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Abstract
In this paper, we propose a fuzzy method to investigate the interconnection between equity markets in the form of similar
behavior. It has been proved before that the trend cycle of time series can be well estimated using the fuzzy transform. In the
suggested method, first, we approximate the local behavior of stocks as a sequence of their trend cycles. Then we measure
the distance between these local trend cycles conducting similar practices between different assets. Two experiments are
performed to demonstrate the advantages of the suggested method. This method is easy to calculate, well interpretable, and in
addition to statistical co-relation, the measure can assist investors in gaining more intuition about the behavior of their assets.

Keywords Stock interconnection · Stock markets similarity · Portfolio selection · Fuzzy transform

1 Introduction

Analyzing the interconnection among different assets has
been the subject of interest of many researchers. Today, large
datasets of multivariate time series are available in many
fields such as business, finance, and economics, providing
comprehensive data to mine some information deeply.

One of the critical applications of data mining in time
series (see Mining 2006; Keogh and Kasetty 2003; Fu 2011;
Liao 2005; Han et al. 2011) is mining the data in stock
markets. Assessing time series similarity, i.e., the degree
to which a given time series resembles another one is a
core to many mining, retrieval, clustering, and classification
tasks (Serra and Arcos 2014). There is no straightforward
approach, known as the best measure for assessing the simi-
larities in time series. Surprisingly, many simple tools like
euclidean distance can outperform the most complicated
methods (Serra and Arcos 2014). Wang et al. in Wang
et al. (2013) perform an extensive comparison between nine
measurements across 38 data sets from various scientific
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domains. One of their findings is that the euclidean distance
remains an entirely accurate, robust, simple, and efficient
way of measuring the similarity between two time series
in general. However, in finance, the principle step in many
crucial applications, including understanding the intercon-
nection among financial time series (e.g., stocks, bonds),
remains to be the dynamics of their correlation (Martens and
Poon 2001). Due to the fact that diversification, which con-
veys investing in a variety of assets, is a key to reduce the risk
of a chosen financial portfolio, and for that matter, correla-
tion is the principal indicator for the goodness of it Statman
and Scheid (2008). Thus it was the center of attention for
many researchers see(Hamao et al. 1990; Hilliard 1979; Wu
and Su 1998; Cha and Oh 2000; Bekaert and Harvey 2003).

For instance, in Wang et al. (2010), the cross-correlations
between the Chinese A-share and B-share market are exam-
ined. Kulman et al. in Kullmann et al. (2002) use correlation
as the function of the time shift between pairs of stock
return time series and investigate the time-dependent cross-
correlations between them. Bernanke, in 2016, analyzed the
relation between oil prices and stock markets by correlation
(Bernanke 2016). Nevertheless, there are specific problems
when using correlation in stock analysis alone. Firstly, some
researchers report that using correlation to analyze interre-
lations among international stock markets is low on average
and differ rather fiercely across countries see(Roll 1992) and
Eun and Shim (1989).

Secondly, similar to euclidean distance measurement, the
Pearson correlation is also very sensitive to outliers (Devlin
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et al. 1975). Note that stockmarkets have some specific prop-
erties. For instance, stocks react to a lot of exogenous factors
such as news (see, e.g., Chan (2003)); thus, the presence of
outliers in them is inevitable. Analyzing the similarity for the
price values of stock markets is critical; however, in practice,
investors tend to maximize the overall return of their port-
folio; therefore, the interaction between the return of each
investment is also vital. Therefore, developing a similarity
method that is capable of reacting to the nature of stock mar-
kets for both their price values as well their returns seems
essential.

A very effective technique for the representation and con-
sequently analysis of time series is the fuzzy transform.Using
it, we can extract trend cycle (a low-frequency trend compo-
nent) of the time serieswith highfidelity. The fuzzy transform
provides not only the computed trend cycle but also its ana-
lytic formula (cf. Novák et al. (2014), Novák et al. (2010)).
In this paper, using fuzzy transform, we first assign to each
financial time series an adjoint one that consists of its local
trend cycle. Then we measure the distance between these
approximate time series by a suggested formula.

