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Abstract
Lane recognition is important for safe driving in structured road environment; it is becoming an indispensable part of the

advanced driver-assistance system (ADAS) for active security control. This paper proposes a novel lane detection and

tracking approach for ADAS by using the line segment detector (LSD), adaptive angle filter and dual Kalman filter. In the

lane detection process, the region of interest (ROI) within the inputted image is transformed into grayscale image, which is

further preprocessed with median filtering, histogram equalization, image thresholding and perspective mapping. Then, the

fast and robust LSD algorithm is applied on the ROI with the proposed adaptive angle filter to eliminate incorrect line

segments more efficiently. In addition, a new three-level classifier based on the color, length and quantity of detected line

segments is designed for lane classification. Finally, two Kalman filters are applied to track the detected lane and predict

the following ROIs to improve the robustness and processing speed. The experimental results on four datasets show that the

proposed method has robust performance in complex environments with the presence of shadows or other artifacts. It has

average correct rate of lane detection higher than 94%, while the processing time is reduced by about 50% compared with

a state-of-the-art method, and the average success rate of lane classification is above 85%.

Keywords Lane detection � Lane tracking � LSD � Adaptive angle filtering � Lane classification

1 Introduction

With the increasing number of private cars on the road

(WHO 2018), traffic accidents have becoming more and

more a severe problem reported by some investigations. In

order to deal with this issue, the advanced driver-assistance

system (ADAS), which is aimed at achieving active secu-

rity control, emerged in recent years. In particular, lane

departure warning system (LDWS) and lane change

assistance (LCA) functions based on computer vision have

been applied successfully in cars by some automobile

industries (Kodeeswari and Philemon 2018). One key

technology in such systems is to recognize the lane

markings, since it can be used for ADAS to keep lane, and

decide whether lane changing or overtaking is permitted or

not.

In the case of the above-mentioned typical sub-systems

of ADAS, lane detection is the most important technology

obviously. Due to the advantages such as easy installation,

informative data and similar to the principle of human

perception, the vision-based methods are the mainstream in

this field currently. Feature selection is the key step of

image identification (Abualigah et al. 2019; Abualigah

et al. 2018a, b, c ; Abualigah and Khader 2017); it usually

adopted techniques of Hough transform (HT) (Son et al.

2015), Canny detector (Wu et al. 2014a, b ), linear or

parabolic model (Mu and Ma 2014), etc., to detect lane

markings (Narote et al. 2018). McCall and Trivedi (2006)

used a simple parabolic model which incorporates lanes

positions, angle, curvature and steerable filter to provide
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better performance for solid and segmented lane marking

detection. Wu et al. (2014a, b) proposed a lane-mark

extraction method using Canny edge detection with multi-

adaptive thresholds for different blocks and using either

straight or curved line models to verify the candidate lane-

mark edges and fit the lane marks. Mammeri et al. (2016)

creatively used maximally stable external region (MSER)

blobs and progressive probabilistic Hough transform

(PPHT) to detect lane markings. Zhao et al. (2012) pro-

posed a simple, flexible and robust spline model for lane

detection and applied extended Kalman filter to support

multiple lane tracking and independent tracking. However,

as introduced in Shin et al. (2014), difficulties still exist if

the feature extraction methods are too restrictive to deal

with the complexity of the road environments, or the

adopted model does not fit with the practical situation

sufficiently. On account of the perspective effect of camera

image, others put forward inverse perspective mapping

(IPM) (Li et al. 2018) to transform original image to bird’s

view image and used the vanishing point (VP) (Liu and Li

2013) to locate the ROI and filter out incorrect lines. But

these methods are based on the assumptions that the road

should be flat and constant in width. More recently, a faster

and robust line segment detector (LSD) has attracted more

and more researchers’ attention (Von Gioi et al. 2010; Li

et al. 2018). Liu and Li (2013) applied LSD to detect lane

markings, and non-lane markings are eliminated by clus-

tering on orientation information and vanishing point. Nan

et al. (2016) used LSD, crossing point filter (CPF) and

structure triangle filter (STF) based on spatial–temporal

knowledge to detect lane markings. Moreover, the methods

for prediction and continuous tracking should be designed

carefully (Abualigah and Hanandeh 2015; Abualigah et al.

