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Abstract
To realize an accurate and efficient route planning for ships in a complex marine environment, the novel double ant colony

algorithm (NDACA) based on dynamic feedback is proposed in this work. The planning process to identify the lowest

energy consumption route is used as an example to introduce the applications of the proposed algorithm. First, the energy

consumption model is established by analyzing the ship’s motion, which is used in the pheromone updating strategy. Next,

based on the energy consumption information of the route, the ant colony is divided into exploratory and optimized ants.

Using a closed-loop feedback strategy, the number of ants in each colony is continuously adjusted, which ensures the

solution quality and speed of convergence of the algorithm. Simulations in the working attribute environment show that

NDACA has an all-round good performance. Compared with other algorithms, NDACA can plan a more energy-saving

route while considering the influence of marine environmental factors, which has great practical significance for ship

operations management.
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1 Introduction

In recent years, saving energy and reducing emissions have

become important issues in diverse fields including marine

navigation. Extensive research on designing economic,

efficient, and safe routes for ships is being conducted by

scientists around the world. Economic routes refer to those

routes that fully consider the impact of the navigation

environment, save energy costs by consuming less energy,

and reduce operating costs. Some studies have used iso-

chronous algorithms and corresponding improved versions

(Chen et al. 2002; Roh 2013), the Dijkstra algorithm (Yu

and Ye 2007; Takashima et al. 2009), and dynamic plan-

ning algorithms (Wit 1990; Mou 2017) to plan ship routes.

However, with global track planning changing from a

single-objective to a multi-objective framework, intelligent

optimization algorithms (Park and Kim 2014) are being

widely used. Among them, the ant colony algorithm (ACA;

Dorigo and Maria 1997) is popular in track planning owing

to its ease of parallelization and robustness.

ACA is a heuristic search algorithm used to solve

combinatorial optimization problems. However, although it

is able to find optimal solutions within a specific time,

ACA is only suitable for small-scale optimization prob-

lems; hence, the ant colony system was proposed (Gam-

bardella and Dorigo 2000). The MAX–MIN ant system

(Stutzle and Hoos 2002), in particular, increases the

diversity of feasible solutions and leads to more accurate

results by limiting the range of the underlying pheromones.

Several studies have discovered that simple modifications

to ACA can be used to solve complex problems, which has

consequently triggered a wave of modifications in the field.

For instance, a parameter optimization method (Han and

Tian 2008) was proposed to improve the performance of

ACA by controlling the initial values of the algorithm

parameters. A novel pheromone updating

scheme (Seçkiner et al. 2013) was also proposed for finding

the global minimum, where the pheromones were updated

are performed based on the percentage of ants searching for

the optimal solution. Yuan et al. (2019) enhanced the ant

pheromones by introducing certain parameters into the
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pheromone updating scheme to accelerate the convergence

of the algorithm. The improved versions of ACA discussed

in these studies achieved better performance.

In addition, some studies have combined ACA with

other algorithms to achieve better results. For instance, a

novel method (Wang et al. 2017) was proposed that com-

bines artificial potential fields with ACA, which determines

the transfer probability of an ant’s next step based on the

presence or absence of obstacles and reconstructs the cor-

responding heuristic information to improve the overall

solution quality of the algorithm. The quantum ant colony

algorithm (Xia et al. 2019) reflects the high efficiency of

quantum parallel computing while retaining the better

optimality of ACA; moreover, it can plan optimal tracks

for unmanned surface boats. In the A* ant colony algorithm

based on dynamic feedback (Huang et al. 2017), a closed-

loop feedback was introduced to implement dynamic

adjustment of parameters, which in turn increases the

adaptability of the algorithm to complex environments. A

multiple ant colony optimization (Sim and Sun 2002)

algorithm was proposed to counteract the stagnation

problem encountered by most ant colony algorithms. This

algorithm uses multiple ant colonies to seek different paths,

which increases its ability to explore better paths, improves

its adaptability, and reduces the possibility of stagnation.

To find the shortest path faster, the wolf pack allocation

principle (Liu et al. 2011) was introduced in ACA to

remove the pheromones released in the least optimal path.

Owing to the joint effort of many studies over the years,

great improvements have been made to ACA in terms of

both quality of optimal solutions and its speed of conver-

gence. However, there are still several problems when

applying ACA to optimizing energy consumption tracks for

ships in a marine environment. The ship path-planning

problem usually involves considerable data from various

sources. Moreover, it is a complex oil–machine–environ-

ment system and thus the existing ACAs often have diffi-

culty balancing accuracy and speed of convergence. The

two most common problems that occur are as follows: (1)

the algorithm takes a long time to find the optimal path and

(2) the algorithm is trapped in a local optimum and is hence

unable to find the optimal path.

