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Abstract
This paper presents the results of an investigation on scour around pile groups under steady currents using artificial

intelligence (AI) models. Namely, EPR (Evolutionary Polynomial Regression), GEP (Gene-Expression Programming),

MARS (Multivariate Adaptive Regression Spline), and M5MT (M5 Model Tree) approaches were used to develop

nonlinear regression equations for estimating the maximum equilibrium clear-water scour depth. In total, 321 datasets were

collected from various literature sources for different pile group configurations also including the gap between piles and

pile groups non-aligned with the flow direction. Results through training and testing phases showed that the MARS

technique with Index of Agreement (IOA) of 0.984, Root Mean Square Error (RMSE) of 0.483, and Mean Absolute Error

(MAE) of 0.250 provides more accurate estimates of the scour depth (normalized by the pile diameter) than EPR

(IOA = 0.976, RMSE = 0.579, and MAE = 0.195), GEP (IOA = 0.972, RMSE = 0.628, and MAE = 0.295), and M5MT

(IOA = 0.965, RMSE = 0.704, and MAE = 0.259) models. Conversely, the most frequently used literature formulas

demonstrate unconvincing efficiency when wide range experimental data are considered. The sensitivity analysis, in terms

of Sobol’s index, revealed that the ratio U/Uc, between the approach flow velocity, U, and the flow velocity, Uc, at the

inception of sediment motion, is the most influential parameter with Total Sobol Index (TSI) of 0.514 and an opposite trend

of scour with the ratio m/n (TSI = 0.023), between the number, m, of piles inline with the flow and that, n, of piles normal

to the flow, was found.
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1 Introduction

Pile groups are considerably employed in order to supply

stability of structures subjected to marine currents in

coastal areas. Also, bridge pile foundations are commonly

constructed in deep alluvial riverbeds. However, piles may

be subject to the exposure to the flow due to local scour

developing during a flood. The exposure of pile groups

could also occur when general scour determines permanent

bed degradation. Moreover, multiple pile bridge piers have

become frequent in bridge design for geotechnical and

economic reasons. This type of pier can significantly

reduce construction costs in comparison with spread footer

structures when sediment scour is a consideration (Ataie-

Ashtiani and Beheshti 2006).

Generally, scouring process around pile groups can

dramatically plummet stability and safety levels of marine/

river structures and then deep foundations may end up in a

failure state. Nowadays, accurate predictions of local scour

depth at pile groups have drawn meticulous attention.

However, a precise prediction of the local scour depth is
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relatively complicated, as there is a wide range of effective

variables, which can play a key role in the formation of

three-dimensional flows and bed morphologies around pile

foundations.

Since 1970, quite a few endeavors have been made to

perform laboratory investigations of scour depth around

pile groups under various flow conditions and physical

properties of bed sediments (e.g., Hannah 1978; Vittal et al.

1994; Salim and Jones 1996; Ataie-Ashtiani and Beheshti

2006; Amini et al. 2012; Yang et al. 2020). In fact, some

investigations have been conducted to focus on the effects

of various arrangement of piles, gap of piles, and skewness

angle (e.g., Ferraro et al. 2013; Yang et al. 2020), while

other studies focused on the influences of flow regimes

(i.e., average flow velocity and flow depth) and median

diameter of bed sediment on the scouring process (e.g.,

Amini et al. 2012; Shrestha 2015).

Sometimes, the local scour depth value at piles groups is

estimated by means of traditional equations that are applied

for single piers. In this case, pile groups are considered as

an equivalent solid pile group and this perspective conse-

quently leads to uncertain estimates of local scour depth

(Amini et al. 2012). Empirical equations are restricted to

the range of their experimental variables (Ataie-Ashtiani

and Beheshti 2006; Ataie-Ashtiani et al. 2010; Amini et al.

2012; Ferraro et al. 2013). Thus, conventional methods

based on regression analysis have no sufficient accuracy

level so as to estimate the local scour depth at pile groups.

New numerical models, inspired from human intelli-

gence, were introduced as predictive tools to solve various

problems in different fields of science (Sedighizadeh et al.

2021). The development of these models includes three

steps: learning, reasoning, and self-correction. Since

twentieth century, in the case of scour depth prediction at

single pile and piles group, some predictive tools, known as

artificial intelligence (AI) models such as artificial neural

networks (ANNs) (Adib et al. 2020; Karkheiran et al. 2019;

Zounemat-Kermani et al. 2009), Adaptive Neuro-Fuzzy

Inference System (ANFIS) (Sreedhara et al. 2019; Azimi

et al. 2017), Support Vector Machine (SVM) (Ahmadianfar

et al. 2019; Sharafi et al. 2016), Model Tree (MT) (Ghaemi

et al. 2013), Group Method of Data Handling (GMDH)

(Najafzadeh 2015), Extreme Learning Machine (ELM)

(Ebtehaj et al. 2018, 2017), Gene-Expression Programming

(GEP) (Bateni et al. 2019), and Multivariate Adaptive

Regression Spline (MARS) (Samadi et al. 2020), Linear

Genetic Programming (LGP) (Jamei and Ahmadianfar

2020) were considered. From these studies, it can be said

that applying AI models would be capable of achieving

permissible level of accuracy when compared to regression

equations given by literature. Some previous investigations

raise quite a few major shortcomings such as lack of

datasets and non-consideration of physical consistencies;

therefore, they still need further improvements and com-

parisons. In addition, the efficiency of a typical powerful

AI model, known as Evolutionary Polynomial Regression

(EPR), has not been explored yet.

Although this research makes no claim to elucidate the

scouring process in an explicit way, there are three main

aims. The first emphasis is to discuss the restrictions of the

current traditional equations. The second aim is to rigor-

ously present the influential non-dimensional parameters

controlling the scouring process. Ultimately, an attempt is

made to furnish predictive models that, although more

mathematically sophisticated, benefit from higher level of

precision. To the best of the authors’ knowledge, four

powerful AI techniques such as MARS, GEP, MT, and

EPR have not been developed in design of the local scour

depth at piles group without limited number of experi-

mental datasets. As major advantages, these AI models

have two main capabilities: (i) presenting nonlinear equa-

tions when fed by a large amount of datasets, (ii) benefiting

from automated influential inputs selection. To all this,

core contributions in terms of AI modeling methodology

are also presented in the current research. The first new

insight is that the insufficient number of reliable traditional

equations for the scour depth prediction around piles group,

which is applied in the reliable design of the marine

foundations, causes to put the marine structures stability in

the jeopardy state. Clearly, regression-based equations still

suffered immensely from lack of precision. More particu-

larly, in these typical researches the results from the AI

models are generally needed to become in connections with

the problem. The single way to indicate how AI results are

connected to present the solution to the problem comprises

in the study of AI results for consistency. This study jus-

tifies that the detection of general patterns between influ-

ential parameters and response (output) needs to be

meaningfully studied so that agreements between general

pattern and laboratory observations (presented in datasets)

are detected.

Four well-known AI models including GEP, EPR, MT,

and MARS are investigated to develop nonlinear regression

equations for estimating local scour depth around pile

groups. Their efficiency is evaluated using various statis-

tical tests. Results given by AI models are then compared

with existing empirical equations from literature. Finally, a

sensitivity analysis is developed to identify the importance

of effective variables on the local scour depth.
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2 AI predictive models on scouring at pile
groups: Review of advantages
and disadvantages

As mentioned in the previous section, some AI models

were used to predict the local scour depth near the pile

groups exposed to the flow. A survey of related works

indicated that Zounemat-Kermani et al. (2009) have used

the ANNs and ANFIS techniques, known as black box

models, to predict the local scour depth under clear-water

regime. Namely two common ANN techniques, the Feed

Forward Back Propagation (FFBP-NN) technique and the

Radial Basis Function-Neural Networks (RBF-NN) tech-

nique, have been employed. Though the authors concluded

that FFBP-NN had better performance in terms of accuracy

level in comparison with the ANFIS and RBF-NN models,

it remains that these AI techniques are black box approa-

ches. Although ANNs are capable of approximating func-

tion, studying their structure, they will no longer present an

accurate understanding of the mathematical expression of

the function being derived. Later, Ghaemi et al. (2013)

applied rule-based MT to predict the local scour depth

around pile groups. Notwithstanding, their results in terms

of nonlinear equations gave reasonably practical view-

points for the scour depth prediction, although the range of

data samples was limited. Furthermore, they used non-di-

mensional variables in developing MT so that their pro-

posed equations might upscale the results from laboratory

to the reality as a remarkable advantage. Additionally,

Najafzadeh (2015) applied GMDH model to predict the

local scour depth around pile groups and complex piers.

