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Abstract
In this paper, the synchronization problem of two different fractional-order chaotic systems has been investigated. Variable
fractional orders are considered in this problem. An optimal synchronization strategy is defined for the fractional case.
The optimality conditions are obtained using the fuzzy modeling of fractional-order systems. These models are with the
type-1 and type-2 Takagi–Sugeno structures. Also, using chaotic masking, the synchronization method is applied for secure
communication. Finally, using the simulation examples, the performance of the proposed method is shown.
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1 Introduction

Chaotic behavior is shown in many cases in daily life. Then,
study on these systems and applications of these systems is
an important problem (Pecora and Carroll 1990). Fractional-
order dynamical modeling of chaotic systems is one of the
new topics on these systems (Odibat and Momani 2006;
Momani and Odibat 2007). In this paper, we study the
fractional-order chaotic systems. Chaos synchronization for
different fractional-order systems is one of the challenging
problems in this area (Behinfaraz et al. 2019; Behinfaraz and
Badamchizadeh 2015). According to the different dynam-
ics of systems, the control signal, in the synchronization of
chaotic systems, would not become zero. Therefore, in these
systems synchronizing with the minimum control signal is
an important point.

To the best of our knowledge, for optimal synchronization
of different fractional-order systems, there is not any signif-
icant study. Then, in this paper, we focus on the optimal
synchronization problem of different fractional-order sys-
tems.
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Simplifying the complex structure with simple models is
an effective method in the system analysis. According to the
complex structure of variable-order chaotic systems, fuzzy
models of these systems are introduced. This type of model-
ing simplifies the nonlinearity of chaotic systems which is an
important problem in the proposed optimal control method.
Different types of fuzzy modeling can be used in this case
(Antão et al. 2018). One of the well-known fuzzy models is
Takagi–Sugeno (T–S)model. Two types of T–S fuzzymodel-
ing is used in this paper. First, we model the chaotic systems
with type-1 T–S structure. Then, we use a type-2 T–S struc-
ture. According to the structure of these models, it seems
the type-2 fuzzy model leads to better results than the type-1
fuzzy model.

Secure communication of data is one of the important
tasks in the age of communications. One of the most impor-
tant applications of chaos synchronization is in the secure
communication (Behinfaraz et al. 2020). In this paper, secure
communication using the synchronization of the fractional-
order chaotic systems is discussed.

One of the innovative points of this work is that we intro-
duced a method to achieve optimal synchronization between
two different chaotic systems with variable orders and secure
communication in this condition is done. It is shown that in
fractional cases by decreasing the fractional order, less con-
trol effort needs to synchronize two systems. For the secure
transmission of the information,we need two chaotic systems
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that are synchronizedwith each other. Themain contributions
of this paper can be listed as follows:

– A new type of stability conditions on fractional-order
systems is introduced

– A TS type-1 and type-2 fuzzy modeling are represented
for a fractional-order chaotic systemwith variable orders

– An optimal synchronization between two different
fractional-order chaotic systems is introduced

– Secure signal transmission with the minimum required
energy is introduced.

This paper is organized as follows: In Sect. 2, the lit-
erature review of the paper is written. In the next section,
basic definitions and relations around the proposed method
are introduced. In Sect. 4, the proposed method of this paper
is formulated. The simulation results of the proposed method
are shown in Sect. 5. Finally, in Sect. 6 main conclusions of
the paper are presented.

