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Abstract

In this paper, we propose a numerical method based on new fractional-order Jacobi polynomials for solving nonlinear
fuzzy fractional integro-differential equations. Some operational matrices are used to reduce the problem to the system of
algebraic equations. The convergence analysis of the method is provided. The accuracy of the method is illustrated by

solving some numerical experiments.
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1 Introduction

In order to analyze a real-world phenomenon, it is also
necessary to deal with uncertain factors. In this situation,
the theory of fuzzy sets may be one of the best non-sta-
tistical approach, which leads us to investigate theory of
fuzzy fractional calculus. Several scientists in their earliest
works introduced fuzzy fractional calculus as an uncertain
fractional calculus to consider fractional-order systems
with uncertain initial values or uncertain relationships
between parameters. The basic concept as a Riemann—
Liouville fractional integral, Riemann—Liouville H-differ-
entiability, Caputo type fractional derivative based on
Hukuhara and generalized Hukuhara difference and
strongly generalized differentiability are defined in fuzzy
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fractional calculus (see, e.g., Agarwal etal. 2010;
Allahviranloo et al. 2014; Armand and Mohammadi 2014;
Arshad and Lupulescu 2011; Mazandarani and Vahidian
Kamyad 2013; Mazandarani and Najariyan 2014; Salah-
shour et al. 2012). Fuzzy theory of fractional differential
equations and integro-differential equations is a new and
important branch of fuzzy mathematics. The topic of fuzzy
fractional integro-differential equations (FFIDEs) has
gained the attention of researchers in recent times because
it is considered a powerful tool by which to present vague
parameters and to handle with their dynamical systems in
natural fuzzy environments (Long 2018a, b; Long et al.
2017, 2018). Indeed, it has a great significance in the fuzzy
analysis theory and its applications in fuzzy control mod-
els, artificial intelligence, quantum optics, measure theory,
and atmosphere (Alaroud et al. 2019; Son et al. 2020a, b).
In Alikhani and Bahrami (2013), Allahviranloo (2020),
Armand and Gouyandeh (2015), Balasubramaniam and
Muralisankar (2001), the existence and uniqueness theo-
rems for a fuzzy fractional integro-differential equation by
considering the type of differentiability of solutions were
proved. Most FFIDEs problems cannot be solved analyti-
cally, and hence, finding good approximate solutions using
numerical methods will be very valuable. Recently,
numerous scholars have devoted their interest to studying
and investigating solutions to FFIDEs utilizing different
numerical and semi-analytical techniques; these solutions
include the Fuzzy Laplace transforms technique
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(Priyadhasini et al. 2016), two-dimensional Legendre
wavelet technique (Shabestari et al. 2018a), Bernoulli
wavelet method (Shabestari et al. 2018b) Adomian
decomposition technique (Padmapriya et al. 2017), varia-
tional iteration technique (Matinfar et al. 2013), and the
fractional residual power series technique (Alaroud et al.
2019).

In this paper, we consider the fuzzy Fredholm nonlinear
fractional integro-differential equations of the second kind

(uD%y) (1) = £(1) + [y 1(t,5)G(¥(s))ds,
(1)
y(0) =y, € Rr

where Rx be the set of all fuzzy numbers on R, 0 <a <1,
G:Rr — Rz, f:]0,1] = Rr is a given continuous
fuzzy-number-valued function, and x(z,s) : [0,1] x
[0,1] — R is a positive ordinary kernel function, and the
operator oD} denotes the fuzzy Caputo type fractional

generalized derivative of order o. The main goal of this
paper is to extend an accurate numerical method for
approximating the solution of Eq. (1). The proposed
method is based on matrix formulation of spectral method
as Tau method (Canuto et al. 2006) to approximating the
solution of Eq. (1). It is known that the singular behavior of
solution of fractional differential and/or integral equations
makes the direct application of the spectral methods with
standard orthogonal polynomials such as Legendre, Che-
byshev, and Jacobi with poor convergence rates. Therefore,
the rate of convergence of the numerical solutions will not
be acceptable. To overcome this problem, we employ a
new basis functions by replacing ¢ — #* in the standard
Jacobi polynomials, which is called fractional-order Jacobi
polynomials (see Bhrawy and Zaky 2015 for more detail).
The simplicity of implementation proposed method and
good approximation is addressed by some theorems and
numerical examples.

