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Abstract
In this study, two nature-inspired optimization techniques such as firefly algorithm (FA) and butterfly optimization algorithm

(BOA) are combined with adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH)

models for optimal prediction of the complex phenomenon of volumetric concentration of sediment (Cv) in sewer systems.

Three different scenarios based on the methods of dimensional analysis and forward selection are implemented for deter-

mining the input structure of ANFIS, GMDH, and regression models (multiple linear regression, MLR; stepwise regression;

SR) regarding 13 independent hydraulic and geometric input variables. Several statistic criteria including the root-mean-

square error (RMSE), mean absolute error (MAE), Nash–Sutcliffe efficiency (NSE), index of agreement (AI), coefficient of

determination (R2), and comprehensive synthesis index (SI) aswell as Taylor diagramwere used to further quantify simulating

and predicting accuracies. In comparison with the regression models and two empirical equations, the results obtained by

standard machine learning models (ANFIS and GMDH) were very promising. However, such integration of FA and BOA

noticeably improved the performance of ANFIS (around 7% improvement in RMSE criterion) and slightly optimized the

performance of GMDH (less than 1% improvement in RMSE criterion) in modelling the process of Cv prediction.
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1 Introduction

1.1 Background and statement of the problem

Sediment transport in sewers and sewage networks have

been the topics of a few studies in recent years due to some

concerns associated with the pollution to watercourses,

blockage, and surcharging (DeSilva et al. 2011). In general,

the sediment deposition occurs occasionally in sewers as a

result of the intermittent nature of flow (Ghani 1993;

Azamathulla et al. 2012). Several researchers have con-

ducted experimental studies to simulate and characterize

the sediment transport in sewers and consequently pre-

sented empirical equations for modelling factors related to

the sediment transport processes (May et al. 1989;

Vongvisessomjai et al. 2010; Hofer et al. 2018). These

equations can be taken as criteria for designing and mod-

elling the sediment transport process in sewers. Although

the extracted empirical equations are simple to use, most

existing empirical equations based on experimental obser-

vations cannot properly characterize different parameters

on the sediment and bedload transport (Najafzadeh et al.

2017; Safari et al. 2018). In addition, the sediment trans-

port process in sewers is a three-dimensional multi-phase

flow which makes it a highly complicated phenomenon. In

consequence, many aspects of the sediment transport

phenomenon in sewers cannot be captured by empirical

equations.

1.2 Literature review and research hypotheses

In the past decades, in the light of the reliability and

capability of machine learning models in analysing and

modelling nonlinear problems, the approval and applica-

tion of these models have been increased in various fields

of science, especially in the hydraulics of sediment trans-

port in aquatic areas (Rajaee et al. 2010, 2020; Zounemat-

Kermani 2017). Accordingly, recently some researchers

have utilized machine learning approaches in modelling

sediment transport in pipes and sewers.

Ghani and Azamathulla (2010) presented gene expres-

sion programming (GEP) for modelling the functional

relationships of sediment transport with partial flows in

sewer pipe systems. The functional GEP relation gave

satisfactory results compared to classical regression anal-

ysis. Azamathulla et al. (2012) presented an adaptive

neuro-fuzzy inference system (ANFIS) to predict the

functional relationships of sediment transport in sewers. It

was commented that the ANFIS approach provided

satisfactory results compared to the multiple linear

regression (MLR) model and existing empirical relations.

Ebtehaj and Bonakdari (2013) applied an artificial neural

network (ANN) in predicting sediment transport in self-

cleansing sewer systems. In comparison with existing

empirical methods, the findings of the study resulted in the

superiority of ANNs over the traditional methods. Ebtehaj

et al. (2016) investigated the potential of the wavelet

transform model and hybrid support vector machine (SVM)

for the prediction of the densimetric Froude number (Frd)

in sewer networks. The findings showed that both hybrid

and standard SVM models gave more accurate predictions

than the conventional relations. Najafzadeh et al. (2017)

applied two approaches of a model tree and evolutionary

polynomial regression to simulate the critical velocity of

sediment deposition in sewers. They used four independent

parameters (volumetric concentration, total friction factor,

the ratio of the hydraulic depth of flow to pipe diameter,

and non-dimensional size of particles) for predicting the

target variable. It was reported that the proposed machine

learning models outperformed the benchmark formulations

from the literature from the accuracy point of view.

Mahdavi-Meymand and Zounemat-Kermani (2020)

used the firefly algorithm (FA) as an optimization approach

to optimize GMDH parameters and introduced GMDH-FA

and applied this method to simulate spillways aerators air

demand. The results indicated that FA increases the per-

formance of GMDH. Accordant with the above-mentioned

researches, it is hypothesized that combining novel swarm

intelligence algorithms (such as butterfly optimization

algorithm by Arora and Singh (2019)) and robust nonlinear

machine learning models (like adaptive neuro-fuzzy

inference systems) would give efficient results in predict-

ing complex engineering problems like sediment transport

in sewers.

1.3 Research objectives, contribution, and scope
of the paper

This study presents two standard and four combined

machine learning approaches for predicting volumetric

sediment concentration (Cv) in sewers. To meet this end, at

first, two prevailing machine learning models of adaptive

neuro-fuzzy inference systems (ANFIS) and group method

of data handling (GMDH) were utilized as standard mod-

els. Following that, two swarm intelligence heuristic opti-

mization techniques such as firefly algorithm (FA) and

butterfly optimization algorithm (BOA) were embedded

into the standard ANFIS and GMDH machine learning
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models (ANFIS-FA, ANFIS-BOA, GMDH-FA, and

GMDH-BOA). The BOA is a new optimization algorithm

proposed by Arora and Singh (2019). They used 30

benchmark functions and three engineering problems to

analyse the BAO performance. The results indicated that

the BOA performance is better than the other well-known

algorithms (e.g. particle swarm optimization (PSO) and

genetic algorithm (GA)). So, in this research, the BOA was

selected to optimize the ANFIS and GMDH parameters.

