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Abstract
Almost all of the automatic accident detection (AAD) system suffers from the tradeoff between computational overhead

and detection accuracy. Recent advances in detection and classification methodologies have shown phenomenal

improvements in accuracy but these systems require a huge number of computational resources making them unviable for

deployment requiring real-time feedback. This paper proposes a methodology to develop a reliable and computationally

inexpensive real-time automatic accident detection system that can be deployed with minimum hardware requirements.

Specifically, we split our AAD system into three major stages (Detection, Tracking and Classification) and propose

algorithms for each stage with reduced computational need. For the detection stage, we propose Mini-YOLO, a deep

learning model architecture trained using knowledge distillation that has comparable accuracy with its counterpart

YOLO(You-Only-Look-Once) with reduced model size and computational overhead. Mini-YOLO achieves an average

precision (AP) score of 34.2 on the MS-COCO dataset while outperforming all other detection algorithms in runtime

complexity, achieving a staggering 28 frames per second on a low-end machine. For the tracking stage, we adopt SORT

(Simple Online Real-time Tracking) and for classification stage, we compare multiple machine learning algorithms and

show that a support vector machine with radial basis kernel performs the best with an area under the curve (AUC) score of

0.98, model size of 448 KB (kilobytes) and 12.73 ms (milliseconds) latency.

Keywords Vehicle accident detection � CCTV image processing � Knowledge distillation � YOLO � Vehicle tracking �
Automatic accident detection system

1 Introduction

Nowadays, it is very essential to detect traffic accidents as

early as possible for traffic safety and time-saving, world-

wide. The event of traffic accidents is a major concern

mainly in highly congested countries. Amidst a speedy rise

in the figure of expressways and motorized vehicles in

most countries (Global status report on road safety 2015),

the cumulative number of collisions has risen extensively

in the world. A yearly report of the National Highway

Traffic Safety Administration (NHTSA) stated that about

5,000,000 traffic accidents happen in the United States

(US) every year (Facts and FARS, 2013.Natl. Highw.

Traffic Saf. Adm. (NHTSA), GES Annu. Rep. Natl. Highw.

Traffic Saf. Adm. (NHTSA), GES Annu. Rep. 2013). In

reality, it is found that traffic accidents have caused major

death numbers for people within 30 and 44 in the US (Facts

and FARS, 2013.Natl. Highw. Traffic Saf. Adm. (NHTSA),

GES Annu. Rep. Natl. Highw. Traffic Saf. Adm. (NHTSA),

GES Annu. Rep. 2013). In the Traffic Safety Facts Annual

Report Tables, it is shown that death or injury occurs

during road accidents have increased by up to 3% and 2%,

respectively, between 2011 and 2012 (Facts and FARS,

2013.Natl. Highw. Traffic Saf. Adm. (NHTSA), GES

Annu. Rep. Natl. Highw. Traffic Saf. Adm. (NHTSA), GES

Annu. Rep. 2013). It was also reported by the World Health

Organization that yearly 1.25 million people die in traffic
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accidents (Global status report on road safety 2015). It was

seen if accidents are not identified correctly and swiftly,

these accidents produce negative sentiments on traffic,

particularly on highways, between the junctions, and in

work zones, frequently ending in prolonged congestion and

effusion (Azimi et al. 2019; Arvin et al. 2019; Mokhtari-

mousavi et al. 2019; Management and (2013) Fed. Highw.

Adm. Traffic safety facts, 2012). The transport community

has been frequently proceeding with the help of innovative

computational techniques, machine learning, and new

algorithms (Sharifi et al. 2019; Golshani et al. 2018; Parsa

et al. 2019a; Nasr Esfahani et al. 2019; Razi-Ardakani et al.

2018; Ahangari et al. 2019), which have also expedited the

prediction (Mansourkhaki et al. 2016, 2017), detection

(Parsa et al. 2019b), and estimation of the austerity of

accidents.