Therefore, to counteract the aforementioned problems,

we propose a double ant colony algorithm with dynamic

feedback. Our proposed algorithm involves three main

steps. First, to plan the optimal energy consumption route,

the energy consumption value was introduced as a pher-

omone. Second, the ants in the colony were divided into

two categories: exploratory and optimized ants. During the

initial stage of the algorithm, exploratory ants were used to

improve the quality of solutions obtained by the algorithm,

whereas, at the later stage, optimized ants were used to

improve the convergence of the algorithm. Finally, a

dynamic parameter was introduced to adjust the number of

exploratory and optimized ants and thus balance the con-

vergence speed and accuracy of the algorithm.

The remainder of this paper is organized as follows:

Sect. 2 analyzes the movement of ships in a marine envi-

ronment and establishes the marine environment and

energy consumption models; Sect. 3 proposes three

improvement strategies for the ant colony algorithm;

Sect. 4 presents the simulation experiments conducted in

MATLAB to verify the proposed algorithm; Sect. 5 com-

pares the routes planned by the proposed algorithm with

existing routes in the database of a ship; and Sect. 6 con-

cludes the paper.

2 Model establishment and analysis

2.1 Ship motion analysis

In general, there are three possible optimal routes

depending on the optimization purpose in a dynamic

marine environment, namely, the shortest route, the

shortest voyage-time route, and the lowest energy con-

sumption route. The relationship between the voyage time,

energy consumption, and length of the route is shown in

Fig. 1. Assuming that the ship sails under the condition of

constant thrust and that its speed is continuously adjusted

according to the navigation resistance (Xia et al. 2019), the

ship motion model is set up as a function of the navigation

features. Figure 1 presents a compact depiction of the ship

navigation process in a dynamic marine environment.

Figure 1 illustrates the route planning process from the

starting point S to the ending point L of the route.

Depending on the optimization objective, three optimal

routes are planned, namely the shortest route S1, lowest

energy consumption route S2, and shortest voyage-time

route S3. Note that when environmental factors such as

winds and waves are not considered, the shortest route S1 is

the same as the lowest energy consumption routes S2 and

shortest voyage time S3. As shown in Fig. 1, curves 1 and 4

represent the change of energy consumption and voyage

time in this route, respectively.

Then, when factors such as winds and waves in the

marine environment are considered, the three kinds of

routes are no longer the same one. As shown in Fig. 1,

curves 2 and 4 represent the change of energy consumption

and voyage time on the lowest energy consumption route

S2 versus route length, respectively, whereas curves 1 and 3

represent the change of energy consumption and voyage

time on the shortest voyage-time route S3 influenced by

winds and waves versus the length of route, respectively.

Therefore, when the influence of winds and waves is added

into consideration, the routes of shortest voyage time and
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lowest energy consumption are not same as before, while

the route of shortest distance is unchanged.

Besides, at positions a and r in Fig. 1, the marine

environment changes dynamically with time owing to

winds and waves, which has a great impact on the ship’s

navigation. The routes S1 corresponding to curves 1 and 4

only consider safe navigation, resulting in a significant

increase in either the energy consumption or voyage time

compared to the optimal route. The lowest energy con-

sumption route S2 corresponding to curve 2 and 4 considers

both safety and energy consumption and ultimately

achieves the optimization goal of saving energy. Therefore,

when the ship is in a dynamic position (i.e., at positions a

and r), it must dynamically plan an appropriate route in

real time according to the characteristics of the energy

consumption and voyage-time curves. As shown in Fig. 1,

whether choosing the route S1, S2, S3 or the combination of

three will be analyzed in Sect. 2.4.

2.2 Marine environment model

With the aim of acquiring the optimal route in a dynamic

marine environment, we used the grid method to model the

marine environment in this work. Depending on the actual

marine environment, grids with different attributes were

established. The actual environment was divided into a

two-dimensional grid, and the environmental information

was defined as the properties of the corresponding grid, as

follows:

1. Free attribute grids: If there is an island at the center of

a grid, then it is considered to be an obstacle grid, else

it is a free attribute grid. Ships can only choose to

detour when encountering obstacle grids; however,

they can directly pass through free attribute grids.

2. Working attribute grids: To better reflect the influence

of a real marine environment on ship motion, it is

important to analyze the effect of factors such as winds

and waves. Therefore, information such as the wave

amplitude, current velocity, and wind speed is added as

parameters to the free attribute grid. Free attribute grids

under the influence of environmental factors are thus

transformed to working attribute grids.

3. Dynamic attribute grids: In a real marine environment,

certain attributes change dynamically, which refer to as

dynamic obstacles. For example, winds and waves

change periodically with time. Thus, the energy

consumption of a ship passing through a dynamic

attribute grid is related to the choice of the sailing

mode and period of motion of dynamic attribute grids.

