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Abstract
The study on multiple unmanned aerial vehicles (UAVs) reconnaissance task allocation problem is an important research

field, which is significant for both military and civilian applications. This problem has often been considered as a multiple

traveling salesman problem where the targets are considered as points. In this paper, we present a novel mathematical

model that classifies heterogeneous targets as point targets, line targets and area targets to improve the fidelity of the model.

It is a complex combinatorial optimization problem, for which we can hardly get an optimal solution as the scale of the

problem expands. A new heuristic algorithm called grouping ant colony optimization algorithm is proposed for this new

model. Compared with traditional ant colony algorithm, pheromone is divided into membership pheromone and sequence

pheromone corresponding to grouping and permutation characteristics of the model, respectively. Also, negative feedback

mechanism is introduced to accelerate convergence speed of the algorithm. The simulation results demonstrate that the new

algorithm can consider comprehensively the performance of different UAVs and the characteristic of heterogeneous

targets. It outperforms existing methods reported in the literature in terms of optimality of the result, and the advantage gets

more obvious with the scale of reconnaissance task allocation problem expanding.

Keywords Unmanned aerial vehicles � Reconnaissance task allocation � Combinatorial optimization problem �
Heuristic algorithm � Ant colony algorithm

1 Introduction

With the development of science and technology such as

control theory, wireless network, and electronic engineer-

ing (Hoffmann et al. 2007; Wang et al. 2020; Hadi et al.

2014), autonomous performance of unmanned aerial

vehicle (UAV) is constantly improving, making it more

and more popular in military and civilian applications such

as natural disaster relief (Luo et al. 2019), search and

rescue (Yang et al. 2020), forest fire extinguishing (Merino

et al. 2006), and agricultural irrigation (Albornoz and

Giraldo 2017). However, a single UAV can hardly

accomplish a complex task because of its limited capabil-

ity. The research of multi-UAV system is necessary for the

cooperation between UAVs, and the development of

single-UAV platform and multiple UAV networks makes it

possible (Wang et al. 2017). Multi-UAV collaborative

reconnaissance is a typical mission for better target finding

and information acquisition. Task allocation is an impor-

tant problem in multi-UAV reconnaissance mission, which

can make UAVs conducting tasks in a good order and

minimize system cost efficiently (Fu et al. 2019). Resear-

ches on multi-UAV task allocation are mainly focused on

problem modeling and algorithm innovation.

The basic task allocation problem that aims to find the

shortest flight path can be formulated as vehicle routing

problem (VRP) (O’Rourke et al. 2001), multiple traveling

salesman problem (MTSP) (Yousefikhoshbakht et al.

2013), and mixed integer linear programming (MILP)

(Alighanbari 2004). Considering UAV endurance and

multitasking, the task allocation problem can be formulated

as multiple traveling salesman problem with time window

(MTSP-TW) (Kona et al. 2015) and dynamic network flow

optimization (DNFO) (Nygard et al. 2001). Although

algorithms for solving these problems have been fully
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studied, the task allocation problem is always greatly

simplified without consideration of the nature of the

problem when using these models. Besides, the existing

models only concentrate on the features of UAVs, while

targets are always simplified as points and the features and

heterogeneity of targets are ignored. Zhu et al. (2018)

firstly introduced the heterogeneity of targets in task allo-

cation problem, but only considered differences between

targets at the stage of entering and leaving after allocation.

In this paper, we present a novel multi-UAV reconnais-

sance task allocation model, considering the heterogeneity

of both UAVs and targets. Targets are classified as point

targets, line targets, and area targets, where line targets are

modeled as two symbiotic point targets and area targets are

modeled as four mutually exclusive point targets according

to the characteristic of targets.

The task allocation problem is a typical NP-hard com-

binatorial optimization problem. Algorithms to solve the

combinatorial optimization problem can be divided into

two categories, the exact methods and the approximate

methods. The exact methods such as branch and bound

(BNB) (Vincent et al. 2013) and dynamic programming

(DP) (Zhang et al. 2019) can obtain local optimal solutions

for low-dimensional problems, but they can hardly find

feasible solution as the number of UAVs and targets grows,

because of the exponential increase of computational cost.

