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Abstract
In this paper, a modified Polak–Ribière–Polyak (PRP) method, which possesses the following desired properties for uncon-
strained optimization problems, is presented. (i) The search direction of the given method has the gradient value and the
function value. (ii) A non-descent backtracking-type line search technique is proposed to obtain the step size αk and construct
a point. (iii) The method inherits an important property of the classical PRP method: the tendency to turn towards the steepest
descent direction if a small step is generated away from the solution, preventing a sequence of tiny steps from happening.
(iv) The strongly global convergence and R-linear convergence of the modified PRP method for nonconvex optimization
are established under some suitable assumptions. (v) The numerical results show that the modified PRP method not only is
interesting in practical computation but also has better performance than the normal PRP method in estimating the parameters
of the nonlinear Muskingum model and performing image restoration.

Keywords PRP method · Strongly global convergence · Non-descent line search · R-linear convergence

1 Introduction

Consider the following unconstrained optimization problem:

min
x∈�n

f (x), (1.1)

where f : �n → �, f ∈ C2 is continuously differentiable.
Conjugate gradient (CG) methods (Dai 2001; Grippo and
Lucidi 1997; Khoda et al. 1992; Nocedal and Wright 2006;
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Shi 2002) are particularly powerful for solving large-scale
problems due to their simplicity and lower storage (Birgin
and Martínez 2001; Cohen 1972; Shanno 1978; Yuan 1993);
thus, they are especially popular for solving unconstrained
optimization problems. CG methods generate an iterative
sequence {xk} by:

xk+1 = xk + αkdk, k = 0, 1, 2, . . . , (1.2)

where xk is the k-th iteration point, the step size αk > 0 can
be computed by certain line search techniques, and the search
direction dk is defined by the following formula:

dk =
{−gk, if k = 0,

−gk + βkdk−1, if k ≥ 1,

where βk is a scalar and can be defined by the following six
formulas (or other formulas):
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βPRP
k = gTk (gk − gk−1)

‖gk−1‖2 , βFR
k = ‖gk‖2

‖gk−1‖2 ,

βHS
k = gTk (gk − gk−1)

dTk−1(gk − gk−1)
,

βCD
k = ‖gk‖2

−dTk−1gk−1
, βLS

k = gTk (gk − gk−1)

−dTk−1gk−1
,

βDY
k = ‖gk‖2

(gk − gk−1)T dk−1
,

where gk−1 is the gradient ∇ f (xk−1) of f (x) at the point
xk−1 and ‖·‖ is theEuclidean norm.The correspondingmeth-
ods are called the Polak–Ribière–Polyak (PRP) (Polak and
Ribière 1969; Polyak 1969), Fletcher–Reeves (FR) (Fletcher
and Reeves 1964), Hestenses–Stiefel (HS) (Hestenes and
Stiefel 1952), conjugate descent (CD) (Fletcher 1997), Liu-
Storrey (LS) (Liu and Storey 2000), and Dai-Yuan (DY) (Dai
and Yuan 1999) CG methods, respectively. The convergence
of the CDmethod, DYmethod, and FRmethod are relatively
easy to establish, but their numerical results are not ideal in
real computations. Powell (1986) presented an explanation of
the numerical disadvantages of the FRmethod, such as subse-
quent steps being very short if a small step is originated away
from the solution point. However, if a poor direction occurs
in practical computation, the PRP,HS, or LSmethodwill per-
form a restart, so these three methods perform much better
than the above three methods. They are generally regarded
as the most efficient conjugate gradient methods.

In this paper, we specifically study the modified PRP
method. There has been extensive study regarding the global
convergence of the PRP method. Polak and Ribière (1969)
proved that the PRPmethod with an exact line search is glob-
ally convergent for strongly convex functions but that it fails
to satisfy the property of global convergence for the general
functions under the Wolfe line search technique, and this is a
still an open problem. Yuan (1993) further established global
convergence with the modified Wolfe line search under the
condition that the search direction is descending. All con-
vergence discussion of the PRP algorithm hinted that the
key issue for the study of the PRP method is the sufficient
descent condition. However, there are several limitations of
the PRPmethod such that it may not provide a descent direc-
tion of the objective function under the exact line search,
which creates serious consequences for the global conver-
gence of the algorithm for general functions. For example,
Powell (1984) provided a counterexample to show that the
PRP method might circle infinitely without approaching the
solution even if αk is chosen as the least positive minimizer
of the line search. Through Powell’s analysis Powell (1986),
the PRPmethod did not satisfy global convergence, probably
due to βk being negative, so inspired by his study, Gilbert and
Nocedal (1992) found a convergent consequence in the PRP