2.3 Dynamic energy consumption model

Based on a suitable energy consumption model, an eco-

nomic route can be planned and energy consumption data

Fig. 1 Ship navigation process. The shaded regions represent the dynamic marine environment. The horizontal axis represents the length of the

route, and the vertical axis represents both the average voyage time and the average energy consumption per unit distance
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can be predicted to provide supplementary guidance for the

navigation of ships. Energy consumption models have been

developed using empirical and theoretical formulations

(Fagerholt et al. 2010; James et al. 2009). Several studies

have also added dynamic factors (Meng and Yuan 2016;

Nicolas and Dimitris 2016) involved in the navigation to

further improve the accuracy of the energy consumption

models.

In this study, the energy consumption model used is

based on both an empirical and theoretical formulations;

appropriate dynamic factors were added to improve its

accuracy further. To obtain the characteristics of voyage

time and energy consumption described in Sect. 2.1, we

analyzed the navigation process of the ship in a real marine

environment and established the corresponding kinetic

model (Fossen 2011). Note that the present study mainly

focuses on the impact of the marine environment on the

energy consumption of the ships. Hence, other influencing

factors are simplified. The kinetic model used to describe

the motion of ships is given as follows:

Mvþ CðvÞvþ DðvÞv ¼ Fenvironment þ Fthrust ð1Þ
Fenvironment ¼ Fhydrostatic þ Fwind þ Fwave þ Fcurrent ð2Þ

where M is the inertia matrix, CðvÞ is the centripetal force

matrix, DðvÞ is the damping matrix such that DðvÞ 2 R2�2,

v is the velocity vector of the ship, Fthrust is the thrust of the

ship’s propulsion system, and Fenvironment is the total

resistive force on the ship, which is composed of the

hydrostatic resistance Fhydrostatic, wind resistance Fwind,

wave resistance Fwave, and current resistance Fcurrent. The

different components of the total resistive force are as

follows:

Fhydrostatic ¼
1

2
qwSSv

2
sC1 ð3Þ

where qw is the sea water density, SS is the ship’s wetted

surface area related to the payload, vs is the relative water

speed, and C1 is the coefficient of water resistance.

Fwind ¼ 1

2
qwASCaðva cos hÞ2 ð4Þ

where AS is the orthographic projection area above the

waterline of the ship, Ca is the coefficient of air resistance,

h is the directions of the wind, and va is the wind speed.

The wave resistance can be calculated using Kreitner’s

formula (Fossen 2011), such that

Fwave ¼
1

2
qwLbn

2
ACbcos/ ð5Þ

where Lb is the length of the ship, nA is the characteristic

wave height, / is the directions of the waves, and Cb is

wave drift coefficient.

Fcurrent ¼
1

2
qwAcCcðvc cosuÞ2 ð6Þ

where Ac is the orthographic projection area of the hull

below the water surface, Cc is the coefficient of currents, vc
is the speed of the current, and u is the directions of the

currents. h, /, u are in the North East Earth coordinate

system (the navigation coordinate system).

We assumed that the entire track is divided into n sec-

tions and the ship is sailing at a constant speed between the

nodes i and i ? 1; thus, the environmental resistance and

thrust of the propulsion system are balanced. In the marine

environment with a working attribute grid, the ship’s

energy consumption during navigation is derived com-

pletely from the propulsion system (Xia et al. 2019). The

energy consumption Ei;iþ1 is equal to the work performed

by the ship’s propulsion system to overcome the resistance

owing to the environmental interference on the ship. The

energy consumption is given by Eq. (7), such that

Ei;iþ1 ¼ Fenvironment � vboat
��!�

�

�

� � t ð7Þ

t ¼ Li;iþ1= vj j ð8Þ

where vboat
��!�

�

�

� is the speed of the ship under propulsion,

Li;iþ1 is the length of the track between nodes i and i ? 1,

Ei;iþ1 is the energy consumption between nodes i and

i ? 1, and vj j is the actual speed of the ship that can be

obtained from Eq. (1).

By solving Eqs. (1), (2), (3), (4), and (5) simultaneously,

vj j can be obtained. Using vj j and the time required for the

ship to pass through the grid, the energy consumption of

the ship can be calculated. As described in Sect. 2.1, the

variation of voyage time and energy consumption can then

be plotted as a function of the route length. This provides

the basis for establishing a comprehensive cost function for

the route planning problem.

2.4 Comprehensive cost function

We designed a comprehensive cost function of route

planning to evaluate the advantages and disadvantages of a

new route. From the perspective of operating costs, the

factors that have the greatest influence on a ship’s track are

energy consumption, voyage time, and safe obstacle

avoidance (Hansen and Freund 2010). Therefore, in this

work, we considered these factors as part of our opti-

mization objective with different weighting coefficients.

The cost function consists of three parts as follows.

(1) Voyage time:

T ¼
Xn

i¼1
Ti;iþ1 ð9Þ
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where n is the number of route segments and Ti;iþ1 is the

voyage time between nodes i and i ? 1.