On the contrary, the approximate methods with low com-

putational complexity can efficiently acquire feasible

solutions, which are mainly utilized to solve combinatorial

optimization problems. Most of approximate methods are

inspired by biological or physical phenomenon, such as

simulated annealing (Mafarja and Mirjalili 2017), neural

networks (Somhom et al. 1999), bee colony algorithm

(Dokeroglu et al. 2019), ant colony optimization (ACO)

(Junjie and Dingwei 2006), and genetic algorithm (GA)

(Yuan et al. 2013). ACO and GA are widely applied for the

task allocation problem and have been verified to be

potential to find superior solutions (Pendharkar 2015; Sri-

kanth and Geetha 2018; Ramirez-Atencia et al. 2017). The

no free lunch theorem indicates that no universal heuristics

outperform other heuristics across all possible problems,

though one heuristic may be more suitable for a particular

problem than others (Wolpert and Macready 1997; Pandiri

and Singh 2018). Therefore, it is necessary to modify

algorithms according to the characteristics of task alloca-

tion problem. Deng et al. (2013) proposed multi-type genes

to modify the genetic algorithm for meeting specific

demands of tasks. Zhu et al. (2018) developed the oppo-

sition-based genetic algorithm using double-chromosomes

encoding and multiple mutation operators (OGA-

DEMMO) which used opposition-based learning and

multiple mutation operators to enhance the global explo-

ration capability of genetic algorithm. Fei et al. (2008)

presented a multi-ant colony algorithm based on the job-

division mechanism for a better construction of task allo-

cation solution.

The multi-UAV reconnaissance task allocation problem

has two characteristics: (1) grouping: targets need to be

parted into different groups, each group corresponds to a

UAV; (2) permutation: a given set of targets needs to be

arranged into a particular order. Previous ACO-based

algorithms for task allocation problem do not make full use

of grouping information, causing a lot of uncertainty in the

process of state transition. In this paper, we propose a new

grouping ant colony optimization (GACO) algorithm based

on ACO to solve the multi-UAV reconnaissance task

allocation problem. In GACO, pheromone is divided into

membership pheromone and sequence pheromone corre-

sponding to grouping and permutation characteristic,

respectively. Due to the large search space, negative

feedback mechanism is incorporated into traditional ant

colony algorithm, which can increase convergence speed.

The new algorithm can improve search efficiency by

learning the correlation between UAVs and targets.

The main contributions of this paper are as follows.

Firstly, we present a novel multi-UAV reconnaissance task

allocation model, which considers the heterogeneity of

targets and performance of different UAVs. Secondly, to

produce high-quality solutions, we develop an ACO meta-

heuristic-based algorithm to solve the new multi-UAV

reconnaissance task allocation model. Based on the char-

acteristics of the problem, we divide the pheromone into

membership pheromone and sequence pheromone and

introduce a competition mechanism to expand new nodes.

The negative feedback process is utilized to increase con-

vergence speed of the new algorithm as well. Finally, we

analyze the performance of our algorithm experimentally

and conduct comparative experiments of different scale

scenarios, and the results show that our algorithm has better

global exploration capability.

The remainder of this paper is organized as follows:

Sect. 2 describes the heterogeneity of UAVs and targets,

and Sect. 3 introduces the formal model of the multi-UAV

reconnaissance task allocation problem. Our proposed

algorithm to solve the model is presented in Sect. 4.

Numerical simulation is performed in Sect. 5 to illustrate

the effectiveness and optimality of the proposed method.

Finally, Sect. 6 outlines some concluding remarks to

summarize the contribution of this paper.
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2 Basic models

2.1 Sensor model

In this paper, UAVs are equipped with photoelectric

reconnaissance sensors, which can reconnoiter ground

targets. When the area of targets is fully covered by a

sensor’s field of view, the reconnaissance task on this target

is completed. As illustrated in Fig. 1, a sensor’s field of

view is assumed as a circle with radius r, d ¼ 2r is the

reconnaissance width of the sensor, and H is the flight

altitude. To simplify the model, it is assumed that the

sensor’s field of view is not influenced by the attitude of

UAVs.