method when βPRP+
k = max{0, βPRP } for general non-

convex functions with a suitable line search. Hence, other
researchers (Cheng 2007; Yuan et al. 2020, ?) modified βk

such that the algorithm satisfies global convergence for gen-
eral functions. Inspired by Li et al. (2015), Yuan and Wei
(2010), in this paper we, present a modified PRP method as
follows:

dk =
{−gk, if k = 0,

−gk + β∗PRP
k dk−1, if k ≥ 1,

(1.3)

and

β∗PRP
k = gTk ỹk−1

‖gk−1‖2 , (1.4)

where ỹk−1 = yk−1+ ρk−1sk−1
‖sk−1‖2 ,ρk−1 = 2[ f (xk−1)− f (xk)]+

[g(xk) + g(xk−1)]sk−1 and sk−1 = xk − xk−1. In addi-
tion to modifying βk , some researchers choose to modify
the line search to obtain the global convergence of the PRP
method for general functions. Grippo and Lucidi (1997)
presented a new descent line search technique as follows.
There exist constants μ > 0, δ > 0 and 0 < t < 1,

αk = max{t j
(

μ|gTk dk |
‖dk‖2

)
; j = 0, 1, . . .} such that

f (xk+1) ≤ f (xk) + δα2
k‖dk‖2, (1.5)

and

−t2‖gk+1‖2 ≤ gTk+1dk+1 ≤ −t1‖gk+1‖2, (1.6)

where 0 < t1 < 1 < t2 are constants. Dai (2002) proposed
another descent line search as follows:

f (xk+1) ≤ f (xk) + δαgTk dk, (1.7)

and

gTk+1dk+1 ≤ −σ2‖dk+1‖2, (1.8)

where t ∈ (0, 1), δ > 0, σ2 ∈ (0, 1) and αk = tm ,
m > 0. When the above two line searches are used, the
PRP method satisfies the property of convergence for gen-
eral functions. (1.5), (1.6) or (1.7), (1.8) will require more
time to compute gradient evaluations compared with the
Aromijo line search, so Zhou and Li (2014) introduced a
non-descent backtracking-type line search in a different way
from that in Grippo and Lucidi (1997), Dai (2002). For given
constants τ > 0, μ > 0, δ ∈ (0, 1), t ∈ (0, 1), and

σk = min{τ, μ‖gk‖2
‖dk‖2 }, let αk = max{σk t j ; j = 0, 1, . . .}

satisfy

f (xk+1) ≤ f (xk) − δ‖αkgk‖2 + ηk min{1, ‖gk‖2}, (1.9)
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where ηk is a positive sequence satisfying

∞∑
k=0

ηk ≤ η < ∞, (1.10)

where η is a positive constant. It is easy to see that the line
search technique (1.9) is well defined and does not compute
other gradient evaluations except gk regardless of whether dk
is a descent direction or not. Based on the above discussion,
the modified PRP method that we present has the following
attributes.

• The modified PRP method possesses the information
about function values.

• Strongly global convergence and R-linear convergence
are established.

• The numerical results demonstrate that the modified PRP
method is competitive with the normal PRP method for
the given problems.

• The modified PRP method is applied to the engineering
Muskingum model and image restoration problems.

The present paper is organized as follows. In Sect. 2, we
show that the modified PRP method has strong convergence
and a locally R-linear convergence rate for general functions
under the non-descent backtracking line search. In Sect. 3,we
perform some numerical experiments to compare the perfor-
manceof the classical PRPmethod andmodifiedPRPmethod
with some of the line search techniques mentioned above.

2 Convergence properties

Based on the above line search technique and the modified
PRP formula, we present a modified PRP algorithm, which
is listed as follows.