2 Literature review

Chaos synchronization problem for the first time was intro-
duced by Pecora and Carroll for two chaotic systems with
different initial conditions (Pecora and Carroll 1990). After
that,many othermethods have been used for the synchroniza-
tion of chaotic systems in different conditions. Some popular
method for synchronization of chaotic systems is the Lya-
punovmethod, linear and nonlinear feedback control (Odibat
and Momani 2006; Behinfaraz et al. 2019). Fractional-order
modeling of different dynamics has attracted great attention
in recent years because modeling of systems with fractional-
order equations has a wide range of applications in many
fields such as engineering physics andmathematics (Momani
and Odibat 2007). For chaotic systems, it is proved that some
fractional-order differential systems behave chaotically, such
as the fractional-order Chua’s system, the fractional-order
Rössler system, the fractional-order modified Duffing sys-
tem, fractional-order Lorenz system, Chen system and Lü
system (Behinfaraz and Badamchizadeh 2015). Chaos syn-
chronization problems in fractional-order systems arewidely
investigated (Behinfaraz and Badamchizadeh 2015; Jiang
et al. 2020; Wang et al. 2020; Behinfaraz et al. 2019, 2020).

The nonlinear structure of the chaotic system with frac-
tional order makes an analysis of these systems so chal-
lenging. Then, appropriate modeling can help to reduce the
complexity of the system. It was shown that Takagi–Sugeno
(TS) fuzzy modeling is one of the best tools in modeling
nonlinear structures (Soltani et al. 2019). TS fuzzy modeling
is a model with some if–then rules. These rules can change
a nonlinear system to a locally linear one. Then, an analysis
of the system can be simplified (Gil et al. 2019). So in this

paper, the dynamic of each system is modeled by TS fuzzy
model. It was shown that in many cases type-2 fuzzy systems
have a better performance compared to the type-1, especially
when the variation and uncertainty were on the system (Tao
2004; Castillo et al. 2011).

Optimal control is the control and synchronization of
integer-order chaotic systems, previously (Motallebzadeh
et al. 2012; El-Gohary 2006). Fractional-order optimal con-
trol for the first time appeared in optimal control of fractional
Brownian motion (Duncan et al. 2000; Hu and Øksendal
2003). The fractional optimal control problem is an optimal
control problem for fractional differential equations. In this
field of study, or more specifically, fractional optimal control
there are a few works (Manabe 2003). Also, there are some
works about optimal synchronization of integer-order chaotic
systems (Motallebzadeh et al. 2012; El-Gohary 2006).

Secure communications using chaos synchronization are
one of the most important applications of chaotic systems.
Different methods have been introduced for this task (Arman
et al. 2009; Behinfaraz et al. 2020, ?). These methods are
separated into the analog and digital modulation methods
(Guerra and Yu 2008; Samimi et al. 2020). Chaotic masking
is one of the well-known methods for the secure communi-
cation (Hashemi et al. 2020).

3 Preliminaries

3.1 Fractional-order derivative

The first step on the use of fractional-order modeling is
the definition of fractional-order operator. One of the well-
known definitions of fractional-order operator is Caputo
definition (Tavazoei and Haeri 2007). This definition for a
function as f (t) is shown as follows:

dα

dtα
f (t) = 1

Γ (n − α)

∫ t

0

f (n)(τ )

(t − τ)n−α+1 dτ (1)

whereα is fractional order, n is the first integer number bigger
than α and Γ (.) is the Gamma function. Also RL definition
of fractional-order operator is described by:

dα

dtα
f (t) = 1

Γ (n − α)

dn

dtn

∫ t

0

f (τ )

(t − τ)n−α+1 dτ (2)

where n is an integer such that n − 1 < α < n and Γ (.) is
the Gamma function.

The Laplace transform of the Riemann–Liouville frac-
tional derivative is

L
(
dα

dtα
f (t)

)
= sαL( f (t)) −

n−1∑
k=0

[
dα−1−k f (t)

dtα−1−k

]
t=0

(3)
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Fig. 1 Chaotic behavior of fractional-order Lorenz system

where L is Laplace transformer and s is a complex variable.
Zero initial condition changes this definition to:

L
(
dα

dtα
f (t)

)
= sαL( f (t)) (4)

3.2 Fractional-order chaotic systems

3.2.1 Fractional-order Lorenz system

Fractional version of chaotic Lorenz system is described by
Behinfaraz and Badamchizadeh (2015):

⎧⎪⎨
⎪⎩
Dα1x = σ(y − x)

Dα2 y = ρx − xz − y

Dα3 z = xy − βz

(5)

where x, y, z are the states of system. Also σ , ρ and β are
the parameters of system. It was shown with parameter as
σ = 10, ρ = 28 and β = 8/3; system (5) is chaotic in the
integer case. With this parameter, chaotic behavior of system
is happened for αi > 0.99 for i = 1, 2, 3 (Behinfaraz and
Badamchizadeh 2015). The state trajectories of the system
for α1 = α2 = α3 = 0.993 are illustrated in Fig. 1.