2.2 Targets model and reconnoiter strategies

According to their features of geometry and the sensor’s

field of view, reconnaissance targets in real-world mission

environment are classified as point targets, line targets, and

area targets. As illustrated in Fig. 2, point targets refer to

those targets whose size is smaller than the sensor’s field of

view, such as buildings and ground vehicles. The recon-

naissance task for a point target is performed when a UAV

flies over it.

Line targets represent targets whose length is longer

than the reconnaissance width d, while width is shorter than

d. As shown in Fig. 3, when a UAV flies over the center

line along the longer side, a line target can be covered. In

this paper, line targets are considered as two point targets:

the entry point and the exit point. L1 is the entry point and

L2 is the exit point; this couple of point targets is symbiotic,

which means once one is reconnoitered, the other one must

be the next target. Typical line targets include railways,

rivers, and aircraft run ways.

As for area targets, both their length and width are

longer than reconnaissance width d. There are many

reconnaissance strategies for area targets, and spiral search

route is adopted in this paper with the shortest route length,

Fig. 1 Field of view of sensors

ig. 4.
Point 
target

Field of view 

Fig. 2 Schematic diagram of

point target

Fig. 3 Schematic diagram of line target

Fig. 4 Spiral search route of area target
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as shown in Fig. 4. We consider the area target as four

mutually exclusive point targets, which are the vertices of

the area target. An entry point and an exit point should be

chosen from the four vertices, the entry point and the exit

point can be the same one. For the spiral search route, it

can be proven that the search length is the same for dif-

ferent entry point and exit point combinations. The search

length is calculated as follows:

Ls ¼
La �Wa

d
� d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2a þW2
a

p

2
ð1Þ

where Ls is the total search route length for the area target;

La, Wa are the length and width of the area target,

respectively; d is the reconnaissance width of the sensor.

Typical area targets include lakes, squares, and other wide-

area targets.

2.3 UAVs model

To perform the reconnaissance task, there are Nu UAVs

with specific features, which are presented in Table 1. In

this paper, the UAV is considered as a particle that cruises.

3 Problem description and formulation

The multi-UAV reconnaissance task allocation problem

aims at assigning Nt targets to Nu UAVs with lower cost,

where Nu\Nt. The UAVs start at departure airports and

land at landing airports, each target needs to be reconnoi-

tered by a single UAV, and each UAV can reconnoiter any

targets within its capability constraint. In this paper, targets

are heterogeneous, so are the UAVs. The targets include

point targets, line targets, and area targets. The line target is

considered as two symbiotic point targets represented by

two endpoints. The area target is considered as four

mutually exclusive point targets represented by four ver-

tices. The cost contains two parts: the maximum time to

complete reconnaissance task and the total fuel consump-

tion of UAVs, which is related to the properties of different

UAVs. Thus, the multi-UAV reconnaissance task

allocation problem is similar to the multi-depot multiple

traveling salesman problem (MDMTSP). Different from

the MDMTSP, target points in this problem can be sym-

biotic and mutually exclusive to each other.

Take U ¼ U1;U2; . . .;UNu
f g as a set of Nu

UAVs,D ¼ D1;D2; . . .;DNu
f g as a set of designated

departure airports, and E ¼ E1;E2; . . .;ENu
f g as a set of

designated landing airports.T ¼ T1; T2; . . .; TNp

� �

is a set

of Np points representing Nt targets, T ¼ TP [ TL [ TA,

where TP,TL, TA are sets of points representing point tar-

gets, line targets, and area targets, respectively. The goal of

UAVs is to reconnoiter all the targets from their designated

departure airports to their designated landing airports in a

minimum time with minimum fuel consumptions. Thus, it

is a multi-objective optimization problem, the weighted-

sum approach is applied in this paper Deb (2014), the

objective function including two subobjectives is defined

as follows:

min J ¼ e � w1 � max
u¼1;2;...;Nu

tu þ w2 �
X

Nu

u¼1

tufru ð2Þ

where w1;w2 2 ½0; 1� ½0; 1� are the weight factors of the two
subobjectives;e is scale factor that makes two subobjectives

