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Abstract
An important aspect of positron emission tomography (PET) imaging in a clinical application is the localization and

detection of tumors and lesions by administering a predetermined amount of radiotracer. This allows detailed 3D imaging

of a wide range of molecular processes in the human body. The quality of the PET image is dependent on the amount of

radiotracer administrated and the patient’s body parameters. As the amount of injected radiotracer increases, an overall

improvement in the quality of the reconstructed PET images and lesion detectability is expected, but it is accepted that any

radiotracer doses are associated with the risk of radiation and it could be harmful to the patient if essential PET imaging is

not performed because of the fear of radiation risk. To ensure the highest-quality diagnosis and the smallest radiation risk,

the patient should receive the smallest amount of radiotracer that provides an image of sufficient quality. Our study

proposed a PET simulation tool to predict the smallest amount of radiotracer that allows for a reliable diagnosis based on

patients’ significant body parameters (weight, age) within a fixed total scan time to improve diagnostic processes for

detecting and localizing tumors. We built a model of a particular PET scanner and patient, based on real MRI images and a

digital anthropomorphic phantom of the brain. We performed Monte Carlo simulations of PET data acquisitions. A dataset

of 60 patients was used, and 11 independent dose prediction simulations were performed for each patient. We concluded

that our simulator estimated injected radiotracer doses 28% smaller than the standard clinical doses that yielded PET

images of clinically acceptable quality. We also found that the total injected radiotracer dose for adult patients was affected

by considering the patient’s weight rather than age.

Keywords Positron emission tomography � Prediction of radioactive injection dosage � PET image � Monte Carlo

simulation

1 Introduction

Medical imaging is becoming an increasingly important

component of clinical applications and research oncology

for diagnosis, treatment planning, and tumor monitoring.

Over the years, multiple imaging technologies have been

developed, using the rapid advances in computer and

imaging approaches, such as X-ray radiography, computed

tomography (CT), ultrasound (US), magnetic resonance

imaging (MRI), and nuclear medicine imaging: PET and

single-photon emission computed tomography (SPECT)

(Cherry 2009; Mawlawi 2009).

Nuclear medicine imaging is an independent field within

medical imaging, designed to observe the biological

functions of the body. It is widely applied in cardiology,

oncology, and neuroscience. This method integrates two

main components in order to work effectively: radiotracer

synthesis and administration to the patient followed by

in vivo data acquisition using an appropriate scanner

detector system.

The radiotracer is a material composed of a pharma-

ceutical substance and a radioactive isotope compound

which labels the substance. The radio-labeled pharmaceu-

tical substance is then administered to the human body in

trace amounts and is associated with a specific molecular

in vivo process, such as metabolism, inflammation, pro-

liferation, and calcification. It is usually introduced to the

body by injection, swallowing, or even by inhalation, while
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the scanner is represented by a camera able to detect the

presence of the radiotracer and thus generate images.

PET is one of the main applications of nuclear medicine

imaging that estimates the spatial distribution of the

injected radiotracer based on annihilation of the photons

emitted by positron emitting isotopes, e.g., C-11, N-13,

O-15, and F-18. The information provided by PET differs

from other medical imaging modalities such as X-ray, CT,

or MRI. These modalities provide anatomical information

about the structural changes, while PET provides infor-

mation about biological activities.

Because the biological changes often precede structural

changes, PET may determine the presence of abnormalities

much earlier than the other approaches (de SEOB Silva

2010; Gillam and Rafecas 2016; Turco 2012).

In PET imaging, a small amount of radiotracer can be

injected into the patient in order to examine a specific

molecular process targeted by the pharmaceutical compo-

nent of the radiotracer. The field of nuclear medicine rec-

ognizes that any dose of radiotracer used in this procedure

is associated with some possible risks of radiation. Radia-

tion doses for PET imaging should be minimized, so the

patient receives the smallest amount of radiotracer that

provides images of sufficient quality. Suppose that essen-

tial PET imaging sessions—PET imaging sessions that

provide the clinician with important data about the

patient’s treatment and diagnosis—are not carried out

because of the fear of radiation risk: What would happen?