The FA, as another well-known and capable heuristic

algorithm, was also selected to compare and challenge the

results of the BOA. It is worth mentioning that the appli-

cation of the FA in many engineering optimization prob-

lems—especially as a hybrid method with ANFIS—has

been confirmed in many pieces of research (Yaseen et al.

2017; Sihag et al. 2019; Roy et al. 2020).

For each model, three modelling scenarios based on

two-dimensional input vectors (taking into account all the

effective variables as well as forward selection method)

and one non-dimensional input vector (using dimensional

analysis technique) were put into practice. Afterwards, the

efficiency of FA and BOA was evaluated in comparison

with the standard ANFIS and GMDH models as well as

two empirical equations, multiple linear regression (MLR)

and stepwise regression (SR) models.

On the basis of the methodology used, the major con-

tribution of this study lies in the general and comprehen-

sive evaluation of FA and BOA heuristic algorithms and

their reliability and capability in modelling complex

problems in engineering. To the best knowledge of the

authors, no similar study has ever reported the combination

of BOA with ANFIS (ANFIS-BOA) and both FA and BOA

with GMDH model (GMDH-FA and GMDH-BOA). In

other words, this paper presented a novel application of

ANFIS-BOA, GMDH-FA, and GMDH-BOA for the first

time.

The remainder of the paper is categorized as follows.

The next section will express the methods employed in this

study. Following that, the application of the machine

learning models constructed on three input scenarios will

be explained. The results of the standard and combined

machine learning models will be assessed and will also be

compared with existing sediment transport equations and

regression models (MLR and SR) in Sect. 4. In Sect. 5, the

performance of the employed heuristic methods (FA and

BOA) will be evaluated. Eventually, the principal findings

of this research will be summarized in Sect. 6.

2 Materials and methods

2.1 Data sets

In the present study, a data set was collected from the data

reported by Ghani (1993) for modelling sediment transport

in sewers at the Hydraulic Laboratories of the University of

Newcastle, UK. In the study conducted, all experiments

were done under part–full uniform flow conditions. Two

pipes of 154 mm and 305 mm diameter were employed to

study the bedload sediment transportation. The particles

used were uniformly graded and non-cohesive

(d30 = 0.5–10.0 mm). Figure 1 illustrates schematically the

experimental sewer pipes.

A total of 195 data sets were utilized for modelling the

sediment transport process in sewers. Each data set con-

sisted of several independent variables (see Table 1) and

one predictable variable (target value) of volumetric sedi-

ment concentration (Cv). The potential input variables

included median diameter of particles in a mixture (d), flow

discharge (Q), the mean velocity of flow (V), depth of

uniform flow (y0), the internal diameter of pipe channel

(D), flow Froude number (Fr), the longitudinal slope of

sewer (S0), overall friction factor (ks), overall equivalent
sand roughness with sediment (Ks), overall Manning’s

roughness coefficient with sediment (n), the width of sed-

iment spread (Ws) in pipes, ambient temperature (T), cross-

sectional area of the flow (A), the wetted perimeter of the

flow (P), overall hydraulic radius (R) and water surface

width (B). The summary of the statistical characteristics of

potential factors on sediment transport in sewers is given in

Table 1, from which, it can be seen that the Cv factor is

mostly correlated with the Fr number (r = 0.69) and bed

slope (r = 0.68). On the other hand, Cv is in disagreement

with the geometric parameters of the hydraulic radius of

the pipe (r = - 0.55).

Fig. 1 Schematic view of the overall geometry of a sewer pipe with

deposited beds; D: internal diameter of the pipe channel, P: the wetted
perimeter of the flow, Ws: width of sediment spread, y0: depth of

uniform flow, S0: the longitudinal slope of the pipe
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2.2 Dimensional analysis and empirical
equations

As it was mentioned earlier, several independent factors

affect the volumetric sediment concentration in sewers.

However, not all the independent variables will have a

significant effect on the result (Azamathulla et al. 2012).

Hence, a sensitivity test of forward selection and dimen-

sionless analysis were implemented to investigate the

effect of each dimensionless parameter on Cv (May et al.

1989). From the dimensional analysis using Buckingham G
Theorem, the function for volumetric concentration can be

obtained. Based on the data available, the values of Cv can

be expressed as a function of the following parameters:

Cv ¼ f S0;
y0
D
;
D2

A
;
d

R
;Frd

� �
; Frd ¼

V2

gðGs � 1ÞD ð1Þ

where Gs is the specific gravity of sediment, Frd stands for

the densimetric Froude number, and g denotes the gravi-

tational constant. Regarding the dimensional analysis and

Eq. (1), five dimensionless parameters will be taken into

account for predicting the Cv values. In addition to the

predictive models, two well-known nonlinear regression

equations presented by May et al. (1989) and May et al.

(1996) are also considered for better evaluation of the

machine learning and regression performances. May et al.

(1989) presented Eq. (2) for estimating the values for

volumetric sediment concentration (Cv) in sewers:

Cv ¼ 0:0211
y0
D

� �0:36 D2

A

� �
d

R

� �0:6

Frdð Þ3=2 1� Vi

V

� �4

ð2Þ

where Vi denotes the critical incipient motion velocity of

the sediment. In a later study, May et al. (1996) introduced

the following equations based on different data sets of

experimental laboratory sets for volumetric bedload

transport:

Cv ¼ 0:0303
D2

A

� �
d

D

� �0:6

Frdð Þ3=2 1� Vi

V

� �4

ð3Þ

Vi ¼ 0:125 gðS0 � 1Þdð Þ0:5 y0=dð Þ0:47: ð4Þ

The present study implemented both mentioned empir-

ical equations (Eqs. 2 and 3) for simulating Cv values.

