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Abstract
Data clustering is a fundamental unsupervised learning approach that impacts several domains such as data mining, computer
vision, information retrieval, and pattern recognition. In this work, we develop a statistical framework for data clustering
which uses Dirichlet processes and asymmetric Gaussian distributions. The parameters of this framework are learned using
Markov Chain Monte Carlo inference approaches. We also integrate a feature selection technique to choose the features that
are most informative in order to construct an appropriate model in terms of clustering accuracy. This paper reports results
based on experiments that concern dynamic textures clustering as well as scene categorization.

Keywords Infinite asymmetric Gaussian mixture model · Feature selection ·Gibbs sampling ·MCMC ·Metropolis-Hastings ·
Background subtraction

1 Introduction

Clustering algorithm is a common unsupervised learning
methodology for data analysis and has been widely used for
uncovering hidden patternswithin data. One extensively con-
sidered approach in statistical modeling is mixture models.
It is capable of clustering data into homogeneous subgroups
where the whole model is represented by a weighted sum of
the subpopulations’ densities. Due to its flexible representa-
tions that provide interpretable results, mixture models are
adopted in many applications from different domains.

A well-known assumption in using mixture models for
statistical analysis is that considering the per components
densities follows the widely used Gaussian assumption (Park
et al. 2013). However, the Gaussian distribution is not always
an appropriate choice since observations shape may not
be strictly symmetric. This is especially the case in natu-
ral images where the density distribution may be far from
the Gaussian (Hyvärinen and Hoyer 2000; Laptev 2009;
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Boutemedjet et al. 2010; Elguebaly and Bouguila 2014).
Some evolving systems have been proposed for this problem
(Andonovski et al. 2018; Škrjanc et al. 2019). For achieving
a better approximation, we investigate the use of asymmetric
Gaussian distribution (AGD) which is capable of modeling
asymmetric data: AGD has left and right variance parame-
ters which control the shape of different parts to better model
the asymmetry of data (Elguebaly and Bouguila 2011; Song
et al. 2019).

Parameter estimation is one of the challenges required for
the use of mixture models. Various algorithms have been
studied to achieve this purpose. The expectation maximiza-
tion (EM) algorithm is a well-known approach to solve such
problem (Bouguila and Ziou 2006). Nevertheless, the EM
algorithm is a deterministic approachwhich is not guaranteed
to reach a global optimal solution because of its sensitivity
to initialization and overfitting. Instead, Bayesian inference
may be used which is extensively studied in mixture model-
ing (Channoufi et al. 2018; Elguebaly and Bouguila 2014).
It provides a strong theoretical framework to design cluster-
ing algorithms as well as a formal approach to incorporate
prior knowledge about the problem. The authors in Fu and
Bouguila (2018) recently studied Bayesian learning of asym-
metric Gaussian mixture model. In this work, the authors
implement Markov Chain Monte Carlo (MCMC) methods
that eradicate the dependency between the mixture parame-
ters and components to address over-fitting problems.
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Several studies and research have been devoted to the
automatic selection of the components number which best
describes the observations. We introduce the Dirichlet pro-
cess to address the problem of determination of correct
components number since it leads to a realization of amixture
model with an unbounded number of components (Anto-
niak 1974). This can be considered also as a nonparametric
Bayesian approach since it allows the number of compo-
nents to grow to infinity as required to fit the data (Griffin
and Steel 2010). In this paper, we are interested in Bayesian
non-parametric approaches for modeling, particularly mod-
els based on the Dirichlet process (Bouguila and Ziou 2012).
The Dirichlet process allows the number of latent variables
to grow as necessary to fit the data, but where individual
variables still follow parametric distributions. We address
the prevalent problem of choosing the correct mixture com-
ponents number for mixture models, by introducing the
Dirichlet process to extend finite mixture model to an infinite
one. Thus, we apply a hierarchical Bayesian learning tech-
nique for the proposed infinite asymmetric Gaussian mixture
model (IAGM).

Theoretically, the more features used to represent data,
the better the clustering algorithm is expected to perform. In
practice, however, some features can be noisy, redundant, or
uninformative thus can hinder the performance of clustering
(Boutemedjet et al. 2009; Bouguila 2009). The presence of
many irrelevant features introduces a bias and renders homo-
geneity measures unreliable (Elguebaly and Bouguila 2015).
A viable solution is to remove irrelevant features by identi-
fying the best features to the trained model. The process of
reducing the number of collected features to a relevant sub-
set of features is known as feature selection. It can increase
the performance of models by eliminating noise in the data,
improving model interpretation and decreasing the risk of
overfitting. Feature selectionmethods can be broadly divided
into three groups: filters, wrappers, and embedded methods
(Adams and Beling 2017).