Radiation could harm the patient.

The aim in clinic is to maximize diagnostic image

quality with the minimum exposure to radiation, and for

that purpose the injected dosage should be optimized.

Because the advantages of PET examination outweigh

the potential risks, the goal of this paper is to propose a tool

to simulate the PET examination, based on significant body

parameters (weight, age) at the set scanning time. This tool

predicts the optimal radiotracer dose for individual

patients, to reduce the cost of PET imaging and avoid

potential radiation exposure risks.

To achieve our goal, we will describe in the following

sections the details of the PET imaging simulation, the PET

scanner model, and the patient model as well as explain the

PET image quality measurement. Finally, we will predict

the smallest possible amount of administered radiotracer

that provides the appropriate diagnostic information to

improve the clinical diagnostic process in terms of tumor

detection and localization.

1.1 PET and Monte Carlo simulation

PET imaging deals with radiotracer decay, positron emis-

sion, photon transportation, and particle detection, and the

use of simulation is extremely popular in PET research and

clinical practice. The Monte Carlo simulation technique

plays an essential role in this field and covers a wide range

of problems that could not be solved using experimental or

analytical methods. Monte Carlo simulations are widely

used for PET imaging simulations because they consider

all the random processes affecting PET imaging. PET

simulation tools using Monte Carlo are useful for quanti-

fying the radiotracer amount and planning the radiotracer

dose, as well as studying the factors that affect the quality

of PET reconstructed images. Furthermore, the Monte

Carlo simulation can create data remarkably close to those

obtained from real measurement. The simulation tools

currently available are not easy to understand and use by

beginners or short-term users without a background in

programming and physics. These software applications are

also extremely time-consuming, require considerable space

on a hard disk, and are, generally, consumers of high

computational resources. For example, to simulate a scan

of the whole body, more than 17,000 h of CPU time is

required (Zaidi 1999; Zaidi and Koral 2006).

Augusto et al. presented their work (Augusto et al. 2018)

which results in the estimation of irradiation with RI that

led to better accuracy of signals’ peak position with factor

of two. They explained that their work was through pro-

jectile fragmentation. The authors claim that this was due

to the signal acquisition with PET scanner. In their work

(Kang et al. 2015), the authors managed to evaluate the

accuracy of their algorithm on the dataset that has images

of 11 patients. The image was evaluated using the low dose

of PET that was calculated using their algorithm. The

images were clear and gave a great result. The authors

suggest that low dosage could be used for high-quality PET

image of the brain. The images that are presented in their

paper where they compared the low-dose PET with the

standard dose show great results. A very promising result

was presented (Junshen et al. 2017), showing that using

deep learning results in enhanced images with low dose

compared to the standard dose. The authors claimed that

they managed to reconstruct the image with as low as 0.5%

of the low dose that supposed to be used. Although low

dose usually results in very low image quality that does not

help for a better diagnosis, the experiment utilizes the high-

quality deep learning and gave an excellent result. The

study has a promising result for future utilization of image

quality with low dose.

1.2 Injection dose prediction

This section provides an overview of previous studies

relevant to the current study. Recently, Boldys et al. in their

paper (Boldyš et al. 2013) employed a Monte Carlo sim-

ulation to calculate the amount of injection radiotracer

needed to achieve a statistically constant quality of PET
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images, even with patients with differing body parameters

(weight). The experiment was done on a simple patient

model; they used a cylindrical geometric shape to

approximate the body’s trunk–this method is not repre-

sentative (Dvořák et al. 2013).

Also, in their paper (Karakatsanis et al. 2014) Karakat-

sanis et al. employed a Monte Carlo simulation to model a

direct relation between administered activity and statistical

quality measurement noise equivalent count rate (NECR)

for a wide range of scanner parameters. They used a digital

voxelized phantom and resized it to large-, small-, and

medium-sized phantoms. The resulting total amounts of

injected radiotracer represented by this work are smaller

than the minimum amount that would be administrated to

the real patient (Karakatsanis et al. 2014).