2.3 Multiple linear and stepwise regression
models

Regression models such as multiple linear regression

(MLR) and stepwise regression (SR) models can be

established to estimate the level of correlation between the

independent variables and target value and explore the

forms of relationships between them (Zounemat-Kermani

2012). MLR forms a relationship taking into account all the

individual independent data points with the target value

(Cv). Here, thirteen individual dimensional hydraulic and

geometric predictor parameters were used for generating

Table 1 Statistical characteristics of the parameters considered in this study

Parameters Minimum Maximum Average Standard deviation Coefficient of variation Correlation (r) with Cv

Q (l/s) 0.44 34.63 16.87 9.39 0.56 - 0.37

V (m/s) 0.24 1.21 0.69 0.17 0.25 0.43

y0/D 0.15 0.77 0.42 0.15 0.36 - 0.45

Fr 0.30 1.47 0.80 0.27 0.34 0.69

T (�C) 11.00 21.5 17.22 2.65 0.15 0.13

A (m2) 0.002 0.06 0.02 0.01 0.6 - 0.55

P (m) 0.05 0.65 0.38 0.13 0.69 - 0.49

B (m) 0.11 0.31 0.26 0.06 0.23 - 0.36

d (mm) 0.46 8.30 4.00 2.45 0.61 0.34

ks 0.01 0.05 0.02 0.01 0.26 0.09

Ks (mm) - 0.12 1.87 0.51 0.51 0.99 - 0.16

Ws (mm) 9.00 80.00 33.94 15.37 0.45 0.44

n (s/m1/3) 0.01 0.01 0.01 0.00 0.13 - 0.19

S0 0.00 0.01 0.00 0.00 0.55 0.68

D (mm) 154 305 274.64 60.52 0.22 - 0.28

Cv (ppm) 0.76 1450 283.3 339.1 1.2 1.00
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the general form of a multiple linear regression model as

follows:

Cv ¼ a0 þ a1Qþ a2Dþ a3S0 þ a4ksþ a5Ksþ a6n

þ a7T þ a8Y þ a9d þ a10Aþ a11Pþ a12Bþ a13Ws

ð5Þ

where ai are partial regression coefficients. In the stepwise

regression, the selection procedure for recognizing signif-

icant input variables is automatically performed. By

applying the forward selection procedure, the following

stepwise regression (SR) model was employed for simu-

lating Cv:

Cv ¼ a0 þ a1Qþ a2S0 þ a3Ksþ a4d þ a5B: ð6Þ

2.4 Adaptive neuro-fuzzy inference system,
ANFIS

ANFIS is known as a powerful and efficient machine

learning approach which is a combination of adaptive

multi-layer feedforward neural networks (ANN) and fuzzy

inference system (Jang 1993; Zounemat-Kermani et al.

2020).

As shown in Fig. 2, the ANFIS network consists of five

interconnected layers with some functional nodes in each

layer. Assume that Oj
i is a functional node; it denotes the

output of the ith node in the jth layer. For the sake of

simplicity in describing the network architecture, here the

ANFIS under consideration has two input variables for the

network (flow discharge, Q, and pipe diameter, D) and one

output (Cv). The output of layer 1 will be calculated as

follows:

O1
i ¼ lAiðQÞ; i ¼ 1; 2

O1
i ¼ lBi�2ðDÞ; i ¼ 3; 4

ð7Þ

lAi and lBi are the membership functions which are nor-

mally chosen to be bell-shaped with maximum equal to

unity and minimum equal to zero such as:

lAiðQÞ ¼ exp ð�ðQ� ciÞ=ðaiÞÞ2
� �

; i ¼ 1; 2

lBiðDÞ ¼ exp ð�ðD� ciÞ=ðaiÞÞ2
� �

; i ¼ 3; 4
ð8Þ

ai and ci are premise parameters which have to be tuned

during the training of the network. As can be seen in Fig. 2,

every node in the second layer is marked with a circle node

labelled G which multiplies the incoming signals from the

first layer (O1
i) and sends the product out. For instance,

O2
i ¼ xi ¼ lAiðQÞ � lBiðDÞ; i ¼ 1; 2: ð9Þ

The outputs of the second layer represent the firing

strength of a rule. The nodes in the third layer are labelled

N in Fig. 2 which computes the ratio of ith firing strength

of the ith rule to the sum of firing strength of all rules:

O3
i ¼ xi ¼

xi

x1 þ x2

; i ¼ 1; 2: ð10Þ

In ANFIS, the Takagi–Sugeno fuzzy inference system is

used. Therefore, the consequent part of the ANFIS network

in terms of {pi,qi,ri} parameter set can be written as

follows:

O4
i ¼ xi � fi ¼ xi � ðpiQþ qiDþ riÞ; i ¼ 1; 2: ð11Þ

Finally, in the fifth layer, the single node
P

computes

the output (Cv) as the summation of the previous layer’s

incoming signals (Kisi and Zounemat-Kermani 2014;

Keshtegar et al. 2018).

Cv ¼ O5
1 ¼ Cv ¼ xi � fi ¼ xi � ðpiQþ qiDþ riÞ;

i ¼ 1; 2:
ð12Þ

2.5 Group method of data handling, GMDH

The group method of data handling (GMDH) can be

introduced as a self-organizing version of a multi-layer

feedforward neural network in which layers and nodes are

generated based on the input vector as shown in Fig. 3. In

other words, the connection of the neurons between the

network’s layers is not predetermined and fixed but are

chosen and tuned during the training process to optimize

the network. Hence, similar to multi-layer neural networks,

in GMDH the neurons are interconnected using a polyno-

mial through synapses. In this study, the general connec-

tion between the input and output variables is expressed by

the quadratic Ivakhnenko polynomial in the form of:

f ðxi; xjÞ ¼ a0 þ
X#
i¼1

aixi þ
X#
i¼1

X#
j¼1

aijxixj ð13Þ

where # is the number of input variables, xi are the input

variables, and ai are the coefficients (weights). Hencefor-

ward, considering Q and D as the input variables for

Fig. 2 Scheme of an ANFIS with two input parameters (Q and D) and
two fuzzy rules

Nature-inspired algorithms in sanitary engineering: modelling sediment transport in sewer pipes 6377

123



predicting Cv, the quadratic form may be expressed as

follows:

f ðQ;DÞ ¼ a0 þ a1 � Qþ a2 � Dþ a11 � Q2 þ a12 � Q � D
þ a21 � D � Qþ a22 � D2:

ð14Þ

In the GMDH model, each layer produces new neurons

for the next layer and when a neuron delivers an external

input, synapses determine the contribution at the response

of that neuron. On that account, a neuron might be elimi-

nated from the network as a passive neuron (Mrugalski and

Witczak 2002; De Giorgi et al. 2016; Mo et al. 2018).