(2) Energy consumption:

E ¼
Xn

i¼1
Ei;iþ1 ð10Þ

(3) Safe obstacle avoidance:

The most important consideration for a ship’s voyage is

to achieve the safest route from the starting point to the

ending point. The cost function Psafe of safe obstacle

avoidance is given by

Psafe ¼
1; d[ dsafe

1; d\dsafe

�

ð11Þ

where d is the straight-line distance between the ship and

the center of the obstacle, and dsafe is a safe distance

between the ship and the obstacle. The comprehensive cost

function ðJÞ of route is determined using the following

equation:

minðJÞ ¼ Psafe � ðwT � T þ wE � EÞ ð12Þ

with the constraints:

T � Tmax

0\ vi;iþ1

�

�

�

�� vmax

�

ð13Þ

where E is the total energy consumption cost, Tmax is the

maximum voyage time allowed for the ship, vi;iþ1 is the

speed of the ship in the track from nodes i to i ? 1,vmax is

the maximum sailing speed allowed for the ship, wT and wE

are the weights for the corresponding cost functions, and

wT þ wE ¼ 1. By setting different weights, routes with

different optimization goals can be planned. The planning

process of the lowest energy consumption route, that is,

wT ¼ 0 and wE ¼ 1, was used as an example to elucidate

the applications of our proposed algorithm. The method

can also be applied to other optimization route with dif-

ferent values of wT and wE.

3 Improved ant colony algorithm

3.1 Fundamental principle behind algorithm
design

As described in Introduction, when performing route

planning in a complex dynamic environment, ACA expe-

riences several problems such as slow convergence and

getting trapped in a local optimum. Furthermore, due to

energy consumption is affected by several complex factors,

it is difficult for the traditional ant colony algorithm to

achieve both accuracy and speed. ACA has achieved good

results when combined with other algorithms to solve

different combinatorial optimization problems. For exam-

ple, a multiple ant colony algorithm (Yang et al. 2019) that

classified ant colonies into different classes was proposed,

which updated the local and global pheromones using

methods superior to previously employed methods. This

effectively improved the optimization ability of the algo-

rithm in complex environments.

Therefore, utilizing the multiple ant colony algorithm

and other successful modifications of ACA, we propose a

novel double ant colony algorithm (NDACA), in which the

ants are divided into two classes: exploratory ants and

optimized ants. The optimized ants are responsible for

searching for the lowest energy consumption route,

whereas the exploratory ants are responsible for detecting

the lowest energy consumption route. Initially, the

exploratory ants are deployed to improve the quality of

solutions returned by the algorithm. Later, the optimized

ants are deployed to improve the convergence of the

algorithm.

In NDACA, the entire ant colony is classified into two

categories using the dynamic fitness classification operator

defined as

fiti ¼
Emin

Ei
ð14Þ

where fiti is the fitness value of each ant, Emin is the lowest

energy consumption value in the current iteration, and Ei is

the energy consumption corresponding to each ant. If

fiti 2 ½0;M�, then the ants are exploratory ants, whereas if

fiti 2 ðM; 1�, the ants are optimized ants, where M is the

classification threshold of the ant state, and the size of

M directly affects the overall precision of the solutions.

To avoid algorithm stagnation or falling into a local

optimum, the state transfer strategy of the algorithm was

improved using a combination of pseudo-random and

roulette probabilities. This strategy not only makes the ants

move toward grids having a high probability but also to

those with a low probability. Moreover, the energy con-

sumption factor is considered in the transition probability.

The specific process is described as follows.

Let us consider that the k ant is transferred from node i

to node j. When q� q0, the k ant selects the next node to

visit according to the pseudo-random probability formula

given by

s ¼ arg max skijðtÞ
h ia

gkijðtÞ
h ib

eijðtÞ
� �c�

q� q0

�

s2S

ð15Þ

where sijðtÞ is the pheromone between nodes i and j at the

tth iteration; a is the pheromone inspired factor; b is the

expectation heuristic factor; c is an index related to the

energy consumption information; gij represents the

heuristic functions, given by gij¼ 1=dij, and dij is the
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straight-line distance between nodes i and j; eijðtÞ repre-

sents the heuristic information on the energy consumption

on of the route from node i to j at the tth iteration, given by

eijðtÞ ¼ 1=Eij; S is the set of all nodes that the k ant may

reach from node i; s is the set of nodes that the k ant

chooses to traverse; q is a randomly generated number

uniformly distributed in the interval [0, 1]; and q0 is a user-

defined parameter that specifies the distribution ratio

between pseudo-random and roulette probabilities, in [0,

1].

When q[ q0, the k ant performs path selection

according to the roulette formula given by

pkijðtÞ ¼
skijðtÞ
h ia

gkijðtÞ
h ib

eijðtÞ
� �c

P

s2allowedðiÞ
skijðtÞ
h ia

gkijðtÞ
h ib

eijðtÞ
� �c

ð16Þ

where allowedðiÞ represent the feasible nodes that the k ant

can choose at node i.