2018a, b, c). Huang et al. (2018) proposed classification–

generation–growth-based (CGG) operator using multiple

visual cues for lane detection and applied adaptive noise

covariance Kalman filter for lane tracking based on the

dynamic switch of linear–parabolic models, which showed

good performance in challenging scenarios. Besides, deep

learning methods such as convolutional neural networks

(Li et al. 2016; Lee et al. 2019) and support vector

machines (Dou et al. 2016) have also been employed to

lane detection and prediction in recent years.

On the other hand, lane classification also plays an

important part in ADAS, as it can direct whether the

moving car can change its way or not. Unfortunately, there

are few studies that concentrate on this aspect. Ding et al.

(2015) utilized spatial and frequency sampling for different

types of lane markings. A Bayesian classifier based on

mixtures of Gaussians was developed in Paula and Jung

(2015) to classify lane markings into five categories.

However, the above-mentioned methods focused on the

whole image, which may lead to high computation cost.

Song et al. (2018) used manually labeled ROI transformed

by IPM to train a convolutional neural network (CNN) with

a real-time processing speed.

Inspired by the mentioned methods above, we present an

efficient and robust lane detection and tracking method for

ADAS used in structured road environment. Experimental

results under different conditions evaluated the accuracy

and real-time performance of the method.

The main contributions of this paper are as follows:

(1) Lane detection method is proposed based on LSD

algorithm with an adaptive angle filter used to

eliminate incorrect line segments more efficiently.

(2) The adaptive ROIs selection method based on warp

perspective mapping (WPM) and dual Kalman filter

is designed for lane tracking.

(3) A new three-level features which combine color,

length and quantity of lane lines are used for lane

classification.

The rest of this paper is organized as follows. The

pipeline and detailed design of the proposed lane detection

and tracking method are presented in Sect. 2. The experi-

mental results are given and analyzed in Sect. 3. Finally,

Sect. 4 concludes the paper and discusses the future

research work and directions.

2 Proposed method

The framework of the whole system is presented in Fig. 1.

The description of each block of this system is described as

follows.

2.1 Predetermined ROI selection

Lane markings usually lie in the middle of the image when

the position of camera relative to the car is set as shown in

Fig. 2. In order to improve the real-time performance and

the accuracy of the lane detection system, ROI needs to be

located firstly to eliminate the noise influence brought by

irrelevant sky, trees, buildings, etc. Unlike the previous

methods which defined ROI based on the VPs or mean

value of each row, predetermined ROIs are set on the front

of the car, as shown in Fig. 2. The upper-left coordinate

and size of the predetermined ROI should be proportionally

changed based on the used image (Toan et al. 2016). In

order to predetermine the ROI, the coordinates of upper-

left corner and the size are settled as (X, Y) and W 9 H,

respectively. The initial ROI is drawn as the red rectangle

as shown in Fig. 2.
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2.2 Preprocessing operations

2.2.1 Grayscale method

Color information is not adopted in lane marking detection;

therefore, the RGB camera image needs to be transformed

into the grayscale image so as to decrease the redundant

data. General computation of grayscale is shown as

Gray i; jð Þ ¼ x1 � R i; jð Þ þ x2 � G i; jð Þ þ x3 � B i; jð Þ: ð1Þ

Previous researches usually determined x1 ¼
0:299;x2 ¼ 0:587;x3 ¼ 0:114 as human eye is more

sensitive to red and green color; some grayscale results are

shown in Fig. 3a. Different from this common approach, an

effective contrast enhancement method shows that the R

and G channels display excellent contrast qualities for

white and yellow colors of the actual road lane; thus, the

new weighting coefficients are set as x1 ¼ 0:5;x2 ¼
0:5;x3 ¼ 0 to achieve better grayscale performance as

shown in Fig. 3b.