The general architecture of a developed GMDH with

four inputs and five layers is shown in Fig. 3. In the first

layer, input variables are fed into the model as quadratic

transfer functions (see Eq. 14) and then some candidate

nodes are generated. The number of generated nodes is

calculated as the following equation:

Nlþ1
n ¼

Nl
n

2

 !
¼ Nl

n!

2� Nl
n � 2

� �
!

ð15Þ

where Nlþ1
n is the number of nodes of the next layer and

Nlþ1
n is the number of nodes of the previous layer. This

equation shows that the number of neurons would increase

from layer to layer. It is necessary to apply a strategy to

prevent the excessive growth of the network. In this study,

a five-layer GMDH network was developed. Also, the

maximum neurons of each layer were considered ten (ex-

cept for the one layer before the last layer, since this layer

needs two neurons, based on the quadratic polynomial

function). Subsequently, based on the least square methods,

some of the neurons will be eliminated and considered as

passive nodes. Detailed information about the GMDH

model can be found at Farlow (1984) and Ivakhnenko and

Ivakhnenko (1995).

2.6 Firefly optimization algorithm, FA

The firefly optimization algorithm (FA) is a global nature-

inspired swarm intelligence algorithm inspired by collec-

tive behaviour, such as insects and birds, in nature which is

based on the social behaviour of fireflies. With respect to

the recent bibliography, the FA is very efficient and can

outperform conventional heuristic algorithms such as

genetic algorithms, for solving complicated optimization

problems (Yang 2009).

There are mainly three modified rules based on flashing

characteristics of fireflies for setting up the FA as follows:

(1) All fireflies are assumed to be unisex, and they move

towards brighter ones regardless of their sex, and (2)

attractiveness of a firefly is proportional to its brightness.

The brighter a firefly, the more attractive it is to the other

ones. However, the brightness decreases as the distance

from the other firefly increases. The firefly moves randomly

if it cannot find and distinguish a brighter firefly in its

surroundings.

(3) The brightness or light intensity of an agent (firefly)

in the FA is pertinent to the objective function of an

optimization problem. For instance, in maximization

problems, the light intensity is in line with the value of the

objective function.

Generally, there are three distinct phases in FA: (i)

Initialization phase, (ii) Iteration phase, and (iii) termina-

tion phase (see Fig. 4a). In the initiation phase, a popula-

tion of several fireflies is generated. Afterwards, the

Fig. 3 Schema of a quadratic

polynomial GMDH with two

input parameters (Q & D) and
four layers
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following decreasing function is introduced for determin-

ing the attractiveness of a firefly (b):

bðrÞ ¼ b0 expð�cr2Þ ð16Þ

where rij ¼ zi � zj
�� �� denotes the Euclidean distance

between any two zi and zj fireflies, b0 is the initial attrac-

tiveness (r = 0), and c is an absorption coefficient of a

firefly’s light intensity.

In the second phase, in an iterative procedure, the

movement of a firefly i towards a brighter and more

attractive firefly j is given by the following equation:

zupdatedi ¼ zi þ b0: exp �cr2ij

� �
zj � zi
� �

þ aei ð17Þ

where a is a randomization parameter andei is a random

variable from a Gaussian distribution. Finally, when the

stopping criterion is met, the fireflies are ranked and the

best solution is found (Apostolopoulos and Vlachos 2010;

Wang et al. 2018).

2.7 Butterfly optimization algorithm, BOA

The novel optimization technique, namely butterfly opti-

mization algorithm (BOA), is a nature-inspired algorithm

that was introduced by Arora and Singh (2019). In BOA,

butterflies are substituted as search agents in the solution

process. In order to find the optimum solution to a problem

(e.g. a source of nectar), butterflies use sense receptors

which are nerve cells on butterflies’ body surface and are

called chemoreceptors. During the search process, butter-

flies generate fragrances with some intensity which are

correlated with their fitness. As butterflies move from one

location to another, their fitness varies accordingly. Their

fragrance spreads and propagates over distance, and other

butterflies can recognize it, and in this way, the butterflies

can share their information with other butterflies and create

a social knowledge network.

Similar to fireflies’ general movement towards the

brighter firefly, a butterfly moves towards the fragrance of

another butterfly. Whenever a butterfly cannot sense fra-

grance from its surrounding, it will move randomly and this

phase is named as local search in the BOA (see Fig. 4b).

The BOA takes into account three modified rules for the

optimization process: (1) All butterflies are supposed to

produce some scent and fragrance which make them attract

each other. (2) Each butterfly moves randomly or towards

the butterfly producing more fragrance. (3) The stimulus

Fig. 4 General view for the

three phases of initiation,

iteration, and termination in

a firefly algorithm and

b butterfly optimization

algorithm
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intensity of each butterfly is influenced by the objective

function. In BOA, each fragrance has its own unique fra-

grance which is calculated as the following:

fr ¼ cI/ ð18Þ

where fr represents the perceived magnitude of the but-

terfly’s fragrance, I is the stimulus intensity, c is the sen-

sory modality, and / is the power exponent dependent on

the varying degree of absorption. Like FA, there are three

main phases in BOA: (i) initialization phase, (ii) iteration

phase, and (iii) termination phase (see Fig. 4b). In the

initiation phase, all butterflies are positioned randomly in

the search space, with their fragrance and fitness values

calculated and stored. During the next phase, the algorithm

starts the iteration phase. In each iteration step, all butter-

flies in the solution space move to their new positions

(globally or locally), and afterwards their fitness values are

evaluated. In the global search phase, the butterfly takes a

step towards the best (fittest) butterfly given in Eq. (19):

zupdatedi ¼ zi þ e2 � z�j � zi

� �
fri; r\p ð19Þ

where zi and zj are ith and jth butterflies in the solution

space, z�j represents the current best solution, and e is a

random variable. Parameter p is a fraction between zero

and unity which is affected by the environmental factors

(e.g. wind and rain) in the searching process. The local

movement of the butterfly i can be represented as:

zupdatedi ¼ zi þ e2 � zj � zk

� �
fri; r� p: ð20Þ

The iteration phase will be continued until the stopping

criteria (e.g. maximum epoch or convergence criterion) are

met. Then, we reach the final phase with the optimum

solution of the objective problem.