There are several reasons to employ our fuzzy estima-
tion of the trend cycle for analyzing the interaction between
stocks: Firstly, the trend cycle in stocks tends to smoothen the
price value and describes the behavior of themarket concern-
ing the changes in price values. Thus, it is more intuitive for
experts than price values themself. It has been proven that we
can successfully reach this goal using the fuzzy transform.
Secondly, stockmarkets can be boisterouswith outliers. Con-
sequently, assessing similarities among them based on actual
price values without any preprocessing can lead to unrealis-
tic results. Using our method, we can easily “wipe out” the
outliers without harming the essential characteristics of the
time series. Finally, Our method is flexible and can answer
the question of how we can find stocks that behave simi-
larly at zero-lag or shifted-lags and in various time slots. For
instance, experts can measure the similarity between stocks
that behave similarly in a short to long term (e.g., one to
several weeks) at the same time or with delay.

This paper aims to provide a mathematical method that is
powerful for measuring similarity among stocks, not sensi-
tive to outliers, and can detect the stocks which behave sim-
ilarly at the same time moment or with lag(s). It extends our
previous paper (Mirshahi and Novák 2020). The suggested
method can be considered as a powerful tool complementary
to Pearson correlation in analyzing the relationship between
assets.

The structure of this paper is as follows. After Introduc-
tion, we describe the preliminaries of our method in Sect. 2.
Section 3 is dedicated to describing the suggested method
and its illustration together with the evaluation of the results.

2 Preliminaries

2.1 Time series decomposition

Our techniques stem from the following characterization of a
time series. It is understood as a stochastic process (see, e.g.,
Anděl (1976), Hamilton (1994)) X : T × � → R where �

is a set of elementary random events and T = {0, . . . , p} ⊂
N is a finite set of numbers interpreted as time moments.
Since financial time series typically posses no seasonality,
we assume that they can be decomposed into components as
follows:

X(t, ω) = TC(t) + R(t, ω), t ∈ T, (1)

where TC(t) = Tr(t) + C(t) called trend cycle and R is
a random noise, i.e., a sequence of (possibly independent)
random variables R(t) such that for each t ∈ T, the R(t) has
zero mean and finite variance.

2.2 Fuzzy transform

Fuzzy transform (F-transform) is the fundamental theoreti-
cal tool for the suggested similaritymeasurement. Because of
the lack of space, we will only briefly outline the main prin-
ciples of the F-transform and refer the reader to the extensive
literature, e.g., Novák et al. (2016), Novák et al. (2014) and
many others.

The F-transform is a procedure applied, in general, to a
bounded real continuous function f : [a, b] → [c, d] where
a, b, c, d ∈ R. It is based on the concept of a fuzzy parti-
tion that is a set A = {A0, . . . , An}, n ≥ 2, of fuzzy sets
fulfilling special axioms. The fuzzy sets are defined over
nodes a = c0, . . . , cn = b in such a way that for each
k = 0, . . . , n, A(ck) = 1 and supp(Ak) = [ck−1, ck+1]1.
The nodes are usually (but not necessarily) uniformly dis-
tributed, i.e., ck+1 = ck +h where h > 0 is a given value. To
emphasize that the fuzzy partition is formed using the dis-
tance h, we will write Ah . The fuzzy sets Ak ∈ A are often
called basic functions.

The F-transform has two phases: direct and inverse. The
direct F-transform assigns to each Ak ∈ Ah a component
Fk[ f |Ah]. We distinguish zero degree F-transform whose
components F0

k [ f |A] are numbers, and first degree2 F-trans-
form whose components have the form F1

k [ f |Ah](x) =
β0

k [ f ]+β1
k [ f ](x − ck). The coefficient β1

k [ f ] provides esti-
mation of an average value of the tangent (slope) of f over
the area characterized by the fuzzy set Ak ∈ Ah .

1 Of course, certain formal requirements must be fulfilled. They are
omitted here and can be found in the cited literature.
2 In general, higher degree F-transform.
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From the direct F-transform of f

F[ f |Ah] = (F0[ f |Ah], . . . , Fn[ f |Ah])

we can form a function I[ f |Ah] : [a, b] → [c, d] using the
formula

I[ f |Ah](x) =
n∑

k=0

(Fk[ f |Ah] · Ak(x)), x ∈ [a, b]. (2)

The function (2) is called the inverse F-transform of f w.r.t.
the fuzzy partitionAh , and it approximates the original func-
tion f . It can be proved that this approximation is universal.