The paper is organized as follows: Some basic proper-
ties of fuzzy calculus and fuzzy fractional calculus are
given in Sect. 2. Section 3 discusses the existence and
uniqueness of solution for Eq. (1). In Sect. 4, shift frac-
tional Jacobi polynomials approximation and operational
matrix for fractional integral have been derived. Section 5
is dedicated to propose a technique in order to apply the
shifted Jacobi fractional operational matrices for solving
the nonlinear fuzzy fractional Fredholm integro-differential
equations. In Sect. 6, we discuss about error bound and
convergence analysis of proposed method. Section 7 con-
tains some numerical examples which confirm the appli-
cability and efficiency of the proposed method. Section 7
states the conclusion of this paper.
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2 Preliminaries

In the current section, the essential notations, definitions
and the basic results relating to fuzzy calculus and fuzzy
fractional calculus are presented.

Definition 1 (Dubois and Prade 1987) A fuzzy number is a
function v:=R — [0,1] which satisfies the following
properties:

e v is upper semi-continuous function.
e v is normal, that is, 37 in R for which v(z) = 1.
e v is fuzzy convex, that is,

v(At+ (1 — A)s) >min{v(z),v(s)}

forall 1,5 € R, 1 € [0,1].
e supp v:= {t € R|v(r) > 0} is the support of v, and its
closure, i.e., cl(supp v) is compact.

The r-level set of a fuzzy number v denoted by [v]" is
defined as

W i={reRp@)>r}=]"V], 0<r<l1 (2)

where v := y(r) and V" := V(r) are bounded left-continu-
ous, non-decreasing and non-increasing function in (0, 1],
respectively, and v(0) = cl(supp v). For u,v € Rr, 1 € R,
the addition and scalar multiplication are defined in terms
of r-level sets, as follows:

- e = D) =
o e [, 20,

" = 2+ fu] = { Ui, ], <.
The Hausdorff distance between two fuzzy numbers u,v €
Rz is defined by D : Rr x Rr — R,
D(u,v) = sup max{|lu" —v'|,[a" -V}

rel0,1]

It is easy to see that D is a metric in Rx and has the
following properties (Wu and Gong 2001)

1. D(u+v,w+v)=Du,w), Vu,v,w € Rg,

2. D(ku,kv) = |k|D(u,v), Yu,v € Rr Vk € R,

3. Du+v,w+e)<D(u,w)+ D(v,e),
Yu,v,w,e € Rr

4. (Rz,D) is a complete metric space.

Definition 2 (Bede and Gal 2005) Let u,v € Rx. If there
exists w € Rz such that u = v + w, then w is called the
Hukuhara difference of u and v, and it is denoted by u © v.

Definition 3 (Bede and Stefanini 2013) The generalized
Hukuhara difference of two fuzzy number u,v € Rr (gH-
difference) is w € Rz , which is defined as follows;
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(i) u=v+w

UOHV =W
st { v=u+(—1)w.

or (ii)

Definition 4 (Congxin and Cong 1997) A fuzzy-valued
function f : [a,b] — Rz is said to be continuous at #, €
[a,b] if for each &>0 there is 6 >0 such that
D(f(2),f(t0)) <& whenever |t — fo| <. If f is continuous
for each 7 € [a, b] then we say that f'is fuzzy continuous on
[a, b].

On the set
Crla,b] = {f : [a,b] — Rg|f is continuous}.

Definition 5 (Bica and Popescu 2014) Let f, g € Cr[a, b],
the uniform distance between f and g is defined by

D*(f,g) = t:[ulz}D(f(t),g(t))

(Cxla,b],D*) is a complete metric space and we can
derive corresponding properties of metric D for metric D*.
(see Bica and Popescu 2014).