Algorithm (Modified PRP Algorithm)

Step 1 Choose an initial point x0 ∈ �n , τ > 0, μ > 0,
ε ∈ (0, 1), and δ ∈ (0, 1), t ∈ (0, 1). Set d0 =
−g0 = −∇ f (x0) and a positive sequence ηk satisfy-
ing (1.10), k:=0.

Step 2 Stop if ‖gk‖ ≤ ε.
Step 3 Compute the step size αk using the non-descent line

search rule (1.9).
Step 4 Let xk+1 = xk + αkdk .
Step 5 If ‖gk+1‖ ≤ ε, then the modified PRP algorithm

stops.
Step 6 Calculate the search direction

dk+1 = −gk+1 + β∗PRP
k dk . (2.1)

Step 7 Set k:=k+1 and go to step 3.

In the following paper, there are some indispensable assump-
tions for the global convergence of the algorithm on objective
functions.
AssumptionB (i) The level set T0 = {x | f (x) ≤ f (x0)+η}
is bounded.

(ii) In some neighbourhood N of T0, f is differentiable,
and its gradient function g is Lipschitz continuous, namely,

‖g(x) − g(y)‖ ≤ L‖x − y‖, (2.2)

where L > 0 is a constant and any x, y ∈ N .

Remark (i) Assumption B implies that there exists a constant
A > 0 satisfying

‖g(x)‖ ≤ A, ∀x ∈ N . (2.3)

Moreover, from (1.9) and (1.10) such that

f (xk + αkdk) ≤ f (xk) − δ‖αkgk‖2 + ηk min{1, ‖gk‖2}
≤ f (xk) + ηk

≤ f (x0) +
∞∑
j=0

η j

< f (x0) + η,

where xk ∈ T0 for all k ≥ 0. The following useful lemmas
are presented to conveniently show the strongly global con-
vergence of the modified PRP method with the line search
(1.9).

Lemma 2.1 Let {ξk} and {βk} be positive sequences satisfy-
ing ξk ≤ (1+ βk)ξk + βk and

∑∞
k=0 βk < ∞. {ξk} is able to

converge.

Proof Omitted. The proof of the above lemma is the same as
the proof of Lemma 3.3 Dennis and Moré (1974). �
Lemma 2.2 Based on Assumption B, the sequence { f (xk)}
that satisfies the line search technique (1.9) in the algorithm
converges.

Proof Wecan find a constant κ such that f (x) > κ for all x ∈
T0 fromAssumptionB (i), sowehave f (xk+1)−κ ≤ f (xk)−
κ + ηk under the line search technique (1.9), which shows
that the sequence { f (xk)−κ} converges through Lemma 2.1.
Then, { f (xk)} converges. �
Lemma 2.3 dk is defined by (1.3); then, we have

‖dk‖ ≤ λ‖gk‖. (2.4)
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Proof First, by (1.9), such that

αk‖dk‖2 ≤ σk‖dk‖2 ≤ μ‖gk‖2
‖dk‖2 ‖dk‖2 = μ‖gk‖2. (2.5)

On the other hand, from (2.2), using the mean-value theorem
we have

ρk−1 = (gk−1 + gk − 2g(xk−1 + ask−1))
T sk−1

≤ (‖gk−1 − g(xk−1 + ask−1)‖
+‖gk − g(xk−1 + ask−1)‖)‖sk−1‖

≤ (La‖sk−1‖ + L(1 − a)‖sk−1‖)‖sk−1‖
= L‖sk−1‖2, (2.6)

where a ∈ (0, 1). Combining (1.3), (1.4), (2.2), (2.6), (2.5),
then,

‖dk‖ ≤ ‖gk‖ + ‖β∗PRP
k dk−1‖

≤ ‖gk‖ + ‖β∗PRP
k ‖‖dk−1‖

≤ ‖gk‖ + ‖gTk yk−1‖‖dk−1‖
‖gk−1‖2 + ‖gTk ρk−1sk−1‖‖dk−1‖

‖gk−1‖2‖sk−1‖2

≤ ‖gk‖ + Lαk−1‖gk‖‖dk−1‖2
‖gk−1‖2 + Lαk−1‖gk‖‖dk−1‖2

‖gk−1‖2
≤ ‖gk‖ + Lμ‖gk‖ + Lμ‖gk‖ = (1 + 2L)μ‖gk‖,

where λ = (1 + 2L)μ. Hence, the proof is complete.
It is obvious that lim

k→∞ αk‖gk‖ = 0 holds from the line

search technique (1.9) and Lemma 2.2; when combined with
(2.4), we obtain

lim
k→∞ ‖sk‖ = lim

k→∞ αk‖dk‖ ≤ lim
k→∞ λαk‖gk‖ = 0. (2.7)

