points are called switching

points (Liu and Yang 2019). In this case, a type-2 fuzzy

number is converted to two fuzzy type-1 numbers

(Fig. 11).

Now, using the defuzzification methods, the crisp values

equivalent of the T1FSs can be extracted.

3.2.6 Learning methods for T2F-NNs

Supervised learning methods are divided into three cate-

gories: linear, local nonlinear, and general nonlinear. Lin-

ear supervised learning methods are well known and

widely used methods, such as the simple least squares

method. Local nonlinear supervised learning methods are

mathematical-based methods and are therefore widely

used. The most well known of these methods are gradient-

based algorithms that are used to train neural networks,

fuzzy neural networks as well as in optimization of non-

linear parameters such as MFs in fuzzy systems which are

very useful. General nonlinear supervised learning methods

are fundamentally different from local nonlinear super-

vised learning methods and that is these methods are not

based on strong mathematics, yet are very useful. Algo-

rithms such as genetics and PSO are in this category. In

continue, some of recent papers are reviewed. The contri-

bution of gradient-based methods for learning of T2F-NNs

is more than other methods. In (Tavoosi et al. 2019),

adaptive learning rate-based steepest descent gradient has

been applied in an interval T2F-NN. In gradient-based

training methods, the training rate is very important

because a large amount of it may lead to divergence of

training and a small rate may cause it to get stuck in the

local minimum and also slow down the training (Li et al.

2020). So the adaptive learning rate is one of the solutions

for this problem. On the other hand, the global nonlinear

learning methods have been used for T2F-NNs, recently

(Tavoosi and Mohammadi 2019; Ahmadieh and Branson

2019). In (Tafti et al. 2020), a dynamic group cooperative

particle swarm optimization has been used for training of

an interval TSK T2F-NN. They used their proposed T2F-

NN for experimental mobile robot control. Genetic algo-

rithm-based learning applied to a Mamdani type-2 fuzzy

system for blood pressure level classification presented in

(Shahparast and Mansoori 2019). However, due to the lack

Fig. 5 Two rules of a Mamdani

type-2 fuzzy system
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of a mathematical basis and the guarantee of convergence,

general optimization methods are not recommended for

applications that control critical systems. Other learning

methods such as the sliding model-based learning (Richa

Sharma et al. 2020) and Lyapunov-based (Zhao et al.

2019a) have been presented. In some articles, reinforce-

ment training methods are used, as in (Mohammadzadeh

and Kumbasar 2020b) Q-learning algorithm has been used

for an interval T2F-NN. Q-learning is a reinforcement

learning technique that pursues a specific policy for per-

forming different movements in different situations by

learning a function/value function. One of the strengths of

this method is the ability to learn the function without

having a specific model of the environment.

3.3 T2F-NNs for system identification

In this section, the use of T2F-NNs to system identification

is reviewed. Before reviewing, it should be noted that in the

title of the articles, the term ‘‘system identification’’ may

not be mentioned, but in these articles, the ability to

function approximate for control, classification, and clus-

tering has been used. In (Mohammadzadeh and Kayacan

2019), a new type-2 neuro-fuzzy network has been used to

multivariable dynamic system identification. The article

discusses sudden data changes as well as uncertainties.

Both structure and parameter learning have been done in

the method of (Mohammadzadeh and Kayacan 2019). In

the then part of each fuzzy rules, a linear state space

equations and the Henkel matrix computation have been

Fig. 6 How to calculate the

output in a Mamdani type-2

fuzzy system

Fig. 7 How to calculate the

output in a Mamdani type-2

fuzzy system
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used. To identify nonlinear of a system under uncertainties,