2.8 Integration of the machine learning models
and nature-inspired algorithms

As stated earlier in the text, in addition to the standard

versions of ANFIS and GMDH models, four integrated

models (ANFIS-FA, ANFIS-BOA, GMDH-FA ,and

GMDH-BOA) are proposed to evaluate the potential

enhancement in the training (simulation) and testing (pre-

diction) performance of standard ANFIS and GMDH

models. Hence, the nature-inspired algorithms such as

BOA and FA are combined with the standard ANFIS and

GMDH for constructing hybrid models. These nature-in-

spired algorithms can be used for optimizing the premise or

consequent parts of the ANFIS (Zounemat-Kermani and

Mahdavi-Meymand 2019; Mahdavi-Meymand et al. 2019).

In this research, the BOA and FA are employed for opti-

mizing the Gaussian membership function parameters of

the inputs and linear membership function parameters of

the outputs.

In addition, the BOA and FA might also be integrated

with the GMDH for potential optimization of either

weights of the neurons in the network or the architecture of

the network (the number of neurons in each layer and the

number of layers). In this research, weights of the poly-

nomial function of the network (Eq. 14) were optimized by

applying the FA and BOA.

The general framework for modelling chosen for this

applied research is shown in Fig. 5.

BOA and FA, like most of the nature-inspired opti-

mization methods, have some initial values and optimizing

coefficients. These parameters were chosen based on pre-

vious studies (Arora and Singh 2019; Mahdavi-Meymand

and Zounemat-Kermani 2020). In Table 2, the general

characteristics and initial values for the applied machine

learning models are given.

2.9 Models’ evaluation

In this study, to assess the suitability of the applied models,

five statistical statistics (RMSE, MAE, R2, IA, NSE), as well

as a comprehensive index (SI), are calculated. Two

deviance measures including the root-mean-square error

(RMSE) and mean absolute error (MAE) in addition to two

similarity measures including coefficient of determination

(R2) and index of agreement (IA) as well as the Nash–

Sutcliffe model efficiency coefficient (NSE) are used. Also,

a synthesis index (SI) based on RMSE, MAE, (1-R2), (1-

IA), and (1-NSE) is calculated to obtain a comprehensive

performance criterion (Chou et al. 2014). The mathemati-

cal formulae of the mentioned statistics, as well as evalu-

ation values for comparing the results, are given in Table 3.

Fig. 5 General framework of the applied methods used in this study
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Where Cvo is the observed value of volumetric sediment

concentration, Cvo is the average of the observed volu-

metric sediment concentration, Cvp denotes the predicted

volumetric sediment concentration in the testing set as well

as the simulated volumetric sediment concentration in the

training set, Pj denotes the jth performance measure, CvP is

the average value of the predicted volumetric sediment

concentration, N is the number of data samples, and M = 5

is the number of performance measures and the bar indi-

cates the mean value.

3 Implementation

3.1 Data preparation

At first, all the available data set is shuffled randomly.

Then, data are standardized between the ranges of zero and

unity. Afterwards, by using the hold-out method, the

original data set is separated into the training and testing

sets. The training data set is used for the training process of

the machine learning models as well as estimation of the

partial descriptions of the nonlinear system of sediment

transport in sewers, and the testing data set is used for the

final assessment and complete description of the model.

Thereupon, from the total 194 data sets used in this study,

Table 2 Initial and tuning parameters for the applied machine learning models

Model/algorithm Parameter Value/type

ANFIS FIS type Takagi–Sugeno

MF shapes Gaussian MFs in the first to the fourth layers, linear MF in the fifth layer

Derivation of data Subtractive clustering method

Number of MFs for inputs and output 5

GMDH Number of layers 5

Maximum number of neurons in each layer 10

Polynomial Quadratic

FA Attraction coefficient 2

Light absorption coefficient 1

Mutation coefficient 0.2

Coefficient damping ratio 0.98

BOA Probability switch 0.8

Sensory modality 0.01

Power exponent 0.1

Table 3 Descriptions of the used statistical measures for the evaluation of the applied models in this research

Type Statistical measure Formula Range and ideal value(s)

Deviance measure RMSE (mm)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
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164 data sets were used for the training process (nearly

85%) and 30 data sets (15%) were considered for the

testing set.

3.2 Input selection and modelling scenarios

In this study, three different scenarios are considered in

order to select the subset of 13 input candidates for sedi-

ment prediction in sewers. In the first scenario (I), all the

available dimensional hydraulics and geometric factors are

taken into account. In this case, the predictive models

(ANFIS, ANIFS-FA, ANFIS-BOA, GMDH, GMDH-FA,

GMDH-BOA, and MLR) will have 13 input factors (see

Table 4) which makes the models’ structure complicated.

However, in the second and third scenarios (II, III) the

forward selection procedure is used for choosing the best

dimensional and non-dimensional subset of the indepen-

dent variables using ANFISs, GMDHs, and stepwise

regression (SR) models.

Based on the results of the forward selection in the

second scenario, a five-dimensional input vector (Q, S0, Ks,

B, d) with the most significant effect on the target (Cv) is

selected and the other variables are removed. Similar to

scenario II, five dimensionless independent parameters

S0;
y0
D ; D

2

A ; dR ;Fr
� �

are opted for simulating Cv values. The

final forms of all machine learning (ANFISs, GMDHs),

regression (MLR and SR), and empirical equation models

(May et al. 1989, 1996) with respect to the three input

scenarios are given in Table 3.