2.2.2 Image smoothing

The road images have a lot of noise brought by external

influence, such as illumination variation, moving cars and

shadows. Usually, noise is represented as high-frequency

information, which means the image needs to be processed

by low-pass filtering. After comprehensive comparison,

median filter is chosen to perform image smoothing to

achieve noise reduction. And the kernel size, seen in

Eq. (2), is selected as 3 9 3 to balance the smoothing

performance and the computation cost. The examples of

smoothed images are shown in Fig. 4.

g ¼ median
f i� 1; j� 1ð Þ; f i; j� 1ð Þ; f iþ 1; j� 1ð Þ; f i� 1; jð Þ;

f i; jð Þ; f iþ 1; jð Þ; f i� 1; jþ 1ð Þ; f i; jþ 1ð Þ; f iþ 1; jþ 1ð Þ;

� �

ð2Þ

2.2.3 Image enhancing

In order to magnify the contrast between road area and

non-road area, image enhancing step is operated. A com-

parison is made between three-segment linear transforma-

tion enhancement and histogram equalization. The latter

method is selected after experiments and comparison. The

histogram equalization is used to change the original his-

togram into a more uniform distribution form, as shown in

Fig. 5, which can increase the dynamic range of pixel gray

value transformation and achieve the purpose of image

enhancement. Some results of image enhancement are

shown in Fig. 6.

2.2.4 Image threshold

After the above preprocessing operations, image segmen-

tation is much easier to obtain on the basis of the high

contrast between lane area and non-lane area. This step is

Input predetermined
ROI Preprocessing WPM

Lane DetectionNoisy Lanes 
FilteringLane TrackingOutput

Lane ClassificationTrack Success?NO YES

ROI
Predict

Grayscale 

Smoothing

Enhancing 

Threshold

Fig. 1 Pipeline of the proposed

framework for lane detection

and tracking

Fig. 2 The predetermined ROI, W is the width, H is the height, the

units of X, Y, W and H are pixels
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indispensable because its result served as input of LSD;

meanwhile, an amount of data will be decreased sharply.

These methods conclude iterative method, OTSU method,

optimal threshold method, etc. Considering the various

road environment, a method which can produce adaptive

threshold is needed. Hence, in this paper, we choose the

classical OTSU which has low computation cost and is not

sensitive to the change of image quality. Examples of the

processed images are shown in Fig. 7.

2.3 Wrap perspective mapping (WPM)

The existing method named warp perspective mapping

(WPM), also called four-point method, is applied to

transform the camera image into bird’s view image, for its

advantage of no camera calibration and external parame-

ters. The affine matrix H is acquired by mapping the

assumed ground-plane rectangle corners into the corre-

sponding points in the birds’ view image. After getting

matrix H, the original image is mapped pixel by pixel.

(One result is shown in Fig. 8.) Subsequent lane detection

results in Sect. 3 reveal its better performance than what

has been achieved in our earlier work (Liu et al. 2018),

such as that the lane in far field can also be detected by

LSD.

Suppose the homogenous coordinate of a point in the

input image is X ¼ u; v; 1ð ÞT , and the corresponding

coordinate of bird’s view image is X
0 ¼ u

0
; v

0
; 1

� �T
: then,

their relationship can be described as

Fig. 3 Contrast of grayscale,

a original grayscale, b new

grayscale

Fig. 4 Smoothed images,

a before smoothing, b after

smoothing

G G

P/(%) P/(%)

Fig. 5 Histogram equalization schematic diagram

Fig. 6 Enhanced road images,

a before equalization, b after

equalization
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X
0 ¼ H � X ð3Þ

where H is a 3 9 3 homography matrix:

H ¼
h11 h12 h13
h21 h22 h23
h31 h32 h33

2
4

3
5: ð4Þ

2.4 Lane detection

After the above image preprocessing operations, the LSD is

employed for the detection of line segments which belong

to lane. Meanwhile, in Niu et al. (2016), it has been proved

that the capability of LSD is superior to Hough transform.

