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Abstract
Fuzzy graphs are an individual of application tools in the area of mathematics, which permit the users to define the relative
between concepts because the wildlife of fuzziness is satisfactory for any situation. They are helpful to give more exactness
and suppleness to the classification as associated with the traditional models. A topological structure is a set model for graphs.
The main purpose of this paper is to introduce a new kind of fuzzy topological structures in terms of fuzzy graphs called fuzzy
topological graphs due to a class of fuzzy subsets, and some of their properties are investigated. Also, a new procedure to
calculate the number of edges in fuzzy graphs will be defined. Further, we consider the concept of a homeomorphic between
fuzzy topological graphs as a fuzzy topological property that can be used to prove the isomorphic between fuzzy graphs.
Moreover, an algorithm based on the proposed operations that build some fuzzy topological graphs will be presented. Finally,
we give a new method to explain the homeomorphic between some fuzzy topological graphs which will be applied in smart
cities.

Keywords Fuzzy sets · Fuzzy graphs · Fuzzy topology · Isomorphic fuzzy graphs · Smart cities

1 Introduction

In general, graphs arementioned as a style of relative between
the constructions and substances in the state achieved accord-
ing with the material. Graphs are suitable to prompt the
structure which delivers us information to operate and appre-
ciate the conduct over the ideas verified on it. Graphs have
two significant groups specifically vertices which are linked
by a relation said to be edges. When there is a doubt in
the choice of each of the vertices and edges, it is necessary
to describe it under the situations of fuzzy graphs. A sym-
metric binary relation on a nonempty set of vertices V in
a graph G offers the family of edges E . Similarly, a sym-
metric binary relation is specified on fuzzy subset which
induces to get fuzzy graph model. The notion of fuzzy sets
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and their relations was initiated by Zadeh (1965) which dis-
played the significance of the ethics that lies between the
binary digits 0 and 1. These ideas presented ascent to dis-
cover the wildlife of uncertainty. It may be also denoted as
imprecision, uncertainty, etc. The ground-breaking concept
of Zadeh has found many applications in many areas, includ-
ing chemical industry, telecommunication, decision-making,
networking, computer science, and smart city (Kozae et al.
2019; Quijano-Sanchez et al. 2020; Ma et al. 2020).

Kaufmann (1973) introduced the concept of fuzzy graphs
(FGs, for short), and some of their remarks are discussed
by Bhattacharya (1987). Additional progress was made by
Rosenfeld (1971, 1975) who measured the fuzzy relation on
fuzzy sets and presented a new approach for fuzzy graphs
combination of a graph sense in fuzziness. He considered
some graph concepts such as a fuzzy tree, a fuzzy cycle,
fuzzy bridges, etc., and some properties on fuzzy graphs
are presented. Several real-world phenomena gave the inspi-
ration to describe FGs. Ghorai and Pal (2016); Mathew
and Mordeson (2017) and Li et al. (2019) developed the
structure of fuzzy graphs corresponding to several fuzzy
graph concepts. Bhutani (1989) introduced the concept of
a weak isomorphism, a co-weak isomorphism and an iso-
morphism between fuzzy graphs. Mordeson introduced the
concept of fuzzy line graphs in Mordeson (1993). Morde-
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son and Nair (2000) defined fuzzy graph complement, and
Sunitha and Vijayakumar (2002) further studied it. Recently,
they studied some applications of fuzzy graphs in Morde-
son and Mathew (2019). Samanta and Pal introduced several
types of fuzzy graphs such as fuzzy planar graphs (Samanta
and Pal 2015), fuzzy competition graphs Samanta and Pal
(2013) and Samanta and Pal (2015); Samanta et al. (2015),
fuzzy tolerance graphs (Samanta and Pal 2011a, b), and fuzzy
threshold graphs (Samanta and Pal 2011a, b). Akram and
Luqman (2020) described fuzzy hypergraphs and relevant
extensions. Naz and Ashraf (2018) introduced the notion of
Pythagorean fuzzy graphs (PFGs, for short). (Akram et al.
2018a, b) proposed the idea of the graphs under PFGs envi-
ronment. The idea of complex fuzzy graphs (CFGs, for short)
is initiated by Thirunavukarasu et al. (2016). The novel def-
inition of complex neutrosophic hypergraphs was presented
by Luqman and Akram (2019). Yaqoob et al. (2019) intro-
duced the concept of a complex intuitionistic fuzzy graphs
(CIFGs, for short) with the implementation of cellular net-
work provider enterprises. Furthermore, Akram (2019) gave
the notion of complex Pythagorean fuzzy graphs (CPFGs,
for short). Abdul-Jabbar et al. (2009) introduced the con-
cept of fuzzy dual graphs (abbr. FDGs) and studied some
of its properties. Also, (Alshehri and Akram 2014) preceded
the idea of intuitionistic fuzzy planar graphs (abbr. IFPGs).
They extended the IFSs notion to PGs. Further, Akram et al.
(2018a, b) investigated the concept of Pythagorean Fuzzy
Planar Graphs (abbr. PFPGs). Akram et al. (2020). Also,
they presented the notion of complex Pythagorean fuzzy pla-
nar graph (CPFPG, for short) (Akram and Naz 2019). Many
structures can be represented by graphs (El Atik et al. 2020)
such as self-similar fractals (El Atik and Nasef 2020) which
may be useful to study fractals in physics (El-Naschie 2006).