the same order of magnitude. Since the minimum of the

above problem does not change if all weights are multi-

plied by a constant, it is the common practice to choose

weights such that their sum is one, or w1 þ w2 ¼ 1. fru is

the fuel consumption at cruising speed, tu is the time of

completing the allocated task for the uth UAV, and is

determined by the flight speed and path length, as defined

in the following equation:

tu¼
X

k2D

X

j2T
RLkjX

u
kjþ
X

j2T

X

h2E
RLjhX

u
jhþ
X

i2T

X

j2T
RLijX

u
ij

 !,

vu

ð3Þ

where vu is the cruising speed of uth UAV; if i; j 2 TA, RLij
is the search length of area targets formulated by Eq. (1),

else, RLij is the path length from location i to location j; the

binary matrix Xu is called allocation matrix representing

Table 1 Different UAV features

considered
Feature Description

Initial position The position of the UAV at the beginning of the task

End position The position of the UAV after completing the task

Autonomy The maximum time that the UAV can keep flying

Cruising speed Speed of the UAV for a flight profile

Fuel consumption ratio Fuel consumption per hour of the UAV for a flight profile
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the task allocation results of the uth UAV. If the uth UAV

needs to move from i to j, then Xu
ij is 1, otherwise Xu

ij is 0.

Additionally, the following constraints are imposed on

this problem:
X

u2U

X

j2T
Xu
kj ¼

X

u2U

X

j2T
Xu
jh ¼ 1 k 2 D; h 2 E ð4Þ

X

u2U

X

k2D
Xu
kj þ

X

u2U

X

i2T
Xu
ij þ

X

u2U

X

h2E
Xu
jh ¼ 1 j 2 T ð5Þ

X

k2D

X

h2E
Xu
kh ¼ 0 u 2 U ð6Þ

Xu
kj þ

X

i2T
Xu
ij � Xu

jh �
X

i2T
Xu
ji ¼ 0

u 2 U; k 2 D; h 2 E; j 2 T
ð7Þ

ui � uj þ L
X

u2U
Xu
ij þ ðL� 2Þ

X

u2U
Xu
ji � L� 1

i 6¼ j; i; j 2 T
ð8Þ

X

u2U
Xu
ij ¼ 1 i; j 2 Tm

L ð9Þ

X

u2U

X

i2Tm
A

X

j2Tm
A

Xu
ij � 1 ð10Þ

In these formulas, constraint (4) ensures that each UAV

takes off from a designated departure airport, and lands at a

designated landing airport. Constraint (5) ensures each

target is reconnoitered exactly once. Tours without any

target points are prohibited with constraint (6). Route

continuity is represented by constraint (7). In constraint (8),

ui is the number of nodes visited on the path from the

departure airport up to node i; this constraint can prevent

subtours with no departure airport and landing airport.

Constraint (9) represents the symbiotic relationship

between i and j, while i; j belong to the mth line target, Tm
L

is the point set representing mth line target. Constraint (10)

represents the mutual relationship between i and j, while i; j

belong to the mth area target, Tm
A is the point set repre-

senting mth area target.

4 Grouping ant colony optimization
algorithm

4.1 Group ant colony

In the multi-UAV reconnaissance task allocation problem,

different UAVs do not reconnoiter the same target, thus we

can map each UAV to an ant subgroup, each ant subgroup

constructs a task assignment plan for its corresponding

UAV, and subgroups interact with each other by pher-

omone to achieve task coordination.

Dividing ant colony into different subgroups is based on

the fact that different UAVs do not reconnoiter same tar-

gets. Let ant colony AC ¼ ACi; i ¼ 1; 2; . . .;NACf g, NAC is

the number of subgroups, NAC ¼ Nu, the ACi is subject to:

S

Nu

i¼1

ACi ¼ AC

ACi \ ACj ¼ ;; i 6¼ j

8

<

:

ð11Þ

The ant clan AGi ¼ Ant1;i;Ant2;i; . . .;
�

AntNu;ig, i ¼ 1; 2; . . .;NAG is an ant set that contains Nu

ants; each AGi is an allocation solution of UAVs. AGi is

subjected to:

S

NAG

i¼1

AGi ¼ AC

AGi \ AGj ¼ ; i 6¼ j

8

<

:

ð12Þ

In conclusion, the ant colony can be divided into Nu

subgroups in accordance with Nu different UAVs, or NAG

ant clans in accordance with NAG allocation solutions. It

can be illustrated in Fig. 5.