a self-organized T2F-NN with asymmetric MFs has been

developed (Bencherif and Chouireb 2019). In this T2F-NN,

the then part of the fuzzy rules is Mamdani model, in

which, first, the fuzzy c-mean algorithm is employed for

division of the input data to obtain uncertainty centers and

widths from the predecessors of fuzzy rules. Then, on the

basis of validity criterion of the cluster, rule numbers are

determined. Thus, the identification of old parameters and

structure is completed automatically. In (Ching-Hung Lee

2008), the quantum behaved particle swarm optimization

(QPSO) has been used to design of interval type-2 TSK

fuzzy logic system (FLS). They used the combination of

the A1–C1, A2–C0, A2–C1 interval type-2 TSK FLS with

neural network to design fuzzy neural network systems,

and then, the fuzzy neural network system parameters have

been tuned by QPSO intelligent algorithm. Both QPSO and

BP algorithms have been employed for learning the system

model. By considering QPSO and BP algorithms, their

results are shown that the QPSO-based is more effective,

which can result in a better proficiency. Finally, they

Fig. 8 How to calculate the

output in a Mamdani type-2

fuzzy system

Fig. 9 How to calculate the output in a Mamdani type-2 fuzzy system

Fig. 10 KM algorithm for type reduction
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analyze the efficiency of the four FLSs and concluded the

effect of A2–C1 FLS is better than that of the other three

FLSs. In (Wiktorowicz and Krzeszowski 2020), a novel

self-organizing T2F-NN has been used for nonlinear sys-

tem identification. In the mentioned paper, a new self-

tuning recurrent radial basis function network (RBFN) has

been presented.

In (Mohammadzadeh and Zhang 2019), the theories of

fuzzy systems and artificial neural networks are reviewed

and the supervised learning methods are investigated. The

mentioned article gives you a brief overview on fuzzy

neural networks and nephropathy. The origins of fuzzy

neural networks and their types are well illustrated. The

fuzzification and defuzzification techniques and also

training algorithms for T1F-NNs have been reviewed and

compared. Many applications of T1F-NNs for industrial

problem solution have been reviewed in (Mohammadzadeh

and Zhang 2019). In (Zirkohi and Lin 2015), a new method

based on long-term learning for interval T2F-NN has been

presented. In the mentioned paper, the principles of gran-

ular computing (GrC) have been used to obtain knowledge

from raw data and to build a computational mechanism for

adapt to long-term learning fashion and new information in

an additive. As mentioned earlier, structural training is a

very important step in learning phase of a T2F-NN; in (Yeh

et al. 2011) to determine the fuzzy rules, a modified den-

sity-based clustering is implemented for structure learning,

where both density and membership degrees are involved.

Noisy environments are a challenging issue for system

identification where in (Wiktorowicz and Krzeszowski

2020) this issue has been considered, but unfortunately, the

method of parameter training and how to apply it in this

paper is a bit vague. In (Khankalantary et al. 2020),

gravitational search algorithm-based fuzzy c-regression has

been proposed for an evolving modified interval type-2

fuzzy model, and they used extreme training technique for

tuning of parameter identification. The coefficients of

hyperplanes were determined by computing type-2 fuzzy

method using gravitational search algorithm. Finally, to

identify the antecedent parameters of the T–S fuzzy model,

they used a hyper-plane-shaped MF, and WOS-ELM was

employed to identify the consequent parameters. In (Ke-

cecioglu 2019), an improved particle swarm optimization

(PSO) algorithm has been used for interval T2F-NN

learning. To overcome the local minimum problem, they

used dynamic group cooperative particle swarm optimiza-

tion (DGCPSO) for nonlinear system identification.

In some articles, a T2F-NN may be used to control,

classification, or clustering, in which the approximation

operation is generally performed. In the following, some of

the latest research in this field will be reviewed and ana-

lyzed. In (Zhang et al. 2019), a general T2F-NN has been

used for Mackey–Glass time series data (for s = 17) pre-

diction. The disadvantage of the mentioned paper is the

training time of their proposed general T2F-NN, because it

trains and predicts to the work of others over a longer

period of time. Self-tuning TSK T2F-NN has been used to

two-link flexible manipulator control (Camci 2018). In

mentioned paper, the performance of the control method

against the robot’s highly coupled system is appropriate,

but no structural learning is provided. In (Lin et al. 2020),

interval T2F-NN has been used for medical diagnosis

classification based on K-means clustering algorithm. In

(Juan Carlos Guzmán 2019), a new control system design

Fig. 11 Two T1FSs obtained

from a T2FS
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based on T2F-NNs has been presented. In the mentioned

paper, the T2F-NN has been used for function approxi-

mation in sliding mode control technique.