1.3 The proposed PET simulation methodology

This section describes the significant steps performed to

build the proposed PET simulation tool and how the PET-

related physical effects were included. Figure 1 presents

the computerized PET imaging system which is composed

of phantom specifications (patient model) and scanner

specifications, processed by simulation software in order to

reconstruct the desired PET images. Phantoms are seen as a

collection of digital volume arrays or 2D images that are

used to approximate the locations and dimensions of the

patient’s body structures and organs. The scanner model

has been designed to reflect the specifications common to

PET scanners currently used in clinics. The process of PET

imaging is then simulated based on techniques such as the

Monte Carlo method by following the basic algorithm

provided in Yu (2010) and PET processes like radiotracer

activity uptake, acquisition time, positron range, positron

annihilation, photon transportation, and photon detection.

The information that comes from the simulation is orga-

nized in a matrix called a sinogram. A sinogram is a simple

ordered way to store the events registered by each detector

into sets of parallel projections. Finally, using a recon-

struction method, the PET image of the injected radiotracer

activity distribution within the targeted part of the patient’s

body is produced.

1.4 Patient model

Generating a realistic model of the patient’s anatomical and

biological functions from imaging data is an important

aspect of simulation (Ljungberg 2004; Zaidi and Koral

2006; Peter et al. 2000). Theoretically, the computerized

model of a patient represents a set of tissues, organs, or

body regions, visualizing the distributions of the radio-

tracer emission, scattering, and absorption points in a

patient as similar to those in a real patient. By using a

computerized model of a patient, we were able to test

different or completely innovative cases by simply altering

that model to reflect different situations. As shown in

Fig. 2, two digital volumes were used for the Monte Carlo

simulation performed: a matrix generated from reading real

clinical data (clinical CT or MRI image for the patient) and

a matrix of a digital anthropomorphic phantom (mathe-

matical model designed to accurately represent the tissue

and organ system in the whole body). Clinical data provide

accurate experimental results, while the digital phantom

provides the simulation data to make an evaluation of

detecting abnormal lesions and tumors.

1.5 Radiotracer injection dose calculation

The radiotracer used in PET imaging can affect the quality

of the resulting images. All radiotracers used in PET have

to satisfy some requirements: They have to be nontoxic or

not harmful for the patient, and they have to be chemically

incorporated into the biological process being examined

without modifying it. In addition, they should be specific

for the physiological process under study. The most com-

mon radiotracer used in PET examination is fluo-

rodeoxyglucose (FDG). As FDG is analogous to glucose

and tumors can absorb significantly more glucose than the

Fig. 1 PET simulation tool structure Fig. 2 Digital voxelized phantom
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surrounding healthy tissue, FDG has been used to detect

end-stage cancer (de SEOB Silva 2010; Turco 2012).

The amount of radiotracer that should be injected into a

patient’s body injection administration (IA) is an important

issue in PET examination. There are standards for the doses

of radiotracer administered, and the European Association

of Nuclear Medicine (EANM) has published clinical

guidelines with recommendations for the administered

amounts of specific radiotracers for specific applications

(1) (Boellaard et al. 2010). Equation (1) shows the formula

to calculate the IA, and it can be found from the patient

weight in Kg and the min. scanning time.

IA ¼ 7:2 � patient weight kgð Þ=scan time minð Þ � 10: ð1Þ

By following the principle of as low as reasonable

achievable (ALARA) (Waterstram-Rich and Christian

2013), each patient should receive the minimum amount of

IA that is necessary to produce a good diagnostic image.

For this purpose, and along with the variation in patient

body parameters, we proposed a method to scale the IA

dose according to a patient’s age, based on the EANM

guideline recommendation and Young’s formula for

nuclear medicine dosage calculations (Piepsz et al. 1990;

Treves et al. 2011; Accorsi et al. 2010). Equation (2) shows

the modified IA’ based on the patient age and its original

IA:

IA0 ¼ patient age yearð Þ
patient age yearð Þ þ 12

� �
� IA:

1.6 Scanner model

When defining the model of a tomographic scanner,

specific guidelines with respect to the hierarchy of the

scanner components must be followed in order to track the

particle’s physical interactions. Most PET scanners are

built from single or multiple rings, each ring having several

blocks divided into crystal detectors. The number of crystal

detectors in blocks for single ring (No. Detectors) is cal-

culated according to Eq. (3), using the ring radius and the

total surface area, and it is computed is as follows:

No: Detectors ¼ 2p � Ring Radius

Detector Surface Area
: ð3Þ

According to (Saha 2010), the ring radius setting is

usually between 300 and 600 mm and the surface area

setting of each crystal detector is usually between 2 and

5 mm.