3.2.2 Fractional-order Chen system

Dynamic of this system is similar toLorenz systemwith some
differences. Fractional version of this system is described as
follows (Tavazoei and Haeri 2007):

⎧⎪⎨
⎪⎩
Dα1x = a(y − x)

Dα2 y = (c − a)x − xz + cy

Dα3 z = xy − bz

(6)
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Fig. 2 Chaotic behavior of fractional-order Chen system

where x, y, z are the states of system. Also a , b and c are the
parameters of system. Chen system exhibits chaotic behavior
at the parameters (a, b, c) = (35, 3, 28) (Tavazoei and Haeri
2007).

Reference Tavazoei and Haeri (2007) pointed out that
fractional-order Chen system (6) exhibits chaotic behavior
for fractional-order 0.85 ≤ α. The chaotic attractor with
α1 = α2 = α3 = 0.993 is shown in Fig. 2.

3.3 TS fuzzymodeling

TS fuzzy molding uses some if–then for local relation of a
nonlinear function. These local relations are linear, and this
is the main advantage of TS fuzzy modeling.

3.3.1 Type-1 fuzzy modeling

For a system as Eqs. (5) or (6), we can represent a TS fuzzy
model as follows:

Rule n: if v1(t) is f si1 and v2(t) is f si2 and ... and vp(t)
is f slp, then

DαX(t) = Li X(t) (7)

where X is the vector of system states, v1(t), . . . , vp(t) are

the state variables of the fuzzy system; f s ji is the fuzzy sets
and Li is a constant matrix. Now the fuzzy system needs
a fuzzifier and defuzzification method. We use a singleton
fuzzifier and weighted average defuzzifier; then, the final TS
fuzzy modeling can be represented as follows:

DαX(t) =
n∑

i=1

gi (v(t))(Li X(t)) (8)
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where v(t) = (v1(t), . . . , vp(t)) are proper state variables
and n is the number of the fuzzy rules. Also

gi (v(t)) = wi (v(t))∑r
i=1(wi (v(t)))

, wi (v(t)) =
n∏

k=1

μi
k(vk(t)) (9)

where for the i th rule, μi
k(.) is the membership function of

fuzzy set with k = 1, . . . , p.

3.3.2 Type-2 fuzzy modeling

For a type 2 fuzzy modeling, type of rules are similar to type
1 and for a system as Eqs. (5) or (6) we have the following
fuzzy rules:

For a system as Eqs. (5) or (6), we can represent a TS
fuzzy model as follows:

Rule n: if v1(t) is f̃ s
i
1 and v2(t) is f̃ s

i
2 and ... and vp(t)

is f̃ s
l
p, then

DαX(t) = Li X(t) (10)

where X is the vector of system states; v1(t), . . . , vp(t) are

the state variables of fuzzy system; m f j
i is the type-2 fuzzy

sets and Li is constant matrix. Also firing strength of the i-th
rule is as

˜w(v(t))i = [w(v(t))loi , w(v(t))upi ] (11)

where

wi (v(t))loi =
n∏

k=1

μi
k
(v(t)) (12)

and

wi (v(t))upi =
n∏

k=1

μ̄i
k(v(t)) (13)

where μ and μ̄ are the lower and upper bound of member-
ship functions, respectively. Then, by model reduction and
defuzzification finalmodeling of type-2 system can be shown
as Eq. (8).