Definition 6 (Bede and Stefanini 2013)(gH-differentiable)
Let f:(a,b) — Rr and 1y € (a,b). The generalized
Hukuhara differentiable for f at #; is defined as follows: If
there exists an element f, () € Rz, such that

f(giH(tO) _ }lii,)r(l)f(t() + h)h@ng(to) . (3)

Definition 7 (Congxin and Ming 1992) The fuzzy-valued
function f : [a, b] — Rz is fuzzy Riemann integrable in I if
for any € > 0, there exists d > 0 such that for any division
P = {[u,v]; ¢} with the norms A(P)<dJ, we have

D<i(v — u)f(é),l) <e,

where Z; denotes the fuzzy summation. We choose to
write

I:= /abf(t)dt.

Note that, for the fuzzy Riemann integrable function
f:la,b] — Ry where [f(1)]" = {f’(t),]_‘r(t)}, we have

/a b[f(t)]rdf = { / be’(S)d& / bfr(S)dS} (4)

for all r € [0, 1].

Throughout this paper, we denote the space of all inte-
grable fuzzy-valued functions on the bounded interval
[a, b] by Lg[a, b], the space of fuzzy-valued functions that
are absolutely continuous by Az[a, D] .

Definition 8 (Salahshour et al. 2012) Let f € Lg|a, b]. The
fuzzy Riemann-Liouville integral of fuzzy-valued function
fis defined as follows:

Iff’“f(t) = F(l )/a (f(s);ilsq,a<s<t, (5)

q t—s

where 0<g <1.

Lemma 1 (Salahshour et al. 2012) Let f € Lx|a,b] and

then the parametric form of the fuzzy Riemann—Liouville
integral of f can be expressed by

17 0) = [0, 17 ()], 0<g<1

where

” 1 " g(s)ds i<s

for a real function g : [a,b] — R.

Definition 9 (Shabestari et al. 2018a; Allahviranloo et al.
2014) Let f € Ar[a,b] and g € R". The Caputo fractional
gH-derivative of f is defined by

%q)/z(t _ S)W*qflfgw (s)ds.  (6)

gHDZ,af(t) = F(|‘q'|

Definition 10 (Shabestari et al. 2018a; Allahviranloo et al.
2014) Let f € Ar(a,b) that is Caputo fractional gH-dif-
ferentiable at 7y € (a,b). We say that f is ¥[(i) — gH]-dif-
ferentiable at ¢, if

D) (10))" = (DY) (10), (D) (10)]
and that fis ¢[(ii) — gH|-differentiable, if
(D) (00)]" = (D) (10), (D) (10)],

where

Diglt) = ot | (1= 5y g (5)ds,

m—1l<g<m,meN,
for a real function g : [a,b] — R.

Lemma 2 (Shabestari et al. 2018a; Allahviranloo et al.
2014) Let 0<g <1 and f € Ax|a,b]. Then,
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I (D% f) (1) = F (1) Sgnr f(a). (7)

3 Existence and uniqueness

In this section, we prove the existence and uniqueness of
solutions for Eq. (1) under Caputo gH-differentiability. We
are going to utilize the ideas presented in Shabestari et al.
(2018a).

Theorem 1 Assume that real function k(t,s) be continuous
and positive on 0<t,s<1,f € Cz[0,1] and G : Rx — Rz
in Eq. (1) satisfies in Lipschitz condition

D(G(u),G(v)) <L-D(u,v), Yu,v e Rz,

with  constant L>0. If F(L)U ;<1 such  that

Yo := max |k(t,s)|. Then, Eq. (1) has a unique solution on
t,s€[0,1]

the interval [0, 1].

Proof From Lemma 2, the fuzzy integro-differential
equation (1) is equivalent to

Y1) O ¥(0) = I of (1) + I, / (1, 5)G(3(s))ds,

and from Lemma 3.2 in Shabestari et al. (2018a), we have
1
y(1) = y(0) + IZof (1) + Ii‘,o/ K(t,5)G(y(s))ds (8)
0

when y(f) be ¥[(i) — gH|-differentiable and

y(1) = »(0) & (1) (Iz,ofm w1z, [ x s)G(y(s))ds)

©)

for y(t) be [(ii) — gH]-differentiable.
First, consider the case [(i) — gH|-differentiable of
y(2). The operator F : Cxla,b] — Czla,b|, defined as

A0 =30 70+ 1 [ (1 — 5 (My) ()3,

(10)

transform Eq. (8) into a fixed point problem y(¢) = Fy(t),

where

Floy = Pof (), My(r) = / k()G (3(s))ds.