Filter approaches treat feature selection as preprocessing
step where the relevance of each feature is evaluated using
the dataset alone. Thus, filters only consider the properties of
the features regardless of the model. The authors in Krishnan
et al. (1996) propose a trimming feature selection technique
specific to mixture models based on the Fisher ratio. How-
ever, this method does not iterate through the feature space
nor simultaneously estimate model parameters and feature
subsets. On the other hand, wrapper approaches evaluate
feature relevance with regard to the model. In most cases,
a model is built with respect to a subset of features and the
model’s performance is evaluated based on specified crite-
ria. Wrappers then move through the subset space evaluating
feature subsets with regard to the evaluation function. The
readers are referred to Galimberti et al. (2018); Marbac and
Sedki (2017) for further details about wrapper approaches.

Embedded methods simultaneously select features and
construct models. Penalized model-based clustering (Pan
and Shen 2007; Bouveyron and Brunet-Saumard 2014) and
Bayesian methods (Gustafson et al. 2003; Wang and Zhu
2008) are extensively used in many applications. Feature
saliency approaches consider feature selection as parame-
ter estimation problems and recast probability distribution
as dependent and independent distributions (Elguebaly and
Bouguila 2012; Law et al. 2004). Feature saliency is added
as new parameters to the conditional distribution of the mix-
ture model and used to find clusters embedded in feature
subspace. Because feature saliency represents the probabil-
ity of belonging to a mixture-dependent distribution. It can
be interpreted as the probability that a feature is relevant. In
this paper, we propose a feature saliency measure and inte-
grate it into the Bayesian inference framework. Our approach
focuses on detecting cluster structure and discriminating fea-
ture relevance simultaneously through Bayesian learning.

To summarize, in this paper, we propose a Bayesian
inference approach for infinite asymmetric Gaussian mix-
ture (IAGM) models with a simultaneous feature selection
framework. The proposed approach better fits data than the
traditionally applied Gaussian mixture models in the case of
asymmetric data distribution. Extension to an infinite number
of mixture components aims to better estimate the data clus-
ters as required. The simultaneous feature selection approach
allows for better approximation due to a better choice of fea-
tures that represent the data with an enhanced ability for
the clustering task; i.e. separating the different classes. A
potential drawback of the model is computational complex-
ity which is easily remedied with today’s immense available
computational resources.

The reminder of this paper is organized as follows. Sect.
2 outlines asymmetric mixture model, sets up Dirichlet pro-
cess and highlights the feature selection algorithm. Sect. 3
presents the Bayesian inference process and complete algo-
rithm for our model. In Sect. 4, we present the validation on
dynamic textures clustering and image categorization tasks
and compare it with a number of state-of-the-art methods.
Finally, Sect. 5 concludes the paper.

2 Infinite asymmetric Gaussianmixture
model

In this section, we introduce IAGM with feature saliency
algorithm. This paper proposes finitemixturemodel and then
extend it to infinite one. We also introduce the concept of
feature saliency and represent our model combined with a
feature selection algorithm.
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2.1 Finite mixture model

Assumewe have N observations datasetχ = (X1, . . . , XN ),
where each of observations Xi = (Xi1, . . . , XiD) could
be represented as a D-dimensional random variable and it
follows asymmetric Gaussian distribution (AGD). The prob-
ability density function for dataset χ can be written as:

p
(
χ | �

) =
N∏

i=1

M∑

j=1

p j p
(
Xi | ξ j

)
(1)

where � = (p1, . . . , pM , ξ1, . . . , ξM ) represents the com-
plete set of parameters fully characterizing the mixture
model, M is the number of components,−→p = (p1, . . . , pM )

represents the mixing proportions which must be positive
and sum to one, and ξ j represents the AGD parameters for
mixture component j .

Given AGD parameters for mixture component j , the
AGD density function is defined as:

p
(
Xi | ξ

) ∝
D∏

k=1

1

(Sl jk)−
1
2 + (Sr jk)−

1
2

×
⎧
⎨

⎩
exp

[ − Sl jk(Xik−μ jk )
2

2

]
i f Xik < μ jk

exp
[ − Sr jk(Xik−μ jk )

2

2

]
i f Xik ≥ μ jk

(2)

where ξ j = (μ j , Sl j , Sr j ) is the set of parameters for AGD
with μ j = (μ j1, . . . , μ j D), Sl j = (Sl j1, . . . , Sl j D), and
Sr j = (Sr j1, . . . , Sr j D). μ jk , Sl jk and Sr jk are the mean, the
left precision and the right precision for the kth-dimensional
distribution (Fu and Bouguila 2018) respectively. In this
paper, we assume each dimension of observation Xi is inde-
pendent; hence, its covariance matrix will be diagonal. This
assumption leads to a reduction in the computational power
during processing and deployment.