3.4 Optimal fuzzy control of fractional-order
systems

Euler–Lagrange equations for fractional-order optimal con-
trol:

The fractional-order optimal control problem can be for-
mulated as follows. We want to find the optimal controlU (t)

for a fractional-order differential equation that minimizes the
cost function. We defined cost function as below:

J =
∫ T

0
G(X ,U , τ )dτ (14)

where x are state variables and t represent the time, and
subject to some constraints, these cost functions will be min-
imized.

DαX(t) =
n∑

i=1

gi (v(t))(Li X(t)) (15)

and initial conditions

X(0) = X0

Note that with α = 1, fractional-order optimal control prob-
lem converts to a standard optimal control problem with
integer order. In our systems, we consider 0 < α < 1 .
These are not the limitations of the approach and derivative
can be of any order.

Because we want to find the optimal control, we must
follow the Euler–Lagrange approach and define a modified
performance index as Manabe (2003):

J̄ =
∫ T

0

[
G(X ,U , τ ) + λ

(
n∑

i=1

gi (v(t))(Li X(t)) − DαX

)]
dτ

(16)

where λ is the Lagrange multipliers and in following these
multipliers lead to co-state equations which must solve to
achieve an optimal solution. Bases of our method construct
by using calculation of variations, and it is proved that min-
imization of J requires to solving the following equations
(Motallebzadeh et al. 2012):

DαX(t) =
n∑

i=1

gi (v(t))(Li X(t)) (17)

Dαλ = ∂G

∂X
+ λ

∂
∑n

i=1 gi (v(t))(Li X(t))

∂X
(18)

∂G

∂U
+ λ

∂
∑n

i=1 gi (v(t))(Li X(t))

∂U
= 0; (19)

and X(0) = X0 and λ(T ) = 0.
Equations (17–19) represent Euler–Lagrange equations

for fractional-order optimal control problem where Eq. (17)
is the state equations and Eq. (18) is co-state equations. Like
classical optimal control theories, in fractional-order optimal
control, Eq. (17) has a forward solutionwith initial conditions
and Eq. (18) has a backward solution with final conditions.
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4 General method

4.1 Stability theorem of fractional-order system

Consider the following fractional-order equation

Dαx(t) = f (x(t)) (20)

where x = [x1, x2, . . . , xn]T ∈ Rn are the states of sys-
tem and f (x) = [ f1(x), f2(x), . . . , fn(x)]T describe the
system’s equations. Also we suppose 0 < α ≤ 1. For this
condition, we have the following Lemma.

Lemma 1 If there exists a positive definite matrix P that sat-
isfies

J = x(t)T P
dαx(t)

dtα
≤ 0

Then, system (20) is asymptotically stable (Jian-Bing et al.
2015).

Proof A Lyapunov candidate function as

V (t) = x(t)T Px(t) (21)

leads to

V̇ (t) = 2x(t)T P
dx(t)

dt
(22)

With Caputo definition of fractional operator, we can get

dx

dt
= lim

δt→0

δx

δt
= lim

δt→0

1
Γ (α)

∫ t
t−δt (t − τ)α−1(Dαx(τ ))dτ

δt
(23)

Substituting Eq. (23) in Eq. (22) and using inequality of
Lemma 1 lead to the following inequality.

lim
δt→0

∫ t

t−δt
(t − τ)α−1P(Dαx(τ ))dτ ≤ 0 (24)

Then,

V̇ = 2 lim
δt→0

∫ t
t−δt (t − τ)α−1P(Dαx(τ ))dτ

δt
≤ 0 (25)

The above inequality is verified the Lyapunov stability theo-
rem for system (20). ��

Integer version of system (20) is described as

dx

dt
= f (x) (26)

Lemma 2 For a positive definite matrix P,if a Lyapunov
function as V = x(t)T Px(t) leads to

V̇ = 2x(t)T P
dx(t)

dt
(t) ≤ 0,

then the system (26) is asymptotically stable. In other words,
if there exists a positive definite matrix P that satisfies
x(t)T P dx(t)

dt ≤ 0, then system (26) is asymptotically stable.