One of the uses of T2F-NNs is noise elimination, where

the T2F-NN creates an opposite phase anti-noise signal

which has the same magnitude with the unwanted noise

(Zhao et al. 2020). Any change in the noise will lead to an

increase in error, resulting in an update of the T2F-NN. In

(Ghaemi et al. 2019), the properties of noise reduction

based on an interval T2F-NN (A2-C0) have been

presented.

Much of the data, such as speech, time-based data, or

time series (such as weather forecast data and financial

data.), data received from sensors, videos, text, and so on.

They are sequential in nature. Recurrent neural networks

(or RNN for short) are a family of neural networks

specifically designed to process serial data (or sequences).

These networks were actually created to process comet

signals. In a typical neural network, all inputs and outputs

are independent of each other, but in many cases the idea

can be very bad. For example, suppose you are looking for

a prediction of the next moment in a signal. Let us look at

this type of network with a different perspective. These

networks have a type of memory that records information

they have seen before. In theory, it seems that these net-

works can record and use the information in a long

sequence, but in practice this is not the case and they are

very limited, so they only record the information a few

steps ago (Yi, et al. 2019). The Fig. 9 shows an example of

a typical RNN Fig. 12.

Unlike conventional networks that use different

parameters in each layer, an RNN network shares the same

parameters between all-time steps. (U, V, W) This means

that we have similar operations at each time step. We do

only the inputs are different. With this technique, the total

number of parameters that the network must learn is greatly

reduced. The main feature of RNN hidden mode is that it

stores information in a sequence. Also, we do not neces-

sarily need to have an output or an input at any time

(Evangelista and Serra 2019). This diagram can be changed

based on the intended work. RNNs are called recursive

because the output of each layer depends on the calcula-

tions of the previous layers. In other words, these networks

have memory that stores information about the data seen. It

may seem a little strange at first glance, but these networks

are actually multiple copies of ordinary neural networks

that are stacked together and each transmits a message to

the other (Zhao et al. 2019b). It should be noted that RNNs

are trained to use backpropagation through time, which

again raises the issue of gradient disappearance. In fact, the

problem with RNN is worse because each step is equiva-

lent to a layer in a network. So if the network is trained for

1000 time steps, the gradient will disappear like in a 1000-

layer MLP. There are several approaches to solve this

problem, the most popular of which is the gating method.

The routing method takes the output of each step of the

next time and input and makes the change before returning

the result to the RNN. There are several types of ports; the

longest short-term memory (LSTM) is more popular. Other

techniques related in this field include gradient clipping,

steeper gates, and better optimizers. In this article, we will

discuss recurrent T2F-NNs and how to use them for suit-

able system identification. If the system dynamics is sev-

ere, recurrent models must be used. Numerous recurrent

type-2 fuzzy neural models have been proposed, some of

the most recent of which are discussed in continue. A novel

recurrent T2F-NN (eIT2FNN-LSTM) has been proposed in

(Fan et al. 2018). In their proposed network, the long short-

term memory mechanism has been used to recurrent

structure, which avoids the gradient vanishing problem that

there is in the classic recurrent fuzzy neural systems and

improves the performances for sequential data with long-

time dependency feature. A recurrent interval TSK T2F-

NN has been used for trajectory tracking problem of an

experimental mobile robot (Tavoosi 2016). The mentioned

paper uses a simple T2F-NN structure and its innovation is

hardware implementation on a robot, but unfortunately

there is no discussion about how to implement and real

time operation of the system. In (Paulo Vitor de Campos

Souza 2020) by combination of recurrent neurons, wavelet

neural network, and type-2 fuzzy systems, a novel structure

has been proposed for model predictive control. A common

Fig. 12 An example of a typical RNN
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example that highly used to system identification is the

time-varying nonlinear dynamic system as follows:

y kð Þ ¼ y k � 1ð Þy k � 2ð Þy k � 3ð Þu k � 1ð Þ y k � 3ð Þ � b kð Þð Þ þ c kð Þu kð Þ
a kð Þ þ y k � 2ð Þ2þy k � 3ð Þ2