Topology is a branch of geometry called rubber sheet
geometry. It deals with the properties of things that does
not depend on the dimension, which means that it allows
increases and decreases, but without cutting things. It has
many applications on various fields of research such as
machine learning, data analysis, data mining, and quantum
gravity (Hofer et al. 2017; Lum et al. 2013; Nicolau et al.
2011; Sardiu et al. 2017). Homeomorphisms are the iso-
morphisms of the category of topological spaces that play
an important role in the theory. If there exists a homeomor-
phism among two topological spaces, then these spaces have
the same topological properties. Chang (1968) defined the
concept of fuzzy topological space in 1968 and generalized
some basic topological notions, such as open set, closed set,
continuity, and compactness on fuzzy topological spaces.
After that, Lowen investigated some other description of a
fuzzy topological space by changing some topological prop-
erties (Lowen 1976, 1977). In addition, Coker introduced
the notion of intuitionistic fuzzy topological space and stud-
ied some analogue versions of certain classical topology

concepts, such as continuity and compactness (Coker and
Haydar Es 1995; Coker 1997). Some scholars had an interest
in fuzzymetric spaces (see, for example, Kramosil andMich-
lek 1975). Moreover, some researchers studied the notion of
fuzzy soft topological space and its applications in decision-
making (Riaz and Hashmi 2017, 2018).

Based on this development, the paper is built as follows:
the preliminaries and concepts will be awarded in this object
in Sect. 2. The main work is studied in Sect. 3 with defi-
nitions and representations for a collection of fuzzy sets by
fuzzy graphs. Moreover, some types of fuzzy topological
structures will be generated in terms of fuzzy graphs and
said to be fuzzy topological graphs. The outline of Sect. 4 is
to construct some algebraic operations on fuzzy topological
graphs, and the number of edges will be calculated by a given
algorithm in Sect. 5. Section 6 puts forward a novel idea to
construct an isomorphism between graphs, and the homeo-
morphic between fuzzy topological graphs will be discussed.
In Sect. 7, the factors of smart cities will be contrived into
two homeomorphic fuzzy topological graphs which may be
used in decisionmaking. Section8gives the conclusionof our
models and points out some possible lines for future research.
Finally, the proofs are given separately in “Appendix,” to
facilitate the reading of this paper.

2 Preliminaries

Throughout this paper, X is a nonempty fuzzy set. A collec-
tion τ of subsets of X is called a fuzzy topology on X if 1
and 0 belongs to τ , the finite intersection of any two fuzzy
sets in τ belongs to τ , and the union of any number of fuzzy
sets in τ belongs to τ .

Definition 1 (Harary 1972) A graph G is an ordered pair
(V , E), where V is a set vertices and E is a set edges. Two
vertices x and y in the undirected graph G are said to be
adjacent if {x, y} is an edge. A simple graph is an undirected
graph that has no loops between any two different vertices
and no more than one vertex.

Definition 2 (Bondy and Murty 1975) Two graphs G1 and
G2 are homomorphic if F : G1 → G2 is available, such
that for each v1, v2 ∈ V (G1), and {v1, v2} ∈ E(G1), then
{F(v1), F(v2)} ∈ E(G2) is used. Also, G1 and G2 are iso-
morphic if there exists a bijective function F : V (G1) →
V (G2), such that for each two adjacent vertices u and v in
G1, then F(u) and F(v) are also adjacent in G2.

Definition 3 (Bhattacharya 1987) A fuzzy graphG = (σ, μ)

is a pair of functions together with underlying vertex set V
and edge set E , where σ : V → [0, 1] and μ : V × V →
[0, 1] such that μ(uv) ≤ σ(u)∧σ(v) for all u, v ∈ V . Here,
σ(u) ∧ σ(v) argues the minimum among σ(u) and σ(v).
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Definition 4 (Nagoor Gani and Malarvizhi 2008) Let G =
(σ, μ) be a fuzzy graph. The degree of a vertex u is dG(u) =
∑

u �=v

μ(uv).

Definition 5 (Bhutani 1989) A homomorphism of fuzzy
graphs h : G → Ǵ is a map h : S → Ǵ which satisfies
σ(x) ≤ σ́ (h(x)) ∀ x ∈ S and μ(x, y) ≤ μ(h(x), h(y)) ∀
x, y ∈ S.

Definition 6 (NagoorGani andMalarvizhi 2008)An isomor-
phism of fuzzy graphs h : G → Ǵ is a map h : S → Ś
which is a bijective that satisfies σ(x) = σ́ (h(x)) ∀ x ∈ S
and μ(x, y) = μ(h(x), h(y)) ∀ x, y ∈ S.

Theorem 1 (Nagoor Gani and Malarvizhi 2008) The order
and size for any two isomorphic fuzzy graphs are the same.

Definition 7 (Chang 1968) Let X̃ be a fuzzy set and τ be a
collection of fuzzy subsets of X̃ such that

(i) X̃ , φ̃ ∈ τ ,
(ii) T̃1, T̃2 ∈ τ implies T̃1 ∩ T̃2 ∈ τ ,
(iii) T̃i ∈ τ implies

⋃
i∈I T̃i ∈ τ for i ∈ I .

Then, (X̃ , τ ) is a fuzzy topological space. The elements of τ

are said be open fuzzy sets. A fuzzy subset Ã of X̃ is called
fuzzy closed iff a complement of Ãwith respect to X̃ is fuzzy
open.

Definition 8 (Chang 1968) Let λ be a fuzzy subset of X . A
collection τ of fuzzy subsets of λ satisfying:

(i) k ∩ λ ∈ τ , ∀ k ∈ I ,
(ii) μi ∈ τ , ∀ i ∈ Δ implies

⋃{μi : i ∈ Δ} ∈ τ ,
(iii) μ, ν ∈ τ implies μ ∩ ν ∈ τ .

is called a fuzzy topology on λ. The pair (λ, τ ) is called a
fuzzy topological space. Members of τ are called fuzzy open
sets, and their complements with respect to λ are called fuzzy
closed sets of (λ, τ ).

3 A class of fuzzy sets and its fuzzy graphs

In this section, we introduce a new concept of parallel classes
of fuzzy sets. Each class can be represented to a fuzzy graph,
and some algebraic operations on these fuzzy graphs will be
established.