Corollary 1 According to stability proof for Lemma1 ,we can
achieve stability of fractional-order system with 0 < α < 1
from stability of integer-order system.

Corollary 1 proves that a integer-order system is stable
when fractional version of system with 0 < α < 1 is stable.

4.2 Synchronizationmethod

Now using the TS fuzzy modeling (8), we define chaotic
master and slave systems as follows

DαXm(t) =
n∑

i=1

gi (v(t))(Li Xm(t)) (27)

and

DαXs(t) =
n∑

i=1

gi (v(t))(L ′
i Xs(t)) +U (Xs, Xm) (28)

where Xm, Xs ∈ Rn are state vectors for n-dimensional
master and slave systems; also gi and L and L ′ are cal-
culated in the TS fuzzy modeling. α is fractional-order
vector for the master and slave systems, which are Rn ,
α = [α1, α2, . . . , αn]T , αi ∈ (0, 1]. Note that in our method
the fractional orders arewith a condition 0 < αi ≤ 1.U is the
control signal input which is determined later. With defining
synchronization of two systems with conditions that states of
master and slave systems are equal, then the synchronization
errors are defined as:

e = Xs − Xm (29)

Our objective is to find an effective and minimum controller
function U to ensure synchronization of the master system
(27) and slave system (28) achieved. According to (29), we
can write

Dαe = DαXs − DαXm (30)

By replacing Eqs. (27), (28) in Eq. (30), we have
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Fig. 3 Block diagram of secure communication process

Dαe =
n∑

i=1

gi (v(t))(L ′
i e(t)) +U (Xs, Xm)

+
(

n∑
i=1

gi (v(t))((L ′
i − Li )Xm(t))

)
(31)

Now we define new controller for using in Euler–Lagrange
equations as:

U ′ = U (Xs, Xm) +
(

n∑
i=1

gi (v(t))((L ′
i − Li )Xm(t))

)
(32)

We can get the error dynamic systems as:

Dαe =
n∑

i=1

gi (v(t))(L ′
i e(t)) +U ′(Xs, Xm) (33)

4.3 Secure communication

In this part, we use fractional-order chaotic systems for the
chaotic masking. Chaotic masking is one of the well-known
algorithms in information transmitting. The diagram of this
method is shown in Fig. 3. A chaotic system generates the
carrier and this carrier combinedwith information signal, and
summation of two signals is transmitted through a commu-
nication channel. In the receiver, chaotic synchronization is
completed and after subtraction detected signal is obtained.

Main steps of the proposed method for secure communi-
cation using synchronization are listed as follows:

1 Messages are selected as sent massages.
2 Selected massages are modulated to the chaotic system
as master system.

3 Appropriate control laws are defined.
4 Massage signals are recovered from slave side.

5 Application and simulation

In this part, we consider the synchronization between the
fractional-order Lorenz system and fractional-order Chen
system with the mentioned parameters in Sect. 2. By using
the systemequations (5) and (6), themaster and slave systems
are given as follows:

Master :

⎧⎪⎨
⎪⎩
D0.99xm = 10(ym − xm)

D0.99ym = 28xm − xmzm − ym
D0.99zm = xm ym − 8zm/3

(34)

where xm , ym , zm are the states of system. Then, type-1 TS
fuzzy modeling of master system is defined as:

Rule 1: If xm is f s1(xm), then DαX = L1X
Rule 2: If xm is f s2(xm), then DαX = L2X

where X(t) = (xm(t), ym(t), zm(t))T , f s1 = 20, f s2 =
−20 and

L1 =
⎡
⎣−10 10 0

28 −1 −20
0 20 −8/3

⎤
⎦

L2 =
⎡
⎣−10 10 0

28 −1 20
0 −20 −8/3

⎤
⎦

where the membership functions are as μ1(x) = 1
2 (1 −

xm)/k) and μ2(x) = 1
2 (1 + xm/k) with k = 20.