Let {y,} be a sequence in Cz[0,1] which y, — y for
n — oo. Then,

@ Springer

D(Fy,, Fy)

! t x-l ' o—1
= mD(/O (t—ys) (Myn)(s)ds,/o (t—s)"" (My)(s)ds)

! a—1
< 1 ( [a-9 D(Myn<s>,My<s>>ds)
1 g .
< D O ) [0
t* N
= mD (Myy, My).

(11)

Since the operator M is continuous [0, 1], (see Theorem 5
in Ezzati and Ziari 2013) we obtain

o

— D*(My,,M 0, .

D(Fy,, Fy) < (

Thus, F is a fuzzy continuous operator. Also, for every
y1,¥2 € C£[0,1], we have

D(My,(s), Mya(s))

(| ' (t,5)G (5))ds. / 1K<r,s>c<yz<s>>ds)

/|m|D (51(5)), Gra(5)))ds

< LyoD*(y1,2)-

(12)

From (12), we have
D(Fyy, Fy,)

(1 ) (/t(t - S)I_ID(Myl(s),Myz(s))dJ

M/ (t—s)*'ds (13)

O
= %D*()’h)’z).

Thus, if 1"(1+OC> <1, the operator F is a contraction on the

Banach space (Cx|0,1],D*). Consequently, the Banach
fixed point principle implies that F' has unique fixed point
which is ¢[(i) — gH]-differentiable solution of Eq. (8). The
proof for the case [(ii) — gH|-differentiable will be
obtained in similar manner and hence is omitted. O

4 Shifted fractional-order Jacobi functions

The Jacobi polynomials, denoted by J,(l”"w(t), a,b> —1,
are the eigenfunctions of the singular Sturm-Liouville
problem (see Canuto et al. 2006 for more detail)
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d a d a
G (=0 0 S0 ) 90 = (14010 =0,
(14)
where 7€ [—1,1] and corresponding eigenvalues are
yf,“’w =n(n+a+b+1), and satisfy the following
orthogonality:
1
/ I 0P (1)) (1)dr = 215, (15)
-1

where (@) (1) =
function and

(1—0)*(141)" is the Jacobi weight

i(a’b) _ 2“+”+‘F(i+a+1)1"(i—|—b+l)
L Qita+b+D)ill(i+a+b+1)

is the normalization factor and ¢;; is the Kronecker delta
function. The three-term recursion formula is given by

at+b+2 a—>b

(a,b) (a.b)
=1 t 16
KW =1, J =2 e
ab a, a, a a a,b
I @) = G — 0l (1) — 9D o),
(17)
forn=1,2,..., where

@p) _ (2ntatb+1)2n+atb+2)
T 2+ D(n+a+b+1)
plad) _ (B> —a®)2n+a+b+1)

" 2(n+1)(n+a+b+1)2n+a+b)’
@p . (nta)(n+b)2n+a+b+2)

" (n+1)(n+a+b+1)2n+a+b)

)

The shifted Jacobi polynomials are defined on [0, 1] as
Ty = 70020 = 1),

with weight function @“?)(¢) = (1 —1)“*. The orthogo-
nality condition of the shifted Jacobi polynomials is as
follows:

1
/ 790 (5799 (1308 () dr = 7@P5,, (18)
0

J J

@)

where /Ij(”’b) = 5. Moreover, the analytic form of the

shifted Jacobi polynomials on [0, 1] is given by

Fab) (1) Z( D)'""'Tn+b+1)(n+a+b+1+i),
" — iln—iIi+b+1)I(n+atb+1)

(19)
for n=20,1,.... The shifted fractional Jacobi functions

(SFJFs) of order v on [0,1] are given by replace t — ¢’ in
(19) as follows (Bhrawy and Zaky 2015):

(=) T+ b+ D (n+a+b+1+10)
dn—iOIi+b+1)I'(n+a+b+1)

(20)

i=0

Ty (0)