We introduce latent indicator variables Z , Zi for each
observations i to indicate which mixture component it
belongs to. Zi = (Zi1, . . . , ZiM ) where hidden label Zi j

is set to 1 when the observation Xi is allocated to component
j otherwise 0. The likelihood function of IAGM is given by:

p
(
χ | Z ,�

) =
N∏

i=1

p
(
Xi | ξ j

)Zi j (3)

For the mixing weight, p j = p(Zi= j ) , j = 1, . . . , M
indicates the probability that an observation Xi is associated
with component j . Hence, the missing allocation variable Z
is given a Multinomial prior as follows:

p
(
Z | −→p ) ∼ Multi

(−→p ) =
M∏

j=1

p
n j
j (4)

where n j = ∑N
i=1 IZi= j is the number of observations allo-

cated to component j, and function I is the indicator function.
The mixing proportions are assumed to follow a symmetric
Dirichlet prior with concentration parameter α

M (Rasmussen
1999), so that it is considered that all components sharing an
equal prior probability. This then can be denoted as follows:

p
(−→p | α

)∼Dirichlet
( α

M
, . . . ,

α

M

)
= �(α)

�( α
M )M

M∏

j=1

p
α
M −1
j

(5)

TheDirichlet distribution is a conjugate prior of theMulti-
nomial distribution. Due to the conjugacy of Z and −→p , we
can achieve better inference by integrating out −→p to obtain
the prior of Z given hyperparameter α, and then inferring
directly the distribution of the latent variables Z :

p
(
Z | α

) =
∫

p
(
Z | −→p )

p
(−→p | α

)
d−→p

= �(α)

�(N + α)

M∏

j=1

�( α
M + n j )

�( α
M )

(6)

To use the Gibbs sampling technique, it is required to
obtain the conditional prior for a single allocation variable
Zi given all the others. Keeping all the other indicators fixed,
we obtain the following conditional prior:

p(Zi = j | α, Z−i ) = n−i, j + α
M

N − 1 + α
(7)

where the subscript −i indicates all indexes except i , and
Z−i = (Z1, . . . , Zi−1, Zi+1, . . . , ZN ). N−i, j is the number
of observations excluding Xi that are allocated to component
j .

2.2 Infinite mixture model

We continue to extend the finite mixture model proposed in
last section to an infinitemixturemodel by letting component
number M → ∞ and updating the posteriors of indicators
in Eq. (7). This is achieved by introducing the Dirichlet pro-
cess to extend to the infinite mixture model (Blei and Jordan
2006):

p
(
Zi = j | α, Z−i

) =
{

n−i, j
N−1+α

i f n−i, j > 0
α

N−1+α
i f n−i, j = 0

(8)
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where n−i, j > 0 indicates that component j is represented.
Thus, an observation Xi is allocated to an existing component
with certain probability proportional to the number of obser-
vations already associated with this component, while a new
component is only proportional to concentration parameter
α and observations number N . Given the priors, the condi-
tional posteriors are obtained by combining priors with the
likelihood:

p(Zi = j | . . .) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−i, j
N−1+α

∏D
k=1 p

(
Xik | ξ jk

)

i f n−i, j > 0
α

N−1+α

∫
p
(
ξ j | · · · )p(Xi | ξ j

)
dξ j

i f n−i, j = 0

(9)

where the conditional posteriors of unrepresented compo-
nent is obtained by integrating over hyperparameters and the
integral is not analytically intractable. For infering intractable
posteriors,we adoptAlgorithm2ofNeal’s (Neal 2000)which
proposes a sampling method to approximate the desired dis-
tribution.

Concerning the concentration parameter α, we consider α
an inverse Gamma prior with parameter κ and η:

p
(
α−1 | κ, η

) ∼ � (κ, η) (10)

Given the likelihood of α in Eq.(6), we obtain the condi-
tional posterior for α depending on the observations number
N and the components number M

p
(
α | κ, η

) ∼ p
(
Z | α

)
p
(
α | κ, η

)
(11)

2.3 Feature saliency

In this section, we introduce the concept of feature saliency
and consider the feature selection problem as a parameter
estimation problem (Law et al. 2004). It is natural to consider
that different features may have different weights for each of
the mixture components. Thus, we define feature saliency as
the weight of feature importance.