Also for type-2 fuzzy modeling, we have the following
rules.

Rule 1: If xm is f̃ s1(xm), then DαX = L1X
Rule 2: If xm is f̃ s2(xm), then DαX = L2X

where X(t) = (xm(t), ym(t), zm(t))T and

L1 =
⎡
⎣−10 10 0

28 −1 −20
0 20 −8/3

⎤
⎦

L2 =
⎡
⎣−10 10 0

28 −1 20
0 −20 −8/3

⎤
⎦

and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ
1
(xm) = 20−xm

40

μ̄1(xm) = 20−xm
20

μ
2
(xm) = 20+xm

40

μ̄2(xm) = 20+xm
20

(35)
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For slave system, we have

Slave :

⎧⎪⎨
⎪⎩
D0.99xs = −35(xs − ys) + u1
D0.99ys = 7xs − xs zs + 28ys + u2
D0.99zs = xs ys − 3zs + u3

(36)

where xs , ys , zs are the states of system. Again, TS fuzzy
modeling of master system is defined as:

Rule 1: If xs is f s1(xs), then DαX = L ′
1X

Rule 2: If xs is f s2(xs), then DαX = L ′
2X

where X(t) = (xs(t), ys(t), zs(t))T , f s1 = 20, f s2 = −20
and

L ′
1 =

⎡
⎣−35 35 0

7 28 −20
0 20 −3

⎤
⎦

L ′
2 =

⎡
⎣−35 35 0

7 28 20
0 −20 −3

⎤
⎦

where the membership functions are as m f1(xs) = 1
2 (1 −

xs)/k) and m f2(xs) = 1
2 (1 + xs/k) with k = 20.

Also for type-2 fuzzy modeling, we have the following
rules.

Rule 1: If xm is f̃ s1(xm), then DαX = L1X
Rule 2: If xm is f̃ s2(xm), then DαX = L2X

where X(t) = (xm(t), ym(t), zm(t))T and

L ′
1 =

⎡
⎣−35 35 0

7 28 −20
0 20 −3

⎤
⎦

L ′
2 =

⎡
⎣−35 35 0

7 28 20
0 −20 −3

⎤
⎦

and
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ
1
(xm) = 20−xm

40

μ̄1(xm) = 20−xm
20

μ
2
(xm) = 20+xm

40

μ̄2(xm) = 20+xm
20

(37)

Now for a cost function, it is as follows:

J =
∫ t f

0
(e1(t)

2 + e2(t)
2 + e3(t)

2 + u′
1(t)

2 + u′
2(t)

2 + u′
3(t)

2)dt

(38)

and using Eqs. (32) and (33) Euler–Lagrange equations Eqs.
(17–19) can be rewritten as follows:

DαE(t) =
n∑

i=1

gi (v(t))(L ′
i E(t)) (39)

Dαλ = 2E + λ

n∑
i=1

gi (v(t))(L ′
i ) (40)

U ′ + λ = 0 (41)

where λ is a vector of the Lagrange multipliers, E is the
vector of synchronization error andU ′ is the vector of control
signals. Also E(0) = e0 and λ(T ) = 0. Equation (39) has a
forward solution and with the initial condition, and Eq. (40)
has a backward solution with the final condition and note that
all of the above equations must be solved simultaneously.

The main steps of the proposed method can be listed as
follows:

1 The fuzzy model of fractional-order chaotic systems are
defined.

2 Fractional-order operator is defined as Eq. (1)
3 Signal massages are modulated on the drive system.
4 Synchronization problem is defined using two systems.
5 Appropriate feedback controllers are suggested.
6 Solve the Euler–Lagrange equations as Eqs. (17–19) to
get the optimal feedback gains.

7 implement the obtained gains on the controller and sim-
ulate the problem.