Recently smartphones are decked with numerous sen-

sors that provide positional and similar data that can give

data to identify accidents (Alwan et al. 2016; Fernandes

et al. 2016). Examples of these sensors are accelerometers,

magnetometers, and gyroscopes. The data from such

smartphones have been combined with other sources of

data such as NetLogo simulated data (Thomas and Vidal

2017) and airbag triggers data (Zaldivar et al. 2011) to

detect accidents. However, these kinds of data are highly

limited and are expensive to procure. Other potential data

sources include visual data like images and videos. These

image and video data use easy and cheap cameras, hence

become the inexpensive source of information. Numerous

researches have used these data sources along with various

methods including matrix approximation, statistic heuristic

method, hybrid support vector machine with extended

Kalman filter, and extreme learning machine to identify

accidents (Xia et al. 2015; Maaloul et al. 2017; Vishnu and

Nedunchezhian 2018; Chen et al. 2016b).

Vision-based accident detection needs a huge volume of

data from photos and videos. Hence, it expects a large

storage capacity. Besides, the accuracy of vision-based

accident detection models is affected by weather conditions

and the resolution of the camera.

Some other data sources for accidental data are social

media. Deep belief network (DBN) and long short-term

memory (LSTM) are two deep learning models that have

been adopted to detect accidents from social media. Sev-

eral fusion-based techniques have been adopted to combine

social media data with traffic data to achieve higher per-

formance. Generally, social media data are assumed to be

random and poor (Gu et al. 2016).

Moreover, many machine learning models have been

used to detect accidents, including k-nearest neighbor,

regression tree (Ozbayoglu et al. 2017), feed-forward

neural network (Ozbayoglu et al. 2017), support vector

machine (Dong et al. 2015), probabilistic neural network

(Parsa et al. 2019), dynamic Bayesian network (Sun and

Sun 2015), and deep learning (Parsa et al. 2019a). To this

end, traffic data are often considering to be best suited to

detect and predict the occurrence of accidents. S Naz et.al

proposed a driver fatigue detection mechanism

scheme where from the captured video, localization of eyes

using Viola-Jones algorithm is done. Once the eyes have

been localized, they are classified as open or closed using

three different techniques namely mean intensity, SVM,

and SIFT (Naz et al. 2019). KHM Kumar et.al proposed

feature fusion to provide knowledge to the system by

alternative sets of features obtained using linguistic and

content-based text features (Kumar and Harish 2019).

Recent advances in detection and classification

methodologies have shown phenomenal improvements in

accuracy but these systems require a huge number of

computational resources making them unviable for

deployment requiring real-time feedback.

This paper proposes a methodology to develop a reliable

and computationally inexpensive real-time automatic

accident detection (AAD) system that can be deployed with

minimum hardware requirements. Specifically, we split our

AAD system into three major stages (Detection, Tracking

and Classification) and propose algorithms for each stage

with reduced computational need. For the detection stage,

we propose Mini-YOLO, a deep learning model architec-

ture trained using knowledge distillation (Hinton et al.

2015) that has comparable accuracy with its counterpart

YOLO (Redmon et al. 2016) with reduced model size and

computational overhead. Mini-YOLO achieves an average

precision (AP) score of 34.2 on the MS-COCO (Lin et al.

2014) dataset while outperforming all other detection

algorithms in runtime complexity, achieving a staggering

28 frames per second on a low-end machine. For the

tracking stage, we adopt SORT (Bewley et al. 2016) and

for classification stage, we compare multiple machine

learning algorithms and show that a support vector

machine with radial basis kernel performs the best with an

AUC score of 0.98, model size of 448 KB (kilobytes) and

12.73 ms (milliseconds) latency.

1. Key contributions of the paper

(a) A methodology to develop a reliable and computa-

tionally inexpensive real-time automatic accident

detection system is proposed.

i. A 3-stage architecture is developed, for detec-

tion, tracking and classification of vehicles.

ii. For each stage, computationally inexpensive

models are proposed with comparable perfor-

mance to its computationally heavier

counterparts.
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(b) Mini-YOLO, a deep learning model architecture for

object detection with reduced model size and com-

putational overhead is proposed.

The paper is divided into four sections. Section 1 deals

with the introduction and related work in automatic acci-

dent detection. In Sect. 2, our methodology is presented

while results of our experiments are highlighted in Sect. 3.