4.2 Pheromone construction and state transition

In the grouping ant colony optimization algorithm, the task

allocation solution is formulated by ant clan AGi,

i ¼ 1; 2; . . .;NAG. Firstly, each ant in AGi will find its next

Fig. 5 Division of ant colony
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target based on transition probability, and the transition

probability pij is the probability of target j been chosen by

the ant from target i and is formulated as follows:

pij ¼
sijðtÞ
� �a� gij

� �b

P

k2allowedt
sikðtÞ½ �a� gik½ �b

f j 2 allowedt

0 otherwise

8

>

>

<

>

>

:

ð13Þ

where allowedt ¼ T � tabutf g is the target set containing

all the targets that have not been chosen at time t, tabut is

the target set containing all the targets that have already

been chosen at time t; sijðtÞ is the sequence pheromone

value between target i and j; gij is the inverse distance

between target i and j, it is used as heuristic information. a
and b are parameters that control the relative importance of

pheromone versus greediness of the algorithm.

Secondly, after all ants in AGi have chosen their next

target, they will compete with each other for the permission

to extend. It means that only one of the Nu ants in AGi can

choose the target at a time. The probability of ant m win-

ning the permission to extend is:

pm ¼
cj;mðtÞ

PNu

k¼1 cj;kðtÞ
a ð14Þ

where c is the membership pheromone matrix; cj;m is the

membership pheromone in jth row and mth column of c,
which stands for the probability that target j belongs to

UAV m. The formula means that the greater the value of

membership pheromone is, the greater the probability is.

4.3 Pheromone update

In ACO, the construction of the solution depends on the

accumulation of pheromone, and it is a positive feedback

process. In this paper, negative feedback mechanism is

introduced to GACO algorithm. The update of sequence

pheromone and membership pheromone is different from

each other.

Once all ants in ant colony finished node extending, the

sequence pheromone is updated as follows:

sijðt þ 1Þ ¼ maxð0; ð1� qÞ � sijðtÞ þ DsijÞ ð15Þ

where q ð0\q\1Þ is the evaporation coefficient of pher-

omone, and 1� q the persistence coefficient, Dsij is the

pheromone increments between target i and j after each

iteration. The value of sij is non-negative.

Dsij ¼
X

NAG

k¼1

Dskij ð16Þ

where Dskij is the quantity of pheromone laid on edge ði; jÞ
by the kth ant clan after each iteration. It is given by:

Dskij ¼
pf k � nf k if kth ant clan uses edge ði; jÞ
0 otherwise

�

ð17Þ

pf k ¼ Q

Ck
ð18Þ

nf k ¼
3 � Q
2 � Ck

if Ck ¼ max
k

Ck k ¼ 1; 2; . . .NAGf g
0 otherwise

(

ð19Þ

where Q is a constant, and Ck is cost value of ant clan k

calculated from formula (2). Formulas (17)–(19) mean that

in each iteration NAG ant clans leave pheromone trail on

edges they traveled through. The ant clan leaves more

pheromone trails when its cost function value is smaller. If

the ant clan got the largest cost function value, the pher-

omone value will be subtracted by nf k, and it is just the

process of negative feedback.