2.3 Application of the F-transform to the analysis of
time series

The application of the F-transform to the time series analy-
sis is based on the following result (cf. Novák et al. (2014),
Nguyen and Novák (2018)). Let us now assume (without
loss of generality) that the time series (1) contains periodic
subcomponents with frequencies λ1 < · · · < λr . These fre-
quencies correspond to periodicities

T1 > · · · > Tr , (3)

respectively (via the equality T = 2π/λ).

Theorem 1 Let {X(t) | t ∈ T} be a realization of the time
series (1) with the trend cycle TC. Let us assume that all sub-
components with frequencies λ lower than λq are contained
in the trend cycle TC. If we construct a fuzzy partition Ah

over the set of equidistant nodes with the distance h = d Tq

where d ∈ N and Tq is a periodicity corresponding to λq ,
then the corresponding inverse F-transform I[X |Ah] of X(t)
gives the following estimation of the trend cycle:

|I[X |Ah](t) − TC(t)| ≤ 2ω(h, TC) + D (4)

for t ∈ [c1, cn−1], where D is a certain small number and
ω(h, TC) is a modulus of continuity of TC w.r.t. h.3

The precise form of D and the detailed proof of this theo-
rem can be found in Novák et al. (2014), Nguyen and Novák
(2015). It follows from this theorem that the F-transform
makes it possible to filter out frequencies higher than a given
threshold and also to reduce the noise R. Consequently, we
have a tool for separation of the trend cycle or trend. Theo-
rem 1 tells us how the distance between nodes of the fuzzy
partition should be set. This choice enables us to detect trend

3 Modulus of continuity is in our case defined as ω(h, TC) =
max |x−y|<h

x,y∈[c1,cn−1]
|TC(x) − TC(y)|.

cycles for different time frames of interest. Of course, the
estimation depends on the course of TC, and it is the better
the smaller is the modulus of continuity ω(h, TC) (which in
case of the trend cycle or trend is a natural assumption). The
periodicities (3) can be found using the classical technique
of periodogram — see (Anděl 1976; Hamilton 1994).

Selection of Tq in Theorem 1 can be based on the fol-
lowing general OECD specification: Trend (tendency) is the
component of a time series that represents variations of low
frequency in a time series, the high and medium frequency
fluctuations having been filtered out. Trend cycle is the com-
ponent of the time series that represents variations of low
frequency, the high frequency fluctuations having been fil-
tered out. Hence, in the sequel for a given time series X we
will work with estimation T̃C of its trend cycle given by

T̃C = I[X |Ah] (5)

for a suitable fuzzy partition Ah determined on the basis of
Theorem 1.

3 The suggestedmethod

3.1 Similarity between time series

In this section, we describe how our suggested method
evaluates the pairwise similarity between stocks. Our main
concern is to detect stock that behave similarly at lag-zero
as well as at shifted-lag. We will measure similarity using a
binary fuzzy relation on a given set Z , which is a function
S : Z × Z → [0, 1]. The following properties of S can be
considered (for all z, u, v ∈ Z ):

(i) S(z, z) = 1, (reflexivity)
(ii) S(z, u) = S(u, z), (symmetry)
(iii) S(z, u) ⊗ S(u, v) ≤ S(z, v) (transitivity)

where⊗ : [0, 1]×[0, 1] → [0, 1] is a certain t-norm (cf.
Novák et al. (1999))4. In this paper, we will consider the
Łukasiewicz t-norm defined by a⊗b = max{0, a+b−1}
for all a, b ∈ [0, 1].

A reflexive and symmetric fuzzy relation is called a fuzzy
symmetry. If it is, moreover, transitive, then it is called a fuzzy
equality.

The fuzzy symmetry S is separated if

S(z, u) = 1 iff z = u

holds for all z, u ∈ Z .