Sections 4 and 5 conclude our work and outlines the future

scope, respectively.

2 Methodology

The workflow of our system consists of 3 major stages.

Figure 1 shows the top-level architecture of the proposed

system. The first stage is the detection stage, where the raw

input camera feed is processed to detect vehicles on the

move. The detected vehicles in each frame are passed on to

the second stage viz the tracking stage. The tracking stage

keeps track of the detected vehicles and their status of

damage throughout the continuous stream of input frames.

The status of damage is an indicator variable associated

with the vehicle tracks that is triggered when that vehicle is

met with an accident. This indicator variable is controlled

by the third stage which is a classification stage where each

of the segmented vehicle images from the detection stage is

classified into damaged or undamaged class. The indicator

variable is triggered if the system detects a vehicle and

classifies it into the damaged class given the track associ-

ated with it was previously classified into the undamaged

class. These stages are further explained in the following

section.

1. Stage 1- Vehicle Detection

Multiple methodologies are proposed for object detec-

tion in the literature but most of the work focuses on

achieving high precision and recall trading out on com-

putational complexity. High computational needs will

increase manufacturing and maintenance costs and will

negatively affect the scalability of our system. Hence, we

wanted a detection algorithm that is computationally cheap

and reliable to be able to deploy on the edge devices. Our

use case reduces the task complexity of object detection by

cutting down the number of classes to be detected to 1, i.e.,

Vehicle, given an input image.

Considering the necessity of high recall and computa-

tional lightness, we develop a Mini-YOLO vehicle detec-

tion algorithm that is computationally efficient and has a

high recall.

Mini-YOLO-Traditional object detection systems

repurpose classifiers or localizers to perform detection.

These systems apply a classification model to an image in

several areas and scales where high scoring areas of the

image are taken into account. YOLO uses a completely

different approach and analyzes the entire picture in one

shot to predict object bounding boxes. Precisely, it divides

the image into areas and provides bounding boxes and

probabilities for each area. These bounding boxes are then

weighted by the predicted probabilities. In contrast to tra-

ditional approaches, YOLO makes predictions with a sin-

gle assessment making it multiple times faster than

traditional approaches. Even though YOLO is significantly

faster than competing methodologies for object detection,

the model size and hardware requirements still raise a

concern for its use in our system.

Fig. 1 Top-level architecture of

the proposed system
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Mini-YOLO is a distilled version of YOLO object

detection algorithm and achieves comparable performance

with increased computational efficiency. A distilled version

of a neural network is a small version of that network

architecture that is trained on the predictions of the bigger

network called soft predictions. The method of creating a

distilled version of a neural network is called knowledge

distillation and was first proposed by Bucila et al., 2006

(Buciluǎ et al. 2006) and generalized by Hinton et al.,

2015. This training setting is sometimes referred to as

‘‘teacher-student,’’ where the large model is the teacher and

the small model is the student.

The authors of YOLO provided multiple pretrained

models with different backbone classifiers. Table 1 shows

model size, performance, no. of parameters and layer depth

of multiple backbone classifiers on the ImageNet validation

benchmark. Among these classifiers, MobileNet-v2 has

competing performance with very low memory and com-

putational requirements. Hence, the teacher and student

model we used is the pretrained YOLO-v3 (Redmon and

Farhadi 2018) architecture with ResNet152 (He et al. 2016)

backbone and the architecture shown in Fig. 2 with

MobileNet-v2 (Sandler et al. 2018) backbone, respectively.

MobileNet-v2 is a CNN architecture developed by

Sandler et al., 2018 particularly for mobile and embedded

vision applications. The architecture uses depthwise sepa-

rable convolution to reduce the model size and complexity.

Table 2 shows the MobileNet body architecture. The fol-

lowing section discusses the training methodology and

architecture of Mini-YOLO.

1, Dataset Used

We have used the Boxy vehicles dataset (Behrendt

2019) for training Mini-YOLO. Boxy vehicles dataset was

created mainly for training vehicle detection algorithms in

self-driving systems, hence most of the images from the

dataset consists of vehicles on roads and traffic scenarios.