ð7Þ

where y k � 1ð Þ, y k � 2ð Þ, and y k � 3ð Þ are 1, 2, and 3 units

of delay, respectively, from the output of y kð Þ and also u kð Þ
and u k � 1ð Þ are the input and its one delay unit, respec-

tively. In (7), the time-varying parameters a kð Þ, b kð Þ; and
c kð Þ are defined as follows:

a kð Þ ¼ 1:2� :2cos
2pk
T

� �

; b kð Þ ¼ 1� :4sin
2pk
T

� �

; c kð Þ

¼ 1þ :4sin
2pk
T

� �

To this system, the input signal is used in relational form

(7) and is chosen as follows:

u kð Þ ¼

sin
pk
25

� �

; k\250

1; 250� k\500

� 1; 500� k\750

0:3 sin
pk
25

� �

þ 0:1 sin
pk
32

� �

þ 0:6 sin
pk
10

� �

750� k\1000

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð8Þ

The results of identification of the system (7) with some

classes of T2F-NNs are shown in Table 1. In Table 1, the

references are sorted by RMSE.

From Table 1, it can be seen that the fully fuzzy system

(pseudo-Mamdani) has better RMSE, more training time,

lower MFs (MFs), and lower rules (user-friendly or simple

structure). Also the performance of recurrent T2F-NN is

almost similar to that of Mamdani networks. But in con-

trast, feedforward networks are much simpler and have less

training time. They also seem more appropriate in real-time

and online applications.

If we want to look at the future horizons of T2F-NNs as

a subset of computational intelligence, it must be said that

there are some strengths and challenges. In the introduc-

tion, it can be said that artificial intelligence has changed

companies, led to increased productivity and, in turn,

economic growth. This technology will change the nature

of the work environment as well as the work because

machines will be able to complement the work done by

humans, do more work in less time, and even be able to do

things that are beyond human ability. As if in the recent

challenge of Coronavirus, we all realized that artificial

intelligence and telecommuting should become more and

more widespread. Many believe that the advent of artificial

intelligence technology will lead to the dismissal of

workers. In the next 10 years, the technology is likely to

occupy about 40% of human occupations. But many do not

know how this technology will benefit the employment

sector. Examples include increased productivity, promotion

and activation of innovation, job creation (data scientists

and robotics), accuracy in complex operations, collabora-

tive learning, telecommuting and traffic reduction, and

more. Certainly, in the future, T2F-NNs will be used for

modeling, system identification, etc., provided that they

have a high accuracy of function approximation as well as

high computational speed. Researchers in this field need to

work harder on learning algorithms to reduce the training

time and increase the accuracy. The existence of super-

computers makes it much easier to compute big data, but

researchers need to work hard to implement T2F-NN

hardware with the suitable memory, as it can be used in

some applications such as aerial or robotic bees, or stan-

dalone and self-governing systems, due to lack of access to

the supercomputers. Finally, it can be said that if very high

accuracy is achieved and time is not a priority, higher-order

typ-3 and type-2 FLSs can be used (Baraka and Panoutsos

2019; Luo et al. 2019; Wei et al. 2020; Lin et al. xxxx; Pal

and Kar 2019).

Table 1 Comparison between 8 different T2F-NNs

Rules RMSE Time (s) MFs

T2-FNN (Tavoosi et al. 2011b) 12 0.00152 29 24

T2 fuzzy Hammerstein NN (Khankalantary et al. 2020) 8 0.00117 10 12

Takagi–Sugeno FLS (Wiktorowicz and Krzeszowski 2020) 11 0.00091 11 14

Recurrent T2-FLS (Tavoosi et al. 2017b) 7 0.00073 13 21

Interval T2-FNN (Yi, et al. 2019) 9 0.0006 19 16

Interval type-2 Takagi–Sugeno FLS (Fan et al. 2018) 5 0.00059 17 16

Multiple disproportional local nonlinearities (Prawin et al. 2020) 6 0.00055 21 11

Adaptive neuro-fuzzy inference system (ANFIS) (Tavoosi et al. 2016) 4 0.00042 15 7
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3.3.1 Comparative analysis