However, two major gaps arise from this work. The first

one is that GMDH was fed by using one single set of data,

including pile groups and complex piers experiments,

while these two configurations imply different scouring

mechanisms. There is no doubt that complex pier implies

interaction between flow and the complex pier-pile cap-

piles (or the complex pier-caisson), while pile groups imply

interaction between flow and piles only. In other words, the

two configurations need to be considered separately from a

physical point of view. Secondly, Najafzadeh (2015) con-

sidered dimensional input and output variables in his

analysis. Azimi et al. (2017) applied optimization algo-

rithms to improve the accuracy level of the Adaptive

Neuro-Fuzzy Inference (ANFIS) performance for estimat-

ing scour depth at pile groups under clear-water conditions.

One major drawback from their study was that they did not

consider the difference between the mechanisms of

scouring process at piles group and complex piers. In fact,

they should have been modeled two optimized ANFIS

models separately. Ebtehaj et al. (2018) employed ELM as

a black box model for predicting the local scour depth,

though repeated misconceptions occurred in Najafzadeh

(2015) and Azimi et al. (2017) researches. In fact, their

proposed equation presents a high degree of complexity

and it is practically hard-to-use. Bateni et al. (2019) used

dimensional effective variables so as to produce two non-

linear equations. However, their proposed equations do not

allow upscaling from experimental investigations to reality.

Finally, Samadi et al. (2020) predicted the local scour

depth at pile groups by MARS, ANN, MT, and Classifi-

cation and Regression Tree (CART) techniques. They

developed these AI models with limited range of experi-

mental data, and additionally, MARS technique was found

the best among other AI techniques.

Generally, empirical equations, estimating the scour

depth around bridge piles, are in non-dimensional form and

additionally design curves (i.e., variation of dimensionless

effective parameters against the scour depth) are of high

interest for engineering. In fact, the use of upscaling

influential variables leads to increase not only applicability

of traditional equations from experimental to field scale,

but also making estimations more reliable.

3 Dimensional analysis and definition
of datasets

Scouring process at pile groups depends on several vari-

ables including flow circumstances, physical properties of

the bed sediments, geometrical characteristics of the piles,

pile group configurations, incipient motion of bed sedi-

ments (i.e., Ataie-Ashtiani and Beheshti 2006; Amini et al.

2012). A large number of investigations at laboratory scale

on scouring around pile groups indicated that the maximum

scour depth at the equilibrium conditions could be

expressed by the following functional relationship (i.e.,

Ataie-Ashtiani and Beheshti 2006; Najafzadeh 2015; Yil-

maz et al. 2017)

ds ¼ u1 D; g; y;G;m; n; d50; l; q;U;UCð Þ ð1Þ

where ds = scour depth around pile group; D = diameter of

a single pile; g = gravitational acceleration; y = approach

flow depth; G = spacing between piles normal to the flow;

m = number of piles inline with the flow; n = number of

piles normal to the flow; d50 = grain mean diameter; l =

fluid dynamic viscosity; q = fluid density; U = depth-av-

eraged approach flow velocity; UC = depth-averaged crit-

ical velocity for initiation of sediment motion; and un

represents an unspecified function.

As discussed in the previous section, some investiga-

tions considered directly Eq. (1) for estimating the local

scour depth around pile groups and, consequently, the

upscaling process of AI output from experimental condi-

tions to reality was ignored. In order to cover this
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shortcoming, with the aid of the Buckingham theorem and

the assumption of q, U, and D as repeating variables, the

following relationship in terms of non-dimensional

parameters can be considered

ds
D

¼ u2 Frp;
y

D
;
G

D
;
m

n
;
D

d50
;Rep;

U

UC

� �
ð2Þ

where Frp ¼ U=
ffiffiffiffiffiffi
gD

p
and Rep ¼ qUD=l are the pile

Froude number and the pile Reynolds number,

respectively.

The pile Reynolds number at the fully turbulent state has

no meaningful influence over the local scour depth, as also

demonstrated by Zounemat-Kermani et al. (2009). Conse-

quently Eq. (2) simplifies as

ds
D

¼ u2 Frp;
y

D
;
G

D
;
m

n
;
D

d50
;
U

UC

� �
: ð3Þ

Furthermore, effects of all non-dimensional parameters

in Eq. (3) on the local scour depth were investigated in

previous experimental studies (e.g., Hannah 1978; Ataie-

Ashtiani and Beheshti 2006; Amini et al. 2012; Shrestha

2015). Here, several authenticated data series (321 data

series) were collected from a 40-year study period to

develop formulation-based AI models. Three-fourth of the

dataset was dedicated to perform training stage, and the

remaining one-fourth was used to test the AI models.

Statistical descriptions of input–output datasets (i.e.,

dimensional variables and dimensionless parameters)

related to each literature study are presented in Table 1 in

which also appears among the variables the flow skew

angle a (equal to 0� when the pile group is aligned to the

flow direction). In this study, the dataset has seven input

variables (i.e., G/D, d50/D, y/D, Frp, sin(a), m/n, U/UC) and

output (ds/D). All the data, which have been applied in this

study, were collected from reliable experimental studies.

Selection of these features (input variables) is based on the

importance of them in the experiments. In other terms, the

effectiveness of these input variables was proved in the

experimental research works (i.e., Zhao and Sheppard

1998; Ataie-Ashtiani and Beheshti 2006; Amini et al. 2012;

Lança et al. 2013; Shrestha 2015; Solaimani et al. 2017;

Yilmaz et al. 2017; Memar et al. 2018; Yang et al. 2020).

It is important to note that all the experiments consid-

ered in this study can be considered unaffected by scale

effects except perhaps for those by Yang et al. (2020) in

which the experimental flume was only 0.25 m wide.

Overall, approach flow was fully turbulent and the effect of

channel side walls was negligible. Conversely, the flow at

the interface flow sediment was from hydraulically smooth

to hydraulically rough according to the Shields’ diagram.

But these effects shall be taken into account in the

dimensionless variable U/UC in Eq. (3).

The flowchart of the current research, illustrating the

beginning and end of this investigation, is presented in

Fig. 1. Moreover, Fig. 2 shows the various histograms of

the dimensionless parameters given in Eq. (3).

4 General descriptions of AI models

4.1 Multivariate Adaptive Regression Splines
(MARS)

Multivariate Adaptive Regression Splines (MARS) model,

as comparatively newly developed AI model, is capable of

combining linear regression, expression of splines, and

nonparametric statistical analysis in order to provide a local

technique in which a linear (or nonlinear) relationship

between the input and output variables is established

(Wang et al. 2015). MARS models approximate the func-

tion by using a group of adaptive piecewise linear regres-

sions termed as basis functions (BFs). The MARS model is

independently defined by means of the datasets through a

forward/backward trial-and-error technique (Friedman

1991). MARS utilizes Basis Functions with both simple

and complex structures. MARS models that have no

interactions (degree of polynomial), include simple BFs

only, whereas complex models permit interactions among

the independent variables. Elementary BFs include a single

variable (x) and contribute to pairs of the form (x - t) ?

and (t - x) ? in which t denotes the knot, (x - t) ?

= (x - t) if x[ t, and 0 otherwise; (t - x) ? = (t - x) if

x\ t, and 0 otherwise. For a specific variable, a knot

t marks the end of one domain of data point and the start of

another data point. At each knot, the behavior of Eq. (4) is

generally changeable. MARS model automatically creates

knots based on the specific data samples.

The MARS technique is determined as a summation of

basis functions (BFs):

C tð Þ ¼ C0 þ
Xe
i¼1

Ci � ki tð Þ ð4Þ

in which ki tð Þ;Ci;C0, and e are the basis function, the

constant coefficients associated with basis functions, bias,

and the number of basis functions in the model, respec-

tively. The MARS technique creates a model (or input–

output system) in a two-step process, applying a forward-

stepwise regression selection and backward-stepwise

deletion methodology. In the forward phase, an overfitted

model is built by adding BFs. MARS is initialized with just

a constant value in the initial MARS model and then begins

the search process for a variable-knot combination that

would yield the best development in the model where

improvement is computed by the change in the values of
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Mean Square Error (MSE). Notably, merging a BF occa-

sionally enhances the values of MSE. The search process

would continue until a user-defined limit on the maximum

number of BFs is acquired. In the backward stage BFs,

which have the least contribution to Eq. (4), are pruned,

and then, MARS-based equation is optimized. Therefore,

Generalized Cross-Validation (GCV) benchmark is com-

puted to reduce overfitting of basic formulation of MARS

model. In Eq. (4), Ordinary Least Squares (OLS) along

with Particle Swarm Optimization (PSO) are used to cal-

culate all the coefficients. A full description of MARS

model can be found in literature (Friedman 1991; Wang

et al. 2015).