In particular, the input binary image is divided into two

parts, namely left ROI and right ROI. This step will be

beneficial to the following candidate line segments

selecting and the lane tracking based on Kalman filters.

The LSD detection process is expressed as

S ¼ LSD Ixð Þ; x ¼ left or rightð Þ: ð5Þ

The detected line segments are denoted as

S ¼ s1; s2; s3; :::; snf g; each line segment si i ¼ 1; 2; :::; nð Þ
is defined as

si ¼ x1i; y1i; x2i; y2i; kif g; i ¼ 1; 2; :::; nð Þ ð6Þ

where x1i; y1ið Þ and x2i; y2ið Þ are the starting and ending

points coordinates, respectively. Here, the point with a

smaller y-axis coordinate is defined as the starting point,

and ki is the angle of the line segment si calculated as

ki ¼
180

p
arctan

y2i � y1i
x2i � x1i

� �
; i ¼ 1; 2; :::; nð Þ: ð7Þ

Therefore, the detected line segments of the two parts of

the ROI can be expressed as Sleft ¼ s1; s2; s3; :::; snf g and

Sright ¼ s1; s2; s3; :::; smf g. Each line segment si is redefined

as Sleft i ¼ x1i; y1i; x2i; y2i; kif g; i ¼ 1; 2; :::; nð Þ, or

Sright i ¼ x1i; y1i; x2i; y2i; kif g; i ¼ 1; 2; :::;mð Þ. Its angle is

expressed as Kleft i ¼ k1; k2; k3; :::knf g;
Kleft i\0
� �

,Kright i ¼ k1; k2; k3; :::kmf g, Kright i [ 0
� �

.

2.5 Noisy lanes filtering

The detection results show that the LSD also produces

some false detection results (i.e., some detected segments

are not belong to lane) as shown in Fig. 9a. But owing to

these preprocessing operations, the incorrect line segments

are apparent less than the true lines. Using this character-

istic, adaptive angle filtering method is proposed, other

than stable range slope adopted in Toan et al. (2016), to

obtain the candidate lane markings more robust and cor-

rectly. Equation (8) firstly calculates the average angle of

these detected line segments; if the difference between the

angle ki and the average angle ki
* exceeds a threshold T,

then the segment si will be deleted unless it conforms to

Eq. (9).

Fig. 7 The results with OTSU

method

Fig. 8 Wrap perspective

mapping, a original image,

b transformed image
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k�i ¼

Pn
i¼1

ki

n
i ¼ 1; 2; :::; nð Þ ð8Þ

s:t: abs ki � k�i
� �

\T : ð9Þ

Combined with some other filtering approaches such as

the length property of line segments, the filtering process

and results are shown in Fig. 9b.

2.6 Lane classification

Driving maneuvers, such as lane changing or overtaking,

are usually operated by drivers. In this case, ADAS should

know the additional information of each lane to judge

whether such operations could be allowed or not. In this

part, our work is to further classify the lanes into various

types, for instance yellow/white, double/single and

solid/dashed.

Yellow or white lane markings on a two-way road are

used to separate the traffic flow in the same or opposite

direction. Few attention has been focused on it before.

Color information is extracted in the HSV space in Ding’s

method (Ding et al. 2015). As the original RGB image is

still stored in memory, we distinguish the yellow and white

in RGB space directly with no need for space transfor-

mation. The other colors can be eliminated through

Eq. (10):

R\200ð Þ \ G\200ð Þ \ R� Gj j\10ð Þ \ G� Bj j\10ð Þ
\ B� Rj j\10ð Þ:

ð10Þ

Only yellow and white yet exist in the processed image.