After several iterations (t� 2), two optimal routes were

obtained corresponding to the exploratory and optimized

ants. If the energy E1 of the optimal route planned by the

exploratory ants is less than the energy E2 of the optimal

route planned by the optimized ants, it indicates that some

of the exploratory ants can plan the lowest energy con-

sumption route better than some of the optimized ants. In

such a scenario, the solutions obtained from the two classes

of ants were exchanged along with their identities and

functions. The original exploratory ants were converted

into optimized ants and vice versa. After completing this

exchange of solutions, the system starts the next iteration.

3.2 Adjusting the threshold parameter M

In NDACA, the threshold parameter M determines the

balance of the algorithm by providing dynamical feedback

to the operation of the algorithm. A dynamic feedback

mechanism is adopted to adjust the parameter M, as shown

in Fig. 2.

In Fig. 2, R is the feedback parameter. When R[ 0,

indicating that the quality of the obtained search route is

poor, the search area needs to be expanded to speed up the

exploratory process by reducing the value of M. When

R\ 0, indicating that a better solution has been found and

that the search area contains an exploratory value, then the

intensity of exploration needs to be increased by increasing

the value of M. In particular, when R = 0, it is necessary to

count the number of times the Et
best=E

t�1
best continuously

attains the value 1 and then set a stagnation threshold

accordingly. When the cumulative count exceeds this

threshold, the algorithm is very likely to fall into a local

minimum, in which case the value of M needs to be

decreased appropriately to make the algorithm converge to

globally optimal solution. The specific adjustment strategy

for M can be summarized as follows:

Mt ¼
Mt�1ð1 � Et

best � Et�1
best

Et�1
best

Þ ðEt
best 6¼ Et�1

bestÞ

Mt�1 ðEt
best ¼ Et�1

best; numðEt
best ¼ Et�1

bestÞ\NmaxÞ
fMt�1 ðEt

best ¼ Et�1
best; numðEt

best ¼ Et�1
bestÞ�NmaxÞ

8

>

>

<

>

>

:

ð17Þ

where Nmax is the stagnation threshold; num() represents

the algebraic accumulation of continuous stagnation in the

ant population; f is the adjustment factor such that

0\f\1; t is the number of iterations; Et
best is the energy

consumption of the optimal path at the tth iteration; and Mt

is the value of M at the tth iteration.

Note that the value of M lies in the range [0, 1]. Owing

to the closed-loop feedback adopted, the initial value of M

has little effect on the accuracy of the solution. However,

when M is very large, numerous unusable solutions are

generated, which increases the convergence time of the

algorithm. By means of extensive experiments, we verified

that the algorithm achieves the best performance when the

initial value of M is 0.8.

Fig. 2 Closed-loop control

chart for NDACA. The value of

the classification threshold M is

adjusted according to the value

of the feedback parameter R
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3.3 Pheromone updating strategy

The tasks undertaken by the exploratory and optimized ants

are different, having different significances as well; thus,

the corresponding pheromone updating strategy also needs

to be different. To manage the contradiction between the

diversity of solutions and the convergence speed in the two

cases, the following pheromone updating strategy was

adopted for our proposed algorithm.

To prevent the algorithm from falling into a local opti-

mum, a local pheromone updating strategy was adopted.

The comprehensive cost function was also considered in

the local pheromone updating strategy. By introducing

different weight coefficients, different types of ants can

execute different pheromone updating strategies. The

updating strategy is outlined as follows:

sijðt þ 1Þ ¼ 1 � qsijðtÞ þ q
X

m

k¼1

skij ð18Þ

skij ¼
k1 � fiti

Jk
ð19Þ

skij ¼
k2 � fiti

Jk
ð20Þ

where q is the pheromone volatilization factor, k1 and k2

are the weight coefficients of the optimized and exploratory

ants, respectively, and Jk is the comprehensive cost func-

tion of the optimal route for k ant at the tth iteration. To

distinguish between the pheromone concentrations of the

search routes corresponding to the two types of ant and

highlight the better route, the respective weights are set to

be k1 = 4.2 and k2 = 2.2. The optimized ants follow

Eqs. (18) and (19), whereas the exploratory ants follow

Eqs. (18) and (20).

After all the ants completed one iteration, the pher-

omones were updated globally. At this stage, the explora-

tory and optimized ants are no longer distinguishable;

however, the ship energy consumption factor was taken

into consideration when the pheromones of the optimal

route were updated. The update was performed according

to the following equations:

sijðtÞ ¼ ð1 � qÞsijðtÞ þ qDsbest ð21Þ

Dsbest ¼
Q=Et

best if ði; jÞ 2 s�

0 else

�

ð22Þ

where Q is a constant; s� is the set of optimal routes; and

Dsbest is the increase in pheromones for the optimal path.

The flowchart of NDACA is shown in Fig. 3.

4 Experimental results

4.1 Establishment of simulation environment

We constructed a simulation box consisting of 20 9 20

grids and randomly populated 13% of this box with

obstacles, as shown in Fig. 4. The lowest energy con-

sumption route was planned from the starting point (0.5,

19.5) to the end point (19.5, 0.5) of the grid. The length of a

unit raster is 1 km.