4 A t-norm is a special operation that in fuzzy logic models logical
conjunction.
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Let us consider realizations of two time series {Fi (t) | t =
1, . . . , n}, i = 1, 2 and let S : Rn × R

n → [0, 1] be a fuzzy
relation defined by

S(F1, F2) = 1 − 1

n

n∑

t=1

|F1(t) − F2(t)|
|F1(t)| + |F2(t)| . (6)

It is easy to show that S(F1, F2) ∈ [0, 1].
Theorem 2 The fuzzy relation S given in (6) is a separated
fuzzy symmetry. Let F1, F2, F3 be realizations of time series
of the length n. If |F2(t)| ≤ min{|F1(t)|, |F3(t)|} for all
t = 1, . . . , n then S is a fuzzy equality w.r.t. Łukasiewicz
t-norm ⊗.

Proof (a) The reflexivity S(F1, F1) = 1 is immediate. The
symmetry follows from the properties of absolute value.

(b) Separateness: If F1 = F2 then S(F1, F2) = 1 by
reflexivity. Conversely, let S(F1, F2) = 1. Then

|F1(t) − F2(t)|
|F1(t)| + |F2(t)| = 0

for all t , which holds only if F1 = F2.
(c) The transitivity requires S(F1, F2) ⊗ S(F2, F3) ≤

S(F1, F3). This holds if

|F1(t) − F3(t)|
|F1(t)| + |F3(t)| ≤ |F1(t) − F2(t)|

|F1(t)| + |F2(t)| + |F2(t) − F3(t)|
|F2(t)| + |F3(t)| ,

for t = 1, . . . , n. This inequality is fulfilled if both |F2(t)| ≤
|F1(t)| as well as |F2(t)| ≤ |F3(t)| hold for all t = 1, . . . , n.

�	
Definition 1 Let X = {X(t) | t = 1, . . . , n} andY = {Y (t) |
t = 1, . . . , n} be two time series of the length n and T̃C X and
T̃CY be estimations of trend cycles of X and Y respectively,5

calculated using equation (5) for a suitable fuzzy partition
Ah . Then we define the similarity between these two time
series as follows:

S(T̃C X (t) − E(T̃C X ), T̃CY (t) − E(T̃CY ))

= 1 − 1

n

n∑

t=1

|T̃C X (t) − E(T̃C X ) − (T̃CY (t) − E(T̃CY ))|
|T̃C X (t) − E(T̃C X )| + |T̃CY (t) − E(T̃CY )| ,

(7)

where E(T̃C X ) and E(T̃CY ) are mean values (averages) of
T̃C X and T̃CY , respectively.

It follows from Theorem 2 that the similarity (7) is a fuzzy
symmetry, or sometimes even fuzzy equality. For simplicity,
in the sequel we will write (7) simply as S(X , Y ).

5 It is necessary to emphasize, that we can work with estimations T̃C X
and T̃CY of the trend cycle only, because we do not know the real ones.

Remark 1 If we take X and Y as simple linear functions X =
{k1t + q1 | t = 1, . . . , n}, Y = {k2t + q2 | t = 1, . . . , n}
then, by simple computation, we obtain that the similarity
S(X , Y ) = 1 − |k1−k2||k1|+|k2| . Hence, if these lines are (almost)
parallel then S(X , Y ) ≈ 1.

Stock price, can be seen as a time series X = {X(t) |
t = 1, . . . , n} where X(t) is a closing price at time t ∈
{t = 1, . . . , n}. For instance, let us consider closing price of
a stock from Nasdaq INC,6 from 05.10.2008 to 30.09.2018
(522weeks). In order to estimate its local trend cycle, we first
build a uniform fuzzypartitionAh such that the length of each
basic function A2, . . . , Am ∈ Ah is equal to a proper time
slot. In our case, by setting the length h ∈ {2, 3}, we obtain
the approximation of the trend cycle for one month. In other
terms, the monthly behavior of this stock is our concern here.
Figure 1 depicts the mentioned weekly stock and the fuzzy
approximation of its local trend cycle. The first and the last
components of F-transform are subject to big error (because
the corresponding basic functions A1 and Am are incomplete.
Regardless of this, it is clear that the F-transform approxi-
mates the local trend cycles of the stock successfully. As we
mentioned before, stock markets react to many exogenous
factors; thus, the presence of outliers is unavoidable. A red
square in Fig. 1 shows one of these outliers for the mentioned
stock. It can be seen that the F-transform has successfully
wiped out the outlier while preserving the core behavior of
the stock.