The membership pheromone is updated by the grouping

result of kth ant clan with lowest cost value in current

iteration and lth ant clan with lowest cost value up until

current iteration. kth ant clan represents local best solution,

and lth ant clan represents currently global best solution. If

target j belongs to UAV m in the kth ant clan or lth ant clan,

then cj;m is updated as follows:

cj;m ¼ cj;m þ K j ¼ 1; . . .;Np ð20Þ

Then, each row element in c is updated as follows to

ensure the sum of each row is 1:

cj;m ¼
cj;m

PNu

m¼1 cj;m
j ¼ 1; . . .;Np; m ¼ 1; . . .;Nu ð21Þ

where Kð0\K\1Þ is a constant. Formulas (20)–(21) mean

that the update of the membership pheromone is a positive

feedback and it is also a negative feedback process when

Nu [ 2, it is proved as follows:

Theorem 1 Update of the membership pheromone is not

only a positive feedback but also a negative feedback when

Nu [ 2.
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Proof The sum of each row of membership pheromone

matrix is 1. According to formulas (20)–(21), the mem-

bership pheromone can be updated to:

cj;mðt þ 1Þ ¼
cj;mðtÞ þ K

1þ K
if j belongs to m

cj;mðt þ 1Þ ¼
cj;mðtÞ
1þ K

otherwise

8

>

>

<

>

>

:

ð22Þ

The membership pheromone increment is:

Dcj;m ¼
Kð1� cj;mðtÞÞ

1þ K
if j belongs to m

Dcj;m ¼ �
K � cj;mðtÞ
1þ K

otherwise

8

>

>

<

>

>

:

ð23Þ

Since 0\cj;mðtÞ\1, it is proved that when j belongs to

m, Dcj;mðtÞ[ 0, and Dcj;m\0 otherwise. It means that

when target j belongs to UAV m in the kth ant clan or lth

ant clan its membership pheromone will increase. h

Also, formula (23) indicates another advantage of

membership pheromone updating strategy, making a finer

search of GACO algorithm: when the membership pher-

omone is close to 0, it increases fast while decreases

slowly.

4.4 Procedure of GACO

The procedure of GACO algorithm for solving multi-UAV

reconnaissance task allocation problem is as follows:

Step 1 initialize the Nu � NAG ant colony, construct the

ant subgroup ACu ; u ¼ 1; 2; . . .;NAC and ant clan

AGv ; v ¼ 1; 2; . . .;NAG. Each ACu maps to a UAV. Set the

iteration counter c ¼ 0 and the maximum number of iter-

ations cmax.

Step 2 8AGv ; v ¼ 1; 2; . . .;NAG.

1. 8Antk;v ; k ¼ 1; 2; . . .;Nu, choose a target according to

formula (13).

2. each ant in AGv competes for extending according to

formula (14).

• If the extending point is a point target, put it in the

tabu table.

• If the extending point belongs to a line target,

extend another point of the line target. Put the line

target in the tabu table.

• If the extending point belongs to area target, extend

another point of the area target according to the

sequence pheromone. Put the area target in the tabu

table.

3. repeat (1) and (2) until all targets are extended.

Step 3 8AGv ; v ¼ 1; 2; . . .;NAG calculate the cost value.

If the ant clan exceeds the autonomy of UAV, then remove

the ant clan.

Step 4 update the best ant clan in current iteration

denoted as kth ant clan.

Step 5 if the allocation plan constructed by the kth ant

clan is better than the current global best allocation plan,

kth ant clan is used as the new global best task allocation

plan.

Step 6 update sequence pheromone and membership

pheromone according to formulas (15)–(21).

Step 7 c ¼ cþ 1, if c[ cmax, break the algorithm and

return the global best task allocation solution, else return

step 2.

The pseudo-codes of GACO are shown in Algorithm 1.
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5 Simulation experiments

In this section, the proposed multi-UAV task allocation

algorithm is verified through simulation experiments, and it

is compared with some other methods of multi-UAV task

allocation problem through comparison tests. All simula-

tions are coded by MATLAB in Windows 10 Enterprise

Edition 64-Bits System, and the hardware environment is

in a computer equipped with Intel(R) Core (TM) i5-

7300HQ 2.50 GHz and 8 GB RAM. All the parameters

with physical units in the simulations are normalized. The

task region is limited in a square area ½0; 500� � ½0; 500�.
The initial position of each UAV is (1,1), while the end

position is (350,200). The reconnaissance width of each

UAV is 2. Table 2 shows the parameters used throughout

the experimental phase.