These new fractional polynomial basis form a complete
space L;a:h,‘.) [0,1] with the following weighted inner pro-

duct condition

< j\i(a‘,h‘v) (l), j}a,h,v) (l) > ) = ;Lj(a,b)é (21)

ijs

where y“?V(¢) = v(1 — ¢")“prbH -1,

4.1 Function approximation
We define

Py, = span{J“*") (1) : 0<n <N},

as the finite-dimensional fractional-polynomial space. By
the orthogonality (21), any u € L @ s [0, 1] can be expan-

ded in terms of SFJFs as (Bhrawy and Zaky 2015)

uJ ’\(a b.v) (22)
i=0
1
w= (%) / w71 () (1) (23)
0
and they hold the Parseval identity:
N a,b
el = D A il
i=0

Consider the u € Li(avm [0, 1]-orthogonal projection upon
Py, defined by

(u — Un, V)X(u,h,v): O, Yv € PN,V

By definition, we have

Z w TP (1) = UT (). (24)
where
U= [M(), Up,uz, ..., MN]Ta
(1) = (75" (0. 7" (@), ... Ty @] = @X(0),
(25)
and
X(t)=[1,¢,¢,..., ",
where Q = [¢; ;] vy 1)x(v1) 18 the lower triangular matrix

and is defined as follows:

@ Springer
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(71)l7jr(l+b)r(l+]+a+b71) . X HNab,y) /N Flab,y)

. 177 - J S S0 t

g, — ] G- D= G+OI(+a+5) J;W’ (70
0,i<;j N N ~ab)
’ =3 (30
for 17]21,7N+] j=0 k=0 (32)
Similarly, we can approximate x(¢,s) by SFJFs as N (N ~ab)
follows: =D\ D it |70
k=0 \ j=0
LT a,b, t) ’\(a b,v) T N
s):ZZk,J ; (s) = @' (1) KD(s), :Zﬁikf(ab»)(t)
i=0 j=0 L Tk
26
(26) Inserting (32) into (31) leads to the desired result. O

the coefficients k;; can be calculated by

{ L 4.2 Operational matrix of the fractional-order

o /\‘(a.,h.v) A(a,b,v) . .
ki, 47(.(1‘,7);@7,]) /0 / Kk(t,8)J; (1) (s) 27 integration
LA

Xa’b‘v(t) a,b, x( )dtds

Lemma 3 (Kamali and Saeedi 2018) If uy(t) € Py, is the
best approximation of smooth function u(t), then

C

[ — unl| o, < PN 1)1 (28)
IN+1
that, C = m[a |ddtN+, |-
Lemma 4 (Bhrawy and Zaky 2016) If
U = [ug, uy, - . ., uN]T, then
()0 (1)U ~ UD(r), (29)
with
U= [ﬁi,i]i,j:Oa Ujj = Z Uit g j- (30)
=0
and ;,; will be defined throughout the proof.
Proof Form left side of (29), we have
N a,by ab,y

S udy " (I (1)

ZN " "f(a b,v) ( >ﬂa7b,\') (t)
o’ (nu = | (31)

aht a,b,v
Siowdy ’(r)ﬂ,- (o)

Approximating

a,b,v ah» a,b,v)
fi( ) A( Z lu’l} kj\(
for i,j =0,...,N, we have

@ Springer

Theorem 2 (Bhrawy and Zaky 2016) Let ®(t) be frac-
tional Jacobi polynomials vector defined in (25). Then, for
o>0

Lo(r) ~ P,D(1),
where P, = QDE and
I'(1 r 1 r 1
D = diag| (1) , O +1) e (v +1) ].
Tla+ 1) T'(a+v+1) Fnv+a+1)

and E will be defined throughout the proof.

Proof Since Ijt’ = F{;g&) 7% we have

LO(1) = QX(1) = QIEX (1)
= QL G, ] (33)
= QD[ " .. t"”*“]T.