We assume that a feature is relevant if it follows amixture-
dependent distribution AGD. Otherwise, it may be modeled
as a mixture-independent background distribution. In our
work, we propose a Gaussian assumption for the back-
ground distribution. By treating latent relevant indicator
φi = (φi1, . . . , φiM ) with φi j = (φi j1, . . . , φi j D). We could
then represent if a given feature is relevant or not. The binary
indicator φi jk = 1 if feature k in observations Xi is relevant
for component j , otherwise φi jk = 0. Thus, we rewrite the
probability density function as follows:

p
(
χ |�, ξ irr ,


) =
N∏

i=1

M∑

j=1

p j

∏D

k=1

[
p
(
Xik |ξ jk

)φk

p
(
Xik |ξ irrjk

)1−φk
]

(12)

where the ξ irr = (ξ irr1 , . . . , ξ irrM ) represents the set of
parameters for backgroundGaussian distributionwith ξ irrj =
(μirr

j , (Sirrj )−1),μ j = (μ j1, . . . , μ j D), S j = (S j1, . . . , S jD).

μirr
jk and Sirrjk represent the mean and precision for the k

dimensional Gaussian distribution, respectively.
Feature saliency defined as −→ρ = (ρ1, . . . , ρM ) such that

ρ j = (ρ j1, . . . , ρ j D). ρ jk = p
(
φ j = 1

)
represents the prior

probability that the feature k is relevant in mixture compo-
nent j . Thus, we could recast the likelihood function after
introducing the feature saliency −→ρ . This can be denoted by:

p
(
Xi | �F

) =
M∑

j=1

p j

D∏

k=1

(
ρ jk p

(
Xik | ξ jk

)

+(
1 − ρ jk

)
p
(
Xik | ξ irrjk

))
(13)

where �F = (�,−→ρ , ξ irr ) is the full set of parameters of
themixturemodel after introducing feature saliency. Eq. (13)
offers soundgenerative interpretation for ourmodel. First, the
model selects the component j by sampling from a Multi-
nomial distribution with mixing proportion (p1, . . . , pk).
Then, for each feature dimension k = 1, . . . , D, we follow a
Bernoulli distribution with feature saliency ρ jk ; if success-
ful, we use the relevant mixture component p

(
Xik | ξ jk

)

to generate feature k; otherwise, the background component
p
(
Xik | ξ irrjk

)
will be used. Therefore, we could view the

model of previous section as special case when all of the
features are relevant.

The conditional posteriors of Dirichlet process mixture
could be rewritten after bringing feature saliency into model
as:

p(Zi = j | . . .) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n−i, j
N−1+α

∏D
k=1

(
ρ jk p

(
Xik | ξ jk

)

+(
1 − ρ jk)p

(
Xik | ξ irrjk

)
) i f n−i, j > 0

α
N−1+α

∫
p
(
ξ j | · · · )p(ξ irrj | · · · )

×p
(
Xi | ξ j

)
dξ j i f n−i, j = 0

(14)

We could use these posteriors to generate new compo-
nents or allocated observations. For latent allocation variable
Z = (Z1, . . . , ZN ), p j = p

(
Zi = j

)
represents the prior

probability that observation Xi is associated with component
j . We could obtain the posterior probability that the obser-
vation Xi is allocated to component j conditional on having
observation Xi to be:
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p
(
Zi = j | Xi

) = p
(
Xi | �F , Zi = j

)

p
(
Xi | �F

)

∝ p j

D∏

k=1

(
ρ jk p

(
Xik | θ jk)+(1−ρ jk)p

(
Xik | θ irrjk ))

(15)

Latent relevancy variable φi jk indicates whether the fea-
ture k is relevant for component j given the observation Xi .
ρ j = p

(
φi jk = 1) represents the prior probability that the

feature k is relevant for component j given observation Xi .
The posterior probability that the feature k is relevant for
component j conditioned on Xi is given by:

p
(
φi jk = 1, Zi = j | Xi

) = p
(
Zi = j | Xi

) ·
ρ jk p

(
Xik | ξ jk

)

ρ jk p
(
Xik | ξ jk

) + (
1 − ρ jk

)
p
(
Xik | ξ irrjk

) (16)

Posteriors for irrelevant features could be deduced in the
same way.

p
(
φi jk = 0, Zi = j | Xi

) = p
(
Zi = j | Xi

) ·
(
1 − ρ jk

)
p
(
Xik | ξ irrjk

)