Moreover, based on simulation model, the working

attribute grid was adapted to reflect the real information

pertaining to the marine environment, and hence, envi-

ronment models I, II, and III were constructed. Environ-

ment III is composed of obstacle grids and free attribute

grids which does not include any environmental attributes.

And then, the influence of winds and waves was added into

consideration, and free attribute grids are thus transformed

to working attribute grids in the model I and II. In the

model I, the attributes are set to va = 3 m/s, nA = 2 m,

vs = 1.5 m/s, h ¼ 30�, / ¼ 60�, and u ¼ 45�. In the model

II, the attributes are set to va = 2 m/s, nA = 1.5 m,

vs = 1 m/s, h ¼ 150�, / ¼ 110�, and u ¼ 135�.

4.2 Determination of parameter values

The parameter values used in NDACA have a direct effect

on the algorithm’s performance; however, there is no

specific formalism available to determine these values

precisely (Ma et al. 2018). Therefore, we adopted a

numerical experimental method to determine the appro-

priate values of the parameters. Using the MATLAB sim-

ulation software, different parameter combinations were

explored within the respective parameter ranges and the

optimal parameter combinations were selected based on the

experimental results.

The environment model I was selected, and the initial

values of the parameters were set to m = 100, a = 1, b
= 5, c = 1, Q = 1, and q = 0.3, where m is the total number

of ants. Based on these initial values, different combina-

tions of the parameters were explored in our simulations, as

listed in Table 1. In our experiments, each parameter was

assigned different values and the route planning problem

was solved repeatedly using NDACA with the values of the

parameters being changed one at a time (Cheng and Mao

2007). The relationship between parameter values and

mean of energy consumption on the optimal route is shown

in Table 1.

From Table 1, based on mean of energy consumption on

the optimal route, we observe that the optimal value of a is

approximately 1, the optimal value of b lies in the range [7,

9], the optimal value of q is approximately 0.3, and that of
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Q is approximately 0.90. Therefore, the final parameter

values were determined to be m = 100, a = 1.0, b =7, c = 2,

q = 0.3, and Q = 0.90 (note that Q is the pheromone

intensity factor).

Fig. 3 Flowchart of NDACA

Fig. 4 Simulation grid. The

black and white grids represent

obstacles and free attribute

grids, respectively
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Note that the parameter q0 has a great influence on

NDACA. From the transition strategy Eq. (15) and (16),

we can see that when q0 is small, the ants choose the

roulette formula for selecting the optimal path with a

higher probability. This approach increases the diversity of

the candidate solutions but decreases the operational effi-

ciency of the algorithm. Conversely, when q0 is large, the

ants choose the optimal path with a higher probability

according to the pseudo-random probability formula. In

this case, the convergence speed of the algorithm is

improved to some extent; however, if the ants fail to find a

better path in the early stages of the algorithm, the algo-

rithm is likely to fall into a local optimum owing to the

accumulation of pheromones. The value of q0 was set using

the ‘‘single-factor method,’’ that is, the optimal q0 value

was obtained by analyzing the influence of different q0

values on the optimal route in the environment models I, II

and III, as shown in Fig. 5.

In Fig. 5, when the value of q0 is in the range [0.7, 1],

the algorithm can find the optimal route in the three

environment models. In addition, we found that the algo-

rithm can maintain a good performance in more complex

environments when the value of q0 was larger. For exam-

ple, to enable the algorithm to better plan the optimal route,

the value of q0 was set to be C 0.9 in environment model I,

whereas in environment model III it was enough to set q0

C 0.7. In this study, the research objects are either same as

or more complex than environment model I, and hence, the

initial value of q0 was set to 0.90.

4.3 Results in the working attribute
environment

In this section, NDACA is compared with other algorithms

to verify its effectiveness. We considered ACA and the

double-layer ant colony optimization algorithm (DACO;

Xv et al. 2019) to compare the performances of the algo-

rithms in planning the optimal route for the simulation

environment I.

Figure 6 shows a comparison between the optimal

routes obtained using NDACA and ACA. Figure 7 presents

a comparison between the optimal routes obtained using

NDACA and DACO. Figure 8 shows the energy con-

sumption as a function of the number of iterations for the

three algorithms. The total number of iterations performed

was N = 100, and the ant colony size was m = 100. Table 2

lists the simulation results obtained using the three

algorithms.