�

Lemma 2.4 Let Assumption B hold and the sequence {xk}
be generated by the algorithm; then, there exists a constant
A1 > 0 satisfying

αk ≥ A1 min

{
1,

−gTk dk
L‖dk‖2 + δ‖gk‖2

}
. (2.8)

Proof Case i If αk = σk = min{τ, μ‖gk‖2
‖dk‖2 }, from (2.4), we

obtain

αk ≥ min
{
τ,

μ

λ2

}
= A1.

Hence, together with min{1, −gTk dk
L‖dk‖2+δ‖gk‖2 } ≤ 1, we obtain

(2.8).

Case ii If αk �= σk , let α∗
k

.= αk
t not satisfy (1.9), namely,

f (xk + α∗
k dk) > f (xk) − δ‖α∗

k gk‖2 + ηk min{1, ‖gk‖2}
> f (xk) − δ‖α∗

k gk‖2. (2.9)

By the mean value theorem and (2.2), we have

f (xk + α∗
k dk) − f (xk) = g(xk + νkα

∗
k dk)

Tα∗
k dk

= α∗
k g

T
k dk

+ (g(xk + νkα
∗
k dk) − gk)

Tα∗
k dk

≤ α∗
k g

T
k dk + L‖α∗

k dk‖2,

where νk ∈ (0, 1), combining with (2.9), shows that (2.8)
holds with A1 = t .

The above lemma gives an estimation to the step size αk .
Now, we can prove the global convergence property of the
modified PRP method under the line search (1.9). �

Theorem 2.1 Supposing that Assumption B holds, consider
the modified PRP method where dk is satisfied (1.3). Then,

lim
k→∞ ‖gk‖ = 0. (2.10)

Proof Wewill obtain this result by contradiction.We suppose
that (2.10) does not hold; then, there exists a constant n1 > 0
and an infinite index G such that

‖gk‖ ≥ n1, ∀k ∈ G. (2.11)

By (2.2), (2.4) and αk ≤ σk ≤ τ such that

‖gk‖ ≤ ‖gk − gk−1‖ + ‖gk−1‖ ≤ Lαk−1‖dk−1‖ + ‖gk−1‖
≤ A2‖gk−1‖, (2.12)

where A2 = 1 + Lτλ. from (1.3), (1.4), (2.4), (2.6), (2.7)
and (2.12), we obtain

‖gk + dk‖ = |β∗PRP
k |‖dk−1‖ ≤ L‖gk‖‖sk−1‖‖dk−1‖

‖gk−1‖2
+ ‖gk‖‖ρk−1sk−1‖‖dk−1‖

‖gk−1‖2‖sk−1‖2
≤ 2L A2λ‖sk−1‖ → 0.

From (2.11), we know that there exists a constant n2 > 0
such that
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‖dk‖ ≥ n2. (2.13)

Combining with (2.7) we obtain

lim
k→∞ αk = 0, ∀k ∈ G. (2.14)

By (1.3), (2.4), and (2.8), for all k ∈ G, we have

αk ≥ A1
‖gk‖2 − β∗PRPgTk dk−1

L‖dk‖2 + δ‖gk‖2

= A1
‖gk‖2

L‖dk‖2 + δ‖gk‖2 − A1
β∗PRPgTk dk−1

L‖dk‖2 + δ‖gk‖2

≥ A1

Lλ2 + δ
− A1

β∗PRPgTk dk−1

L‖dk‖2 + δ‖gk‖2 . (2.15)

For the last inequality, from (2.2), (2.3), (2.4), (2.6), (2.11),
and (2.13), such that

A1
|β∗PRPgTk dk−1|
L‖dk‖2 + δ‖gk‖2 ≤ A1

Ln22 + δn21(
L‖gk‖2‖sk−1‖‖dk−1‖

‖gk−1‖2 + ‖gTk ρk−1sk−1‖‖gk‖‖dk−1‖
‖gk−1‖2‖sk−1‖2

)

≤ 2L AA1A2λ

Ln22 + δn21
‖sk−1‖ → 0.