ρ jk p
(
Xik | ξ jk

) + (
1 − ρ jk

)
p
(
Xik | ξ irrjk

) (17)

The likelihood function of χ conditioned on the complete
set of mixture parameters can be obtained. It will be used for
further Bayesian inference derivation:

p
(
χ | Z ,
, ξ, ξ irr

) =
N∏

i=1

D∏

k=1

[
p
(
Xik | ξ jk

)φk ·
(
Xik | ξ irrjk

)1−φk
]

(18)

3 Non-parametric Bayesian inference

In the Bayesian context, the most important step is the deter-
mination of the posteriors for inference. In this section,
we describe a MCMC-based inference approach to learn
the proposed model (recall that MCMC refers to Markov
Chain Monte Carlo methods). The goal of inference is to
approximate the posteriors of parameters which absorb the
information data to update the priors. Thus, we define a hier-
archical Bayesian model and use conjugacy to develop the
appropriate posteriors. The parameters are inferred based on
a MCMC method. The graphical representation is shown in
Fig.1.

3.1 Parameter estimation for�jk and�irr
jk

We consider that the relevant and irrelevant mean parameters
μ jk and μirr

jk follow Gaussian priors with common hyperpa-
rameters mean λ and precision r respectively as follows:

p
(
μ jk | λ, r

) ∼ N (λ, r−1)

p
(
μirr

jk | λirr , r irr
) ∼ N (λirr , (r irr )−1) (19)

where the hyperparameters mean λ and precision r are con-
sidered as common to all components in a specific dimension
k. λ and r are given Gamma and inverse Gamma prior with
the following shape and mean hyperparameters:

p
(
λ
) ∼ N (e, f ) p

(
r
) ∼ γ (g, h) (20)

where λ, λirr , r , r irr have same prior forms and we will omit
replicated representation for saving space. The conditional
posteriors for μ jk and μirr

jk are obtained by combining the
likelihood in Eq. (18) and the priors in Eq. (19).

p
(
μ jk | . . . ) ∝ p

(
μ jk | λ, r

)
p
(
χ | Z ,
, ξ, ξ irr

)

p
(
μirr

jk | . . . ) ∝ p
(
μirr

jk | λirr , r irr
)
p
(
χ | Z ,
, ξ, ξ irr

)

(21)

For the posteriors of hyperparameters λ and r , Eq. (19)
plays the role of likelihood and combined with priors Eq.
(20) to obtain:

p
(
λ | . . . ) ∝ p

(
λ
) M∏

j=1

p
(
μ jk | λ, r

)

p
(
r | . . . ) ∝ p

(
r
) M∏

j=1

p
(
μ jk | λ, r

)
(22)

3.2 Parameter estimation for Sljk, Srjk and Sirrjk

The precision parameters Sl jk , Sr jk and Sirrjk are endowed
with Gamma priors of common hyperparameters β and w

respectively:

p
(
Sl jk | βl , wl

) ∼ γ (βl , w
−1
l )

p
(
Sr jk | βr , wr

) ∼ γ (βr , w
−1
r )

p
(
Sirrjk | β irr , wirr ) ∼ γ (β irr , (wirr )−1) (23)

where the hyperparameters β, w are common to all compo-
nents in specific dimension k. β andw are given Gamma and
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Fig. 1 Graphical model representation of IAGM. Symbols in circles denote random variables; while the ones in squares denote model parameters.
Plates indicate repetition (with the number of repetitions in the lower right), and arcs describe the conditional dependencies between the variables

inverse Gamma priors with the respective shape and mean
hyperparameters:

p
(
β−1) ∼ γ (s, t) p

(
w

) ∼ γ (u, v) (24)

where βl , βr , β irr , wl , wr , wirr have the same prior forms.
The conditional posteriors for Sl jk , Sr jk and Sirrjk are obtained
by combining the likelihood in Eq. (18) and the priors in Eq.
(23) as follows:

p
(
Sl jk | . . . ) ∝ p

(
Sl jk | βl , wl

)
p
(
χ | Z ,
, ξ, ξ irr

)

p
(
Sr jk | . . . ) ∝ p

(
Sr jk | βr , wr

)
p
(
χ | Z ,
, ξ, ξ irr

)

p
(
Sirrjk | . . . ) ∝ p

(
Sirrj | β irr , wirr )p

(
χ | Z ,
, ξ, ξ irr

)

(25)

For the posteriors of hyperparameters β and w, Eq. (23)
plays the role of likelihood and combined with priors Eq.
(24), we can then obtain the following:

p
(
β | . . . ) ∝ p

(
β
) M∏

j=1

p
(
S jk | β,w

)

p
(
r | . . . ) ∝ p

(
w

) M∏

j=1

p
(
S jk | β,w

)
(26)