From Table 2, we observe that the number iterations

required for convergence reduces by 48.2%, and the energy

Table 1 Comparison of the energy consumption obtained using

NDACA for different parameter values

Parameter Parameter values

a 0 0.5 1.00 3 5

E 3.76 3.24 2.38 2.62 2.75

b 3 5 7 9 10

E 3.35 2.75 2.46 2.59 2.63

q 0.10 0.20 0.30 0.40 0.50

E 2.68 2.58 2.36 2.42 2.46

Q 0.80 0.85 0.90 0.95 1.00

E 2.66 2.58 2.43 2.56 2.58

c 0.5 1.0 1.5 2.0 2.5

E 3.78 3.45 3.03 2.52 2.83

The value of E takes the average of five numerical experiments (L)

Fig. 5 Relationship between the energy consumption E and q0 in the

environment models I, II and III

Fig. 6 Route planning results of NDACA and ACA in the working

attribute environment
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consumption decreases by 7.85% when compared to ACA.

Conversely, when compared to DACO, the speed of con-

vergence improves by 28.6%, and the energy consumption

decreases by 5.5%. These results indicate that NDACA can

quickly find the optimal solution; the results also

demonstrate the proposed algorithm’s good environmental

adaptability.

4.4 Results in the dynamic attribute
environment

In this section, we study the effect of dynamic attribute

grids added to the simulation environment I, where the

winds and waves change periodically with time. The

dynamic attribute grids are denoted in red in Fig. 9; they

move uniformly along the y-axis direction at a speed of 2

grids/s and are reciprocated several times. In Fig. 9a, b, the

wave speed in the dynamic attribute grids is set to 15 m/s

and 10 m/s, respectively.

Owing to the complexity of the dynamic environment, it

becomes more difficult for the algorithm to find the optimal

result; hence, the parameter q0 was increased to 0.95, while

the other parameters remained unchanged. The optimal

ship route in a dynamic attribute environment can be

obtained using NDACA, as shown in Fig. 9.

Figure 9 shows that NDACA is adaptable to different

types of dynamic attribute grids and successfully plan the

optimal route. When NDACA is employed for route

planning in a dynamic marine environment, it finds the

optimal solution quickly and attains a stable convergence,

indicating that the algorithm has good performance even in

a complex environment, as demonstrated by Fig. 10.

4.5 Evolution of the different ant classes
in NDACA

As stated earlier, the exploratory ants are responsible for

improving the quality of the solutions, whereas the opti-

mized ants are responsible for accelerating the speed of

convergence. The proportion of exploratory and optimized

ants in the total ant population determines the performance

of NDACA. The variation in the proportion of each kind of

ants also reflects the variation in the parameter M. In this

section, we study how the proportion of the two kinds of

ants evolves with the number of iterations in the working

and dynamic attribute environments, as shown in Fig. 11.

In Fig. 11a, b, the initial value of the parameter M is 0.8.

During the initial iterations, the number of exploratory ants

is more than the optimized ants to ensure good quality

solutions. As the number of iterations increases, the value

of parameter M decreases continuously. Consequently, the

number of exploratory ants decreases, whereas the number

of optimized ants increases until all the ants in the ant

colony become optimized ants. This increase in the number

of optimized ants during the later iterations promotes the

speed of convergence of the algorithm.

Comparing Fig. 11a, b, we find that even in a complex

dynamic environment, our proposed algorithm achieves a

Fig. 7 Route planning results of NDACA and DACO in the working

attribute environment

Fig. 8 Relationship between energy consumption and number of

iterations for ACA, DACO, and NDACA

Table 2 Comparison of simulation results obtained using NDACA,

DACO, and ACA

Algorithm Energy consumption (L) Number of iterations

NDACA 2.23 15

DAC 2.36 21

ACA 2.42 29
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balance between the two ant colonies by adjusting the

parameter M. Moreover, the parameter M guarantees the

exactness of the solution and improves the speed of con-

vergence. Thus, we note that NDACA can dynamically

adapt to complex marine environments and plan the opti-

mal route for ships.

5 Algorithm verification and applications

In this section, we analyze the feasibility of our proposed

algorithm in terms of practical applications. We study the

Danish passenger ship MS Smyril, sailing in the Faroe

Islands, for the ship route planning problem in this work.

The ship serves between the port of Tórshavn the capital of

the Faroe Islands, and the island Suðuroy as shown in

Fig. 12. The system in-built in the ship collects the route

data from the ship; the data of MS Smyril have been

published online, and we select the data for 246 trips from

February to April, 2010 (DTU 2011).

The image of the Faroe Islands was first rasterized into a

simulation box of 50 9 50 grids with each grid having a

length of 1.4 km. The free attribute, working attribute, and

dynamic attribute grids were defined as explained in

Sect. 2.2. Figure 13 shows the rasterized sea area map of

the Faroe Islands. In Fig. 13, we denote the dynamic

attribute grids in the Faroe Islands map in red based on the

meteorological and hydrological data of the winds and

Fig. 9 Route planning results of NDACA in the dynamic attribute environment. a Optimal route not influenced by dynamic attribute grids.

b Optimal route influenced by dynamic attribute grids

Fig. 10 Relationship between energy consumption and number of iterations. a, b correspond to the routes in Fig. 9a, b, respectively
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waves. The red grids move continuously reciprocating in

the y-axis direction at a speed of 4 grids/s. The specifica-

tions of the dynamic attribute grids are listed in Table 3. In

addition, due to the ship is not significantly affected by the

winds and waves as it enters and leaves the ports, the grids

in these areas can be considered to be free attribute grids.