B channel value is much less than R and G channels in

yellow, while three channels’ values are almost equal in

white. Therefore, white and yellow can be judged by

Eq. (11):

VB ¼ B

Rþ Gþ B
ð11Þ

(a) (b)

Fig. 9 The results of the

proposed angle filtering,

a detected results, b filtered

results
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where R, G and B are the value of red, green and blue

channels, respectively. And VB represents the blue pro-

portion of the pixel.

If VB is less than 0.25 in our experiment, it should be

yellow, otherwise it is white.

Solid and dashed lanes indict the possibilities of lane

changes. Current methods focused on accumulating the

value of gradient changes or sampling, which belong to

statistical approaches. However, the most significant and

obvious feature of them is the length characteristics. That

is, solid lanes always run though the entire ROI, and

dashed lanes just occupy a small part of the ROI. Thus, a

simple binary judgment can be used, and the threshold of

length is set as the half of the ROI height.

Due to the robustness and accuracy of the LSD, all lane

boundaries can be detected efficiently. It means that the

double lane will have four line segments, while the single

lane may have two. In case of unexpected situation, the

detected one line may be split into two discrete segments

resulting from undesirable environment conditions.

Therefore, the threshold of line segments quantity is set as

4.

In conclusion, the methods mentioned above can be

devoted to designing a three-level classifier to distinguish

the lane into eight types, as shown in Fig. 10.

2.7 Lane tracking

After the angle filtering of the line segments, the central

line of each detected side line is drawn finally and the

dashed lines are extended to approach the lower and upper

side of the ROI, as shown in Fig. 11. Then, in the lane

tacking step, two Kalman filters are used, respectively, in

the left and right half ROI for the tracking of the left and

right lanes. Different from adopting one point coordinate

and slope of line for tracking (Chen et al. 2014), two virtual

lane points, i.e., A and B, or C and D, are tracked directly.

Furthermore, as the vertical coordinate of virtual point is

already known, only the horizontal coordinates a, b, c and

d are needed to track.

Both left and right lane detection results are tracked by

the Kalman filter (Narote et al. 2018; Miad and Chung

2019; Goleijani and Ameli 2019). In the left lane tracking

process, the state vector and observation vector are defined

as

X ¼ a b Da Db½ �T ð12Þ

Z ¼ a b½ �T ð13Þ

where (a, b) is the horizontal coordinates of left virtual

boundary points A and B, and Da and Db are the devia-

tions of a and b. The prediction and correction process are

expressed by Eqs. (14) and (15), respectively.

Yes No

NoYes Yes No

NoYesYes No Yes No Yes No

Lane

Solid Lane Solid Lane

Yellow Lane

Double Lane Double Lane Double Lane Double Lane

Yellow Double 
Solid Lane

Yellow Single 
Solid Lane

Yellow Double 
Dashed Lane

Yellow Single 
Dashed Lane

White Double 
Solid Lane

White Single 
Solid Lane

White Double 
Dashed Lane

White Single 
Dashed Lane

Fig. 10 Processing pipeline of the three-level classifier

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

A(a,0)

B(b, height)

C(c,0)

D(d, height)

(0,0) (width,0)

(0,height)

Fig. 11 Schematic of virtual boundary points
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X k k � 1jð Þ ¼ AX k � 1 k � 1jð Þ
P k k � 1jð Þ ¼ AP k � 1 k � 1jð ÞA0 þ Q

�
ð14Þ

K kð Þ ¼ P k k � 1jð ÞHT HP k k � 1jð ÞHT þ R½ ��1

X k kjð Þ ¼ X k k � 1jð Þ þ K kð Þ Z kð Þ � HX k k � 1jð Þð Þ
P k kjð Þ ¼ I � K kð ÞHð ÞP k k � 1jð Þ

8<
: :

ð15Þ

The state transition matrix A is

A ¼

1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

2
664

3
775: ð16Þ

And the measurement matrix H is

H ¼ 1 0 0 0

0 1 0 0

� �
ð17Þ

where P k k � 1jð Þ and P k kjð Þ are the prior and posteriori

estimated error covariance, respectively, and K kð Þ is the

Kalman gain used to renovate the predicted X k k � 1jð Þ and
P k k � 1jð Þ.