3.3 Parameter estimation for�

Feature saliency ρ jk has support over [0, 1] and considered
naturally as Beta distribution with common hyperparameters
a and b as following:

p
(
ρ jk | a, b) ∼ Beta (a, b) (27)

where the shape hyperparameters a and b are common to
all components and follows Gamma priors respectively:

p
(
a
) ∼ γ (δ1, δ2) p

(
b
) ∼ γ (ϕ1, ϕ2) (28)

We assume that the latent relevancy parameter φ jk are
following Bernoulli distribution with probability ρ jk , so we
have:

p
(
φ jk | ρ jk) ∼

N∏

i=1

ρ
φi jk
jk (1−ρ jk)

(1−φi jk ) = ρ
n jk
jk (1−ρ

N−n jk
jk )

(29)
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where n jk = ∑N
i=1 Iφ jk=1 represents the amount of feature

k relevant for component j given all of the observations.
Considering Eq. (37) as the likelihood, we can obtain the
conditional posteriors by multiplying the prior in Eq. (35):

p
(
ρ jk | . . .

) ∼ p
(
φ jk | ρ jk)p

(
ρ jk | a, b) (30)

Conditional posteriors can then be obtained by combing
Eq. (27) and Eq. (28) as follows:

p
(
a | . . . ) ∝ p

(
a
) M∏

j=1

p
(
ρ jk | a, b)

p
(
b | . . . ) ∝ p

(
b
) M∏

j=1

p
(
ρ jk | a, b) (31)

3.4 Complete algorithm

Following the inference approach above, we propose a
MCMCbased algorithm for inferringour hierarchicalBayesian
mixture model. Among Monte Carlo methods, Gibbs sam-
pling is one of the most popular methods, and it also
widely used for complicated posteriors sampling. We also
use Metropolis-Hastings algorithm to generate non-standard
posteriors. The Gibbs sequence converges to the joint pos-
terior distribution. The algorithm can be summarized in
Algorithm. 1.

4 Experimental results

In this section, we validate our algorithm on several challeng-
ing experiments; particularly, dynamic textures clustering
and scene categorization. We compare our results with mul-
tiple state-of-the-art methods of these applications. The
hyperparameters chosen are e = μy , f = σ 2, g=2, h= 2

σ 2 ,

s=0.5, t=2, u=0.5, v= 2
σ 2 , δ1=2, δ2=0.5, ϕ1=2, ϕ2=0.5, κ=0.5,

and η=2. μx and σ 2
x are the mean and variance of observa-

tions.

4.1 Dynamic textures clustering

Dynamic textures are the temporal extension of spatial tex-
tures which are defined as sequences of images of moving
scenes that exhibit certain stationarity properties in time (sea-
waves, smoke, foliage, whirlwind) (Doretto et al. 2003).
Dynamic textures have drawn tremendous attention during
the past years due to their application in several domains in
image processing and pattern recognition, such as motion
classification, video registration, and computer games (Fan
and Bouguila 2013, 2015). In our experiment, we apply the

Fig. 2 Sample frames from the DynTex database

proposed IAGMwith simultaneous feature selection for clus-
tering dynamic textures with a representation of LBP-TOP
features.

We carry out our experimentation on the challenging
dynamic textures dataset; DynTex (Péteri et al. 2010), for
evaluating the performance of the algorithm. This dataset
contains over 650 dynamic texture video sequences from
several categories. In our case, we use a subset of video
sequences from 8 different categories: candle, flag, flower,
fountain, grass, sea, smoke and tree. Each category has about
20 video sequences. The sample frames from each category
are shown in Fig. 2. As a preprocessing step, we extract LBP-
TOP descriptors from the selected video sequence. In our
experiment, we adopt the parameter choice of 4,4,4,1,1,1 as
suggested in Zhao and Pietikainen (2007). The chosen set-
ting of the LBP-TOP descriptor achieves a good performance
while it also provides a comparative shorter 48-length feature
vector.