Definition 9 Let X be a nonempty universe set, and F(X)

will denote to the set of all fuzzy sets of X . Let C1, C2 ⊆
F(X), we say C1 is parallel to C2 (say, X ∼ Y ), if there
exists a bijective fuzzy function F : X → Y such that for
each c1 ∈ C1, and c2 ∈ C2 and F(c1) = c2. Let X = Y . We
say that C1 is parallel with C2 if there exists a transformation
F : X → X , such that F(C1) = C2.

Example 1 Let X = {0.7

x1
,
0.2

x2
,
0.8

x3

}
be a fuzzy set.Consider

C1 =
{{

0.8

x3

}

,

{
0.7

x1
,
0.2

x2

}

,

{
0.8

x3
,
0.7

x1

}}

and

C2 =
{{

0.7

x1

}

,

{
0.2

x2
,
0.8

x3

}

,

{
0.7

x1
,
0.2

x2

}}

.

Then, C1 and C2 are parallel, since there exists a bijective
fuzzy function F : X → X , such that

F

({
0.8

x3

})

=
{
0.7

x1

}

,

F

({
0.7

x1
,
0.2

x2

})

=
{
0.2

x2
,
0.8

x3

}

and

F

({
0.8

x3
,
0.7

x1

})

=
{
0.7

x1
,
0.2

x2

}

.

In the following, every class of fuzzy sets can be repre-
sented by a general fuzzy graph through a new operation
∧ between classes. Any fuzzy graph G with only one edge
can be represented by a class {A,B} such that A ∧ B is a
singleton and so |A ∧ B| = 1. If G contains r-edges, then
|E(G)| = |A∧B| = r , where |A| refers to the cardinality of
a setA. So, every graph can be illustrated by distinct classes
that will be stated in Example 2.

Example 2 The classes of fuzzy sets

C1 =
{

B =
{
0.3

x1

}

,C =
{
0.5

x2

}

,

A =
{
0.3

x1
,
0.5

x2

}}

;

C2 =
{

E =
{
0.3

x1
,
0.1

x2
,
0.4

x3

}

, F =
{
0.5

x4
,
0.3

x5

}

,

D =
{
0.4

x3
,
0.5

x4

}}

;

C3 =
{

H =
{
0.4

x3
,
0.5

x7

}

, K =
{
0.5

x8
,
0.3

x9
,
0.8

x10

}

,

J =
{
0.4

x3
,
0.8

x10
,
0.5

x12

}}

,

represent the same fuzzy graphs as shown in Fig. 1.

Definition 10 If C = {Ci : i ∈ I } is the set of all classes
of a fuzzy set X . Then, Ci can be represented by the same
fuzzy graph G. The graph number of a fuzzy graph G equals
{| ∨ Ci | : i ∈ I }. In other words, a graph number of G equals
m, meaning there is no number r < m such that | ∨

i∈I
Ci | = r .
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Fig. 1 A simple fuzzy graph G

Example 3 (Continued for Example 2). We have

∨
C1 =

{
0.3

x1
,
0.5

x2

}

,

∨
C2 =

{
0.3

x1
,
0.1

x2
,
0.4

x3
,
0.5

x4
,
0.3

x5

}

and

∨
C3 =

{
0.4

x3
,
0.5

x7
,
0.5

x8
,
0.3

x9
,
0.8

x10
,
0.5

x12

}

.

The number of a fuzzy graph |∨ C1| (resp. | ∨ C2| and
| ∨ C3|) for C1 (resp. C2 and C3) equals 2 (resp. 5 and 6).

In the following, we show that every fuzzy graph G can
be illustrated by a class of fuzzy sets. We reformulate the
operation ∧ to an operator N for points of fuzzy graphs.

Definition 11 Let G be a fuzzy graph and vi , v j ∈ V (G).
If the vertex vi is represented by a fuzzy set A and v j is
represented by a fuzzy set B in a fuzzy set graph G, then
N (vi , v j ) is defined by |A ∧ B|. It is clear that N (vi , X) =
|A| and N (v j , X) = |B|, where X is a universe fuzzy set of
vertices for G.
Example 4 (Continued for Example 3). IfA=

{
0.3
x1

}
and B =

{
0.3
x1

, 0.5
x2

}
, then N (A,B) = 1, for A ∧ B =

{
0.3
x1

}
and

|A ∧ B| = 1.

Theorem 2 If G1 and G2 are two fuzzy graphs which repre-
sented by two parallel classes C1 and C2, respectively, then
G1 and G2 are an isomorphic.

Proof The proof is found in “Appendix.” ��
The converse of Theorem 2 may not be true, in gen-

eral. Because every fuzzy graph can be represented by many
classes, it may not be parallel as shown in Example 5.

Example 5 Assume that

C1 =
{

B =
{
0.3

x1

}

,C =
{
0.5

x2

}

,

A =
{
0.3

x1
,
0.5

x2

}}

; and

C2 =
{

E =
{
0.3

x1
,
0.1

x2
,
0.4

x3

}

, F =
{
0.5

x4
,
0.3

x5

}

,

Fig. 2 A simple fuzzy graph G

Fig. 3 Disjoint graph fuzzy sets

Fig. 4 Inclusion graph fuzzy
sets

D =
{
0.4

x3
,
0.5

x4

}}

.

Then, fuzzy graphs corresponding to C1 and C2 are iso-
morphic that are shown in Fig. 2 while fuzzy graphs cannot
be represented by two parallel classes.

In the following,we describe how to generate a fuzzy class
from a simple fuzzy graph G.
Definition 12 In a fuzzy graph G, we have

(i) the universe fuzzy set X can be represented by a fuzzy
subset of natural numberN. The class of a universe fuzzy
vertex set X is adjacent with each vertex set in its fuzzy
set graph.

(ii) any isolated point can be represented by 0 in a new defi-
nite class C.

Now, we explain that the class of fuzzy sets in Definition
12 which represent a fuzzy graph.