Considering the factors in a real marine environment,

the parameters in NDACA were optimized to yield good

performance; hence, we set a = 0.12 and b = 7. If the

volatility factor q is very small, then a large amount of

pheromone residues tends to be deposited on multiple

routes, which causes non-optimal routes to be searched

continually leading to a slow convergence rate. Hence, we

set q = 0.37. Note that smaller the value of parameter Q,

slower is the accumulation of pheromones on the route, and

hence, slower is the convergence rate of the algorithm;

therefore, we chose a higher value of Q, namely, Q = 1.1.

In addition, the energy-inspired information index c was set

to 2 and the parameter q0was set to 0.95.

Finally, based on the aforementioned parameter values,

the shortest route, shortest voyage-time route, and lowest

energy consumption route were planned by NDACA. The

starting and ending coordinates of the ship were (25.5,

40.5) and (24.5, 0.5), respectively. The resulting routes are

shown in Fig. 14.

We choose the lowest energy consumption route (route

3) in Fig. 14 to explain the principle behind the opti-

mization process of our algorithm. When the ship travels

around the dynamic attribute grids at (27.5, 28.5), the

routes 1, 2, and 3 diverged. If the ship follows route 1 or 2

Fig. 11 Evolution of the number of exploratory and optimized ants with the number of iterations in different environments. a Working attribute

environment. b Dynamic attribute environment

Fig. 12 Figure of ship and its

routes. a shows the MS Smyril

ship, b routes obtained from the

navigation data in the database

of the MS Smyril, in which �

represents the main routes of the

ship and ` represents the

alternative routes for bad

weather
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in this case, then the energy consumption will increase

sharply, and hence, route 3 was selected. When the ship

travels near the dynamic attribute grids at (25.5, 4.5), if the

ship sails along route 1 that bypasses the dynamic grids,

then the energy consumption will be higher than if the ship

passes directly through the grids. Therefore, in this case,

the ship followed route 3. Finally, the complete optimal

energy consumption route was obtained, as shown in

Table 4.

Furthermore, to verify the practical significance of

routes 1, 2, and 3, we compared them with the actual ship

routes in the existing database of the MS Smyril. We cal-

culated the energy consumption, voyage time, and length

of every route of MS Smyril’s 246 voyages in Fig. 12, the

shortest route, shortest voyage-time route, and lowest

energy consumption route were selected to fill in Table 4.

From Table 4, we observe that the lowest energy con-

sumption route (route3) planned by NDACA saves

approximately 152.69 L of energy compared to the actual

route, which is equivalent to 4.58% of the energy being

saved. This indicates that the planned energy consumption

route is of practical significance. Similarly, compared with

the actual routes in the database, the corresponding shortest

route and shortest voyage-time route planned by NDACA

both yield better results.

6 Conclusions

To plan the optimal route for ships in a dynamic marine

environment, a novel double ant colony algorithm

(NDACA) with dynamic feedback is proposed in this work.

Moreover, we verified the significance of NDACA by both

Fig. 13 Rasterized grid map of the Faroe Islands. The red regions represent dynamic attribute grids, whereas the shaded regions represent

obstacle grids or islands. Note that some of the free attribute grids were changed to working attribute grids owing to environmental factors

Table 3 Wind settings for the

dynamic attribute grids
Serial number Grid coordinates Wind properties

Speed (m/s) Direction

1 (25.5,5.5), (25.5,6.5),

(26.5,5.5), (26.5,6.5)

22 30�

2 (31.5,26.5), 10 60�

Fig. 14 Route planning results. Routes 1, 2, and 3 represent the

shortest route, shortest voyage-time route, and lowest energy

consumption route, respectively
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simulation experiments and comparing its results with the

real data of a ship. We draw the following conclusions

based on our findings.

1. For a ship sailing in a dynamic marine environment,

the shortest route, shortest voyage-time route and

lowest energy consumption route are quite different

from each other. Thus, to perform the real-time route

planning in such a scenario, a comprehensive cost

function is designed by analyzing the ship’s motion. A

grid model is used to establish the marine environment

in this work. A combination of free attribute, working

attribute, and dynamic attribute grids was used to

capture the dynamic environmental factors properly.

2. Our proposed NDACA with dynamic feedback is able

to balance accuracy and speed of convergence in

complex environments. In addition, compared with

ACA and DACO, it can save 7.85% and 5.5% of the

energy consumed, respectively, when planning routes

in a marine environment.

3. NDACA can also successfully plan the shortest route,

lowest energy consumption route, and shortest voyage-

time route for ships in a marine environment. For

instance, compared with the actual route of MS Smyril,

the planned route corresponding to the lowest energy

consumption saves approximately 4.58% of energy.

This has great practical significance for ship operations

management.
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