Obtained features are modeled using proposed IAGM
algorithm. In order to evaluate the performance of the pro-
posed method, we compared our approach with four other
methods; infinite Beta-Liouville mixture, infinite general-
ized Dirichlet mixture, infinite Dirichlet mixture, and infinite
Gaussian mixture models. We run these approaches 30 times
and get average results for validating the performance. The
averages of the clustering accuracy can be observed in Table
1. Fig. 3 shows the confusion matrix for the dataset using
IAGMwith feature selection.According to the results, IAGM
with feature selection approach outperforms the other four
methods in terms of the highest categorization accuracy rate
(87.02%). It shows significant improvement compared with
other methods because it could successfully distinguished 6
categories leading to a higher overall accuracy
The results of dynamic texture clustering demonstrates
the advantage of applying mixture models which includes
asymmetry characteristics of observations for modelling
non-standard shape observations. Meanwhile, simultane-
ously performing feature selection allows for the inclusion
of background noise while accurately representing important
features for contributing better performance.
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Algorithm 1 IAGM with feature selection
1: procedure
2: Initialization:
3: Initialize the truncation level K and T
4: repeat:
5: Update the latent relevancy variable φ from Multivariate Bernoulli distribution with probability p

(
φi jk = 1, Zi = j | Xi

)
in Eq. (16).

6: Update mixture parameters μ, μirr , Sl , Sr , Sirr and
−→ρ from conditional posteriors in Eq. (21), Eq. (25) and Eq. (30).

7: Update hyperparameters λ, r , β,w, a, b from conditional posteriors and update Dirichlet process concentration parameter α from conditional
posteriors in Eq. (22), Eq. (26) and Eq. (31) and Eq. (11).

8: Update the latent allocation variable Z in Eq. (14).
9: Update the component number M .
10: The convergence criteria is reached when the difference of the current value of joint posteriors and the previous value is less than 10−4.

Otherwise, repeat step 1-5 until convergence.
11: until convergence

Table 1 Average accuracy of different algorithms for dynamic textures
clustering

Approach IGM IDM IGDM IBLM IAGM

Acc (%) 74.87 77.75 80.62 83.37 88.79

Fig. 3 Confusion matrix of the IAGM with feature selection for the
DynTex database

4.2 Scene categorization

Humans are proficient at perceiving, recognizing and under-
standing natural scenes. It have attracted more and more
interests to develop machines to simulate human vision
functions. The representation of scene images has drawn con-
siderable interests in recent years. In this section, we apply
our proposed algorithm to the challenging scene categoriza-
tion task. Thus, we divide our approach into three parts:
feature extraction, image representation, and scene classi-
fication.

In this application, we use the UIUC sports event dataset
(Li and Fei-Fei 2007) to validate the performance of our algo-

Fig. 4 Confusion matrix of the the IAGMwith feature selection for the
UIUC sport event dataset

rithm. This dataset consists of 8 different sport event classes:
rowing (250 images), badminton (200 images), polo (182
images), bocce (137 images), snowboarding (190 images),
croquet (236 images), sailing (190 images), and rock climb-
ing (194 images). Fig. 5 demonstrates its diverse nature.
We represent each image by a collection of local image
patches. Particularly, we adopt scale-invariant feature trans-
form (SIFT) descriptors of 16 × 16 pixel patches computed
over a grid with spacing of 8 pixels. Then, we employ bag
of visual words (BoVW) approach to have an overall rep-
resentation of each image. We then use k-means algorithm
to cluster our training dataset in a vocabulary of V visual
words. For each SIFT keypoint, it will be allocated to the
nearest vocabulary in codebook. The points in the image that
can be approximated by each of the visual words. Thus, each
image can be represented as a frequency histogram over the
V visual words. Then, we use IAGM with feature selection
model to classify the processed data. For each sport event
class, we randomly select 70 images as a training dataset and
60 images as a testing dataset.We run our proposed algorithm
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Table 2 Average accuracy of different algorithms for scene categorization

Approach GMM-EM GMM-RPEM Probabilistic SPM BOW MLE-Scene MM-Scene IAGM

Acc (%) 69.51 69.76 63.88 66.00 71.57 69.87 71.70 73.33

Fig. 5 Sample frames from UIUC sport event dataset. Our samples
show the diversity of background and complexity of information

30 times to obtain the average accuracy results for compari-
son.
In order to demonstrate the advantages of our algorithm,
we compared our model with a number of state-of-the-art
approaches within similar area. These approaches include
Gaussian mixture model with Expectation Maximization
algorithm (GMM-EM) (Law et al. 2004), Gaussian mix-
ture model with Rival Penalized Expectation Maximization
(GMM-RPEM) (Cheung and Zeng 2006), GIST (Oliva and
Torralba 2001), multi-class supervised Latent Dirichlet Allo-
cation andmulti-class supervised Latent Dirichlet Allocation
with annotations (probabilistic) (Wang et al. 2009), Spa-
tial pyramid matching (SPM) (Lazebnik et al. 2006), bag
of keypoints (BOK) (Csurka et al. 2004), maximum likeli-
hood estimation Scene (MLE-Scene) andMax-Margin Scene
(MM-Scene) (Zhu et al. 2010). The evaluation results are
shown at Table 2. Fig. 4 displays the confusion matrix for
IAGM applied on sport dataset.
We can observe from our results that our proposed IAGM
with simultaneous feature selection outperforms other
approaches under consideration and provides better average
accuracy results for the task of scene categorization.