The similarity from Definition 1 can be used for measur-
ing similarity for any number of stocks based on their local
behavior.

In the next section, we will demonstrate how our sug-
gested method works with a relatively large data set of stock
prices in conjunction with its comparison to standard the
euclidean distance. The goal is to demonstrate the perfor-
mance of themethod in comparison to one of themost known
similarity measurements. Further, we demonstrate how our
method allows us to asses the lead-lag relation among returns
of different assets in complementary to statistical correlation
analysis.

3.2 Illustration

Our first data set consists of a closing price of 92 stocks
over 522 weeks obtained from Nasdaq INC.7 An example
of twenty stocks from the mentioned data set is depicted in
Fig. 2, where the x-axis and y-axis represent price values in
dollars and number of weeks, respectively. From this figure,
it is clear that any decision about the similarity between time

6 https://www.nasdaq.com/Second footnote
7 https://www.nasdaq.com/Second footnote.
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Fig. 1 A Stock and its TC approximation based on F-transform

series is impossible. Therefore it seems necessary to consider
similarity between time series.

3.3 Evaluation

One possible way to evaluate the competency of any new
similarity measurement (distance measurement) is to apply
it to data clustering. The quality of clustering based on the
new and current similarities can validate the competency of
the suggested method (Morse and Patel 2007; Vlachos et al.
2006). Therefore, we will below apply clustering of time
series and compare the behavior of our similarity with the
euclidean one. However, let us emphasize that time series
clustering is not the primary goal of this research since our
focus is on discovering the most similar pairs of stocks avail-
able in the database. As we mentioned before, the euclidean
distance is an accurate, robust, simple, and efficient way to
measure the similarity between two time series and, surpris-
ingly, can outperform most of the more complex approaches
(see Serra and Arcos 2014, Wang (2001)). Therefore we will
compare our method with the euclidean distance bymeans of
the quality of hierarchical clustering on a dataset. Hierarchi-
cal clustering is a method of cluster analysis which attempts
at building a hierarchy of similar groups in data (Kaufman
and Rousseeuw 2009). In this case, one problem to consider
is the optimal number of clusters in a dataset. Overall, none of
the methods for determining the optimal numbers of clusters
is flawless, and none of the suggested similarities are fully
satisfactory. Hierarchical clustering does not reveal an ade-
quate number of clusters and estimation of the proper number

of clusters is rather intuitive. Hence, there is a fair amount of
subjectivity in determination of separate clusters. Figures 3
and 4 demonstrate the dendrogram of hierarchical clustering
of the 92 stocks based on the suggested and euclidean sim-
ilarity, respectively. The proper number of clusters for both
similarities is equal to six. In these figures, the 92 stocks are
represented in the x-axis, and their distances are depicted
on the y-axis accordingly. Since the stocks are from various
industries, they have different scales, and in the case of the
clustering with the euclidean distance, we will eliminate the
different scaling by normalizing the data. Nevertheless, this
step is not demanded by the suggestedmethod since the scale
does not influence it.

Red dashed squares in 3 and 4 represent the most similar
stock pairs, determined according to each method. Interest-
ingly, both methods selected the same stock pairs; (38 and
84) and (52 and 53) as the most similar stocks. However,
the suggested method, primarily determines stock pair (38
and 84) as the most similar stocks, following by stock pair
(52 and 53) while the euclidean method suggests otherwise.
Figure 5 and 6 shows the behavior of theses stock pairs.

Tomeasure the quality of clustering, we apply theDavies–
Bouldin index, which is usually used in clustering. This
measure evaluates intra-cluster similarity and inter-cluster
differences (Davies and Bouldin 1979). Therefore, it can be
a proper metric for clustering evaluation.