With a detailed and analytical comparison of type-2 fuzzy

neural networks presented in [7, 9, 11, 36, 56, 60, 68 and

71], interesting points can be realized. In general, if the

accuracy of system identification is very important, the

number of network trainable parameters should be

increased, because this will increase the degree of freedom

of the system and the maneuverability of type-2 fuzzy

neural network. It is even possible to increase the type of

the fuzzy system, for example the type-3 fuzzy system

(Baraka and Panoutsos 2019), which naturally increases the

number of parameters and the identification of the system

will be more accurate. On the other hand, a large number of

parameters requires more time to train and therefore will be

problematic in online applications. Therefore, if the pur-

pose of system identification is for use in an offline system

but requires high accuracy, such as surgeon robots or

painting robots, the type-2 fuzzy neural networks or higher

types of them with many parameters can be used. However,

if the goal is to use type 2 fuzzy neural networks in online

applications such as chemical processes or to control var-

ious types of electric motors, low-parameter and fast-

training networks should be used (such as (Khankalantary

et al. 2020)).

4 Result and discussion

Fuzzy systems have been proposed and used for decades,

from washing machines to satellite systems, from power

systems to chemical processes, etc. What kind of fuzzy

system should be used for each specific system, depending

on the nature of the problem, the type of data, the basic

knowledge of the system, required accuracy and required

speed. If mathematical equations of the system exist, nat-

urally TSK fuzzy models can be used. On the other hand,

whatever qualitative and inaccurate information is avail-

able from the system, we must inevitably go to Mamdani

models. On the other hand, today’s human needs are

becoming more complex and extensive, and therefore,

systems are becoming more complex. Identifying a com-

plex system requires a complex identifier, and so here the

overall ability and superiority of type-2 fuzzy systems to

type-1 fuzzy systems is revealed.

5 Suggestion proposed

Due to the above, it is not possible to provide a type-2

fuzzy neural network to solve all problems. In other words,

to solve any problem, a special class of type-2 fuzzy neural

networks must be proposed. Whether the mathematical

model of the system is available or not, what is the degree

of nonlinearity and uncertainty of the system, how much

accuracy is required, how much speed of operation is

required, how much data are available And with this

amount of data, with what type 2-fuzzy neural network can

the hidden dynamics of the system be modeled, how much

data are scattered, etc. All of the above show that a single

version of the type-2 fuzzy neural network cannot be

provided for all problems. But in general, it can be said that

the method (Baraka and Panoutsos 2019) has a very high

accuracy and the method (Khankalantary et al. 2020) has

less execution time.

More recently, T3-FLS has been introduced that results

in better identification accuracy and it can handle more

level of fuzziness and uncertainties. The secondary mem-

bership in this kind of FLSs is not a crisp value, but it is a

type-2 MF. Also the upper and lower degrees of foot print

of uncertainty are not crisp values, but they are type-2 MFs.

In (Mohammadzadeh et al. xxxx), in various applications

and experimental examination, the good performance of

T3-FLSs has been proved. The authors recommend the use

of this kind of FLS in high noisy environment.

6 Conclusions

In this paper, an overview of the field of system identifi-

cation using T2F-NN was performed. The types of system

identification steps including system preparation for data

extraction, apply input to excitation the system and forcing

it to respond, data preprocessing, T2F-NN design, and a

variety of training methods were discussed. A closer look

at recent work reveals that a special T2F-NN must be

designed for each type of system, and of course, self-or-

ganized networks can be used with structural and para-

metric training. However, in sensitive and critical

applications, as well as in hardware implementation, self-

organized structures are not recommended, as they require

more time and discuss divergence. Whether gradient-based

learning is used or evolutionary algorithms depend on the

type of data, their number, and their characteristics. Cer-

tainly, a bright future awaits computational intelligence,

and the subset of it, T2F-NNs, as the recent coronavirus has

demonstrated the importance of artificial intelligence,

telecommuting and robotics. In the future, the discussion of

structural training is very important, because in the end, an

optimal structure with the least fuzzy rules and parameters

should be achieved. Also, in order to develop the theory of

work, we can research on type-3 (and above) fuzzy sys-

tems, but it seems that while T2FL does not find its place in

industry and application, higher-order fuzzy systems will

fail.
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