By approximating #'** by n + 1 terms of fractional Jacobi
polynomials, we get that

Vo - a,b,v
(AR Z éiz/‘j}( )(t)v (34)
=0
where ¢;; is given from (21) as follows:
1 ! ivto 7la,b,v) a,b,v
Cij = =@h J, (LT (2)dr. (35)
J

Therefore, by setting E = [£;;];,_, the desired result can
be obtain. |

Lemma 5 Let u € C[0,1] and «(t,s) be a continuous
function on 0 <t,s <1, operator L : C[0,1] — CJ0, 1], de-
fined as

Lu(r) = It ( /O et s)u"(s)ds),

then,
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Lu(r) ~ ®" (1)PTK¥(U") U (36)
where the matrix Pg and K are defined above.
Proof Let u(t) ~ UTd(t), where U = [ug, ..., uy]". From

1
Lemma 4, u"(t) ~ UT U' ®(¢). By substituting matrix
representation (26) and using Theorem 2 we obtain

(Lu)(2)
F(loc// (t — )" (s, x)u (x)dxds
1
I(2)

~ /(z— §) @7 (5) de/ (0" YU
o (1)PT
=o' (PTKY (0" )'U,
(37)
which completes the proof. O

5 Numerical method

Consider the following fuzzy Fredholm nonlinear frac-
tional integro-differential equation, under the conditions of
Theorem 1,

( D*()y +f0 S7
(38)
¥(0) =y € Re.
Applying I on both sides of Eq. (38). To find the

numerical solution of the initial value problem (38), we
will the following expressions:

Case 1. Let assume that y(s) is ¢[(i) — gH]-differentiable

and [y"(s)] = [(X’(s)) ,(yr(s))"}. It means that y"(s) is a
fuzzy number-valued function. So by Eq. (8), we have the
following fractional integro-differential equations system:

1
Y(1,r) = Y(0,r) + ZF (1, 1) + I / (1, $)Y" (s, 1) (s)ds

0

(39)
where
won= (g e ()
and F(1,r) = <§:8 )

It is clear that

Y0 =y + Ig)_‘_’(t) + 13 fy t,5) (v (s) ) ds w0
V() = 55+ B (1) + 15 Jy w(2,5) (57 (5))"ds

Now, we explain the propose method to solve Egs. (40). In
order to apply SFJFs in (40), from Theorem 2, we can write

B (1) = BFTO(1) = ET (1) = ETPO(r),
= =T =T =T (41)
Bf (1) ~ IF, ®(t) = F, ID(t) = F, PO(¢),
and for fuzzy initial condition yp we can write
r —r 528
Yo = Y, 0(1) v~ Y, 0(t). (42)

Also, the unknown functions y"(¢),y"(¢) are approximated
by SFJFs as follows:

Y () =~ " (1)Y,, ¥ (1) ~
where Y, = [y7, 7. .,X]’V]T, and Y, = [, ¥}, .. .j{v]T.

By inserting matrix relations (36) and (41)—(43) in (40) ,
we get

O (1)Y, = O (1)Y,, + O (1)PTF’
+ 0" (PTKY(Y" )Y, + R,(1),
o7 ()Y, = " (1)Y,, + O (1)P'F

o' (1Y, (43)

(44)

—=n—1_,.__ _
+ o' PTKY(Y )Y, +R.(2).

in which the terms R, (¢),R,(¢) are “residual function”.
Now, based on spectral Tau method, we must have

<R.(1), 7" (1) > usn =0,

(45)

<R (1), 71" (0) > s = y

for i=0,...,N, where r € [0,1]. Then, a simple rear-
rangement of Eqgs. (44) yields
Y, - Y,, - P'F - P'K¥((7" )Y, =0,

(46)

— — —r —n—1 ,__
Y, - Y, —P'F -P'K¥(Y )Y =

with unknown vectors Y, and Y, (see Ahmadian et al.
2013; Canuto et al. 2006 for more detail). By solving this
system of equations, the approximate solution y},(r) will be
obtained for r € [0, 1].