Table 1 demonstrates the Davies–Bouldin index for a dif-
ferent number of clusters based on the both similarities. Since
the lower score indicates better quality of clustering, the
results reveal that not only is our method reasonably compa-
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Fig. 2 Depiction of 20 stocks from the dataset for 522 weeks

Fig. 3 Hierarchical clustering based on the suggested method

rable to the euclidean method, but also that it provides more
efficient clustering for these examples.

Furthermore, as we mentioned before, stock markets are
prone to exogenous factors such as bad or good news (see
e.g., Chan (2003)). If a method pairs two stocks as similar,
one can expect that after the occurrence of an outlier(s), the
methodwould still evaluate these stocks alike.Hence,wewill
compare the performance of our method, and the euclidean
distancemetric for the stocks containing outliers. Recall from

Table 1 The Davies–Bouldin index for clustering based on the pro-
posed method and euclidean method

Method 6 Clusters 8 Clusters 10 Clusters

The suggested method 0.61 0.64 0.72

The euclidean method 0.71 0.85 0.82
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Fig. 4 Hierarchical clustering based on the Euclidean method

Fig. 5 Stock pair (38 and 84)

the previous section that based on both methods, stocks 52
and 53 are very similar to each other since their distance is
minimal. Therefore, first, we will add some random artificial
outliers to the stock 52, but we do not alter the stock 53 as
shown in Fig. 7. Subsequently, we apply both methods to
re-evaluate the similarity between these stocks.

Table 2 demonstrates the results. It is apparent, after
including artificial outliers, that the euclidean distance has

a dramatic jump (around 1800% increase). At the same time,
the purposed method shows a minimal increase in distance
(33%), which means that the suggested method is much less
sensitive to the presence of outliers. Considering that the sug-
gested method is based on the F-transform, it evaluates the
similarity between the stocks concerning their local trend
cycles; therefore, it does not have the drawbacks of raw-
data-based approaches such as the euclidean distance. The
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Fig. 6 Stock pair (52 and 53)

Fig. 7 Stock pair (52 and 53) containing artificial outliers

Table 2 The distance between stock 52 and 53, before and after outliers

Method Distance before
outliers

Distance after
outliers

The suggested method 0.09 0.12

The euclidean method 0.17 3.33

latter methods are sensitive to noisy data(Zervas and Ruger
1999). One advantage of the euclidean method is its simplic-
ity; however, the suggested method is also relatively simple
since it has only one parameter to set (the length of the basic
functions).Moreover, experts are able to adjust the suggested
similarity measure, according to their time slot of interest.

3.4 Similarity at shifted-lag or lead-lag relation

The examples we provided earlier demonstrate the applica-
bility and strength of the suggested method in finding similar
behavior between stocks at lag-zero. However, there exist sit-
uations that two stocks might not be significantly similar at
lag-zero, but they are more similar in shifted-lag(s). A con-
dition where one (leading) variable is cross-correlated with
the values of another (lagging) variable at other times is char-
acterized as a lead-lag effect. The existence of the lead-lag
effect between markets and its causes has been authenticated
by many researchers (Roll 1992; Herbst et al. 1987; Mech
1993; McQueen et al. 1996). Generally, in practice, investors
are interested in the relation among the return of the market
and not actual price values. Lo and MacKinlay were among
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Table 3 Cross-similarity and cross-correlation between daily return of
DAX and AEX

Returns i Similarity Correlation

AEX, DAX(i) 0 0.46 0.35

AEX, DAX(i) −1 0.60 0.70

the first pioneers who showed how the return of small firms
correlate with past returns of big firms(Lo and MacKinlay
1990), and more recently, Kewei Hou argues that there are
strong intra-industry lead-lag effect (Hou 2007). The con-
ventional method to evaluate this lead-lag relation among
international stock indices is by cross-correlation. In this
paper, in order to assess the lead-lag relation with the sug-
gested method, we will move the stock returns against each
other in different lags. Since the suggested method evaluates
the strength of similarity between stocks, if the similarity
degree in shifted-lag is considerably higher, we can assume
that there is a lead-lag relation between the return of stocks.
To illustrate the method in practice, here we demonstrate
the relation between the daily return of two international
stock indices, Germany (D AX) and Netherlands (AE X).
We obtained their daily closing prices from yahoo finance8

from 03/01/2018 to 29/03/2018 and calculate their return
for that period.