Let A and B be two nonempty fuzzy sets and |A| = m,
|B| = n. The fuzzy graphs will be represented by a fuzzy
class {A,B,A ∧ B,A ∨ B} that are given by three cases:

Case 1: ifA∧B = 0, then the fuzzy graph G is shown in
Fig. 3.

Case 2: IfA ≤ B, then |A∧B| = |A| and |A∨B| = |B|.
The fuzzy graph G is shown in Fig. 4.
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Fig. 5 Intersection graph fuzzy sets

Case 3: IfA∧B �= 0 ,|A| �= |B| and |A∧B| = r , where
r ∈ N , then the fuzzy graph G is shown in Fig. 5.

Remark 1 Every graph fuzzy set for a subgraph H of G is a
fuzzy subset from a graph fuzzy set of G. Also, by Definition
12, each graph fuzzy set can also be represented by a class
P(N), where P(N) denotes to the power fuzzy set of N.

4 Some algebraic operations on fuzzy
topological graphs

In this section,weuse fuzzy set graphs to generate fuzzy topo-
logical spaces. We can also say it fuzzy topological graphs
or fuzzy topological structures. The fuzzy set graph will be
represented by P(N). Some algebraic operations on fuzzy
topological graphs such as ∨, ∧ and ≤ will be defined on
vertices by

(i) vA1 ∨ vA2 ∨ vA3 ∨ · · · = vA1∨A2∨A3∨···.
(ii) vA ∧ vB = vA∧B.
(iii) vA ≤ vB iff A ≤ B.

Definition 13 A fuzzy topology on a fuzzy set X =
{

a
x1

,

b
x2

, c
x3

, . . . , d
xn

}

can be established from a fuzzy graph G by

each class in X being a vertex in G and number of edges of G
being the number of elements which are determined by the
intersection of classes of X and the degree of edges is the
degree of each vertex in its intersection. In a fuzzy simple
graph, if the intersection between two classes is more than
one element, then we choose a maximum degree between
them.

Remark 2 If there are no loops in a fuzzy pseudographs P ,
we have a discrete fuzzy topological graph, say D. Also, in
simple fuzzy graphs, we draw only one edge between each
of the adjacent vertices in a discrete fuzzy topological graph.

Theorem3 declared some fundamental properties for Def-
inition 13. Its proof is found in “Appendix” section.

Theorem 3 (i) The number of edges |Ep(G)| of a fuzzy pseu-
dograph G of the fuzzy set X =

{
a1
x1

,
a2
x2

,
a3
x3

, . . . ,
a4
xn

}

equals n2n−2(2n−1 − 1) + n2n−1.
(ii) The number of edges |Ed(G)| of a discrete fuzzy graph

arising from a fuzzy pseudograph, i.e., by deleting loops
in P equals n2n−2(2n−1 − 1).

(iii) The number of edges |Es(G)| of a fuzzy simple graph
arising from the fuzzy discrete graph, i.e., by drawing
only one edge joint two adjacent vertices in D equals
1
2 (2

2n − 2n − 3n + 1).

We apply Theorem 3 in Examples 6 and 7.

Example 6 The number of edges of a pseudograph, a discrete
graph, say D, and a simple graph, say S, of a fuzzy set X ={
0.5
x1

, 0.4
x2

, 0.2
x3

}

for G is given by

|EP (G)| = 3.23−2
(
23−1 − 1

)

+3.23−1 = 3.2.3 + 16 = 18 + 12 = 30,

|ED(G)| = 3.23−2(23−1 − 1) = 3.2.3 = 18,

|ES(G)| = 1

2
(26 − 23 − 33 + 1) = 15,

respectively.

Example 7 From Theorem 3 and Example 6, we have
|EP (G)| = 14.9; |ED(G)| = 5.5 and |ES(G))| = 4.7.

A fuzzy topological graph from a fuzzy graph will be
formed via Theorem 4.

Theorem 4 Let G be a fuzzy graph that satisfies the condi-
tions

(i) G contains only one isolated vertex v0.
(ii) G contains a vertex v adjacent with each vertex in

G\{v0} and μR(vi , v) ≤ μR(vi , X) ≤ μR(v, X), for
every vi ∈ G\{v0}.

(iii) For every two distinct vertices vi ,v j ∈ V (G), vi ∨ v j ∈
V (G) and vi ∧ v j ∈ V (G). Then, the class τ of vertices
is a fuzzy topological graph.

Proof The proof is found in appendix. ��
Now, we use the fuzzy topological graph τ to calculate

the number of edges in G which can be shown in Theorem 5.

Theorem 5 The number of edges of a fuzzy topological graph
is represented by a fuzzy topology

τ =
{

0,

{
a

x1

}

,

{
a

x1
,
b

x2

}

, . . . , 1
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Fig. 6 A fuzzy topological
graph for 3 points

=
{
a

x1
,
b

x2
, . . . ,

d

xn

}}

.

Proof The proof is found in “Appendix.” ��
To explain results of Theorems 4 and 5, we present some

fuzzy topological structures in Examples 8 and 9.

Example 8 Let X =
{
0.4
x1

, 0.6
x2

, 0.2
x3

}

with a fuzzy topological

space

τ =
{

D = 0, A =
{
0.4

x1

}

,

B =
{
0.4

x1
,
0.6

x2

}

,

C =
{
0.4

x1
,
0.6

x2
,
0.2

x3

}}

.

The total degree of edges of a fuzzy topological graph
with 3 vertices equals 1.8. (see Fig. 6).

Example 9 Let Y =
{
0.4
x1

, 0.6
x2

, 0.2
x3

, 0.5
x4

}

with a fuzzy topo-

logical space

τ =
{

E = 0, A = { 0.4x1 }, B = { 0.4x1 , 0.6
x2

}, C =

{ 0.4x1 , 0.6
x2

, 0.2
x3

}, D = { 0.4x1 , 0.6
x2

, 0.2
x3

, 0.5
x4

}
}

.

The total degree of edges of a fuzzy topological graph
with 4 vertices equals 4.4. (see Fig. 7).