4 Application and results

Tables 5 and 6 report the statistical measures for the pro-

posed machine learning and MLR models considering all

of the hydraulic and geometric input parameters (scenario

I) for the training and testing sets, respectively. Looking at

the accuracy of training and testing data (Tables 5 and 6),

both ANIFS and GMDH machine learning models

(ANFIS[I], ANFIS-FA[I], ANFIS-BOA[I], GMDH[I],

GMDH-FA[I], and GMDH-BOA[I]) thoroughly outper-

formed the MLR model, with a considerable enhancement

in the averaged RMSE equal to 43% for the training set and

24% for the testing set.

Table 5 also indicates that the synthesis index of the

ANFIS-BOA[I] model is less than the other applied models

for both the training (SI = 0.017) and testing sets (SI =

0.047) for modelling and predicting Cv values, which

implies the better performance of this integrated model.

The results of the applied models considering forward

selection for the dimensional (scenario II) and

Table 4 General structures of the applied predictive models in terms of input selection strategy

Scenario Input selection method Types of input

parameters

Input parameters Predictive models

I Hydraulics of sediment

transport in sewers

Dimensional Q, D, S0, ks, Ks, n, T, Y,
d, A, P, B, Ws

ANFIS[I]; ANFIS-FA[I]; ANFIS-BOA[I]; GMDH[I];

GMDH-FA[I]; GMDH-BOA[I]; MLR[I]

II Forward selection

procedure

Dimensional Q, S0, Ks, B, d ANFIS[II]; ANFIS-FA[II]; ANFIS-BOA[II]; GMDH[II];

GMDH-FA[II]; GMDH-BOA[II]; SR[II]

III Dimensionless analysis Dimensionless S0;
y0
D ; D

2

A ; dR ;Fr
ANFIS[III]; ANFIS-FA[III]; ANFIS-BOA[III]; GMDH[III];

GMDH-FA[III]; GMDH-BOA[III]; SR[III]

y0
D ; D

2

A ; dR ;Fr; 1�
Vc

V
May et al. (1989)

D2

A ; dD ;Fr; 1�
Vc

V
May et al. (1996)

Table 5 Evaluation

performance of the applied

models considering scenario

(I) for the training set (bold font

implies the best value)

Model RMSE (ppm) R2 MAE (ppm) NSE IA SI Rank

ANFIS[I] 113.845 0.890 71.632 0.886 0.972 0.062 2

ANFIS-BOA[I] 106.573 0.904 71.541 0.899 0.974 0.017 1

ANFIS-FA[I] 121.958 0.874 77.048 0.867 0.965 0.128 6

GMDH[I] 121.545 0.875 68.705 0.870 0.966 0.103 5

GMDH-BOA[I] 116.924 0.884 64.793 0.879 0.969 0.063 3

GMDH-FA[I] 120.954 0.876 67.059 0.873 0.966 0.096 4

MLR[I] 203.833 0.647 146.170 0.644 0.882 1.000 7

Bold font indicates the best performance

6382 M. Zounemat-Kermani et al.

123



Table 6 Evaluation

performance of the applied

models considering scenario

(I) for the testing set (bold font

implies the best value)

Model RMSE (ppm) R2 MAE (ppm) NSE IA SI Rank

ANFIS[I] 151.687 0.808 92.055 0.777 0.932 0.252 6

ANFIS-BOA[I] 135.061 0.831 96.118 0.823 0.950 0.047 1

ANFIS-FA[I] 142.423 0.807 99.387 0.804 0.945 0.155 4

GMDH[I] 142.385 0.811 92.814 0.804 0.943 0.14 3

GMDH-BOA[I] 140.43 0.812 87.213 0.809 0.942 0.114 2

GMDH-FA[I] 150.243 0.803 79.324 0.781 0.943 0.168 5

MLR[I] 189.540 0.667 151.027 0.652 0.901 1.000 7

Bold font indicates the best performance

Table 7 Evaluation

performance of the applied

models considering scenario (II)

for the training set (bold font

implies the best value)

Model RMSE (ppm) R2 MAE (ppm) NSE IA SI Rank

ANFIS[II] 171.976 0.753 109.34 0.749 0.922 0.553 5

ANFIS-BOA[II] 128.66 0.861 86.404 0.859 0.966 0.242 4

ANFIS-FA[II] 91.085 0.931 57.589 0.930 0.982 0.000 1

GMDH[II] 130.362 0.856 70.794 0.856 0.963 0.215 2

GMDH-BOA[II] 130.707 0.855 76.217 0.855 0.963 0.229 3

GMDH-FA[II] 130.364 0.856 70.794 0.856 0.968 0.215 2

SR[II] 218.609 0.594 147.399 0.594 0.857 1 6

Bold font indicates the best performance

Table 8 Evaluation

performance of the applied

models considering scenario (II)

for the testing set (bold font

implies the best value)

Model RMSE (ppm) R2 MAE (ppm) NSE IA SI Rank

ANFIS[II] 151.304 0.779 103.807 0.778 0.935 0.39 6

ANFIS-BOA[II] 140.45 0.814 97.929 0.809 0.941 0.255 5

ANFIS-FA[II] 123.655 0.862 74.649 0.852 0.956 0.000 1

GMDH[II] 140.016 0.815 85.520 0.813 0.945 0.203 4

GMDH-BOA[II] 136.401 0.845 89.703 0.819 0.942 0.173 3

GMDH-FA[II] 132.125 0.835 81.396 0.831 0.951 0.107 2

SR[II] 188.297 0.658 143.333 0.657 0.890 1.000 7

Bold font indicates the best performance

Table 9 Evaluation

performance of the applied

models considering scenario

(III) for the training set (bold

font implies the best value)

Model RMSE (ppm) R2 MAE (ppm) NSE IA SI Rank

ANFIS[III] 62.729 0.967 33.665 0.967 0.991 0.007 2

ANFIS-BOA[III] 60.354 0.969 32.656 0.969 0.992 0.000 1

ANFIS-FA[III] 63.621 0.966 36.201 0.966 0.991 0.013 3

GMDH[III] 122.026 0.874 68.467 0.874 0.965 0.248 4

GMDH-BOA[III] 125.452 0.867 70.293 0.866 0.964 0.263 5

GMDH-FA[III] 125.639 0.866 72.311 0.866 0.963 0.268 6

SR[III] 177.129 0.733 123.635 0.733 0.918 0.595 7

May et al. (1996) 268.037 0.677 183.973 0.392 0.868 1.000 9

May et al. (1989) 197.125 0.679 91.138 0.674 0.898 0.663 8

Bold font indicates the best performance
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dimensionless (scenario III) input parameters are given in

Tables 7, 8, 9, and 10 for the training and testing sets.