The behavior of these daily returns, as well as their trend
estimation , is represented in Fig. 8. The blue line demon-
strates the data, and the dashed orange line is their estimation
by F-transform. Note that unlike the prices in the previous
example, here, we do not seek exact estimation for daily
returns.

Data shows that lag one is a proper choice for shifting,
meaning that we measure the similarity among the returns
with one shift. Table 3 demonstrates the degree of their sim-
ilarity at lag zero and lag one. These results suggest that
the return of AE X follows a similar behavior as D AX after
one day. The suggested similarity measure shows that the
similarity between DAX and AEX(-1) is higher than their
association at lag-zero. Seemingly, cross-correlation con-
firms this conclusion as well.

As shown in Fig. 9, by shifting the AEX for one lag, its
similarity to DAX increases. Therefore, arguably for this
period, DAX has a leading effect on AEX. Note that this
relationship should not be considered as a causal relation.

However, it is possible to examine if this lead-lag relation
founded by the suggested method can be causal. By causal
relation, we mean the so-called Granger causality (Granger
1969). This concept is defined in terms of the predictability
of a variable from its own past or the past of another variable.
A time series X is said to Granger cause a time series Y if

8 www.finance.yahoo.com.

the available information apart from X provides statistically
significant information about future values of Y .

In practice, to model the causality between two variables,
it is imperative to determine the direction of the causality and
its lag. To measure the causality, in Granger (1969), Granger
proposed to compute the causal lag and causal strength (con-
cerning two distinguish directions) based on the coherence
and the phase functions defined with the help of the cross-
spectrum of two stationary processes (Mandel and Wolf
1976).

Granger originally proposed a test based on comparing
the mean square error of the forecasts of a variable with
and without using the past of another variable. This work is
then generalized in Granger (1980), where he assumes that,
at time t , the value Y (t + 1) is a random variable which
can be characterized by probability statement of the form
Prob(Y (t + 1) ∈ A), for some given set A. Then, a general
Granger causality definition is the following.

Definition 2 A time series X is said to cause Y if

Prob(Y (t + 1) ∈ A | Ft ) �= Prob(Y (t + 1) ∈ A | F−X (t)),

where A is a universe in which X(t) and Y (t) are measured
at specific time points t ∈ {1, . . . , t}. Furthermore,F(t) rep-
resents information available at time t in the entire universe,
and F−X (t) is this information after X being excluded.

Hence, we tested the Granger causality between the pair
(D AX , AE X) at lag 1. Table 4 depicts the results. Here,
we cannot reject the hypothesis that D AX does not Granger
cause AE X , but we do reject the hypothesis that AE X does
not Granger cause D AX . Therefore it appears that Granger
causality runs one-way from D AX to AE X at lag 1, and not
the other way. This finding can be used later on for improving
the prediction of AE X based on the past values of D AX .
Thereby, the lead-lag relation that we found earlier can be
regarded as a Granger-causal relation.

4 Conclusion

In this paper, we extended our previous paper (Mirshahi and
Novák 2020) in two directions. First, we gave a proof for
the suggested similarity method. Second, we showed that
the suggested method could help to find the led-lag relation
between the international stock market’s return. We showed
that the Granger causality confirms our findings. The method
is based on the application of the fuzzy transform and a cus-
tomized metric. The idea relies on the estimation of local
trends using an inverse fuzzy transform. The financial time
series can then be paired together according to the similarity
of the adjoint time series consisting of the local trends. First,
we demonstrated the application of the suggested method as
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Fig. 8 Indices and their trend

Fig. 9 DAX, AEX, shifted-AEX

Table 4 Granger causality
between pair DAX- AEX
provided by the software
EViews10

Null hupothesis Observations F-statistic Prob.

DAX does not Granger cause AEX 59 68.5058 3.E-11

AEX does not Granger cause DAX 1.01926 0.3170

a similarity measure on stock’s price values in addition to its
comparison with the euclidean distance.

Future work will focus on applying this method in port-
folio management and evaluating its profitability in finance.
Another addition to this work can be using the findings in
multivariate forecasting.
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