Remark 3 Every fuzzy topological graph can be illustrated by
a fuzzy graph, but the converse may not be true, in general.
So, Examples 10 and 11 are given.

Example 10 Let G be a fuzzy graph in Fig. 8. We construct a
fuzzy topological graph τ by the following procedures:

An isolated vertex v f is represented by 0; the vertex va
and vb or one of them can be considered as a vertex adjacent
with all vertices except v f . Take va as a vertex V represented

by a set 1 =
{
0.4
x1

, 0.3
x2

, 0.5
x3

, 0.7
x4

}

. Since ve ∧ V = 1, then ve

Fig. 7 A fuzzy topological graph for 4 points

Fig. 8 A fuzzy graph which is a fuzzy topological graph

is represented by e =
{
0.4
x1

}

. At vd ∧ V = 2, vd will be

represented by d =
{
0.4
x1

, 0.3
x2

}

. Also, at vc ∧ V = 2, vc will

be represented by c =
{
0.4
x1

, 0.5
x3

}

. Continuing in the same

manner, vb will be represented by b =
{
0.4
x1

, 0.3
x2

, 0.5
x3

}

and va

will be formed by

{
0.4
x1

, 0.3
x2

, 0.5
x3

, 0.7
x4

}

, for vb ∧ V < v ∧U ,

for all v in G.
Therefore, τ =

{

0, { 0.4x1 }, { 0.4x1 , 0.3
x2

}, { 0.4x1 , 0.5
x3

}, { 0.4x1 , 0.3
x2

,

0.5
x3

}, 1 = { 0.4x1 , 0.3
x2

, 0.5
x3

, 0.7
x4

}
}

is a fuzzy topology on X . We

also call τ is a fuzzy topological graph of G.

Example 11 The graph G in Fig. 9 is not fuzzy topologi-
cal graph. Because of deg(va) = 4, where deg denotes the
degree of vertex va , deg(vb) = deg(vc) = 3. Now, va will be

represented by X =
{
0.4
x1
, 0.3

x2
, 0.5

x3
, 0.7

x4

}

, vb will be formed

by a set, say b =
{
0.3
x2

}

, and vc is given by a set, say c =
{
0.5
x3

}

. Although vb ∧ vc = 1, we have

{
0.4
x2

}

∧
{
0.5
x3

}

= 0.
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Fig. 9 A fuzzy graph which is
not a fuzzy topological graph

Therefore, τ =
{

, 1 = { 0.4x1 , 0.3
x2

, 0.5
x3

, 0.7
x4

}, { 0.3x2 }, { 0.5x3 }
}

is

not a fuzzy topology, for

{
0.3
x2

}

∨
{
0.5
x3

}

=
{
0.3
x2

, 0.5
x3

}

/∈ τ .

5 Fuzzy topological graphs algorithm

In this section, we give an algorithm that describes fuzzy
graphs and their fuzzy topological graphs. In thisway,we cal-
culate the dimension which is used to get a number of edges
for fuzzy graphs. In this algorithm, d denotes to dimension,
|V (G)| = n and |A| = m, for any A ⊆ V (G).

This algorithm can be illustrated through the following
flowchart in Fig. 10.

6 Isomorphic between fuzzy topological
structures

In this section, we study the isomorphic between fuzzy
graphs, which is a transformation in graph theory. Through
this isomorphic, we study the homeomorphic between fuzzy
topological graphs which is stated in Section 2. The follow-
ing examples discuss special types of fuzzy graphs such as a
fuzzy Petersen graph in Fig. 11 and others in Fig. 12.

Example 12 The isomorphic between fuzzy topological gra-
phs is shown in Fig. 11. From Table 1, we have a class

C =
{

u1={σ(x1)
x1

,
σ (x2)
x2

,
σ (x3)
x3

}, u2 = {σ(x1)
x1

,
σ (x4)
x4

,

σ (x5)
x5

}, u3 = {σ(x4)
x4

,
σ (x6)
x6

,
σ (x7)
x7

}, u4 = {σ(x6)
x6

,
σ (x8)
x8

,
σ (x9)
x9

}, u5 = {σ(x3)
x3

,
σ (x9)
x9

,
σ (x10)
x10

}, u6 = {σ(x2)
x2

,
σ (x12)
x12

,
σ (x13)
x13

}, u7 = {σ(x5)
x5

,
σ (x14)
x14

,
σ (x15)
x15

},= u8 {σ(x7)
x7

,
σ (x11)
x11

,
σ (x12)
x12

}, u9={σ(x8)
x8

,
σ (x13)
x13

,
σ (x14)
x14

}, u10={σ(x10)
x10

,
σ (x11)
x11

,

σ (x15)
x15

}
}

,

which represents a fuzzy graph G1. By the same manner,
we have the same class by Table 2, which represents a fuzzy
graph G2. Table 3 proves the homeomorphic between fuzzy
topological graphs of G1 and G2.

Since there are a homeomorphic between fuzzy topolog-
ical graphs in Table 3, G1 and G2 are isomorphic in Fig. 11.

Example 13 Let G1 and G2 be two fuzzy graphs which are
shown in Fig. 12. From Tables 4 and 5, we have a fuzzy
topological graph

τ =
{

u0 = 0, u1 = { 0.4x1 }, u2 = { 0.3x2 }, u3 = { 0.6x3 }, u4 =
{ 0.4x1 , 0.3

x2
}, u5 = { 0.4x1 , 0.6

x3
}, u6 = { 0.3x2 , 0.6

x3
}, u7 = 1 = { 0.4x1 ,

0.3
x2

, 0.6
x3

}
}

, for fuzzy graphs G1 and G2. We prove that G1 is
an isomorphic with G2, in Table 6.

Since there are a homeomorphic between fuzzy topolog-
ical graphs in Table 6, G1 and G2 are isomorphic in Fig. 12.