This makes this dataset perfectly aligned for our use case as

the input for our system is CCTV footages from roads and

traffic scenarios.

The datasets contain 200,000 images of 1232 9 1028

resolution with 1,990,806 annotated vehicles by 3D-like

and 2D bounding boxes. The 2D ground truth annotations

from the dataset are used as hard labels during the distil-

lation training procedure. Figure 3 shows some images

along with the annotated 2D bounding boxes from the

dataset.

2. Preprocessing

Each image in the dataset is down sampled to

512 9 512 resolution, and the custom annotation or soft

labels for knowledge distillation is generated using the

pretrained YOLO-v3 with ResNet152 backbone classifier.

The prediction of the pretrained model (teacher model) is a

3D tensor of shape 19 9 19 9 85 which detects and

classifies objects belonging to 80 different classes from the

MS-COCO dataset.

Each output cell represents an area in the input image

where a possible object bounding box center resides

(19 9 19). Within each area, the model predicts the

probability of presence of an object (1 9 1) along with

probability of the object(if present) belonging to either of

the 80 classes (1 9 80) and width, height, horizontal and

vertical offsets (1 9 4) of the bounding box for the object

detected giving the output tensor a shape 19 9 19 x

(80 ? 1 ? 4) = 19 9 19 9 85.

For our system, there is only one class that needs to be

detected viz ‘‘Vehicle’’. Hence, the output of our model

(student model) is a 3D tensor of shape 19 9 19 9 6.

For generating soft labels for each image in the dataset,

the predictions of only 4 classes, namely ‘‘motorcycle’’,

‘‘car’’, ‘‘truck’’ and ‘‘bus’’ are selected from the 80 avail-

able classes from the MS-COCO dataset. From these, the

highest probable class prediction is taken and given the

label of ‘‘Vehicle’’ to create a soft label annotation of shape

19 9 19 9 6. Figure 4 shows the flowchart for this

procedure.

Table 1 Model size,

performance, no. of parameters

and depth of various backbone

classifiers

Model Size Top-1 accuracy Top-5 accuracy Parameters Depth

Xception 88 MB 0.790 0.945 22 M 126

VGG19 549 MB 0.713 0.900 143 M 26

ResNet50 98 MB 0.749 0.921 25 M –

ResNet101 171 MB 0.764 0.928 44 M –

ResNet152 232 MB 0.766 0.931 60 M –

InceptionV3 92 MB 0.779 0.937 23 M 159

InceptionResNetV2 215 MB 0.803 0.953 55 M 572

MobileNet 16 MB 0.704 0.895 4 M 88

MobileNetV2 14 MB 0.713 0.901 3 M 88
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3. Model architecture

As a backbone classifier for our model, we have used the

MobileNet-v2 architecture trained on the ImageNet dataset.

Precisely, we replace the classification layer of the model

with a 3D tensor of shape 19 9 19 9 6. Figure 2 shows

the model architecture of proposed Mini-YOLO.

4. Training methodology

We train our model with knowledge distillation as

proposed in Hinton et al., 2015. The authors of this paper

have also suggested incorporating ground truth labels along

with soft labels to increase model capacity and perfor-

mance during training. Hence, we adopt the training

strategy of Redmon et al., 2018 for training on the ground

truth labels of the Boxy vehicles dataset.

By combining both the training strategies, the student

model is able to attain knowledge from the MS-COCO (by

learning to replicate the predictions of the pretrained tea-

cher model) as well as the Boxy vehicles dataset (by

learning to predict the ground truth annotations).

The training loss for ground truth predictions is a

combination of 4 losses given by Eq. 1(a-c). Equation 1*

& 2 provides the combined training loss for ground truth

predictions and soft label predictions, respectively. Equa-

tion 3 represents the combined loss for training Mini-

YOLO.

Equation 1(a): Classification loss .

If an object is detected, the classification loss at each

cell is the squared error of the class conditional probabil-

ities for each class:

L1 ¼
Xs2

i¼0

1
obj
i

X

c2classes
pi cð Þ � bpi cð Þð Þ2 ð1:aÞ

where 1
obj
i ¼ 1 if an object appears in cell i, otherwise 0.

bpi cð Þ denotes the conditional class probability for class c
in cell i.