The process noise covariance Q and measurement noise

covariance R are assumed as Gaussian white noise and

independent to each other.

Similarly, the lane tracking of right half ROI is as same

as the above process.

After the points A, B, C, D (as shown in Fig. 11) are

tracked successfully by the Kalman filter, another operation

named ROI tracking, i.e., predicted ROI, will be per-

formed. As the coordinates a, b, c, d are already known by

the lane tracking, the width of the left half ROI in next

frame can be redefined based on the difference between a

and b. (The same goes for the right half ROI.) Therefore,

both detection accuracy and computation speed can be

improved due to more precise and small ROI region. In

order to prevent some unexpected situations and enhance

the robustness, the predicted ROIs are extended outward

for M pixels. For example, the width of the left half ROI is

|a-b|? M, as shown in Fig. 12a. An example of the pre-

dicted ROIs is shown in Fig. 12b, c.

Meanwhile, a tracking failure mechanism marked by

three consecutive frame failures is added to cope with

extreme situations. If it happened (i.e., the ROIs prediction

are failed), the next ROI will be switched to the predeter-

mined ROI as shown in Fig. 2.

Some lane tracking results are shown in Fig. 13. It can

be seen that if no line segment is detected, the virtual lane

will be drawn by the predicted points A, B, C, D.

3 Experiments

For the tests of lane marking detection and tracking, we

have completed the proposed algorithm using Microsoft

Visual Studio 2012 and OpenCV 3.0 and conducted the

experiments on a PC with Intel Core i5-3470 CPU @

3.20 GHz. In our experiment, firstly X is set as 100, Y is

set as 245, W is set as 440, and H is set as 100; the

threshold T of Eq. (9) is set as 85, and the M of Fig. 12a is

set as 20 pixels empirically.

3.1 Experiment results

3.1.1 Lane detection method results

In order to verify the efficiency of adaptive ROI and

adaptive angle filter for lane detection, we did experiments

on the Caltech datasets (Toan et al. 2016), with totaling

1225 frames, and the image size is 640 9 480, which

contains challenging scenarios, such as different pave-

ments, moving cars, artificial road markings and lots of

shallows. The final detection results are shown in Fig. 14.

The images shown in Fig. 14 are some of the repre-

sentative detection results which show that the proposed

method can deal with such complex scenarios successfully.

Meanwhile, three indexes such as correct detection rate

(CDR), false detection rate (FDR) and missing detection

rate (MDR) are adopted to quantitatively evaluate the

A

B

M

M

(a) (b)                            (c)

Fig. 12 The predicted ROIs,

a the definition, b c the results
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accuracy of detection. The definition of such indexes is

expressed in Eq. (18):

CDR ¼ NCD

TNF
FDR ¼ NFD

TNF
MDR ¼ NMD

TNF
ð18Þ

where NCD, NFD, NMD and TNF are the number of

correct detection, false detection, missing detection and

total frames, respectively. And the statistical results are

shown in Table 1.

It can be seen that the test in Cordoval1 has the highest

correct detection rate and the lowest false and missing

detection rate as the road environment is much better than

the others. On the contrary, lane detection performance in

Washingon1 is the worst resulting from various illumina-

tion conditions, more clutter shallows and other interfer-

ence. Even though in such complex conditions the

proposed method can still achieve 94.48% correct rate

averagely, which means that the accuracy and robustness of

our algorithms can satisfy the requirements of ADAS.

3.1.2 Lane tracking method results

In order to verify the effectiveness of lane tracking method

based on warp perspective mapping (WPM), dual Kalman

filter and the predicted ROIs, we compared our method

with the algorithm presented in Toan et al. (2016). Some

typical situations (frames) are selected, and the results of

lane detection and tracking are shown in Fig. 15.