7 Application on smart city

Smart cities are visualized as patterns of tools through several
rulers that are linked through several networks which deliver
continuous information viewing the activities of societies
and materials via the stream of conclusions about physical
and social formula of the city, and this is shown in Fig. 13
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Fig. 10 A flowchart for the given algorithm

Fig. 11 Two isomorphic fuzzy graphs G1 and G2

(see Kumar et al. 2020; Vandercruysse et al. 2020; Wes-
traadt and Calitz 2020; Lara Sánchez et al. 2020; Wang
et al. 2020). De Santis et al. (2014) initiated the process of
city transformation depending on the commune combina-
tion of governance, technological, transitional components,
and institutional. Moreover, a greatest important element for
building smart cities are organization, policy, governance,
technology, people communities, economy, built infrastruc-
ture, and natural environment as shown in Fig. 14.

In this section, we make a restructuring for the factors
which build smart cites in terms of a connected graph, say

G1. The link between factors in Fig. 14 can be substitutedwith
a non-closed connected path as shown in Fig. 15. A graph G1
consists of a set of vertices V (G1) = {v0, v1, . . . , v8} and 15
edges which link the vertices with each other. The vertices
of G1 refer to Smart city (resp., technology, organization,
policy, built infrastructure, economy, people communities,
governance, natural environment). G1 is a connected fuzzy
topological structure. We apply Examples 12 and 13 to have
an isomorphic fuzzy topological structure, say G2, in Fig. 16.
G2 consists of 8 vertices V (G2) = {u0, u1, . . . , u8}, and 15
edges. Topologically, G1 and G2 are fuzzy topological home-
omorphic (see Sect. 6).G2 gives some other building of smart
cites which may be more useful from the initiated smart city
in Fig. 14. In this case, the expert can select a justest choice
in decision making.

8 Conclusion and future work

The field of mathematical science which goes under the
name of the fuzzy topology is concerned with all questions
directly or indirectly related to fuzzy topological graphs.
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6
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}
u
2

{σ
x 1 x 1

,
{σ
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0
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3
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x 5 x 5
,

σ
x 1
4

x 1
4

,
σ
x 1
5

x 1
5

}
u
8

{σ
x 7 x 7

,
{σ
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1
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2
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4
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Table 3 Homeomorphic between fuzzy topological graphs of G1 and
G2

Set G1 G2

{ σ(x1)
x1

,
σ (x2)
x2

,
σ (x3)
x3

} u1 v1

{ σ(x1)
x1

,
σ (x4)
x4

,
σ (x5)
x5

} u2 v2

{ σ(x4)
x4

,
σ (x6)
x6

,
σ (x7)
x7

} u3 v3

{ σ(x6)
x6

,
σ (x8)
x8

,
σ (x9)
x9

} u4 v7

{ σ(x3)
x3

,
σ (x9)
x9

,
σ (x10)
x10

} u5 v6

{ σ(x2)
x2

,
σ (x12)
x12

,
σ (x13)
x13

} u6 v9

{ σ(x5)
x5

,
σ (x14)
x14

,
σ (x15)
x15

} u7 v10

{ σ(x7)
x7

,
σ (x11)
x11

,
σ (x12)
x12

} u8 v4

{ σ(x8)
x8

,
σ (x13)
x13

,
σ (x14)
x14

} u9 v8

{ σ(x10)
x10

,
σ (x11)
x11

,
σ (x15)
x15

} u10 v5

Fig. 12 Two isomorphic fuzzy graphs G1 and G2

Table 4 A fuzzy topological graph of G1

Step/Vertex 1 2 3 4

u0 0

u1 { 0.4x1 }
u2 { 0.3x2 }
u3 { 0.6x3 }
u4 { 0.4x1 , { 0.4x1 , 0.3

x2
}

u5 { 0.4x1 , { 0.4x1 , 0.6
x3

}
u6 { 0.3x2 , { 0.3x2 , 0.6

x3
}

u7 { 0.4x1 , { 0.4x1 , 0.3
x2

, { 0.4x1 , 0.3
x2

, 0.6
x3

}

Fuzzy topological structures are an important base for knowl-
edge extraction and processing. Therefore, an interesting and
a natural research topic in a fuzzy set theory is to study the
relationship between fuzzy sets and fuzzy topological spaces.
In the last few years, fuzzy topology (Liu and Luo 1998), as
an important researchfield in fuzzy set theory, has beendevel-
oped into a quite mature discipline. In contrast with classical
topology, fuzzy topology is endowed with richer structure,

Table 5 A fuzzy topological graph of G2

Step/Vertex 1 2 3 4

v0 0

v1 { 0.4x1 }
v2 { 0.3x2 }
v3 { 0.6x3 }
v4 { 0.3x2 , { 0.3x2 , 0.6

x3
}

v5 { 0.4x1 , { 0.4x1 , 0.6
x3

}
v6 { 0.4x1 , { 0.4x1 , 0.3

x2
}

v7 { 0.4x1 , { 0.4x1 , 0.3
x2

, { 0.4x1 , 0.3
x2

, 0.6
x3

}

Table 6 Homeomorphic between two fuzzy topological graphs of G1
and G2

Sets G1 G2

0 u0 v0

{ 0.4x1 } u1 v1

{ 0.3x2 } u2 v2

{ 0.6x3 } u3 v3

{ 0.4x1 , 0.3
x2

} u4 v6

{ 0.4x1 , 0.6
x3

} u5 v5

{ 0.3x2 , 0.6
x3

} u6 v4

{ 0.4x1 , 0.3
x2

, 0.6
x3

} u7 v2

Fig. 13 Smart city ecosystem (Jararweh et al. 2020)

to a certain extent, which is manifested with different ways
to generalize certain classical concepts. Therefore, the the-
ory of fuzzy graphs and fuzzy topological spaces became
the most important subjects in mathematics which can be
applied in smart city. On the other hand, topology plays a
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Fig. 14 Factors for building smart city (Chourabi 2012)

Fig. 15 Representation of smart city as a graph G1

Fig. 16 Representation of smart city as a graph G2

significant rule in quantumphysics, high-energy physics, and
superstring theory (ElNaschie 2006) and in fractals (El Atik
and Nasef 2020). Thus, we study the topological structure of
graphs and calculate the degree of vertices and the number
of edges of graphs which may have possible applications in
quantum physics and superstring theory. In the future, the
present work can be extended in fuzzy topological structures
as in Akram (2019), and thus, one can get a more affirma-
tive solution in decision making problems (Jiang et al. 2018;
Zhan et al. 2019; Zhang et al. 2019a, b) in real-life solutions.