Similar to the findings of the first scenario (see Tables 5

and 6), the machine learning models surpassed the stepwise

regression (SR) and empirical equations in simulating and

predicting Cv values.

Note that in general, the performance of the integrated

ANFIS and GMDH models with the BOA and FA is

generally better than the performance of the standard

ANFIS and GMDH models. However, the superiority of

the FA is more apparent for the second input scenario (II)

(observing Tables 7 and 8), while considering the results of

Tables 9 and 10, the BOA gave a better performance for

the training and testing sets of dimensionless input vari-

ables (scenario III).

Performances of results for the testing set of the applied

models are also presented in Figs. 6, 7, 8, and 9 in terms of

scatter plots. From Figs. 6, 7, 8, and 9, it is evident that the

Table 10 Evaluation

performance of the applied

models considering scenario

(III) for the testing set (bold font

implies the best value)

Model RMSE (ppm) R2 MAE (ppm) NSE IA SI Rank

ANFIS[III] 162.991 0.763 102.251 0.743 0.933 0.202 4

ANFIS-BOA[III] 144.881 0.811 91.037 0.797 0.946 0.009 1

ANFIS-FA[III] 153.186 0.785 93.098 0.773 0.939 0.095 3

GMDH[III] 167.152 0.768 104.859 0.730 0.933 0.206 5

GMDH-BOA[III] 176.683 0.755 116.398 0.698 0.927 0.298 6

GMDH-FA[III] 142.385 0.811 92.814 0.804 0.943 0.011 2

SR[III] 189.873 0.682 143.920 0.651 0.907 0.566 8

May et al. (1996) 257.659 0.721 181.133 0.357 0.866 0.941 9

May et al. (1989) 176.838 0.708 100.447 0.697 0.898 0.408 7

Bold font indicates the best performance

Fig. 6 Scatter plots for the performance of machine learning methods for predicting Cv in the testing set considering scenario (I)
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Fig. 7 Scatter plots for the performance of machine learning methods for predicting Cv in the testing set considering scenario (II)

Fig. 8 Scatter plots for the performance of machine learning methods for predicting Cv in the testing set considering scenario (III)
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Fig. 9 Scatter plots for the MLR[I], SR[II], SR[III], and empirical equations for predicting Cv in the testing set

Fig. 10 Taylor diagram for displaying the goodness of the predictive models’ performance using three statistic measure (correlation coefficient,

RMSE, and standard deviation)
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empirical equation by May et al. (1996) mostly over-pre-

dicted the Cv values, whereas ANFIS[I], AFIS-BOA[1],

GMDH[II], GMDH-BOA[II], and GMDH-FA[II] under-

predicted the Cv values. All the regression models

(MLR[I], SR[II], and SR[III]) over-predicted lower Cv

values (Cv\ 600 ppm) and under-predicted higher Cv

values (Cv[ 600 ppm). Furthermore, the regression

models provided some unfavourable negative predicted

results for Cv which is totally unacceptable.

For having a better judgement and visualization, the

final efficiency of all the applied models in the testing set is

depicted in terms of a polar plot called the Taylor diagram

in Fig. 10. Taylor diagram provides a statistical summary

of how well simulated and predicted values match

observed values in terms of three statistics of correlation

coefficient (r) as the azimuth angle, standard deviation as

the radial distance from the origin, and RMSE as the dis-

tance from the reference observation point (Taylor 2001).

In the diagram shown in Fig. 8, all models have been

plotted as points, as if their positions are precise indicators

of their true predictive performance. Through visual diag-

nosis, the best predictive models are distinguished as the

‘‘Best Methods’’ from the other models in Fig. 10.

However, it can be observed that the ANFIS-FA[II] gave a

better performance than the other models.

5 Discussion

Since the major objective of this study is to challenge the

capability of FA and BOA in optimization problems, in

Table 11 a statistical analysis for the magnitude of

improvement brought by these algorithms to the standard

ANFIS and GMDH models is given. In Table 11, the

averaged values of the coefficient of determinations (R2
Ave)

and the RMSEAve between models’ predicted outputs and

observations (Tables 5, 6, 7, 8, 9, and 10) are used as the

indicators for the percentage of the improved efficiency.

Both the FA and BOA improved the performance of the

standard ANFIS and GMDH models. However, these

algorithms presented considerable improvement for the

ANFIS model. In general, the BOA slightly outperformed

the FA for improving the performance of machine learning

models regarding the RMSEAve and R2
Ave criteria. In

Table 12, the general performance of the machine learning

models in terms of the input vector scenarios (I, II, and III)

using the averaged values of the coefficient of determina-

tions (R2
Ave) and the RMSEAve between models’ predicted

outputs and observations (Tables 5, 6, 7, 8, 9, and 10) is

shown.

The summary results of Table 12 imply that utilizing the

forward selection procedure in the second scenario has

boosted the effectiveness of machine learning models in

predicting Cv values. Although employing a dimensionless

input vector (scenario III) has improved the performance of

the machine learning models in the training phase, it failed

to elevate the efficiency of these models in the testing

phase. This conclusion is also verified by the outcome of

the Taylor diagram in Fig. 10 so that none of the third

scenario models located in the ‘‘Best Methods’’ box.