It can be seen that both two methods perform well in the

first row images of standard road conditions. The influence

on lane detection resulting from the shallow could be

overcome by the robust LSD. However, when the car is

driving across roads with some stained writing or without

lane marking in ROI, some fatal detection error happens in

the second row of Fig. 15a. Due to the proposed warp

perspective mapping (WPM) and the lane tracking step

using Kalman filters, our methods could deal with such

cases, as shown in the second row of Fig. 15b.

In addition, a comparison of correct detection rate and

processing time between our method and the method

without adaptive ROI in Shin et al. (2015) is made, as

shown in Table 2. Shin et al. (2015) also applied WPM to

transform the image and presented particle filter based on a

more general model and lane detectors for the estimation of

lane borders.

As shown in Table 2, our method is much more

advantageous than Shin’s method in general, even though a

slight inferior on CDR of the Cordoval1 sequence. Because

the predicted ROIs include smaller left–right ROIs, the

processing time needed in our method is only half than

their method with nearly 60.7 ms (averaged processing

time) (Shin et al. 2015; Narote et al. 2018). On the whole, a

sufficient fast speed (about 30.4 frames per second) can be

guaranteed by our proposed method.

3.1.3 The lane classification results

At the next experiments, lane classification is added into

the whole algorithm. As shown in Fig. 16, some

Fig. 13 Lane tracking results, a original image sequence, b lane tracking (drawn by virtual lane)
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representative results are obtained using the designed

three-level classifier.

For visualization, lane marking like yellow double solid

lane is denoted as ‘‘YDSL’’ for short, white single solid

lane as ‘‘WSSL,’’ white single dashed lane as ‘‘WSDL,’’

and so on.

As the Caltech dataset has not been used for lane clas-

sification before, so a new evaluation criterion is designed

by us. There are mainly three types of lanes, in order to

evaluate the effectiveness of the proposed classifier; the left

and right lanes are recognized separately. And Table 3

shows the specific classification results. NULL information

means that the car is driving to the crossroads. The left lane

classification rate is higher than right, and the average

success rates is above 85%.

Fig. 14 Correct lane detection results

5718 J. Tian et al.

123



The reason why left lane classification rate is always

higher than the right is that the feature of left lane is more

evident because of the less influence resulting from sha-

dow, etc. Another interesting phenomenon is that the yel-

low lane is easier to classify correctly than the white.

3.2 Discussion

From the above test results, it can be seen that the LSD-

based method with adaptive angle filter and dual Kalman

filter is possible to detect and track lane marking even in

the presence of shadows or other artifacts. However,

examples of incorrect detection results are also shown in

Fig. 17. Missing detection occurred resulting from over-

exposure in the left side of Fig. 17a, while in the right side

of Fig. 17b, the diversity in road texture made the lane

detection inaccurate. And there is no consideration in our

algorithm for zebra crossing distinguishing, so the results

are slightly different from the true position of lane as

shown in Fig. 17c.

The another limitation of the methodology is that it

detects lane markings in the structured environment, i.e., it

is not fit for unstructured roads and lanes with high cur-

vature. Meanwhile, the reduction in computational time

required by LSD and smaller divided ROIs is significant,

but the ROI is only a part of the image; it cannot detect the

lane markings all over the image.

4 Conclusion

This paper proposes an efficient and robust lane detection

and tracking method which is verified in some typical

structured road environments successfully. The new

weighted-average grayscale and wrap perspective mapping

Table 1 The quantitative evaluation results of the proposed method

Clips Frame CDR (%) FDR (%) MDR (%)

Cordoval1 250 96.80 2.40 0.80

Cordoval2 406 94.09 4.19 1.72

Washington1 337 92.58 5.64 1.78

Washington2 232 95.26 3.88 0.86

Average 1225 94.68 4.03 1.29

Fig. 15 Contrast between

Hoang’s method and our

method

Table 2 Comparison between

our method and Shin’s method
Clips CDR (%) of our method CDR (%) of Shin’s method Time (ms) of our method

Cordoval1 96.80 98.3 28.32

Cordoval2 94.09 91.3 29.37

Washington1 92.58 88.2 32.65

Washington2 95.26 93.3 30.53
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for LSD, adaptive angle filtering approach as well as the

three-level classifier are combined together into the whole

system. Moreover, in order to eliminate noisy influence and

improve the robustness and computation speed, dual Kal-

man filter is applied to track the line segments and predict

the following ROIs. Without using much prior knowledge

and assumptions, it is confirmed that our method can run

through the various experiments in real time and

accurately.