4.2 M5 model tree (M5MT)

Basically, Quinlan (1992) has proposed M5 technique and

further development was performed by Wang and Witten

(1997), who have introduced the M50 approach. From a

mathematical point of view, a complicated problem is

partitioned into a collection of uncomplicated sub-tasks

and the response (or model output) is a combination of the

solution to the all sub-tasks. M5MT approach is capable of

dividing the data space into several subspaces by using the

divide-and-conquer technique. Generally, this technique

utilizes the hard (i.e., yes–no) splits of input space into

several domains and, trapping the input variables space into

defined subspaces, a linear expression model in each of

these sub-domains (or subspaces) is built. As a conse-

quence of this partitioning technique, M5MT generates a

hierarchal (tree-like) structure in which nodes describe

several splitting rules and leaves express regression mod-

els. In fact, M50 can build a tree-like structure by using

recursive splitting according to treating the standard devi-

ation of the class values that reach a node as a measure of

the error at the node. The anticipated value of error

reduction, which is maximized by the input variable, is

considered for partitioning (or splitting) at the node.

As the tree is configured, linear regression equations are

fitted for every datasets fallen into sub-domain. In the

training stage, precision level of M5 (or each linear equa-

tion) soars evenly as the leaves and nodes in the tree

become greater in size. As the tree is grown, possibility of

overfitting is an unavoidable issue, leading too precise

training performance and the lowest accuracy level for the

testing stage. In this way, pruning process has a substantial

role to decrease overfitting occurrence. Furthermore, this

step is capable of combining quite a few of the lower sub-

trees into a splitting point to eradicate formation of trees

which are too precise and over-fitted. In the pruning stage,

estimation of the expected error value at every splitting

point (or node) for the testing datasets is considered. For

each training dataset, which meets the splitting point (or

node), the mean absolute difference between the estimated

value and the observed ones is computed. The final stage of

tree construction, introduced as a regularization process, is

a compensation for sharp discontinuities. In fact, regular-

ization process likely occurs between adjacent LMs in the

leaves as pruning process of tree is completed (Quinlan

1992). In this phase, linear models generated in every sub-

domain are employed to compute the estimated value and

then are modified by performance of smoothing process

along the route back to the root of the tree on the first top

node. Further descriptions of M5MT can be found in lit-

erature (Quinlan 1992).

Fig. 1 Research flowchart for the scour depth prediction at pile groups
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4.3 Gene-Expression Programming (GEP)

The GEP approach is an integration of two generally

accepted evolutionary methods. The first method is

the Genetic Algorithm (GA) technique, which describes

complicated relationships by using simpler, fixed length,

and linear structures termed chromosomes. Furthermore,

the second technique is the Genetic Programming (GP),

which uses Expressions Tree (ET) configurations coming

in various sizes and shapes. GEP technique can present the

solution to the problem through chromosomes consisting of

one gene at least. Each gene has two basic elements: head

and tail. The head is composed of two typical symbols:

symbols describing functions (multiplication, addition, di-

vision, subtraction, etc.), and symbols describing the vari-

ables (i.e., input and output) in each problem, whereas the

tail expresses merely variables (Power et al. 2019). The

GEP model is capable of creating a random distribution of

mathematical functions and terminals in the genes of

chromosome. The initial generated program (individual),

which is random, named ‘‘the parent.’’ The parents are

generated to obtain ‘‘offspring’’ with the aid of assigning

optimized genetic operators. Overall, every individual is

capable of contributing its own genetic pieces of infor-

mation to the generation of fresh offspring adapted to the

environment with better value for fitness and with a greater
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Fig. 2 Histograms for the

dimensionless parameters

explored in Zhao and Sheppard

(1998), Ataie-Ashtiani and

Beheshti (2006), Amini et al.

(2012), Lança et al. (2013),

Shrestha (2015), Solaimani

et al. (2017), Yilmaz et al.

(2017), Memar et al. (2018) and

Yang et al. (2020)
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possibility of survival. The implementation of the GEP

approach comes in five phases. The first step is to select the

fitness function of an individual program. This function is

evaluated in different ways such as R-square, Mean

Squared Error (MSE), and Relative Absolute Error (RAE).

Through the second phase, the terminals and the mathe-

matical function have become set in order to create the

chromosomes. The third phase of the GEP technique is

dedicated to configuring structure of chromosomes.

Moreover, an appropriate algebraic operator is assigned to

establish a relationship among generated genes in the

fourth step. In the final stage of GEP implementation, a

wide range of genetic operators (i.e., permutation, recom-

bination, inversion, and mutation), which have specific

rates, are acquired. To obtain a GEP model with the best

values of fitness function (or proper number of genera-

tions), the selection of typical fitness function can be

considered as a program-stopping condition for the GEP

development. This issue was practically approved better

than that assigned for the number of generations through

implementation of the GEP model. Other explanations of

the GEP technique can be found in Ferreira (2001).

4.4 Evolutionary Polynomial Regression (EPR)

EPR, as one of robust Data-Driven techniques, is capable

of symbolizing relationships among input–output variables

so as to simplify complex systems. The core of EPR, as a

global search-based-approach, was developed by Giustolisi

and Savic (2006). In the EPR model, Genetic Algorithm

(GA) is considered as a global search technique. Basically,

EPR gives a mathematical expression being composed of

quite a few algebraic terms as,

Z ¼ /0 þ
Xm
j¼1

/j � ðT1ÞESðj;1Þ � � � ðTkÞESðj;kÞ

�W ðT1ÞESðj;kþ1Þ � � � ðTkÞESðj;2kÞ
� �

ð5Þ

in which m is the maximum number of mathematical terms,

/0 is the bias term, /j is a collection of coefficients, Ti are

the input variable vectors for a specific problem, Z is the

predicted output variable by EPR model, k is the number of

elements in input variable vector, W is a user-defined

function which comes in various mathematical structure,

and ES is a range of exponents defined by the user (Savic

et al. 2006, 2009). EPR development is initialized with the

generation of an input variable matrix, and then, initial

values (population) for the exponent vectors are created.

Next, exponent vectors associated with each input vectors

(variables) are assigned and thereafter weighting coeffi-

cients in Eq. (5) are computed by least square method.

After determining the / and ES vectors, values of EPR

approximation (Z) are predicted in the training stage and

then goodness (fitness) of prediction is evaluated. Next, if

values of fitness function are satisfied, final output of EPR

model is acquired; otherwise, the process of creating

exponent vectors is initialized once again.

EPR can develop a mathematical equation through three

Objective Functions (OFs). The first OF is devoted to

maximizing the model accuracy level of the extracted

equation in the training stage. The second OF minimizes

the number of coefficients in Eq. (5). Moreover, the third

OF is capable of minimizing the number of elements pre-

sented in input variables utilized through EPR development

(Savic et al. 2009).

5 Implementation of AI models

5.1 Implementation of MARS

The implementation of the MARS technique was con-

ducted by means of the open-source computer code in

MATLAB2008a software. MARS builds Adaptive

Regression Splines (ARES) within forward and backward

phases. General mathematical relationships constructed by

ARES change from linear to cubic regression models. In

this study, through the first creation of ARES, the number

of BFs (NBF) and the MSE value in the final model were

fixed to 17 and 0.1824, respectively. In the revised struc-

ture of ARES, in the event that equation by MARS was

reduced, NBF and MSE values were 30 and 0.0953,

respectively. Furthermore, during building MARS model,

both knot dimensions and knot directions were assumed

equal to 2 and, in addition, 26 basis functions (k) were

achieved for the prediction of the scour depth at pile

groups. The basis functions and their corresponding con-

stant coefficients used for the scour depth modeling are

given in Table 2. Additionally, the following general

relationship was formulated

C tð Þ ¼ 5:6297þ
X26
i¼1

Ci � ki tð Þ ð6Þ

As seen in Table 2, the interaction among BFs comes in

form of the second-order polynomial. For instance, the fifth

BF includes U/UC and G/D parameters by 0.95 and 0.15 as

knot points, respectively. All the input variables made

significant contribution to the MARS models. In fact,

Eq. (6) proved that geometric parameters [m/n, G/D, and

sin(a)], motion conditions of bed sediments (U/UC), flow

regime parameters (y/D and Frp), and D/d50 with inter-

mediate effects (i.e., geometric and bed sediments vari-

ables) played a substantial role in the prediction of local

scour depth at piles group.
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5.2 Implementation of M5MT

The implementation of M5MT model has led to a set of

linear regression equations. In this case, Weka3.9 software

has been employed. Through the implementation process,

in the first step, the decision tree was constructed within

training state and then datasets were grouped into several

classifications or If–Then rules. Afterward, the linear

regression model was taken by each class of datasets (or

rules). General linear equation extracted from each rule is

described as

ds=D¼w0þw1�U=UCþw2�Frpþw3�y=Dþw4�D=d50

þw5�G=Dþw6�sinðaÞþw7�m=n

ð7Þ

in which w is the vector of constant coefficients. Table 3

lists eight rules of M5MT for the local scour depth pre-

dictions. Table 3 indicates that y/D ratio was assigned as a

main splitting variable with value of 0.439, and as a result,

the search space was partitioned into eight sub-divisions.