The scale factor e is set to be 30; the weight factors w1

and w2 of subobjectives are both set to be 0.5. The ini-

tialization of sequence pheromone s and membership

pheromone c is sij ¼ 1 ði ¼ 1; . . .;Np; j ¼ 1; . . .;NpÞ,

...
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cj;m ¼ 0:5 ðj ¼ 1; . . .;Np; m ¼ 1; . . .;NuÞ. Other parame-

ters of the GACO algorithm are set empirically as follows:

number of iterations cmax¼ 100; number of ant clans

NAG ¼ 40; coefficients a ¼ 3, b ¼ 4 that control the

probability of an ant visiting a target node; pheromone

evaporation coefficient q ¼ 0:05; coefficients Q ¼ 10, K ¼
0:1 that control the pheromone increment.

5.1 Simulation I

Firstly, the effectiveness of the proposed method is veri-

fied. In this simulation scenario, there are 3 UAVs, 50 point

targets, 3 line targets, and 2 area targets. The performance

of each UAV is shown in Table 3.

The task allocation result of GACO is given in Fig. 6.

The point indexes are from 1 to 66, and point indexes 1 and

66 represent initial position and end position of all UAVs,

respectively. Area targets and line targets are indexed by

their vertexes, area targets are represented by red solid

squares, line targets are represented by red solid lines. It

can be seen that all the targets are visited only once by

UAVs, and the line targets and area targets are covered. It

is in accord with the requirements of the targets recon-

naissance. Meanwhile, the reconnaissance sequences of the

assigned targets for the UAVs are in a good order. Thus,

the GACO algorithm can obtain satisfying task allocation

result for multi-UAV cooperative reconnaissance problem

on heterogeneous targets. The total cost of task allocation

result is 376.81. The detailed allocation results are pro-

vided in Table 4; it can be seen that all the UAVs meet

their autonomy constraints. UAV1 reconnoiters the largest

number of targets, its time cost is minimal, though its

cruising speed is the smallest. This is because area targets

occupy most of the time cost of UAV2 and UAV3, the time

cost required to complete area targets of UAV2 is 3.77,

while the time cost of UAV3 is 3.56. The result allocates

area targets to UAVs with high cruising speed to save total

task time. Although the time cost of UAV2 is larger than

UAV3, its fuel consumption is less, due to the lower fuel

consumption ratio. From the result, targets are appropri-

ately assigned to different UAVs, and UAVs can cooper-

atively accomplish the reconnaissance task to reduce the

task execution time.

Figure 7 is the convergence curve of objective function

cost, the green curve represents the mean cost of ant sub-

groups in each iteration, and the red curve is the minimum

cost up to each iteration. It can be seen that the curve of

cost value converges after 39 iterations, and the ant cost

decreases from 483.62 to 376.81, the reduction rate is

22.15%, thus, its convergence rate is satisfactory. Figure 8

is the membership pheromone convergence of four targets,

and their indexes are corresponding to Fig. 6. Point indexes

13 and 12 represent point targets, point index 55 represents

line target, and point index 63 represents area target. The

green curves, pink curves, and blue curves represent the

possibility that the targets belong to UAV1, UAV2, and

UAV3 in each iteration, respectively. It can be seen that

there is at least one membership pheromone rise and one

drop in each iteration, which is due to the positive and

negative feedback update mechanism of the membership

pheromone. The iterations to reach convergence of mem-

bership pheromone are 20, 16, 18, and 13, which are

smaller than the convergence iteration in Fig. 7, and it

means that the membership pheromone should converge

faster than the objective function.