Table 11 Percentage of the improved efficiency of BOA and FA on GMDH and ANFIS models

Statistic Algorithm Training Testing Total average (%)

Standard GMDH (%) Standard ANFIS (%) Standard GMDH (%) Standard ANFIS (%)

RMSEAve FA 1.58* 4.19 0.06 10.13 3.99**

BOA 0.24 11.79 0.02 9.75 5.45

R2
Ave FA 0.51 5.05 0.27 4.39 2.55

BOA 0.04 5.53 0.70 4.50 2.69

Average 0.59 6.64 0.26 7.19 3.67

*Integrating the FA with the standard GMDH (GMDH-FA) improved the averaged RMSE of the training set equal to 1.58%; ** integrating the

FA to the machine learning models (GMDH-FA and ANFIS-FA) improved the total averaged RMSE of the standard GMDH and ANFIS equal to

3.99%

Table 12 Comparison of the results employing different input vectors

on the performance of machine learning models

Input scenario Training Testing

RMSEAve R2
Ave RMSEAve R2

Ave

I 121.89* 0.87 143.71 0.81

II 130.47 0.85 137.32 0.83

III 93.30 0.92 162.33 0.77

*Averaged RMSE values for the ANFIS[I], ANFIS-FA[I], and

ANFIS-BOA[I] in the training set. Bold font indicates the best

performance
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The findings of this study also revealed that the empir-

ical equations and regression models could not surpass any

of the machine learning models. Surprisingly, May et al.’s

(1996) equation was the weakest predictive model and

acted worse than even the former equation by May et al.

(1989). In order to evaluate the models’ performances

statistically, the results of the Mann–Whitney test are

considered. The Mann–Whitney is a statistical test that can

be used to figure out if there is a significant difference

between the measured and predicted data. In Table 13, the

results of the Mann–Whitney test for the third scenario are

provided. The results of Table 13 indicate that in a 95%

confidence level there is no significant difference between

measured and predicted values of all models. On the other

hand, in a 90% confidence level, just the predicted results

of May et al.’s (1996) equation show a significant differ-

ence with the measured values.

6 Conclusions

Novel integrated approaches were proposed in this paper

for sewers’ volumetric concentration of sediments (Cv)

predicting. The proposed approaches are based on the

combination of two nature-inspired algorithms (firefly

algorithm (FA) and butterfly optimization algorithm

(BOA)) and two machine learning approaches (ANFIS and

GMDH). The selection of the best input features for Cv

prediction was accomplished by forward selection proce-

dure and dimensional analysis using the Buckingham G
theorem so that three scenarios were employed for con-

structing the applied methods. Accordant with the obtained

results, the following conclusions can be drawn from the

research:

• Due to the complexity of the sediment transport process

in sewers and the wide ranges of input and output data

used for the training and testing sets in predicting

sediment concentration, the regression (MLR and SR)

and empirical equations failed to yield promising

results. However, machine learning approaches (ANFIS

and GMDH) acted far better than those traditional

methods.

• Forward selection method for selecting input parame-

ters improved the prediction capability of both ANFIS

and GMDH models. It not only reduced the output

predictive error but also simplified the machine learning

models structure due to having fewer input variables.

• Considering several statistical measures (e.g. RMSE,

MAE, R2, and NSE), both ANFIS and GMDH models

performed satisfactorily in predicting Cv values. It was

not possible to represent a dominant superior model

between both of them.

• The proposed application of FA and BOA integration

with the ANFIS model (ANFIS-FA, ANFIS-BOA)

noticeably improved the performance of standard

ANFIS. Nevertheless, engaging FA and BOA with the

standard GMDH model (GMDH-FA, GMD-FOA) did

not remarkably enhance the efficiency of the GMDH

model.

Table 13 The Mann–Whitney test results between measurement and predicted values (scenario III)

Method p value Significantly different (90%) Significantly different (95%)

Measurement versus May et al. (1996) 0.096 Yes No

Measurement versus May et al. (1998) 0.959 No No

Measurement versus MLR 0.959 No No

Measurement versus ANFIS 0.739 No No

Measurement versus ANFIS-BOA 0.842 No No

Measurement versus ANFIS-FA 0.982 No No

Measurement versus GMDH 0.877 No No

Measurement versus GMDH-BOA 0.947 No No

Measurement versus GMDH-FA 0.684 No No
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List of symbols e: Random variable in FA and BOA; c: Absorption
coefficient in FA; #: Number of input variables in GMDH model; /:
Power exponent in BOA; a: Randomization parameter in FA and

BOA;
P

: Summation operator; A: Cross-sectional area of flow; ai:
Partial regression coefficients in MLR and SR models; ANFIS:

Adaptive neuro-fuzzy inference system; B: Water surface width;

BOA: Butterfly optimization algorithm; c: Sensory modality in BOA;

Cv: Volumetric concentration of sediment; D: Internal diameter of

pipe channel; d: Median diameter of particles in a mixture; FA:

Firefly optimization algorithm; fr: The perceived magnitude of

fragrance in BOA; Frd: Densimetric Froude number; g:
Gravitational constant; GMDH: Group method of data handling;

Gs: Specific gravity of sediment; I: Stimulus intensity in BOA; IA:
Index of agreement; Ks: Overall equivalent sand roughness with

sediment; M: Number of samples in training and testing sets; MAE:
Mean absolute error; MLR: Multiple linear regression model; n:
Overall Manning roughness coefficient with sediment; NSE:

Nash–Sutcliffe model efficiency coefficient; Oj
i : Functional

node of ANFIS network; p: Environmental fraction in BOA; P:
Wetted parameter of flow; pi,qi,ri: Parameter set of ANFIS

model; Q: Flow discharge in sewer system; r: Distance between any

two fireflies in FA; R: Hydraulic radius; R
2: Coefficient of

determination; RMSE: Root-mean-square error; S0: Longitudinal
slope of sewer; SI: Synthesis index for models’ evaluation; SR:

Stepwise regression model; T: Temperature; V: Mean velocity

of flow; Vc: Critical incipient motion velocity of sediment; Ws:
Width of sediment spread; xi: Input variables for quadratic
polynomial in GMDH model; y0: Depth of uniform flow; zi: Position
of the ith agents in FA and BOA; b0: Initial attractiveness of a firefly
in FA; ks: Overall friction factor in sewers; m: Kinematic viscosity
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