Fig. 2 Architecture for Mini-YOLO. The final classification layer of MobileNet-v2 is replaced with a 19 9 19 9 6 tensor

Table 2 Mobile net body architecture

Type/stride Filter shape Input size

Conv/s2 3 9 3 9 3 9 32 224 9 224 9 3

Conv dw/s1 3 9 3 9 32 dw 112 9 112 9 32

Conv/s1 1 9 1 9 32 9 64 112 9 112 9 32

Conv dw/s2 3 9 3 9 64 dw 112 9 112 9 64

Conv/s1 1 9 1 9 64 9 128 56 9 56 9 64

Conv dw/s1 3 9 3 9 128 dw 56 9 56 9 128

Conv/s1 1 9 1 9 128 9 128 56 9 56 9 128

Conv dw/s2 3 9 3 9 128 dw 56 9 56 9 128

Conv/s1 1 9 1 9 128 9 256 28 9 28 9 128

Conv dw/s1 3 9 3 9 256 dw 28 9 28 9 256

Conv/s1 1 9 1 9 256 9 256 28 9 28 9 256

Conv dw/s2 3 9 3 9 256 dw 28 9 28 9 256

Conv/s1 1 9 1 9 256 9 512 14 9 14 9 256

5 9 Conv dw/s1

Conv/s1 3 9 3 9 512 dw

1 9 1 9 512 9 512 14 9 14 9 512

14 9 14 9 512

Conv dw/s2 3 9 3 9 512 dw 14 9 14 9 512

Conv/s1 1 9 1 9 512 9 1024 7 9 7 9 512

Conv dw/s2 3 9 3 9 1024 dw 7 9 7 9 1024

Conv/s1 1 9 1 9 1024 9 1024 7 9 7 9 1024

Avg Pool/s1 Pool 7 9 7 7 9 7 9 1024

FC/s1 1024 9 1000 1 9 1 9 1024

Softmax/s1 Classifier 1 9 1 9 1000
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Equation 1(b): Localization loss.

The localization loss measures the errors in the predicted

boundary box locations and sizes.

L2 ¼ kcoord
Xs2

i¼0

XB

j¼0

1
obj
ij xi � bxið Þ2þ yi � byið Þ2
h i

þ kcoord
Xs2

i¼0

XB

j¼0

1
obj
ij

ffiffiffiffiffi
wi

p �
ffiffiffiffiffi
cwi

p� �2

þ
ffiffiffiffi
hi

p
�

ffiffiffiffiffi
bhi

q� �2
" #

ð1:bÞ

where 1
obj
ij ¼ 1 if the j th boundary box in cell i is

responsible for detecting the object, otherwise 0.

kcoord increase the weight for the loss in the boundary

box coordinates.

x; y are bounding box offsets.

w; h are bounding box width and height, respectively.

Equation 1(c): Confidence loss.

If an object is detected in the box, the confidence loss is

as follows:

L3 ¼
Xs2

i¼0

XB

j¼0

1
obj
ij Ci �cCi

� �2

ð1:1:cÞ

. where Ci is the box confidence score of the box j in cell i.

1
obj
ij ¼ 1 if the j th boundary box in cell i is responsible

for detecting the object, otherwise 0.

Fig. 3 Some images along with the annotated 2D bounding boxes from the dataset

Fig. 4 Flowchart of

Preprocessing for proposed

Mini-YOLO
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(1) If an object is not detected in the box, the confidence

loss is as follows: L4 ¼ knoobj
Ps2

i¼0

PB

j¼0

1
noobj
ij Ci �cCi

� �2

(1.1.c)

where 1
noobj
ij is the complement of 1

obj
ij .

cCi is the box confidence score of the box j in cell i. knoobj
weights down the loss when detecting background.