From all the eight if–then rules, the splitting parameter of

Frp created four multilinear equations with two splitting

values 0.466 and 0.497. Additionally, G/D ratio divided the

search space into two sub-spaces with the splitting value of

1.25 to generate seven and eight linear models. All the

linear regression equations given by eight rules are pre-

sented in Table 4. As indicated in Table 4, all the multi-

variate linear equations include seven input variables.

Availability of skew angle variable in the all linear models

proved more comprehensive equations for the local scour

depth than those obtained by Ghaemi et al. (2013) and

Samadi et al. (2020).

5.3 Implementation of GEP

The GEP model has achieved the best relationship for

estimating the scour depth around pile groups. In order to

get the most accurate formulation, genetic operations, as

given in Table 5, have been obtained by using the optimal

evolution strategy. In this study, GEP technique was

implemented by GeneXproTools5 software. An increase in

number of generation continued until the minimization of

the best fitness function value for the training phase was

Table 2 Coefficients and Basis

Functions for MARS models in

scour depth prediction

Coefficients Basis functions

C1 - 1.4201 k 1 maxð0; y=D� 4Þ
C2 - 0.7207 k2 maxð0; 4� y=DÞ
C3 3.1943 k3 maxð0; y=D� 5Þ
C4 - 4.0275 k4 maxð0; 0:93� U=UCÞ
C5 - 13.227 k5 maxð0;G=D� 0:15Þ �maxð0;U=UC � 0:95Þ
C6 3.3437 k6 maxð0; 1:6667� m=nÞ
C7 - 0.0166 k7 maxð0;D=d50 � 58:14Þ
C8 - 0.01547 k8 maxð0; 58:14� D=d50Þ
C9 5.9584 k9 maxð0;Frp � 0:53883Þ �maxð0; y=D� 4Þ
C10 - 14.418 k10 maxð0; 0:53883� FrpÞ �maxð0; y=D� 4Þ
C11 0.16688 k11 maxð0;G=D� 0:15Þ �maxð0;m=n� 2Þ
C12 - 0.93615 k12 maxð0;G=D� 0:15Þ �maxð0; sinðaÞ � 0:4997Þ
C13 - 3.2976 k13 maxð0;G=D� 0:15Þ �maxð0; 0:4997� sinðaÞÞ
C14 138.91 k14 maxð0; 0:15� G=DÞ �maxð0;U=UC � 0:93Þ
C15 - 6.772 k15 maxð0;m=n� 1:6667Þ �maxð0;U=UC � 0:66Þ
C16 - 20.372 k16 maxð0; 58:14� D=d50Þ �maxð0; 0:4453� FrpÞ
C17 - 5939.7 k17 maxð0; 1:6667� m=nÞ �maxð0; 0:96875� U=UCÞ
C18 - 2764.2 k18 maxð0; 1:6667� m=nÞ �maxð0;U=UC � 0:96774Þ
C19 5943.7 k19 maxð0; 1:6667� m=nÞ �maxð0; 0:96774� U=UCÞ
C20 72.584 k20 maxð0;m=n� 1:6667Þ �maxð0;U=UC � 0:95Þ
C21 3.5707 k21 maxð0; 0:49977� sinðaÞÞ �maxð0; 1:5� m=nÞ
C22 0.31419 k22 maxð0; 0:93� U=UCÞ �maxð0;D=d50 � 88Þ
C23 10.363 k23 maxð0; 0:42242� sinðaÞÞ
C24 3.2057 k24 maxð0; 0:42242� sinðaÞÞ �maxð0;G=D� 3:5Þ
C25 - 3.6704 k25 maxð0; 0:42242� sinðaÞÞ �maxð0; 3:5� G=DÞ
C26 0.23945 k26 maxð0; 3� G=DÞ
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met. GEP formulation, being derived from 57,865 gener-

ations and four genes, was as follows

ds=D ¼ Frp
�9:2953

� ð5:6533Þ � ðm=nÞ þ 0:5� ððy=DÞ þ 9:9985Þð Þ
� �1

3

max Arc tanðy=DÞ;Arc tanðTanhðm=nÞÞf g þmin 1� sinðaÞ; sinðaÞf g

þ 0:5Frp �
ðy=DÞðFrp þ sinðaÞÞ
maxðFrp;G=DÞ

þ Frp

� �

þ Arc tan
1

ð1:4009� ðy=DÞÞ � ð4:5524� ðy=DÞÞ

� �

ð8Þ

As seen in Eq. (8), D/d50 and U/UC parameters were not

included in the GEP model because these input parameters

had lower values of relative importance than other

dimensionless parameters. In fact, GEP model-based

equation was obtained based on non-dimensional parame-

ters associated with geometric piles group and flow

regimes. Availability of parameters used in Eq. (8) was in

accordance with those reported in Ghaemi et al. (2013) and

Howard and Etemad-Shahidi (2014), as found in Appendix.

This means that the consistency between Eq. (8) and these

empirical equations was based on geometrical properties of

piles group and approaching flow states.

5.4 Implementation of EPR

In order to develop the EPR model, the Multi-Objective

Genetic Algorithm (MOGA) was applied to achieve the

coefficients of the general mathematical expressions given

by EPR. In this way, W, known as inner function for which

there are several choices (i.e., exponential, natural loga-

rithm, tangent hyperbolic, and secant hyperbolic), was

explored to maximize the performance of the returned

equations by EPR. In this study, the use of logarithmic

inner function provided the most accurate prediction of the

scour depth rather than other inner functions. Therefore,

the logarithmic inner function was applied for further

analysis of EPR results. Additionally, the coefficients of

logarithmic expressions were optimized by selecting the

ES vector among exponents: ± 2, ± 1.5, ± 1, ± 0.5, and

0. The maximum number of terms in each mathematical

expression was assigned equal to 6. In fact, all the user-

defined parameters were obtained by trial-and-error. EPR

model generated 7 mathematical expressions, as shown in

Table 6, and the MSE criterion was employed for statistical

assessment of the equations achieved. All the proposed

models were provided by EPR MOGA-XL software.

Table 6 shows that the model #7 had the lowest value of

MSE (0.272) in comparison with the other mathematical

expressions. Accordingly, the model #7 was selected as the

most accurate model for prediction of the scour depth. As

inferred in Table 7, an increase of algebraic mathematical

structures leads to augmenting accuracy level of EPR-

based equations. In fact, there are seven input parameters in

the mathematical expressions with sophisticated structures,

which were available in the traditional expressions: Shep-

pard and Renna (2005), revised HEC-18 by Amini et al.

(2012), and Arneson et al. (2012). Function of natural

logarithm applied in the EPR-based equations was avail-

able in the conventional equation given by Sheppard and

Renna (2005), leading to existing consistency (from the

physical viewpoint) of EPR models.