Case 2. — gH]-differentiable
and [y*(1)]"= [(X’(t)> , (y’(r))”] ,s0 by Eq. (9), we have the

following fractional integro-differential equations system:

Y~(t, r) = ?(07 r)

1
o (-1 (ISF(I, r)+ 18/0 K(t,8)Y" (s, r) (s)ds)
(47)

Let assume that y(f) is ¢[(i)

Using definition of Hukuhara difference, system (47) can
be written as follows:
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V(1) = ¥ + BF (1) + I3 fy <(t,8) (57 (5))"ds 48
¥ (1) = 5 + B (0) + I Jy w(t,) (y<s>)"ds )
Similarly as the Case 1, we obtain
Y, =Y, +PF +PTK‘P(Y I)TV,, (49)
Y, =Y, + P'F' + PPKY(Y")'Y,.

6 Error analysis

Assume that the fuzzy function yy(¢) is the approximate
solution of Eq. (1) which obtained by means of SFJFs, then

(O] = (0, 3 (0] = [@7 ()X, @7 ()]
= [ﬁﬁ“”””(m > 57
i=0 i=0
= [Z ROED S aa()
ieJ*
Zyr/\(abl Zfr/\(ab\ ]

ie]”
ieJ*t €)™

for all ¢ € [0, 1], where

J*:{izo

SN (1) <0, 1 € [0, 1]}

J*:{i:Q”wNﬁV“RﬁEQtGDJ&.
Therefore
ab,y ab, ro—r

Dn() =3 TV 0+ > T ()5

€] ieJ*

N

=3 T ),
i=0

that is yy (1) = ®7 (1)Xy, where Xy = [xo, X1, ..
fuzzy vector, such that [x;]" = [x], /] and

r { /‘(ab\ (¢

=i — /‘(ab\ (t
(
(

L Xy] is a

Vir i
’\(ahv

—-r __ 17 l
X = "(ab\

Now, based on shift fractional-order Jacobi polynomials
approximation, we obtain the error bound for (22).

)=

)<
I)Z

)<

t

Theorem 3 The error bound for the fuzzy Jacobi
approximation yy(t) = ®T (1)Xy of fuzzy-valued function
y:[0,1] = Rz in (22) is presented as follows:

@ Springer

C
D*(y,yn) < PV 1)

Proof From Definition 5 and Lemma 3 we can get

D*(y,yn)

= sup D(y(1),yn(?))
t€[0,1]

=y OL (0 =y}

=Yyl 15 () = I (Dl

= sup sup max{|y"(¢)
t€[0,1]r€[0,1] -

= sup max{||y"(z)
rel0,1]

Qr Er }
22NFL(N 4 1)1 22N+1(N 4 1)!

= sup max{
ref0,1]

< ¢
= 2NN + 1)!
(50)

that C = max{C,, C,}, which completes the proof. O

The obtained error bound shows the convergence of
approximation solution yy to the y(f) as N — oc.

7 Numerical examples

In this section, we solve some examples in order to show
the accuracy of the proposed method. All of them were
computed with Maple 16 with Digits = 40.

Example 1 Consider the fractional integro-differential
equation,

P+ L5 =3 g — iy + / T o(s)ds,

(D00 = —3 = 3

¥(0) = 0.
(51)

where the exact solution is y(t) = £3[r + 1,5 — 3r]. Let
N =6, a=b =0, and the absolute errors of our method
with Jacobi polynomial (v = 1/2) are presented in Table 1.
In Figs. 1, 2, 3 and 4 we plot the absolute error functions
for v=1 and v =1/2, respectively. This comparison
shows the accuracy of proposed method when using the
fractional Jacobi polynomials.