Equation 1*: Combined training loss for ground truth

predictions:

Lg ¼ L1 þ L2 þ L3 þ L4

Equation 2: Loss for soft label predictions:

Ls ¼
X19

i¼1

X19

j¼1

X6

k¼1

yijk � cyijk
� �2 ð2Þ

where cyijk denotes the prediction of the teacher (YOLO)

model.

yijk denotes the prediction of the student (Mini-YOLO)

model.

Equation 3: Combined training loss for Mini-YOLO:

L ¼ a� Ls þ 1� að Þ � Lg ð3Þ

where a 2 0; 1½ � is an hyperparameter for weighing soft

label loss and ground truth loss.

5. Evaluation Metrics

For evaluating the detection performance of our model,

we have computed AP score on the preprocessed MS-

COCO dataset. AP or average precision score is a popular

metric in measuring the accuracy of object detectors.

Equation 4 provides the general definition of AP which is

finding the area under the precision-recall curve.

Equation 4: General definition of average precision:

AP ¼
Z1

0

p rð Þdr ð4Þ

where p rð Þ is precision for a given value of recall (r).

Along with reliable accuracy, the models must also be

suitable for deployment in a real-time setting, hence, we

evaluate our model performance by calculating the runtime

in FPS (Frames per second) on a NVIDIA GTX 1060

MaxQ graphical processor. Our experiments with multiple

backbone classifiers for detectors and other state-of-the-art

detection models are provided in the result section.

2. Stage 2- Vehicle Tracking

Tracking vehicles and their damage status is a critical

part in our system. Detecting accidents by just classifying

each detected vehicle as damaged or not will not be a

reliable mechanism in real life scenarios e.g., let’s say a

damaged vehicle is getting towed away from a location and

this vehicle is detected by the system. Since it is damaged,

the system will classify it as damaged with high confidence

and this will trigger an accident false positive.

By keeping track of the detected vehicles, we can keep

track of its damage status. This in turn will help in

detecting whether a vehicle was brought damaged or was

damaged during the transit, where the latter case is an

accident true positive.

Keeping in mind the computational relaxation and task

specificity (stationary cameras), we use a very simple

object tracker ‘‘Simple Online and Realtime Tracking’’

proposed by Bewley et al., 2016.

SORT—Simple online and realtime tracking.

SORT explores a pragmatic approach to multiple objects

tracking where the main focus is to associate objects effi-

ciently for online and real-time applications. Despite only

using a rudimentary combination of familiar techniques

such as the Kalman Filter and Hungarian algorithm for the

tracking components, this approach achieves an accuracy

comparable to state-of-the-art online trackers. Furthermore,

due to its simplicity, it achieves phenomenal runtime speed

compared to other competing methods. In SORT, the

authors considered the position and velocity of each of the

object bounding boxes and used Kalman filtering to

approximate these values from previously measured out-

comes. After which, they used the Hungarian assignment

algorithm to assign each of the bounding boxes to previ-

ously created tracks based on the Euclidean distance

between them or initialize a new track if the distance is

more than a specified threshold.

SORT was originally proposed as a person tracking

framework but as it did not account for the appearance

factor of the object, we extend it to our use case. Each

acquired frame from the camera is inferenced across Mini-

YOLO for vehicle bounding boxes. These boxes are then

passed on to SORT for associating it with a previously

detected Vehicle or to consider as a new one. Each track

initialized is assigned a damage status variable which is

updated by the next stage, the accident classification stage.

3. Stage 3- Accident classification

Once vehicles are detected from the input frame, the

images of detections are extracted using the bounding box

and each of those images are classified for damage status.

Higher damage status indicates damaged vehicle triggering

an accident.

We have trained an SVM with radial basis kernel to

classify detected vehicle images for damage status. The

following section discusses the training methodology in

detail.
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1. Dataset Used

Accident-Images-Analysis-Dataset (Pashaei et al. 2019)

has been used for the training of the classification model.

The dataset contains a total of 10,480 images of damaged

and un-damaged vehicles. Most of the images in the

database used were directly scraped from the web. As a

result, a larger portion consists of high-quality images.

Figure 5 shows some images along with their labels from

the dataset.