6 Results and discussion

6.1 Statistical measures

The results of the proposed models and empirical equations

are analyzed in this section. For the assessment of statis-

tical performances, Index of Agreement (IOA), Root Mean

Square Error (RMSE), Mean Absolute Error (MAE), Mean

Discrepancy Ratio (MDR), and Scatter Index (SI) are

considered. They are defined as follows:

Table 3 Rules for the M5MT technique in scour depth prediction

If y/D <= 0.439 : LM1

y/D >  0.439 : 

|    If U/Uc <= 0.948 : 

|   |    If Frp <= 0.466 : LM2

|   |    If Frp >  0.466 : LM3 

|    If U/Uc >  0.948 : 

|   |    If U/Uc <= 0.964 : 

|   |   |    If m/n <= 1.5 : LM4 

|   |   |    If m/n >  1.5 : 

|   |   |   |    If Frp <= 0.497 : LM5

|   |   |   |    If Frp >  0.497 : LM6 

|   |   If U/Uc >  0.964 

|   |   |    If G/D <= 1.25 : LM7

|   |   |   If G/D >  1.25 : LM8 
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RMSE ¼
PNOS

i¼1 ds=Di Estimatedð Þ � ds=Di Observedð Þ
� �2

NOS

" #1=2

ð10Þ

MAE ¼
PNOS

i¼1 ds=Di Estimatedð Þ � ds=Di Observedð Þ
		 		

NOS

" #
ð11Þ

MDR ¼ 1

NOS

XNOS
i¼1

ds=Di Estimatedð Þ
ds=Di Observedð Þ

ð12Þ

in which NOS is the sample size. The IOA, as a standard

criterion for the assessment of the proposed AI model error,

has values between 0 and 1. A value of 1 indicates the most

highly satisfying performance, while 0 demonstrates the

Table 4 List of linear equations

given by M5MT model

IOA ¼ 1�
PNOS

i¼1 ds=Di Estimatedð Þ � ds=Di Observedð Þ
� �2

PNOS
i¼1 ds=Di Estimatedð Þ � ds=Dð Þ Observedð Þ

			 			þ ds=Di Observedð Þ � ds=Dð Þ Observedð Þ

			 			h i2 ð9Þ
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lowest level of accuracy for the predictive model. RMSE

and MAE, introduced as error functions, range from 0 to

finite values. Generally, zero value is related to the most

ideal precision level and additional values of RMSE (or

MAE) are dependent upon the range of output. Moreover,

the most perfectible value of MDR is 1. When MDR is

greater than 1, the predictive model shows over prediction.

Similarly, the predictive model produces under-prediction

as MDR is lower than 1. In fact, graphical illustration of

MDR values against data samples indicates quality of

models performance in terms of under (or over) prediction.

The SI formulation is referred to as the potential error,

which is a dimensionless benchmark measure. SI parameter

with values close to 1 shows satisfying agreement. Equa-

tions (9)–(13) were frequently used to evaluate the per-

formance of AI models in the prediction of the local scour

depth at bridge piers. In fact, these benchmark measures

demonstrated quality of AI techniques in the explicit

manner (e.g., Zounemat-Kermani et al. 2009; Ghaemi et al.

2013; Najafzadeh 2015; Bateni et al. 2019; Samadi et al.

2020; Sedighizadeh et al. 2021).

6.2 Benchmark of the AI models performance

Table 7 presents quantitative performance of the AI models

for both training and testing stages. From this table, sta-

tistical measures for training stage indicated that MARS

(IOA = 0.991 and RMSE = 0.341) and GEP (IOA = 0.976

and RMSE = 0.570) show the highest and lowest satisfying

accuracy level when compared with other AI techniques.

Similarly, with respect to MDR and SI values, MARS

(MDR = 1.023 and SI = 0.150) predicted the scour depth

with utmost precision level in comparison with M5MT

(MDR = 1.039 and SI = 0.235), GEP (MDR = 0.917 and

SI = 0.251), and EPR (MDR = 1.029 and SI = 0.228).

According to MDR and SI criteria, EPR technique had

slightly better efficiency in the training stage than M5MT.

On the other hand, it can be inferred from Table 7 that EPR

and M5MT have stood at the second and third level of

accuracy, whereas relatively same performance was

obtained from values of IOA criterion, with 0.978 for

M5MT and 0.979 for EPR. Graphical evaluation of AI

performance in the training stage is demonstrated in Fig. 3.

For observed values of ds/D = 1 - 1.6, all the AI tech-

niques, with the exception of MARS, demonstrated com-

paratively over prediction; additionally, for observed ds/

D = 5 - 8, under-predictions of several scour depth values

Table 5 Parameters of the optimized GEP model in scour depth prediction

Parameters Description of parameters Setting of parameters

P1 Function set ? ,-, 9 ,/, Power(x2), Min(x1,x2), Max(x1,x2), Average(x1,x2), Arctan(x), Tanh(x)

P2 Mutation rate 0.00138

P3 Inversion rate 0.00546

P4 One-point and two-point recombination rates 0.00277

P5 Gene recombination rate 0.00277

P6 Gene transportation rate 0.00277

P7 Permutation 0.00546

P8 Maximum tree depth 6

P9 Number of Gene 4

P10 Number of Chromosomes 30

P11 Number of Generation 57,865

SI ¼


ð1=NOSÞ

PNOS
i¼1 ds=Di Estimatedð Þ � ds=Dð Þ Estimatedð Þ

� �
� ds=Di Observedð Þ � ds=Dð Þ Observedð Þ

� �� �2r

ð1=NOSÞ
PNOS

i¼1 ds=Di Observedð Þ
ð13Þ
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Table 6 List of nonlinear

regression models returned by

EPR technique and related

values of MSE in scour depth

prediction

Table 7 Statistical performances of the proposed AI models

AI models IOA RMSE MAE MDR SI

Training stage

M5MT 0.978 0.532 0.192 1.039 0.235

GEP 0.976 0.570 0.239 0.917 0.251

MARS 0.991 0.341 0.172 1.023 0.150

EPR 0.979 0.517 0.165 1.029 0.228

Training stage

M5MT 0.965 0.704 0.259 1.057 0.346

GEP 0.972 0.628 0.295 0.898 0.308

MARS 0.984 0.483 0.250 0.987 0.237

EPR 0.976 0.579 0.195 1.035 0.283
0
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were observed. Equation (8) obtained by GEP model had

poor performance for the scour depth prediction, though

almost all the predicted scour depth values are placed in the

allowable error bound of ± 20%.

With reference to the testing stage and with respect to

RMSE and SI values, MARS technique estimated the local

scour depth at pile groups with relatively lower computa-

tional error (RMSE = 0.483 and SI = 0.237) compared to

GEP (RMSE = 0.628 and SI = 0.308), EPR (RMSE =

0.579 and SI = 0.283), and M5MT (RMSE = 0.704 and

SI = 0.346). In addition, MAE values indicated slightly

higher precision level of EPR (0.195) compared to M5MT

(0.259), MARS (0.250), and GEP (0.295). Based on sta-

tistical measures presented in Table 7, EPR technique with

IOA of 0.976, RMSE of 0.579, and SI of 0.283 has stood at

the second rank. Overall, general mathematical functions

related to MARS have followed linear and second-order

polynomial functions, which provided highly satisfying

performance compared to M5MT and GEP models. On the

other hand, even though both formulations given by EPR

and GEP models had relatively complicated expression (or

inner function), these explicit equations can benefit from

the point of view of applicability in the scour depth pre-

diction, rather than MARS and M5MT. In the case of

qualitative comparisons, AI techniques performances in the

testing phase are presented in Fig. 4. For observed values

of ds/D = 1 - 2, GEP model had relatively significant over

prediction, while for other AI techniques, convincing per-

formance for the local scour depth prediction was appre-

ciated. Moreover, for 5 B ds/D B 7.5, MARS, EPR, and

M5MT models indicated marginal under-prediction,

whereas GEP had relatively significant under-prediction.

Overall, almost all points in Fig. 4 are placed in the

acceptable error bound for prediction of the scour depth at

pile groups.

6.3 Comparison of the current results
with the existing methods

In this section, the results of AI models were compared

with those obtained by previous investigations and Table 8

summarizes the findings of this comparative study in terms

of the correlation coefficient (CC)—whose definition is

well known and does not need to be repeated here—RMSE

and MAE. The performance of testing stage for the best AI

model [i.e., MARS model, Eq. (6)] was considered for

comparison. Zounemat-Kermani et al. (2009) performed

ANFIS, Feed Forward Back Propagation Neural Network

(FFBP-NN), and Radial Basis Function-Neural Network

(RBF-NN) with significantly lower level of accuracy in

comparison with MARS technique [Eq. (6)]. According to

statistical measures, the performance of Eq. (6) in terms of

Coefficient of Correlation (CC = 0.967), RMSE (0.483),

and MAE (0.250) was superior over the ANFIS (CC =

0.579, RMSE = 0.39, and MAE = 0.33) and FFBP-NN

(CC = 0.772, RMSE = 0.30, and MAE = 0.26), and RBF-

NN (CC = 0.730, RMSE = 0.32, and MAE = 0.23) mod-

els. Even though RMSE and MAE values by Zounemat-
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Fig. 4 Performances of the proposed AI models in the testing stage

Table 8 Comparison between

the MARS [Eq. (6)] model from

the present study and AI models

from literature studies (decimal

places of values are reported as

in the original sources)