5 Conclusion

In this paper, we present a Dirichlet process mixture model
capable of approximating asymmetric Gaussian distributed
data, and automatically determining components number,
and simultaneously performing feature selection for cluster-
ing high-dimensional data. The assumption of asymmetric
Gaussian is supported by the fact that natural scene usually
not distributed in Gaussian distribution. Dirichlet process
allows components number grows to infinite. Infinite mix-
ture model offers flexible representation and straightforward
interpretation. ThroughBayesian framework, identifying rel-

evant feature and parameter inference are unified into the
same framework.We have demonstrated the excellent perfor-
mance of our algorithm on both dynamic textures clustering
and scene categorization tasks.

Although MCMC based Bayesian inference provides a
clear posterior sampling approach but it also bring heavier
computation cost. A possible future work could be the devel-
opment of a variational inference based learning approach
for the proposed data which is capable of involving massive
data and saving tremendous time.
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Appendix

Based on the hyperparameters setting chosen in Section 4,we
deduce the posteriors for all of the parameters. For parameter
α, the posteriors depend only on the number of observations
N and the number of components M , and not on how the
distributions are distributed among the mixtures:

p
(
α | k, n) ∝ αM− 3

2 exp(− 1
2α )�(α)

�(N + α)
(32)

The complete posteriors for μ, μirr , λ and r are obtained as
follows:

p
(
μ jk | . . .

) ∝ N
(

(rλ + Sl jk
∑

i :φi jk=1,Xik<μ jk

Xik

+ sr jk
∑

i :φi jk=1,Xik≥μ jk

Xik)/(r + psl jk + (n j − p)sr jk),

1

r + psl jk + (n j − p)sr jk

)
(33)

p
(
μirr

jk | . . .
) ∝ N

(∑
i,φi jk=0 x

irr
ik Sirrjk + r irrk λirrk

r irrk + nirrj Sirrjk
,

1

r irrk + nirrj Sirrjk

)
(34)
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p
(
λ | μ1k, . . . , μMk, r

) ∝ N
(
r
∑M

j=1 μ jk + μxσ
−2
x

σ−2
x + Mrk

,

1

σ−2
x + Mrk

)
(35)

p
(
r | μ1k, . . . , μMk, λ

) ∝ γ

(
M + 1

2
, (36)

2

σ 2
x + ∑M

j=1(μ jk − λk)2

)
(37)

The complete posteriors for sl jk , sr jk , sirrjk , β and w are
obtained as follows:

p
(
Sl jk | X , μ j , Sr j , βl , wl

)

∝ exp

[
−

Sl jk
∑n

i :Xik<μ jk
(xik − μ jk)

2

2
− wlkβlk Sl jk

2

]

(38)

p
(
Sirrj | X , μirr

j , β irr , wirr ) ∝ �

(Nirr
jk β irr

k

2
,

2

β irr
k wirr

k + ∑
i,φi jk=0(Xik − μirr

jk )2

)
(39)

p
(
βl | Sl1k, . . . , SlMk, wl) ∝ �(

βl

2
)−Mexp

(
− 1

2βl

)

(
βl

2
)
Mβl−3

2

M∏

j=1

(wl Sl jk)
βl
2 exp

(
− βlwl sl jk

2

)
(40)

p
(
wl | Sl1k, . . . , SlMk, βl) ∝ �

(
Mβl + 1

2
,

2

σ−2
y + βl

∑M
j=1 Sl jk

)
(41)

Nre
jk and Nirr

jk are the number of observations allocated to
mixture j with feature k considered as relevant and irrelevant,
respectively.

The complete posteriors for feature saliency φ with
gamma parameters a and b, with n jk the number of feature
k relevant for component j can then be expressed by:

p
(
ρ jk | . . .

) ∝ Beta
(
a + n jk, b + N − n jk

)
(42)

p
(
a | . . . ) ∝ ae− a

2

(
�(a + b)

�(a)

)M M∏

j=1

ρa−1
jk

p
(
b | . . . ) ∝ be− b

2

(
�(a + b)

�(b)

)M M∏

j=1

(1 − ρ jk)
a−1 (43)
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