5.1 Synchronization with constant orders

Initial conditions for master and slave systems are selected
as (xm, ym, zm) = (2, 3, 5) and (xs, ys, zs) = (−9,−5, 14),
respectively. Also, the simulation time is 20 s. Discretiza-
tion step for simulation is considered as 0.1 ms. In the
numerical simulations, the initial conditions for the master
and slave systems are (xm(0), ym(0), zm(0))T = (2, 3, 5)T

and (xs(0), ys(0), zs(0))T = (3, 5, 8)T , respectively. Three
information signals are selected as m1(t) = 10sin(10t)
cos(20t), m2(t) = 5sin(5t) − 5cos(40t) and m3(t) =
(5 + 10sin(40t))cos(20t). Synchronization errors are illus-
trated in Fig. 4. For comparison and showing optimality of
the result of the proposed method, here we synchronize two
systems with active control method (Behinfaraz and Badam-
chizadeh 2015; Tavazoei and Haeri 2007), and the result of
two methods is illustrated in Fig. 5.

For synchronizing two systems with the feedback control
method, we can define control signals as follows:
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Fig. 4 Secure communication three information signals, a first signal, b second signal, c third signal

⎧⎪⎨
⎪⎩
u1 = k11e1 + k12e2 + kk13e3
u2 = k21e1 + k22e2 + k23e3
u3 = k13e1 + k23e2 + k33e3

(42)

where e = [e1, e2, e3]T and e1 = xs − xm , e2 = ys − ym ,
e3 = zs − zm are synchronization errors. Now we choose
the element of K matrix such that synchronization errors
by using the stability theorem of fractional-order systems,
converging to zero. With this control input error, equations
convert to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D0.99e1(t) =
n∑

i=1

(gi (xs) − gi (xm))e1

+ 10e2 − 10e1 + k11e1 + k12e2 + kk13e3

D0.99e2(t) =
n∑

i=1

(gi (xs) − gi (xm))e2

+ 7e1 + 28e2 + k21e1 + k22e2 + k23e3

D0.99e3(t) =
n∑

i=1

(gi (xs) − gi (xm))e3

+ −3e3 + k13e1 + k23e2 + k33e3
(43)
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Fig. 5 Synchronization errors, a e1, b e2, c e3

Table 1 Power of control signals with different fractional orders

Order u1 u2 u3

0.99 9639 47,148 28,826

0.993 10,811 47,963 34,864

0.996 10,322 47,922 35,668

1 10,517 47,979 35,814

Now with solving Euler–Lagrange equations Eqs. (17–
19), we have

Ktype1 =
⎡
⎣−4 −2 0

−6 −35 0
0 0 1

⎤
⎦

Table 2 Power of control signals with different fractional orders with
method of Ref. Behinfaraz and Badamchizadeh (2015)

Order u1 u2 u3

0.99 21,537 102,235 85,425

0.993 24,571 108,534 89,325

0.996 23,650 106,754 86,521

1 25,002 109,555 91,015

and

Ktype2 =
⎡
⎣ 0 −10 0

−7 −29 0
0 0 0

⎤
⎦
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Fig. 6 Synchronization errors with variable orders, a e1, b e2, c e3

We can rewrite Eq. (43) for type-2 modeling as:

⎧⎪⎨
⎪⎩
D0.99e1(t) = −10e1
D0.99e2(t) = −e2
D0.99e3(t) = −3e3

(44)

Letting Ei (s) = L(ei (t)) where (i = 1, 2, 3), and by using
Laplace transform of fractional-order differential equations
we have dα

dtα (ei (t)) = sαEi(s) − sα−1ei (0) .
Using this method for Eq. (44) leads to

⎧⎪⎨
⎪⎩
s0.99E1(s) − s−0.01e1(0) = −10E1(s)

s0.99E2(s) − s−0.01e2(0) = −E2(s)

s0.99E3(s) − s−0.01e3(0) = −3E3(s)

(45)