Approach AI techniques CC RMSE MAE

Present study MARS [Eq. (6)] 0.967 0.483 0.250

Zounemat-Kermani et al. (2012) ANFIS 0.579 0.39 0.33

FFBP-NN 0.772 0.30 0.26

RBF-NN 0.730 0.32 0.23

Ghaemi et al. (2013) MT 0.85 0.30 –

Najafzadeh (2015) GMDH 0.95 0.035 –

Azimi et al. (2017) ANFIS 0.996 0.007 m –

Ebtehaj et al. (2018) ELM 0.995 0.007 m –

Bateni et al. (2019) GEP 0.913 0.0285 m 0.0197 m

MARS 0.950 0.0220 m 0.0137 m

Samadi et al. (2020) ANN 0.843 0.256 0.196

MARS 0.872 0.233 0.162
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Kermani et al. (2009) were lower than those obtained by

Eq. (6), values of these error functions were in close con-

nection with the range of datasets. In fact, Zounemat-

Kermani et al. (2009) considered 124 experimental obser-

vations (by: Hannah 1978; Zhao and Sheppard 1998;

Coleman 2005; Ataie-Ashtiani and Beheshti 2006) and

therefore a limited range of observations. In contrast, the

MARS model [Eq. (6)] here developed applies for wider

ranges of hydraulic, sedimentological, and geometrical

conditions. Additionally, Ghaemi et al. (2013) proposed

multivariable nonlinear equation by Model Tree (MT)

technique with CC = 0.85 and RMSE = 0.30. They used

datasets, which have been applied in the Zounemat-Ker-

mani et al. (2009). Compared with Eq. (6), the

performance of MT, developed by Ghaemi et al. (2013),

stood at the lower level of precision.

Some attempts were made to predict the local scour

depth at pile groups, but without considerations on the

physical meaning of experimental data. Najafzadeh (2015)

estimated the scour depth by improved GMDH models

(CC = 0.95 and RMSE = 0.035), which has no potential of

comparability with the current results of Eq. (6). By the

fact that GMDH model was developed by the dimensional

variables [as seen in Eq. (1)], scaling effects on the per-

formance of the GMDH network were not considered.

Moreover, experimental data related to complex piers were

improperly merged to the pile groups data for the GMDH

development. Azimi et al. (2017) provided satisfying per-

formance of ANFIS models (CC = 0.996 and RMSE =

0.007 m) in comparison with MARS model Eq. (6).

However, also the results by Azimi et al. (2017) have lack

of extension to other flow conditions, geometry of piles,

and motion state of bed sediment due to the fact that

scaling effects were ignored. Even though Extreme

Learning Machines (ELM) technique, applied by Ebtehaj

et al. (2018), had better performance (CC = 0.995 and

RMSE = 0.007 m) in the prediction of the scour depth at

pile groups than Eq. (6), this superiority damps owing to

the fact that equations given by Ebtehaj et al. (2018) were

developed in terms of dimensional influential variables.

Similarly, Bateni et al. (2019) developed regression-based

equations by GEP (CC = 0.913, RMSE = 0.0285 m, and

MAE = 0.0197 m) and MARS (CC = 0.950, RMSE =

0.0220 m, and MAE = 0.0137 m) models. Equation (6)

by MARS model indicated relatively better performance

(CC = 0.967). Statistical measures from Samadi et al.

(2020) indicated that ANN (RMSE = 0.256 and MAE =

0.196) and MARS (RMSE = 0.233 and MAE = 0.162)

models performed more precise predictions than Eq. (6)

(RMSE = 0.483 and MAE = 0.250), but the CC values are

indicative of a better performance of Eq. (6). MARS

model, developed by Samadi et al. (2020), does not have

Table 9 Statistical performances of some literature equations

Empirical approach Statistical measures

IOA RMSE MAE MDR SI

Arneson et al. (2012) [Modification of HEC-18 equation] 0.322 2.921 3.716 4.691 1.142

Ataie-Ashtiani and Beheshti (2006) [Modification of HEC-18 equation] 0.644 2.116 3.140 4.068 0.867

Amini et al. (2012) [Modification of HEC-18 equation] 0.749 1.775 2.883 3.789 0.746

Howard and Etemad-Shahidi (2014) 0.710 1.911 2.071 2.490 0.939

Ghaemi et al. (2013) 0.823 1.412 2.287 2.955 0.781

Sheppard and Renna (2005) [Modification of FDOT equation] 0.613 2.207 0.823 0.177 0.834

Ataie-Ashtiani and Beheshti (2006) [Modification of Melville and Coleman equation] - 2.354 6.500 4.497 5.451 2.863
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Fig. 5 Performances of some empirical equations from literature
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sufficient capability for practical uses in the estimation of

local scour depth at pile groups because they did not apply

comprehensive experimental data and, more importantly,

the skew angle was not considered in their investigations.

The misconceptions of scouring process at pile groups

observed in several comparative investigations (i.e.,

Najafzadeh 2015; Azimi et al. 2017; Ebtehaj et al. 2018;

Bateni et al. 2019) could lead to unreliable predictions,

although the results of AI models are accurate in some

cases. Overall, previous investigations were not enough

comprehensive and lack influential parameters in some

cases.

6.4 Performance of empirical equations

Traditional approaches collected from various literature

sources are listed in Appendix. The five statistical bench-

marks [Eqs. (9) to (13)] were employed in order to assess

the performance of these empirical equations here too.

Results are shown in Table 9. The multivariable regression

equation given by Ghaemi et al. (2013) had comparatively

better performance (IOA = 0.823 and RMSE = 1.412),

whereas the modified Melville and Coleman’s (2000)

equation presented the most level of inaccuracy (IOA =

-2.354 and RMSE = 6.500). HEC-18 equation, revised

by Amini et al. (2012), stood at the second rank for the

accuracy (IOA = 0.749, RMSE = 1.775, and SI = 0.746).

Figure 5 provides a qualitative evaluation of the traditional

techniques under study. As can be seen FDOT equation,

modified by Sheppard and Renna (2005), underestimates

scour depth significantly. Moreover, HEC-18 formulation,

revised by Arneson et al. (2012), exhibits relatively

important over predictions. The three empirical equations

by Arneson et al. (2012), Ghaemi et al. (2013), and Howard

and Etemad-Shahidi (2014) show the same pattern for ds/

D\ 0.5, with evident over predictions.

6.5 Consistency of physical meaning of results

The proposed AI models, although of complex structure,

appear physically consistent. For example the implemen-

tation of the MARS model [i.e., Equation (6)] and its

simulations lead to infer the following findings. Predictions

are reliable only for clear-water scour regime (i.e., U/UC-

B 1). Even weak live-bed conditions would generate

unacceptable results. Scour depths are very sensitive to the

approach flow velocity and critical shear stress (i.e., the

flow intensity U/UC): by increasing the pile Froude number

Frp (keeping constant the pile group geometry) and

therefore also the flow intensity, the scour depth rapidly

increases. These results are physically expected and in

coherence with extensive experimental tests in the context

of the scour which takes place at piers. The MARS model

also shows that the scour depth increases by increasing the

approaching flow depth y. Also this effect is expected

because by increasing water depth the difference between

the pressure at the water surface and bed increases, causing

a stronger down-flow in front of the piles. This down-flow

behaves as a water jet and causes the scour depth to

increase (Ghaemi et al. 2013). Also the effect of the grain

size d50 is physically consistent, in the sense that the scour

depth increases as d50 decreases. However, this effect is

quite bland because the relative submergence y/d50 is fairly

high, like for instance happens in offshore environments,

and the effect of d50 is typically negligible. The MARS

model also shows that the scour depth decreases as the ratio

G/D increases. A similar trend was also observed in Ataie-

Ashtiani and Beheshti (2006). Interestingly, the effect of G/

D on the scour depth is more pronounced for the smallest

0
1
2
3
4
5
6
7

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

ds
/D

sin(α)

m/n=1.33-1.67

M5MT Prediction
Experimental Observation

(a)

0
1
2
3
4
5
6
7

ds
/D

sin(α)

m/n=1.33-1.67

MARS Prediction
Experimental Observation

(b)

0
1
2
3
4
5
6
7

ds
/D

sin(α)

m/n=1.33-1.67

GEP Prediction
Experimental Observation

(c)

0
1
2
3
4
5
6
7

ds
/D

sin(α)

m/n=1.33-1.67

EPR Prediction
Experimental Observation

(d)

Fig. 6 Variation of ds/D versus

sin(a) for m/n ranging from 1.33

to 1.67. Comparison of:

a M5MT, b MARS, c GEP, and
d EPR predictions with
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values of the pile spacing when horseshoe vortices can also

be compressed and strong flows between two neighboring

piles occur, while this effect vanishes as the distance

between piles increases due to the fact that the pile influ-

ence on each other decreases. Overall these results are also

observed for the other AI models considered in this study.