After setting up the scanner model, we defined the PET

physical processes that occur during the simulation. The

four processes we implemented are summarized in Fig. 3,

and a detailed description of each process can be found in

(Alsanea 2016).

1.7 Image quality measurement tools

There are many image quality assessment tools available in

the field of PET imaging. For the purpose of our work, we

employed the well-established statistical tools signal-to-

noise ratio (SNR) and noise equivalent count (NEC). From

a medical point of view, for a given diagnostic task, such as

tumor or lesion detection, the significant measure for PET

image quality is observing and detecting small foci (Boldyš

et al. 2013; Dvořák et al. 2013). Thus, we provide a par-

ticularly attractive performance measurement of the

reconstructed image precision and recall.

Signal-to-noise ratio (SNR) is a statistical measurement

representing the relation between an acquired signal and

the background image noise. We get its value by calcu-

lating the ratio between the mean of total detected photons

DPl and the standard deviation of the signal DPr.

SNR ¼ 20 log
DPl
DPr

� �
: ð4Þ

NEC is a statistical measurement describing the number

of detected photons needed to produce an equivalent image

with an ideal PET detection system that accounts only for

true coincidences, and discards the random and scatter

coincidences which contribute only to data noise.

NEC ¼ 20 log
DPl
DPr

� �� �2

: ð5Þ

The ability to detect the presence of possible tumors and

lesions is a measure of PET image quality. In certain situ-

ations, the diagnostic task of classifying significant changes

in the pixel values of the reconstructed image of a given

region can be regarded as a problem for tumor detection

and location. There are several measures of performance

metrics for classifying tumor detectability, such as preci-

sion and recall. In order to calculate precision and recall,

Fig. 3 PET physical processes implemented in the simulation
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the classifier confusion matrix is computed, as shown in

Fig. 4.

Precision measures the percentage of pixels detected as

tumors that are truly tumors. Recall measures the per-

centage of tumor pixels that are truly detected from all

pixels in the reconstructed image. The following equations

represent the precision and recall, computed based on the

confusion matrix:

Precision ¼ TP

TP þ FP
ð6Þ

Recall ¼ TP

TP þ FN
: ð7Þ

1.8 PET simulation experiments

In this section, different simulations are performed on a set

of patients chosen from clinical data. We used 60 patients’

MRI images and metadata that were available from the

Digital Imaging and Communications in Medicine

(DICOM) library. The main purpose of these simulations is

to evaluate the simulated PET system discussed in previous

sections and then predict the optimal injected radiotracer

dose used to detect abnormal lesions and tumors.

To perform our simulations, the patient model was built

from a digital phantom and a corresponding clinical MRI

image. By following the algorithm illustrated in Fig. 5,

each patient model was injected with 11 independent and

different 18F-FDG doses calculated using Eq. (2). The

scanner model was also built according to the technical

specifications of a real clinical scanner used in a PET

imaging system. After that, the PET imaging simulation

was performed for all patient models. Furthermore,

according to the scope of the experiment, the patient

models were divided into four different groups based on

their age and weight. Finally, the resulting images and

statistical values for those groups were used in system

evaluation comparisons, image quality assessments, and

performance measurements.

In this simulation, we chose the brain as our main region

of interest because it is an important region in clinical PET

imaging. The brain has been associated with tumor lesions

as well as a wide range of other diseases, such as Parkin-

son’s and Alzheimer’s diseases. In addition, the brain can

have frequent lesion and tumor occurrence beside other

abnormality diseases including Parkinson’s disease and

Alzheimer’s disease.