5.2 Simulation II

To verify the optimality of GACO in solving multi-UAV

task allocation problem, firstly, we compare the GACO

algorithm with the state-of-the-art ant colony algorithm,

which is so-called ant colony-partheno genetic algorithm

(AC-PGA) (Jiang et al. 2020). The initial parameters of

AC-PGA are set as: the residual coefficient of the pher-

omone is 0.1; the importance of the pheromone and the

visibility is 2 and 8; natural selection ratio is 0.5; size of

population and iteration number are both 100. There are 40

point targets, 5 line targets, and 3 area targets in the test

scenario. We run each algorithm 20 times and choose the

Table 2 Parameters in GACO

Parameter Formula Value

Scale factor e (2) 30

Weight of time cost w1 (2) 0.5

Weight of fuel cost w2 (2) 0.5

Weight of sequence pheromone a (13) 3

Weight of heuristic information b (13) 4

Evaporation coefficient q (15) 0.05

Sequence pheromone increment Q (18) 10

Membership pheromone increment K (20) 0.1

Number of ant clans NAG Null 40

Number of iterations cmax Null 100

Table 3 Performance of UAVs

UAV1 UAV2 UAV3

Autonomy 7.0 8.0 8.0

Cruising speed 300 340 360

Fuel consumption ratio 25 34 36
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best result of each algorithm for comparison. The test

solution expressed as path maps is given in Fig. 9. Paths of

the UAVs obtained by the AC-PGA are more likely to

cross together and cause collision than paths solved by the

GACO. Thus, the better solution can be achieved by

GACO. In Fig. 10, the convergence ability of AC-PGA and

GACO is shown. Although the initial cost of GACO is

larger than that of AC-PGA, it converges to a lower value

in less iterations. Thus, the new algorithm has better

searching ability for solving this problem.

We compare the GACO with AC-PGA and OGA-

DEMMO under different scenarios, and the OGA-

DEMMO is the state-of-the-art evolutionary algorithm

used for solving multiple UAV task allocation problem

(Zhu et al. 2018). The initial parameters of OGA-DEMMO

are set as: probabilities of crossover and mutation are 0.9

and 0.1; population size is 50. The initial parameters of

GACO and AC-PGA are the same as the former part. All

algorithms terminate after 100 iterations. Table 5 lists the

information of these scenarios in detail. The scale of the

problem is increasing because of not only the increase of

UAV numbers but also the increase of targets. In this

simulation, each algorithm runs 20 times for each scenario

to get statistical results.

Fig. 6 Task allocation result of

GACO

Table 4 Task allocation result

Time Number of point targets Number of line targets Number of area targets Fuel consumption

UAV1 4.58 20 2 0 114.58

UAV2 6.43 17 1 1 218.62

UAV3 6.32 13 0 1 227.52

Fig. 7 Convergence curve of sum cost
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Figure 11 shows the result of 20 tests for different

algorithms in different scenarios. The histogram is drawn

based on the average cost value of 20 tests, and the error

bar shows the maximum and minimum cost value in 20

tests. It is noted that the number in the histogram is the

minimum cost value in 20 tests of each algorithm.

According to the minimum cost values in 20 tests, with the

increasing of problem scale, GACO can get best cost value

for all scenarios among all these algorithms. While the

OGA-DEMMO can get best cost value in scenario I and

scenario II, AC-PCA can only get best cost value in sce-

nario I, but its error bar is always the shortest, which means

that AC-PCA is more stable. Also, GACO can get best

average cost value in all scenarios, and the gap continues to

widen with the expansion of the scale of the problem. Thus,

GACO is better than AC-PCA and OGA-DEMMO from

the optimality of the results, especially for large-scale

allocation problems.

Fig. 8 Convergence curve of

membership pheromone

Fig. 9 Solutions of AC-PCA and GACO
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6 Conclusion

In this study, a novel multi-UAV reconnaissance task

allocation model is proposed, targets are classified into

point targets, line targets and area targets according to their

geometric characteristics, the line targets and area targets

are represented as two symbiotic point targets and four

mutually exclusive point targets, respectively. The opti-

mization objective is to minimize the weighted sum of the

total UAV consumption and the task execution time. The

GACO algorithm is proposed in order to solve the problem.

To improve the optimality and convergence efficiency, it

introduces the membership pheromone to learn correlation

between UAVs and targets, and the negative feedback

mechanism is proposed in the pheromone update process.

The GACO algorithm has been evaluated and compared

with ACO and OGA-DEMMO algorithm by numerical

experiments of different scale scenarios. Results demon-

strate that the GACO algorithm outperforms ACO and

OGA-DEMMO algorithm in terms of global exploration

capability performance, especially for large-scale task

allocation scenarios.
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