Moreover the crucial variations of the scour depth

(predicted by AI models) against the flow skew angle, a, of
pile group and the dimensionless spacing factor, G/D, are

systematically assessed to further demonstrate the physical

consistency of the proposed approaches, although this

would somewhat extend the laying out of the text. Firstly,

the qualitative performance of the proposed AI techniques

was considered to a greater understanding of the variation

of ds/D versus sin(a) at four levels of m/n. Figure 6 shows

that the observed values of ds/D for m/n = 1.33–1.67 would

exhibit an increasing trend from a = 0 to a = 30�, then a

downward trend for a values from 30� to 90�. In fact,

Fig. 6d indicates that EPR would present a well-matched

trend between observed scour depths and estimated ones in

comparison with the other AI models. Interestingly, also

Zhao and Sheppard (1998) observed an almost parabolic

trend for piles arranged in two rows. In particular, they

found that the scour depth increased from a = 0� to a = 25�
and then decreased at a = 30�. Afterward, the scour depth

values had upward and downward trends for a = 45� and

a = 90�, respectively. At a = 30�, Fig. 6a and b demon-

strates significant under-prediction for M5MT and MARS

models. For m/n = 2, general variation of the scour depth

went through an upward and downward trend for all AI

models according to observations. For instance, Fig. 7a

shows that ds/D value increased from 1.03 at a = 0� to

3.932 at a = 30�, then decreased to 1.745 at a = 60� and

then increased again to 4.062 at a = 90�. Figure 7b and c
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Table 10 RMSE values for the

proposed AI models at various

sin(a) and G/D values

AI models m/n = 1.33–1.67 m/n = 2 m/n = 2.5–2.67 m/n = 3–4

Variation of sin(a)

M5MT 0.764 0.606 1.079 0.303

GEP 0.788 0.282 1.121 0.544

MARS 0.257 0.232 1.012 0.295

EPR 0.655 0.399 1.111 0.298

AI models m/n = 0.5–1 m/n = 1.33–1.67 m/n = 2–2.67 m/n = 3–4

Variation of G/D

M5MT 0.929 0.381 0.170 0.222

GEP 0.591 0.471 0.454 0.531

MARS 0.852 0.202 0.120 0.141

EPR 0.846 0.372 0.391 0.245
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shows that MARS and GEP approaches were in good

agreement with the observations. In particular, MARS

model has proved the best in the prediction of the scour

depth at 90� skew angle. From Fig. 8 it is clear that the

variation of ds/D versus sin(a) has generally upward trend.

Figure 8b demonstrates that MARS model had the best

performance (RMSE = 1.012 from Table 10) for m/

n = 2.5–2.67 in comparison with the other AI models.

However, significant underestimation of the scour depth

was detected at a = 60� for all the models and some over

prediction at a = 90�. In the case of m/n = 3–4, Fig. 9a

demonstrates that ds/D values had generally rising pattern

against sin(a) values from ds/D = 2.419 at a = 0� to ds/

D = 4.209 at a = 90�. But otherwise, Fig. 9b indicates a

somewhat parabolic trend. GEP model produced remark-

able over predictions as is shown in Fig. 9c. In summary,

EPR model gave the best performance for the three ranges

of m/n = 1.33–1.67, 2, and 2.5–2.67. For m/n = 3–4, the

MARS technique, with RMSE of 0.295, had an efficiency

comparable to EPR model (RMSE = 0.298); M5MT

(RMSE = 0.303) and GEP (RMSE = 0.544) models have

stood at the second and third rank, respectively.

Analogously, the efficiency of the proposed AI models

has been verified for comprehensive variation of ds/

D against G/D ratio at the four ranges of m/n = 0.5–1,

1.33–1.67, 2–2.67, and 3–4. Figure 10 shows that the

observed values of ds/D exhibit a pronounced fluctuating

trend from a = 0� to 90� for m/n = 0.5–1. Nicely, all the AI

models had rising and falling trends, though some over

predictions at G/D between 4 and 5. For m/n = 1.33–1.67,

it can be generally said that variation of ds/D values versus

G/D follows irregular trends. Figure 11a shows that M5MT

often shows under-predictions. Similar behaviors have

been found for GEP and EPR models. Solaimani et al.

(2017) investigated the effect of G/D = 1–5 on the

development of the scour hole for m/n = 0.4–1 and a = 0�.
Unlike what happens in Figs. 10 and 11, they found that the

scour hole dimensions had generally increasing trend for

all ratios of m/n and an upward trend for m/n values

increasing at a given G/D ratio. Figure 11b shows that the

MARS model under-predicts the scour depth for G/

D = 0.33–1.5. All the considered AI models, except

MARS, showed some under estimations for G/D = 0 (i.e.,

no spacing between piles normal to the flow). Figure 12

shows general patterns for the variation of the scour depth

against G/D ratios at m/n = 2–2.67. As it can be seen in

Fig. 12a, the M5MT model shows slight over predictions

for G/D C 0.4, but overall convincing performance espe-

cially for G/D = 0.1 - 0.3. The MARS model, whose

performance is illustrated in Fig. 12b, seems to be working

even better. Figure 12c reveals that GEP model produced

significant over estimations for G/D = 0.4–0.8. For two

ranges of G/D = 0.4 - 0.8 and 1.6 - 2.8, EPR technique

over predicted scour depths, as proved in Fig. 12d. In the

case of m/n = 3–4, Fig. 13 illustrates that ds/D variation

versus G/D ratios had a fluctuating trend for all the con-

sidered AI models, but in good agreement with observa-

tions. For instance, it can be observed from Fig. 13a that

the scour depth values given by M5MT decreased from

4.614 at G/D = 0 to 2.744 at G/D = 2 and then increased to

3.016 at G/D = 5. Incidentally, M5MT displays a marginal

over prediction for G/D = 1 and 2. Figure 13b shows as the

MARS model gave highly satisfying performance. Con-

versely, GEP approach showed relatively significant over

predictions for all the ratios of G/D (Fig. 13c). Figure 13d

shows that overall EPR had a satisfactory level of effi-

ciency with slight over prediction at G/D = 0.

In summary, the performances of AI models for various

G/D and m/n values are quantified in Table 10. The MARS

model showed the most satisfying performances for m/
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n = 1.33–1.67, 2–2.67, and 3–4 in comparison with the

other AI models. For instance, in the case of m/n = 2–2.67,

MARS technique has a value of RMSE of 0.120 that is

lower than those corresponding to M5MT (RMSE =

0.170), GEP (RMSE = 0.454), and EPR (RMSE = 0.391).

Anyway, the variations of the predicted patterns for ds/

D versus m/n and G/D were overall in good agreement with

the results from the experimental studies.

6.6 Sensitivity analysis

Sobol indices, released in 1993 (Sobol 1993), are rooted

from describing the increase in volume of computational

model into summands of augmenting space problem (or

dimension). In a similar way, the total variance model is

equal to the summation of summands variances (Homma

and Saltelli 1996; Janon et al. 2014). The calculation of

Sobol index needs confidence intervals, which can be
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Fig. 12 Variation of ds/D versus

G/D for m/n ranging from 2.00

to 2.67. Comparison of:

a M5MT, b MARS, c GEP, and
d EPR predictions with

experimental observations
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Fig. 13 Variation of ds/D versus

G/D for m/n ranging from 3.00

to 4.00. Comparison of:

a M5MT, b MARS, c GEP, and
d EPR predictions with

experimental observations

Table 11 Settings of PCE methodology applied in Sobol’s index

calculation

Parameters Values

Number of input variables 7

Maximal degree 5

q-norm 1.00

Size of full basis 792

Size of sparse basis 26

Full model evaluations 309

Leave-one-out error 0.0141

Mean value 2.734

Standard deviation 0.991

Coefficient of variation 36.24%
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computed by the bootstrap technique. Furthermore, once

there is a need for higher-order indices, Total Sobol Indices

(TSI) can be considered. For instance, the second-order

index for two independent variables is described as the

total influence of these variables minus single influence of

each variable. Sobol indices are conventionally assessed by

Monte Carlo simulation, which make them difficult-to-use

once models are expensive in terms of computation. So as

to eradicate this restriction, an original post-processing

methodology, known as Polynomial Chaos Expansions

(PCEs), has been proposed for carrying out sensitivity

analysis (Sudret 2008). Comprehensive descriptions of

PCE-based Sobol indices can be found in literature (Yang

et al. 2017; Sudret 2008). In this study, open-source code in

MATLAB software was used to perform sensitivity anal-

ysis. The scour depth, predicted by MARS, was considered

for conducting sensitivity analysis due to the fact that this

AI technique had the best performance compared to other

AI approaches. Moreover, optimum control parameters

applied in PCE strategy are presented in Table 11.