Fig. 17 Relationship between fuzzy sets

We can also study in future two essential projects of research
as applications on our study. The homeomorphic between
fuzzy topological structures enables us to have isomorphic
fuzzy graphs.

(1) In Chemistry:Application of these indices are very use-
ful in chemistry. Each object taken as electron for element
and edges achieves the link between electrons.

(2) In Internet Routing: In Internet routing, when a greater
number of internet links are achieved in one area, it can
be determined by adding more number of routers in the
area.

Acknowledgements The authors are grateful to the editor and referees
for their valuable comments and suggestions.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Human and animal rights This article does not contain any studies with
human participants or animals performed by any of the authors.

Informed consent Informed consent was obtained from all individual
participants included in the study.

Appendix: Proofs

In this section, we prove the results declared in previous sec-
tions.

Proof (Continue proof Theorem 2) If C1 and C2 are two par-
allel classes, then there exists a bijective fuzzy function F
from C1 to C2, i.e., F : C1 → C2, such that F(C1) = C2,
where C1 = {Ai : i ∈ I } and C2 = {F(Ai ) : i ∈ I }.
Then, every vertex vAi in G1, the graph generated by C1, we
have a corresponding vertex vF(Ai ) in G2, the fuzzy graph
generated by C2. So μR(vAi , vA j ) = μR(Ai ∩ A j ) =
μR(F(Ai ∩ A j )) = μR(F(Ai ) ∩F(A j )) = μR(vF(Ai ),

vF(A j )). Also, σvAi
= σvF(Ai )

and σvA j
= σvF(A j )

. Thus, F
is an isomorphism. ��
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Proof (Continue proof Theorem 3) The relation between
fuzzy sets is shown in Fig. 17.

(i) Let A ⊆ X , |A| = m and |Ac| = n − m

deg (VA) =
∑

R (VA, VB)

+
∑

R (VA, VE )

+
∑

R (VA, VL)

+
∑

R (VA, VK )

=
∑

|A ∩ B| +
∑

|A ∩ E |
+

∑
|(A ∩ L| +

∑
|A ∩ K |

=
∑

|B| +
∑

|A| +
∑

|A ∩ L|.
∑

|B| =
m−1∑

i=1

imCi

=
m−1∑

i=1

i
m!

i !(m − i)!

= m
m−1∑

i=1

m − 1)!
(i − 1)!(m − i)!

= m
m−1∑

i=1

m−1Ci−1

= m
m−2∑

j=0

(
m−1C j − 1

)

= m(2m−1 − 1),

since B ⊆ A, then
∑ |A| = m(2m−1 − 1).

But A ⊆ E , then by complement
∑ |A|=m(2n−m − 1)

and
∑ |A ∩ L|=(2n−m − 1)

∑m−1
i=1 i mCi

= m(2n−m − 1)(2m−1 − 1).
So deg(VA) = m(2n−1 − 1) + 2m.
It follows that the number of edges of pseudographs G
equals

|Ep(G)| = 1

2

n∑

m=1

nCmdeg(VA)

= 1

2

n∑

m=1

nCm

(
m

(
2n−1 − 1

)
+ 2m

)

= 1

2

n∑

m=1

nCmm
(
2n−1 − 1

)

+1

2

n∑

m=1

nCm2m

= n2n−2
(
2n−1 − 1

)

+
n∑

m=1

mnCm

= n2n−2
(
2n−1 − 1

)

+n
n∑

m=1

n−1Cm−1

= n2n−2
(
2n−1 − 1

)

+n
n−1∑

j=0

n−1C j

= n2n−2
(
2n−1 − 1

)
+ n2n−1.

(ii) deg(VA) = m(2n−1 − 1).

It follows that the number of edges of discrete graphs
equals

|Ed(G)| = 1

2

∑

A

deg(VA)

= 1

2

∑

A

nCmm.
(
2n−1 − 1

)

= 1

2

(
2n−1 − 1

) n∑

m=1

mnCm

= 1

2

(
2n−1 − 1

) n∑

m=1

mnCm

= 1

2

(
2n−1 − 1

) n∑

m=1

m
n!

m!(n − m)!

= n

2

(
2n−1 − 1

) n∑

m=1

(n − 1)!
(m − 1)!(n − m)!)

= n

2

(
2n−1 − 1

) n∑

m=1

n−1Cm−1

= n

2

(
2n−1 − 1

) n−1∑

j=0

n−1C j

= n

2

(
2n−1 − 1

)
2n−1

= n2n−2
(
2n−1 − 1

)
.

(iii) deg(VA) = 2n − 2n−m − 1.

It follows that the number of edges of simple graphs G
equals
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|Es(G)| = n

2

n∑

m=1

nCmdeg (VA)

= 1

2

n∑

m=1

nCm
(
2n − 2n−m − 1

)

= 1

2

(
2n − 1

) n∑

m=1

nCm

−1

2
2n

n∑

m=1

nCm2
−m

= 1

2

(
2n − 1

) (
2n−1 − 1

)

−2n−1
n∑

m=1

(
1

2

)m
nCm

= 1

2

(
22n − 2n+1 + 1

)

−2n−1
((

1 + 1

2

)n

− 1

)

= 1

2

((
22n − 2.2n + 1

)
− (

3n − 2n
))

= 1

2
(22n − 2n − 3n + 1).