Example 2 Consider the fuzzy fractional integro-differ-
ential equation,

1/3 !
(D200 = £(0) — = / ( 4+ 5)y(s)ds,
0

y(0) =0.
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Table 1 Numerical results for Example 1
r t Abs. Err. of y(t,r) Abs. Err. of y(¢,r)
0.2 0.2 2.80e—18 1.02e—17
0.4 3.54e—18 1.53e—17
0.8 1.56e—17 7.80e—17
0.4 0.2 3.69¢e—18 1.06e—17
0.4 8.69¢e—19 1.05e—17
0.8 7.87e—18 4.65e—17
0.8 0.2 4.83e—18 7.29e—18
04 5.40e—19 3.80e—19 , s o6 04
0.8 1.46e—17 2.82e—17 "
5.x10°
4.x10°
3.x10°'%
2,x 1071
1.x 10716
Fig. 4 Plot of absolute error for (¢, r) for v=1
Table 2 Absolute error of y’(¢) in Example 2
r 1 v=1 v=1/2 v=1/3
Abs. Err. Abs. Err. Abs. Err.
0.2 0.2 6.0e—03 1.1e—03 3.1e—05
0.4 4.7e—03 2.1e—03 8.0e—06
0.8 8.4e—04 2.7e—03 5.4e—05
0.4 0.2 7.4e—03 1.3e—03 3.9e—05
0.4 5.8e—03 2.6e—03 9.0e—06
0.8 1.1e—03 3.3e—03 6.9e—05
0.8 0.2 1.0e—02 1.8e—03 5.5e—-05
0.4 7.9e—03 3.7e—-03 1.1e—05
Fig. 2 Plot of absolute error for y(¢,r) for v=1/2 0.8 1.5e—03 4.5¢—03 9.7e—05

where the function f{(r) is chosen such that the exact solu-
tion is y(f) =sin(7?)2+3r,8-3r. Let N=S5,
a = —b = 1/2, and the absolute error forv=1,1/2,1/3is
shown in Tables 2, 3. From these tables we can conclude
that the approximate solution is in good agreement with the
exact solution for fractional value of v.

Example 3 Consider the fuzzy fractional integro-differ-

ential equation,
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Table 3 Absolute error of y'(¢) in Example 2

r t v=1 v=1/2 v=1/3
Abs. Err. Abs. Err. Abs. Err.
02 0.2 1.7e—02 3.0e—03 9.4e—05
0.4 1.3e—02 6.3e—03 1.5e—05
0.8 2.6e—03 7.5e—03 1.7e—04
0.4 0.2 1.6e—02 2.8e—03 8.6e—05
0.4 1.2e—02 57e—03 1.4e—05
0.8 2.4e—03 6.9¢—03 1.5e—04
0.8 0.2 1.3e—02 23e—03 7.0e—05
0.4 1.0e—02 4.7e—03 1.3e—05
0.8 2.0e—03 5.7e—03 1.2e—04
12 2Vt
(gHD*,Oy)<t) = ﬁ [] +2r,8 - 51’]
L2 -5+ L [
—_— r — Jr — S)as
45 ’ 15/, 2 W
¥(0) =0.

with the exact solution is y(r) =]l +2r,8 — 5r]. Let
N =5,a=>b=1/2, and the numerical results for different
values of v are shown in Tables 4, 5. Obviously, the
accuracy of our method is very high, while only a few
terms of fractional Jacobi polynomials are needed.

8 Conclusion

In this paper, we extend a spectral method with fractional
Jacobi polynomials for solving a fuzzy nonlinear integro-
differential equation. The proposed method is more accu-
rate than those obtained by standard Jacobi polynomials.
This method is easy to implement and yields satisfactory
results only a few number of bases. In addition, numerical
results have been presented to show the accuracy of the
proposed method. As a further work, we develop this

Table 4 Absolute error of y’(t)

. rot v=1/2 v=1
in Example 3 Abs. Err.  Abs. Err.
0.2 0.2 1.0e—36 2.4e—01
04 1.6e—36 3.4e—01
0.8 2.4e—36 4.8e—01
04 02 19e-36 2.2¢—01
04 2.8e—36 3.0e—01
0.8 4.0e—36 4.3e—01
0.8 0.2 43e—-36 1.6e—01
04 6.3e—36 23e—01
0.8 9.0e—36 3.3e—01

@ Springer

Table 5 Absolute error of ¥ ()

in Example 3 ' l Ll;lléfr Avb: iirr.
0.2 0.2 4.7e-35 2.6e—03

04 6.8e—35 3.6e—03

0.8 9.6e—35 1.0e—03

04 02 3.1e-35 22e—04

04 4.5e—35 2.6e—04

0.8 6.4e—35 4.8¢—03

0.8 0.2 1.2e-35 7.3e—02

04 1.7e—-35 1.0e—01

0.8 2.4e—35 1.5¢e-01

method for system of fuzzy nonlinear integro-differential
equation.
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