According to the results of sensitivity analysis, Fig. 14

shows the values of TSI related to each input variable for

perception of its effectiveness. It is noted that U/UC and m/

n had the highest (TSI = 0.514) and lowest (TSI = 0.023)

influence on the scour depth prediction at pile groups. D/

d50 and y/D with TSI of 0.464 and 0.423, respectively, have

stood at the second and third rank of effectiveness.

7 Conclusions

In the present study, assessments of four well-known AI

models for prediction of local scour depth at pile groups

were conducted. Four powerful AI techniques such as

MARS, GEP, MT, and EPR were considered. As major

advantages, these AI models have two main capabilities:

(i) presenting nonlinear equations when fed by a large

amount of datasets, (ii) benefiting from automated proce-

dure for input variable selection. Moreover, a wide range of

experimental studies covering various arrangements of pile

groups, non-cohesive bed materials, and clear-water con-

ditions was considered to achieve reliable regression-based

equations thorough the use of AI models. Seven dimen-

sionless parameters were identified from the experimental

studies with the aid of Buckingham theorem. Overall, the

following findings have been established:

• Through training and testing phases, statistical assess-

ments showed that Eq. (6) obtained by the MARS

approach provided ds/D values with more relatively

accurate prediction in comparison with regression-

based equations by EPR, GEP, and MT models. Model

#7 (see Table 6) achieved by means of EPR model

stood at the second place of accuracy. Also explicit

equations obtained with GEP and MT models revealed

convincing efficiency.

• Results of frequently used literature equations revealed

unconvincing efficiency when wide range experimental

datasets are considered. Indeed some empirical equa-

tions (e.g., Ghaemi et al. 2013; and Howard and

Etemad-Shahidi 2014) showed insufficient accuracy

level with remarkable under/overpredictions. Adapta-

tions to HEC-18, Melville and Coleman (2000), and

FDOT equations were applied to allow these equations

to predict the scour depth also in case of pile group not

aligned with the flow direction.

• The variations of ds/D against the parameters G/

D and sin(a) were investigated for various ratios of m/

n. Pattern recognitions in terms of consistency between

results of AI models and experimental observations

were successfully drawn. Furthermore, in terms of

quantitative assessments, statistical benchmarks of the

results obtained by the considered AI models were

indicative of a convincing agreement with the evi-

dences acquired in laboratory researches, for exam-

ple Zhao and Sheppard’s (1998) experiments.

• A sensitivity analysis, in terms of the Sobol’s index,

was performed to discern the role of each input

parameter on the accuracy level of MARS model. The

results demonstrated that the ratio U/UC was the most

Fig. 14 Graphical illustration of

sensitivity analysis results
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influential parameter, whereas opposite trend was

observed for the m/n ratio.

The physical consistency of the results, which has been

firstly introduced as a new insight in such investigations,

proved reliable estimations of the scour depth, which can

be helpful for the design of marine structure foundations.

Appendix

The empirical equations used in this study are listed. The

HEC-18 scour equation is as follows (Arneson et al.

2012)

ds
y
¼ 2KK 0 De

y

� �0:65

Frhð Þ0:43 ð14Þ

in which K and K’ denote correction factors for pile nose

shape and bed condition (e.g., clear-water scour, small

dunes, large dunes), respectively. De is indicative of an

equivalent diameter as scour process occurs at pile group,

and Frh is the Froude number due to the approaching flow.

In the present study K is equal to 1, because all the piles

have a circular cross section. Additionally, all the experi-

mental investigations were performed in the clear-water

condition and, as a result, K’ = 1.1. According to Arneson

et al. (2012) investigations, De can be computed as

De ¼ KSmnW ð15Þ

where KSmn and W are the correction factors for the

arrangement and projected width of the pile group,

respectively. Equation (14) has the merit of being

straightforward and of impact from a physical point of

view. It highlights that the approach Froude number and

the equivalent diameter De (normalized by the flow depth)

are the main parameters governing the scouring process, as

can be expected. However, the effects of the bed sediment

characteristics (e.g., d50 and sediment gradation rg) are

neglected, which leaves some doubts.

Several experimental investigations were conducted

for estimating KSmn for various pile group configurations.

Arneson et al. (2012) have proposed the following

equation

KSmn ¼ 1� 4

3
� 1� 1

n

� �
� 1� Gþ D

D

� ��0:6
 ! !

� 0:9þ 0:1m� 0:0714 m� 1ð Þ � 2:4� 1:1 � Gþ D

D

� ���

þ0:1 � Gþ D

D

� �2
!!

ð16Þ

Alternatively, Ataie-Ashtiani and Beheshti (2006) pro-

posed the following expression for the correction factor

KSmn in the case of pile groups aligned to the flow

KSmn ¼ 1:11ðmÞ0:0396 � ðnÞ�0:5225 � ðG=DÞ�0:1153: ð17Þ

Furthermore, Ataie-Ashtiani and Beheshti (2006)

extended the Melville and Coleman’s (2000) equation

(related to bridge piers) to pile groups by using the fol-

lowing KSmn factor

KSmn ¼ 1:118ðmÞ0:0895 � ðnÞ�0:8949 � ðG=DÞ�0:1195: ð18Þ

Specifically, the Melville and Coleman’s (2000) equa-

tion is as follows

ds ¼ KS � Ky;De
� Kd50 � KI ð19Þ

where KS, Ky,De, Kd50, and KI are multiplication factors

accounting for: pier/pile shape, flow depth-pier/pile size,

bed sediment size, and flow intensity, respectively. For

cylindrical pile, KS is equal to 1. Furthermore, Ky,De is

categorized into three classes as: 2.4De for De/y\ 0.7,

2(y�De)
0.5 for 0.7 B De/y\ 5, and 4.5y for De/y C 5.

Moreover, Kd50 is computed as: 0.57Log (2.24De/d50) for

De/d50 B 25 and Kd50 = 1 for De/d50[ 25. Finally, for

clear-water conditions, KI is equal to U/UC. The second

modification on the HEC-18 equation is due to Amini et al.

(2012) according to

KSmn ¼ 1:31 mð Þ0:05ðnÞ�0:44 Gþ D

D

� ��0:38

: ð20Þ

Later, Ghaemi et al. (2013) applied Multivariable Linear

Regression (MLR) to predict the scour depth at pile groups.

They propose the following scour equation

ds
D

¼ 2:09 mð Þ0:03�ðnÞ0:14 � G

D

� ��0:14

� y

D

� �0:38
� Frhð Þ0:34:

ð21Þ

Also Eq. (21) has the merit of being straightforward and

of impact from a physical point of view. The approach

Froude number and the pile diameter D normalized by the

flow depth are the main parameters governing the scouring

process, as can expected. Moreover, Eq. (21) shows the

effects of the pile group characteristics. In particular, the

scour depth decreases with increasing the spacing G be-

tween piles normal to the flow and increases with
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increasing of the number of piles normal to the flow (i.e.,

the overall width of the pile group). Conversely, the effect

of the number of piles inline with the flow (i.e., the overall

length of the pile group) is negligible, though this cannot

be true when the pile group is not aligned with the

approach flow (i.e., effect of the skew angle a). All this is
physically understandable and in harmony with the well-

known behavior of bridge piers and abutments.

Howard and Etemad-Shahidi (2014) introduced a

regression-based equation for prediction of the local scour

depth at pile groups as

ds
D

¼ 2:368 nð Þ0:07� G

D

� ��0:42

� y

D

� �0:25
� Frhð Þ0:37: ð22Þ

From a physical point of view, Eq. (22) confirms the

above comments on Eq. (21).

Moreover, Sheppard and Renna (2005) proposed a

regression-based equation for prediction of KSmn as follows

KSmn ¼ 1� 4

3
� 1� 1

n

� �
� 1� Gþ D

D

� ��0:6
 ! !

� 0:045mþ 0:96ð Þ:
ð23Þ

Finally, the recent equation used by the Florida

Department of Transportation (FDOT) for pile groups is

structured as follows (Sheppard and Renna 2005)

ds
De

¼ 2:5 tanh
y

De

� �0:4
" #

� 1� 1:75 Ln
U

UC

� �
 �2 !

� De=d50

0:4ðDe=d50Þ1:2 þ 10:6ðDe=d50Þ�0:13

 !

ð24Þ
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