This with (2.15) implies that (2.14) does not hold, thus con-
tradicting (2.14). The proof is completed. �
Theorem 2.2 Supposing that Assumption B holds, consider
the modified PRP method and (1.9); then, for large k, we
have a positive constant n3 such that

αi ≥ n3 (2.16)

holds for at least half of the indices i ∈ {0, 1, 2 . . . , k}.
Proof Without loss of generality, by (2.8), we have

αk ≥ A1
−gTk dk

L‖dk‖2 + δ‖gk‖2 ,

using (1.3), (1.4), (1.10), and (2.4), (2.6); then,

αk ≥ A1
‖gk‖2 − gTk β∗PRP

k dk−1

L‖dk‖2 + δ‖gk‖2

≥ A1
‖gk‖2

L‖dk‖2 + δ‖gk‖2 (1 − 2Lλ2αk−1).

If αk−1 < 1
2Lλ2

, we obtain

αk ≥ A1

Lλ2 + δ
(1 − 2Lλ2αk−1) = n4 − n5αk−1,

where

n4 = A1

Lλ2 + δ
, n5 = 2L A1λ

2

Lλ2 + δ
.

Then, we obtain n4 ≤ αk + n5αk−1 ≤ 2max{1, n5}
max{αk, αk−1}, so

max{αk, αk−1} ≥ n4
2max{1, n5} ,

Otherwise, from αk−1 ≥ 1
2Lλ2

, we can obtain

max{αk, αk−1} ≥ αk−1 ≥ 1

2Lλ2
.

Thus, when n3 = min{ n4
2max{1,n5} ,

1
2Lλ2

}, the theorem
holds. �

Theorem 2.1 shows that every limit point of the sequence
{xk} is a stationary point of f .Moreover, if theHessianmatrix
at one limit point x∗ is positive definite, which means that
x∗ is a strict local optimal solution of the problem (1.1), then
the whole sequence {xk} converges to x∗. Hence, in the local
convergence analysis, we assume that the whole sequence
{xk} converges.
Lemma 2.5 Assume that f is twice continuously differen-
tiable and uniformly convex on Rn and that Assumption B
holds; then, f (xk) has a unique minimal point x∗, and there
exist constants 0 < m < M satisfying

m‖x − x∗‖2 ≤ ‖g(x)‖2 ≤ M‖x − x∗‖2 (2.17)

and

m‖x − x∗‖2 ≤ f (x) − f (x∗) ≤ M‖x − x∗‖2. (2.18)

Proof Omitted. For the proof, see (Ortega and Rheinboldt
1970; Rockafellar 1970). �
Theorem 2.3 Let f be twice continuously differentiable.
Consider the modified PRP method, where dk satisfies (1.3),
and suppose that {xk} converging to x∗ satisfies g(x∗) = 0
and that ∇2 f (x∗) is positive definite. Then, there exists a
constant A3 > 0 and r ∈ (0, 1) such that

‖xk − x∗‖ ≤ A3r
k . (2.19)

Proof Since∇2 f (x∗) is positive definite, f is uniformly con-
vex in some neighbourhood N1 of x∗ if {xk} ⊂ N1 and {xk}
satisfies (2.17) and (2.18). Denote the index as follows:

I1 = {i |i ≤ k, αi ≥ n3}. (2.20)
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Table 1 Test problems