2. Preprocessing

Each image in the dataset is down sampled to

224 9 224 resolution and are converted to grayscale color

space. As most of the images in the database were directly

scraped from the web, a larger portion consisted of high-

quality images. To increase generalization of the model in

deployment, we have added nominal Gaussian noise to

mimic inputs taken directly from low resolution CCTVs.

Such a procedure has shown significant increase in accu-

racy at inference time.

3. Training methodology

We trained a support vector machine with radial basis

kernel for classifying vehicle images into damaged and

undamaged categories. The most important parameter of

SVM is slackness or C, we have set this parameter to 1.0

while the value of gamma for the radial basis function is set

to 0.1 which is the default value in scikit-learn, the Python

software library that we used to train the SVM.

4. Evaluation metrics

For evaluating the classification performance of the

SVM classifier, we have computed the precision and recall

on the preprocessed Accident-Images-Analysis-Dataset.

Precision and recall are two extremely important model

evaluation metrics. Precision is the fraction of correctly

classified positive instances among the total number of

instances classified as positive, while recall is the fraction

of the total number of positive class instances that were

correctly classified. Equation 5 provides the formula for

calculating precision and recall. We also compare our

model with multiple algorithms in terms of latency (in ms)

and size. These experiments along with results are high-

lighted in the result section.

Equation 5(a): Precision:

Precision =
True Positive

True Positiveþ False Positive

where True Positive is the total number of positive

instances correctly classified.

False Positive is the total number of negative instances

incorrectly classified as positive.

Equation 5(b): Recall:

Recall ¼ True Positive

True Positive þ False Negative

where True Positive is the total number of positive

instances correctly classified.

False Negative is the total number of positive instances

incorrectly classified as negative.

The detailed flowchart of all 3 components connected

together is shown in Fig. 6. First, the image acquired from

the input camera is inferenced across Mini-YOLO for

vehicle bounding boxes. Then, each detected bounding box

is passed onto SORT for track association and the associ-

ated tracks are initialized with a damage indicator variable.

Fig. 5 Some images along with their labels from the Accident-Image-Dataset. Label 1 is for damaged vehicles, and label 0 is for undamaged ones
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This variable is controlled by the accident classification

system which takes the extracted vehicle image (using the

bounding box) and classifies each detected vehicle into

damaged and undamaged categories. If a vehicle is clas-

sified as damaged and the damage indicator variable of the

associated track is set to false (not damaged from the start)

then the variable is set to true (damaged during transit) and

an accident alarm is raised.

3 Results

The performance of the proposed Mini-YOLO is compared

with other detection algorithms with the metrics provided

in Sect. 2.1.5. Precisely for comparison, we adopted Faster

R-CNN with Inception-ResNet-v2 (Ren et al. 2015) back-

bone, SSD with ResNet-101 (Liu et al. 2016) backbone and

YOLOv3 with ResNet-101 and ResNet-152 backbone

classifiers based on their computational requirements and

ease of implementation. We trained these architectures

Fig. 6 Flowchart of the proposed system

Fig. 7 The AP scores obtained for multiple values of a

Table 3 Performance comparison of multiple detection algorithms

Model Backbone classifier AP score Runtime (FPS)

Faster R-CNN Inception-ResNet-v2 34.7 5

SSD ResNet-101 31.2 9

YOLOv3 ResNet-101 34.9 17

ResNet-152 36.2 12

Mini-YOLO MobileNet-v2 34.2 28
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along with our proposed Mini-YOLO on the MS-COCO

dataset and calculated the average precision (AP) score on

its testing benchmark. Each of these algorithms were fur-

ther evaluated on the basis of runtime (in FPS).

For training Mini-YOLO with the combined training

loss, we experimented with a 0:2; 0:4; 0:5; 0:7f g and found

out that for our settings a ¼ 0:5 obtains the highest AP

score. Figure 7 shows the AP scores obtained for multiple

values of a.
The runtime and AP score of multiple detection algo-

rithms with the best AP score of Mini-YOLO is shown in

Table 3. It can be easily inferred that our proposed Mini-

YOLO outperforms all other detection models in terms of

runtime while keeping high comparable accuracy at a mere

size of 18 MB.