By using final value theorem of Laplace transform and
solving above equation, it is proved that

⎧⎪⎨
⎪⎩
limt→∞ e1(t) = lims→0 sE1(s) = 0

limt→∞ e2(t) = lims→0 sE2(s) = 0

limt→∞ e3(t) = lims→0 sE3(s) = 0

(46)

Since E1(s), E2(s), E3(s) are bounded, owing to the attrac-
tiveness of the attractors of systems (5) and (6), there exists
ζ > 0, such that |xi (t)| ≤ ζ < ∞ and |yi (t)| ≤
ζ < ∞ where (i = 1, 2, 3). Therefore, limt→∞ e1(t) =
limt→∞ e2(t) = limt→∞ e3(t) = 0. Consequently, the syn-
chronization between the master and slave systems (5) and
(6) is achieved.
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Fig. 7 Synchronization errors with variable orders with method of Ref.
Behinfaraz and Badamchizadeh (2015)

Through simulations, the secure communication with the
synchronized state variables in the slave fractional-order
Chen system, with the states in the master fractional-order
Lorenz system, is shown inFig. 4. Thenumerical results show
that the synchronization of the commensurate fractional-
order Lorenz system and the commensurate fractional-order
Chen system is achieved, which verifies the validity of the
proposed controller. Changing the power of the fractional
order of control signals in two methods is mentioned in
Tables 1 and 2.

5.2 Synchronization with variable orders

In this case, orders of two fractional-order chaotic systems
are considered as a variable orders. The selected order for
the master system is as α1(t) = 0.99u(t) + 0.003u(t − 5) +
.003u(t−10) ,α2(t) = 0.99u(t)+0.003u(t−5)+0.003u(t−
10) and α3(t) = 0.99u(t)+0.003u(t −5)+0.003u(t −10).
The designed approach is as the same as last part, but in
this section we use a type-2 fuzzy modeling of systems using
Eqs. (35), (37). The results of simulation in this conditions are
shown in Fig. 6. Alsomethod of Ref. Behinfaraz and Badam-
chizadeh (2015) is simulated in this condition. Results are
shown in Fig. 7. Power of control signals is shown in Tables 3
and 4. As seen in this figure, the method of ref. Behinfaraz
and Badamchizadeh (2015) cannot synchronize two systems
with variable orders. Also type-2 fuzzymodeling has a better
performance.

6 Conclusion

In this paper, we investigated the problem of the synchroniza-
tion between different fractional-order chaotic systems using

Table 3 Mean square of synchronization error

Method e1 e2 e3

Ref. Antão et al. (2018) method 5.825 5.245 1.535

Type-1 0.0158 0.0088 0.0045

Type-2 0.0052 0.0015 0.0008

Table 4 Power of control signals with variable orders

Method u1 u2 u3

Ref. Antão et al. (2018) method 18,523 54,235 56,664

Type-1 10,318 47,967 35,780

Type-2 7563 28,465 21,546

optimal fuzzy modeling control. By using fractional calculus
and the stability theorems of the fractional-order linear sys-
tems, we propose a method to attain synchronization of two
different systems with optimal control inputs and also mini-
mum synchronization times. The used model to give a better
response was done by TS fuzzy structure. After getting syn-
chronization, secure communication of information signals
using the chaoticmaskingmethodwas done. The controller is
designedbywritingEuler–Lagrange equations for fractional-
order error dynamics and by solving these equations. To
verify the effectiveness of the designed controller, we illus-
trated two examples with two well-known fractional-order
chaotic systems. Two conditions were considered. First, for
systems with constant orders, we developed an optimal type-
1 fuzzy modeling. By comparing with the active control
method, the effectiveness and optimization of designed input
signals and synchronization times were shown. In the second
example, the orders of systems were considered variable. It
was shown that in this condition compared method cannot
synchronize two systems, but the proposed method done it
well. Also, the resultswere shown that type-2 fuzzymodeling
leads to better performance in the variable case.
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