Nr. Test problem Nr. Test problem

1 Extended Freudenstein and Roth Function 38 ARWHEAD Function (CUTE)

2 Extended Trigonometric Function 39 ARWHEAD Function (CUTE)

3 Extended Rosenbrock Function 40 NONDQUAR Function (CUTE)

4 Extended White and Holst Function 41 DQDRTIC Function (CUTE)

5 Extended Beale Function 42 EG2 Function (CUTE)

6 Extended Penalty Function 43 DIXMAANA Function (CUTE)

7 Perturbed Quadratic Function 44 DIXMAANB Function (CUTE)

8 Raydan 1 Function 45 DIXMAANC Function (CUTE)

9 Raydan 2 Function 46 DIXMAANE Function (CUTE)

10 Diagonal 1 Function 47 Partial Perturbed Quadratic Function

11 Diagonal 2 Function 48 Broyden Tridiagonal Function

12 Diagonal 3 Function 49 Almost Perturbed Quadratic Function

13 Hager Function 50 Tridiagonal Perturbed Quadratic Function

14 Generalized Tridiagonal 1 Function 51 EDENSCH Function (CUTE)

15 Extended Tridiagonal 1 Function 52 VARDIM Function (CUTE)

16 Extended Three Exponential Terms Function 53 STAIRCASE S1 Function

17 Generalized Tridiagonal 2 Function 54 LIARWHD Function (CUTE)

18 Diagonal 4 Function 55 DIAGONAL 6 Function

19 Diagonal 5 Function 56 DIXON3DQ Function (CUTE)

20 Extended Himmelblau Function 57 DIXMAANF Function (CUTE)

21 Generalized PSC1 Function 58 DIXMAANG Function (CUTE)

22 Extended PSC1 Function 59 DIXMAANH Function (CUTE)

23 Extended Powell Function 60 DIXMAANI Function (CUTE)

24 Extended Block Diagonal BD1 Function 61 DIXMAANJ Function (CUTE)

25 Extended Maratos Function 62 DIXMAANK Function (CUTE)

26 Extended Cliff Function 63 DIXMAANL Function (CUTE)

27 Quadratic Diagonal Perturbed Function 64 DIXMAAND Function (CUTE)

28 Extended Wood Function 65 ENGVAL1 Function (CUTE)

29 Extended Hiebert Function 66 FLETCHCR Function (CUTE)

30 Quadratic Function QF1 Function 67 COSINE Function (CUTE)

31 Extended Quadratic Penalty QP1 Function 68 Extended DENSCHNB Function (CUTE)

32 Extended Quadratic Penalty QP2 Function 69 DENSCHNF Function (CUTE)

33 A Quadratic Function QF2 Function 70 SINQUAD Function (CUTE)

34 Extended EP1 Function 71 BIGGSB1 Function (CUTE)

35 Extended Tridiagonal-2 Function 72 Partial Perturbed Quadratic PPQ2 Function

36 BDQRTIC Function (CUTE) 73 Scaled Quadratic SQ1 Function

37 TRIDIA Function (CUTE) 74 Scaled Quadratic SQ2 Function

Case i If k ∈ I1, using (1.9) and (2.16),

f (xk+1) ≤ f (xk) − δ‖αkgk‖2 + ηk‖gk‖2
≤ f (xk) − δn23‖gk‖2 + ηk‖gk‖2,

and ηk → 0 since (1.10) holds, so we have f (xk+1) ≤
f (xk) − δn23

2 ‖gk‖2, following from (2.17) and (2.18), such

that

f (xk+1) − f (x∗) ≤ r0( f (xk) − f (x∗)),

where 0 < r0 = 1 − δn23m
2M < 1.

Case ii If k ∈ I/I1, using the line search (1.9), we obtain
f (xk+1) ≤ f (xk) + ηk‖gk‖2 from (2.17) and (2.18), such
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Fig. 1 Performance profiles of
these methods (CPU)

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

0.1

0.2

0.3

0.4

0.5

τ

P
p:

r(
p,

s)
<=

τ

Modified PRP Algorithm
PRP Algorithm
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Fig. 3 Performance profiles of
these methods (NFG)
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Table 2 Results of the algorithms

Algorithm x1 x2 x3

BFGS Geem (2006) 10.8156 0.9826 1.0219

HIWO Ouyang et al. (2015) 13.2813 0.8001 0.9933

Algorithm 1 4.29997 0.0000 0.0000

that

f (xk+1) − f (x∗) ≤
(
1 + M

m
ηk

)
( f (xk) − f (x∗)),

we can know that there exists a constant A4 > 0 satisfying
the following inequality from (1.10):

∞∏
k=0

(
1 + M

m
ηk

)
≤ A4,

for all large k, combining Case i and Case ii, we obtain

f (xk+1) − f (x∗) ≤
⎛
⎝ ∏

i∈I/I1

(
1 + M

m
ηi

)⎞
⎠ (

r
∑

k∈I1
0

)

× ( f (x0) − f (x∗))

≤ A4r
k/2
0 ( f (x0) − f (x∗)),

by (2.18), such that

‖xk+1 − x∗‖ ≤
⎛
⎝ A4( f (x0) − f (x∗))

mr
1
2
0

⎞
⎠

1
2

(r
1
4
0 )k+1.