The total degree of edges of fuzzy topological graphs can
be calculated for the three different types of fuzzy graphs as
follows:

[For fuzzy pseudographs:] Let B ≤ A ≤ E ≤ X , |A| =
m and |Ac| = n − m

deg (VA) =
∑

μR (VA, VB)

+2
∑

μR (VA, VA)

+
∑

μR (VA, VE )

+
∑

μR (VA, VL)

+
∑

μR (VA, VK)

=
∑

μR (VA ∩ VB)

+2
∑

μR (VA ∩ VA)

+
∑

μR (VA ∩ VE )

+μR (VA ∩ VL)

+
∑

μR (VA ∩ VK)

=
∑

μR (VB)

+2
∑

μR (VA)

+
∑

μR (VA)

+
∑

μR (VA ∩ VL)

=
|B|∑

i=1

μR (VB)

+2
|A|∑

i=1

μR (VA)

+
|A∩E |∑

i=1

μR (VA)

+
|A∩L|∑

i=1

μR (VA∩L) .

∀x ∈ B, y ∈ A, w ∈ E and z ∈ L we have,

deg (VA) =
|B|∑

i=1

μR(xy) + 2
|A|∑

i=1

μR(yy)

+
|A∩E |∑

i=1

μR(yw) +
|A∩L|∑

i=1

μR(yz).

It follows that the total degree of edges of fuzzy pseudo-
graphs G equals

∑
Ep(G) =

|V (G)|∑

i=1

deg(Vi ).

[For fuzzy discrete graphs:]

deg (VA) =
∑

μR (VA, VB)

+
∑

μR (VA, VE )

+
∑

μR (VA, VL)

+
∑

μR (VA, VK)

=
∑

μR (VA ∩ VB)

+
∑

μR (VA ∩ VE )

+μR (VA ∩ VL)

+
∑

μR (VA ∩ VK)

=
∑

μR (VB)

+
∑

μR (VA)

+
∑

μR (VA ∩ VL)

=
|B|∑

i=1

μR (VB)

+
|A∩E |∑

i=1

μR (VA)
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+
|A∩L|∑

i=1

μR (VA∩L) .

∀x ∈ B, y ∈ A, w ∈ E and z ∈ L we have,

deg (VA) =
|B|∑

i=1

μR(xy) +
|A∩E |∑

i=1

μR(yw)

+
|A∩L|∑

i=1

μR(yz)

It follows that the summation of edges of fuzzy discrete
graphs G equals

∑
Ed (G) =

|V (G)|∑

i=1

deg(Vi )

[For fuzzy simple graphs:] Let the number of the fuzzy
subset of length |B| = k, |A ∩ E | = l, and |A ∩ L| = r .
Then, we have

deg (VA) =
∑

μR (VA, VB) +
∑

μR (VA, VE )

+
∑

μR (VA, VL) +
∑

μR (VA, VK)

=
∑

μR (VA ∩ VB) +
∑

μR (VA ∩ VE )

+μR(VA ∩ VL) +
∑

μR (VA ∩ VK)

=
∑

μR (VB) +
∑

μR (VA)

+
∑

μR (VA ∩ VL)

=
k∑

i=1

μR (VB) +
l∑

i=1

μR (VA)

+
r∑

i=1

μR (VA∩L) .

��
Proof (Continue proofTheorem4)LetG be a fuzzy graph. To
complete the proof, it is sufficient to prove three conditions
of a fuzzy topology on τ .

(i) By Definitions 3 and 7, G can be represented by differ-
ent classes. Suppose that the graph number of G is m.

Then, there exists a class, say τ , such that τ ≤ P(

{
a

x1
,

b
x2

, c
x3

, . . . , d
xm

}

) and represents G. Each Ai ∈ τ rep-

resents vi and X ∈ τ represents the set of vertices
V (G). So, by Definition 6,μR(vi , V (G)) = μR(vi , X).

If N =
{
a

x1
, b

x2
, c

x3
, . . . , d

xm

}

, then μR(A ∩ X) =

μR(A ∩ N) = μR(A). This means that each A ∈ τ

satisfies thatA ≤ X . Since every vertex in G is a fuzzy
graph subset of V (G), i.e., for every vi ∈ V (G) the sin-
gleton {vi } ⊂ V (G) and each element in τ is a fuzzy

subset from X ∈ τ , then X =
{
a

x1
,
b

x2
,
c

x3
, . . . ,

d

xm

}

.

Also, the isolated vertex v0 can be represented by 0 ∈ τ .
(ii) Let v1, v2, . . . be an arbitrary different vertices in V (G)

represented by Av1,Av2 , . . .. Since v1 ∨ v2 ∨ · · · =
v(Av1∨Av2∨···), then Av1 ∨ Av2 ∨ · · · ∈ τ .

(iii) If vi and v j are two different vertices in V (G) and rep-
resented by Ai and A j , respectively. Since vi ∧ v j =
vAi∧A j , then Ai ∧ A j ∈ τ . Therefore, τ is a fuzzy
topology. ��

Proof (Continue proof Theorem 5) Let Am = { a
x1

, b
x2

, . . . ,
c
xm

}, 1 ≤ k ≤ m, k < m < n and Bk ⊆ Am ⊆ Cn

degVAm =
∑

μR (Bk, Am) +
∑

μR (Am,Cn)

=
∑

μR (Bk ∩ Am) +
∑

μR (Am ∩ Cn)

=
|Bk∩Am |∑

i=1

μR (Bk) +
|Am∩Cn |∑

i=1

μR (Am,Cn)

=
|Bk∩Am |∑

i=1

μR(xy) +
|Am∩Cn |∑

i=1

μR(yz).

∀x ∈ Bk, y ∈ Am and z ∈ Cn . The total degree of edges is
∑

E(G) = 1
2

n∑

i=1
degVAi . ��
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