We experimented with multiple classification algorithms

to employ in the accident classification stage. Namely, we

trained a decision tree classifier, a convolutional neural

network (CNN) classifier, a random forest classifier and

two support vector machine (SVM) classifiers with linear

and radial basis function (RBF) kernels on the Accident-

Images-Analysis-Dataset.1 These algorithms were then

evaluated on the testing set with the metrics provided in

Sect. 2.3.4 along with the AUROC (Area under Receiver

Operating Characteristic curve) score. Table 4 shows the

calculated precision, recall and AUROC score of the

Table 4 Performance of the

accident classification model
Model Precision Recall F1-score AUROC score Model size Latency

Decision tree 0.79 0.78 0.78 0.89 192 KB 12.92 ms

CNN 0.97 0.98 0.97 0.98 29.9 MB 76.61 ms

Random forest 0.82 0.90 0.85 0.93 704 KB 25.47 ms

SVM-linear 0.80 0.76 0.77 0.84 128 KB 12.73 ms

SVM-rbf 0.96sssss 0.94 0.95 0.96 448 KB 12.73 ms

Fig. 8 Receiver operating characteristic curve of different classification model

1 These algorithms were adopted based on their computational

inexpensiveness and memory requirements (except CNN). We trained

the CNN to only produce a high-order comparable result on the

AUROC score.
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algorithms. The metric ‘‘Model Size’’ is the size of the

model (in KB/MB) file loaded in the random-access

memory (RAM) of our system and ‘‘Latency’’ is the

amount of time taken (in millisecond) to classify a single

input image. It can be inferred from the results that an

SVM classifier with RBF kernel (SVM-rbf) works best for

our case with very low latency and high-order classification

score. Figure 8 shows the receiver operating characteristic

(ROC) curve of this model and the shaded green area

represents the area under the curve (AUC).

4 Conclusion

In this paper, we have successfully applied a computa-

tionally traceable and reliable automatic accident detection

system that can be deployed in scenarios requiring real-

time feedback. We also presented Mini-YOLO; a deep

learning architecture trained using knowledge distillation

that has phenomenal runtime speed with a high AP score

compared to other detection algorithms. For accident

classification, we experimented with multiple algorithms

and showed that a support vector machine with radial basis

kernel performs the best in terms of memory requirement

and latency.

5 Limitation and future work

Given the confidence level in the results obtained, there is

still scope for field testing and improvements with respect

to deployment and maintenance. Also, as we have only

incorporated the static notion of accidents, viz damaged

vehicles, we believe that the performance of the proposed

accident classification algorithm could further be improved

through the use of motion models and sequence processing.

This will not only increase the classification robustness but

will also reduce the necessity of the tracking stage.

Therefore, our main concern in the near future is to extend

the accident classification stage to incorporate sequence

models in a computationally inexpensive manner.

Funding This study was no funding.

Compliance with ethical standards

Conflict of interest There is no conflict of interest.

Ethical approval This article does not contain any studies with human

participants or animals performed by any of the authors.

References

Ahangari S, Jeihani M, Dehzangi A (2019) A machine learning

distracted driving prediction model. In: International symposium

of intelligent unmanned systems on artificial intelligence.

Alwan ZS, Muhammed H, Alshaibani A (2016) Car accident

detection and notification system using smartphone. Int. J. Com-

put. Sci. Mob. Comput.(January).

Arvin R, Kamrani M, Khattak AJ (2019) How instantaneous driving

behavior contributes to crashes at intersections: extracting useful

information from connected vehicle message data. Accid Anal

Prev 127:118–133

Azimi G, Asgari H, Rahimi A, Xia J (2019) Investigation of

heterogeneity in severity analysis for large truck crashes. In: 98th

Annu. Meet. Transp. Res. Board.

Behrendt K (2019) Boxy vehicle detection in large images. In:

Proceedings of the IEEE international conference on computer

vision workshops (pp. 0–0).

Bewley A, Ge Z, Ott L, Ramos F, Upcroft B (2016) Simple online and

realtime tracking. In: 2016 IEEE international conference on

image processing (ICIP) (pp. 3464–3468). IEEE.
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