Then, (2.19) holds, where A3 = (
A4( f (x0)− f (x∗))

mr
1
2
0

)
1
2 and r =

r
1
4
0 . The proof is complete. �

3 Numerical experiments

In this section, we report some different numerical results
for the PRP algorithm and modified PRP algorithm. Normal
unconstrained optimization problems and engineering prob-
lems are included. All codes are written in MATLAB and
run on a 2.30 GHz CPU with 8.00 GB of memory on the
Windows 10 operating system.

3.1 Normal unconstrained optimization problems

The test problems are listed in Table 1.Wewill report on vari-
ous numerical experiments with the modified PRP algorithm
and the normal PRP algorithm with the same non-descent
line search technique to demonstrate the effectiveness for the
given problems. We introduce the stop rules, dimension and
some parameters in the numerical experiments as follows:
Stop rules (the Himmeblau stop rule Yuan and Sun 1999):
If | f (xk)| > e1, let stop1 = | f (xk)− f (xk+1)|

| f (xk )| or stop1 =
| f (xk)− f (xk+1)|. If the conditions ‖g(x)‖ < ε or stop1 <

e2 are satisfied, where e1 = e2 = 10−5 and ε = 10−6, the
algorithm will stop if the number of iterations is greater than
1000.
Dimension: 3000, 6000, and 9000 variables.
Parameters: τ=1, μ=5, δ=0.2, and t = 0.8.
The columns of Table 1 have the following meanings:
Nr.: The number of tested problems.
Test problem: The name of the problem.
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Fig. 5 Restoration of the Lena
image, Baboon image, and
Barbara image by the modified
PRP method and the normal
PRP method. From left to right:
a noisy image with 30%
salt-and-pepper noise and
restorations obtained by
minimizing z with the normal
PRP method and modified PRP
method

Dolan andMoré (2002) presented a new tool to show their
performance in order to analyse the efficiency of these two
methods, and Figs. 1, 2 and 3 show the profiles relative to the
CPU time, NI, and NFG, respectively.

From Figs. 1, 2 and 3, we can see that modified PRP algo-
rithm is more competitive than the normal method since its
performance curves corresponding to the number of itera-
tions, the total of the function and gradient evaluations, and
the CPU time are best in the three figures. The modified PRP
algorithm can successfully solve most of the test problems.
Altogether, it is clear that the modified method is efficient
based on the experimental results. The modified PRP algo-
rithm is slightly more robust than the normal PRP algorithm

in terms of the CPU time, as shown in Fig. 1. In further work,
from the number of iterations in Fig. 2 and , it is not difficult to
see that the modified PRP algorithm performs best between
the two methods. However, from the total of the function and
gradient values of the methods in Fig. 3, The modified PRP
algorithm is not very good di?erent from the performances
of Figs. 1 and 2. But that does not change the fact that we
think the modified method is better than the normal method.
Overall, we think that the modified method provides one of
the most efficient approaches for solving unconstrained opti-
mization problems.
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Fig. 6 Restoration of the Lena
image, Baboon image, and
Barbara image by the modified
PRP method and the normal
PRP method. From left to right:
a noisy image with 55%
salt-and-pepper noise and
restorations obtained by
minimizing z with the normal
PRP method and modified PRP
method

3.2 TheMuskingummodel in engineering problems

As is known, some optimization algorithms are consid-
ered a significant challenge in engineering problems. Many
authors endeavour to design effective algorithms for solving
these engineering problems. Parameter estimation is one of
the important means for the study of a well-known hydro-
logic engineering application problem called the nonlinear
Muskingum model. This subsection discusses the nonlinear
Muskingum model, a common example of such an applica-
tion.
Muskingum Model Ouyang et al. (2015): is defined by:

min f (x1, x2, x3)