2 PET simulation results and discussion

We simulated a set of 60 patients provided by the DICOM

dataset, with weights ranging from 40 to 150 kg, and adult

age distribution from 20 to 95 years. From the given

weight range and for a constant age, we can divide the

patients dataset into four groups: slim patients (the group of

patients with very low weight; weight B 45 kg), medium-

weight patients (the group of patients with moderate

weight; 45\weight\ 70 kg), overweight patients (the

group of patients with a heavy weight; 70\weight\ 90

kg) , and obese patients (the group of patients with

weight[ 90 kg). The PET image simulations are classified

as follows:

1. Computing the NEC for default patient parameters

weight = 63 kg and age 35 years (Fig. 6).

2. Calculating the optimal radiotracer injection amount

for patient parameters weight = 63 kg and age

35 years (Table 1, Fig. 7).

3. Calculating the optimal radiotracer injection amount

for patients with different weights in kg and constant

age in years (Table 2, Fig. 8).

4. Calculating the optimal radiotracer injection amount

for patients with fixed weights in kg and different ages

in years (Table 3, Fig. 9).

In Fig. 6, the quality of the reconstructed PET image

increases with the injected radiotracer dose but only for

doses smaller than a certain value. After the peak of NEC

values is reached, then as the injected amount of radio-

tracer increases the acquired NEC data and the corre-

sponding PET image quality remain constant. For the same

patient, Fig. 7 illustrates the effect of the total injected

dosage on the optimal radiotracer dose, the latter having

been calculated from a lesion or tumor precision or recall

score. The optimal radiotracer amount according to our

simulation is 355 MBq, that is a reduction of 5% compared

to the clinical injection dosage of 370 MBq. There is also a

discrepancy of 5% from the calculated initial dosage value

of 338 MBq.

Figure 8 illustrates the optimal radiotracer dosage in

terms of lesion and tumor detection based on precision and

recall values for a set of randomly selected patients from

the available dataset of 60 patients.

Fig. 4 Confusion matrix
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Theoretically calculated doses for the classified patients

are as follows:

• For the group of slim patients, the minimal injected

radiotracer amount by the simulator is 4% greater than

the recommended dose.

• For the group of medium-weight patients, the simulator

doses are less than the clinical recommendations by

approximately 5% to 7%.

• For the group of overweight patients, the simulator

reduced the clinical recommendation dosage by 17% to

24%.

• For the group of obese patients, the simulator dosage

reduced the clinical recommendation dose by up to

28%.

Finally, Fig. 9 illustrates the evaluation of the result of

calculating the optimal radiotracer injection amounts in

terms of lesion and tumor detection based on precision and

Fig. 5 Radiotracer injection

dose calculation process

Fig. 6 NEC values for default scanner and patient model

Table 1 Lesion detection (precision and recall) for default patient

model

Total injected activity (MBq) Precision Recall

253 0.1364 0.1714

270 0.1705 0.2143

287 0.1818 0.2286

304 0.2727 0.3429

321 0.4545 0.5714

338 0.5455 0.6857

355 0.7955 1

372 0.8750 1

389 1 1

406 1 1
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recall values for a set of randomly selected patients. The

comparative evaluation between simulator, clinical rec-

ommendation, and the theoretically calculated dosage

shows a discrepancy in the values for the theoretical dosage

for patients. Also, the simulator dosage provides a 4% to

5% downward optimization of the clinically recommended

dose of injected radioactive substance.

3 Conclusion

The main purpose of this study is to predict the optimal

dose of injected radiotracer for adult patients. To achieve

our goal, we performed a set of simulations to assess the

relationship between the quality of simulated PET images,

the amount of radiotracer injected into the patient, and the

patient’s physical parameters (age, weight). Each simula-

tion was done using the PET scanner model and the patient

model for a diagnostic task (tumor/lesion detection), and it

calculates the PET image quality assessment variables

NEC and SNR. From the results of those simulations, we

concluded that our simulator can produce a desirable and

efficient prediction of injected radiotracer amount that

optimizes the current clinical amount downward by up to

28%. In addition, we can conclude that the total injected

radiotracer dose for adult patients is mostly affected by the

patient’s weight rather than the patient’s age.
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