=
n−1∑
i=1

(
(1 − �t

6
)x1

(
x2 Ii+1 + (1 − x2)Qi+1

)x3

−(1 − �t

6
)x1

(
x2 Ii + (1 − x2)Qi

)x3 − �t

2
(Ii − Qi )

+�t

2
(1 − �t

3
)(Ii+1 − Qi+1)

)2

,

where n denotes the total time, x1 denotes the storage time
constant, x2 denotes the weighting factor, x3 denotes an
additional parameter, �t is the time step at time ti (i =
1, 2, . . . , n), Ii is the observed inflow discharge and Qi is
the observed outflow discharge. In the experiment, observed
data of the flood run-off process between Chenggouwan and
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Fig. 7 Restoration of the Lena
image, Baboon image, and
Barbara image by the modified
PRP method and normal PRP
method. From left to right: a
noisy image with 70%
salt-and-pepper noise,
restorations obtained by
minimizing z with the normal
PRP method and the modified
PRP method

Linqing of Nanyunhe in the Haihe Basin, Tianjin, China, is
used. In the experiment, �t = 12(h) and the initial point
x = [0, 1, 1]T are chosen. The detailed data for Ii and Qi in
1961 can be found in Ouyang et al. (2014). The tested results
of the final points are listed in Table 2.

From Fig. 4 and Table 2, we make the following con-
clusions: (i) Similar to the BFGS method and the HIWO
method, the modified algorithm provides a good approxima-
tion for these data, and the given algorithm is effective for the
nonlinear Muskingum model. (ii) The final points are com-
petitive with the final points of similar algorithms. (iii) The

Muskingum model may have more optimum approximation
points since the final points (x1, x2, and x3) of the modified
PRP algorithm are different from those of the BFGS method
and the HIWO method.

3.3 Image restoration problems

This subsection deals with image restoration problems to
recover an original image from an image corrupted by
impulse noise. These problems are proven to be difficult,
and they have many applications in many fields. The code
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Table 3 The CPU time of
algorithm 1 and the normal PRP
algorithm in seconds

30% noise Lena Barbara Baboon Total

Modified PRP Algorithm 2.984375 4.281250 4.17875 11.44438

PRP algorithm 3.218750 4.359375 4.396025 11.97415

55% noise Lena Barbara Baboon Total

Modified PRP Algorithm 7.218750 11.12500 11.06250 29.40625

PRP algorithm 8.031250 11.28125 11.54688 30.85938

70% noise Man Barbara Baboon Total

Modified PRP Algorithm 9.718750 14.48438 13.18750 37.39063

PRP algorithm 9.75000 14.90625 13.64063 38.29688

will be stopped if the condition |‖ fk+1‖−‖ fk‖|
‖ fk‖ < 10−3 or

‖xk+1−xk‖
‖xk‖ < 10−3 holds. The experiments choose Lena

(256×256), Baboon(512×512) and Barbara (512×512) as
the test images. The detailed performance results are given in
Figs. 5, 6 and 7. It is easy to see that both of these algorithms
are successful for restoring these three images. TheCPU time
spent is listed in Table 3 to compare these two algorithms.
The proposed algorithm is competitivewith other approaches
in terms of CPU time.

The results from Table 3, Figs. 5, 6 and 7, indicate that
the modified PRP method with a non-descent line search is
effective for image restoration. This method requires approx-
imately one minute to restore the image from a noisy image
with 55% salt-and-pepper noise, but the cost is higher to
restore the image from a noisy image with 70% salt-and-
pepper noise, so as the salt-and-pepper noise increases, the
cost to restore the image increases.

4 Conclusion

In this paper, we present a non-descent line search and
prove the global convergence and R-linear convergence of
the modified PRP method with this technique for noncon-
vex functions. The numerical results show that the modified
PRP method is competitive with the normal PRP method
for nonconvex optimization. For further research, we can
study the proposed algorithm with other line searches such
as the Yuan-Wei-Lu line search technique Yuan et al. (2017),
which guarantees the convergence property; additionally, the
non-descent line search likely can be applied in nonlinear
equations and nonsmooth convex minimization. Moreover,
more numerical experiments for large practical problems
should be performed in the future.
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