In future work, we consider further optimizing the per-

formance and apply the algorithm into practical ADAS.

Meanwhile, the region of interest (ROI) is a small part of

the image, with more and more labeled data available; we

would like to fuse LSD with deep learning to detect and

Fig. 16 Lane classification results
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classify lane markings all over the image for ADAS and

driver-less cars.

Acknowledgements This work was supported by the National Natural

Science Foundation of China (Grant Nos. 61703356 and 61305117)

and the Fundamental Research Funds for the Central Universities

(Grant No. 20720190129).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Human and animal rights This article does not contain any studies

with human participants or animals performed by any of the authors.

References

Abualigah LM (2019) Feature selection and enhanced krill herd

algorithm for text document clustering. In: Studies in compu-

tational intelligence, Springer, Berlin.

Abualigah LMQ, Hanandeh ES (2015) Applying genetic algorithms

to information retrieval using vector space model. Int J Comput

Sci Eng Appl 5(1):19–28

Abualigah LM, Khader AT (2017) Unsupervised text feature

selection technique based on hybrid particle swarm optimization

algorithm with genetic operators for the text clustering. J Super-

comput 73(11):4773–4795

Abualigah LM, Khader AT, Hanandeh ES (2018a) A new feature

selection method to improve the document clustering using

particle swarm optimization algorithm. J Comput Sci

25:456–466

Abualigah LM, Khader AT, Hanandeh ES (2018b) Hybrid clustering

analysis using improved krill herd algorithm. Appl Intell

48(11):4047–4071

Abualigah LM, Khader AT, Hanandeh ES (2018c) A combination of

objective functions and hybrid Krill herd algorithm for text

document clustering analysis. Eng Appl Artif Intell 73:111–125

Chen C, Zhang B, Gao S (2014) A lane detection algorithm based on

hyperbola model. In: International conference on computer

engineering and networking, proceedings, pp 609–616

Ding D, Yoo J, Jung J, Jin S, Kwon S (2015) Various lane marking

detection and classification for vision-based navigation system.

In: IEEE international conference on consumer electronics,

proceedings, pp 491–492

Dou Y, Yan F, Feng D (2016). Lane changing prediction at highway

lane drops using support vector machine and artificial neural

network classifiers. In: IEEE international conference on

advanced intelligent mechatronics, proceedings, pp901–906

Goleijani S, Ameli MT (2019) An agent-based approach to power

system dynamic state estimation through dual unscented kalman

filter and artificial neural network. Soft Comput

23(23):12585–12606

Huang Z, Fan B, Song X (2018) Robust lane detection and tracking

using multiple visual cues under stochastic lane shape condi-

tions. J Electron Imag 27(2):023025

Kodeeswari M, Philemon D (2018) Survey on various lane and driver

detection techniques based on image processing for hilly terrain.

IET Image Process 12(9):1511–1520

Lee M, Han KY, Yu J, Lee YS (2019) A new lane following method

based on deep learning for automated vehicles using surround

view images. J Ambient Intell Humaniz Comput Online. https://

doi.org/10.1007/s12652-019-01496-8

Table 3 The success rates of lane classification by our algorithm

Frames Numbers Left detected Right detected Left rate Right rate

Left lane Right lane

Yellow double solid lane White single solid lane 240 221 214 92% 89%

Yellow double solid lane White single dashed lane 377 353 341 94% 90%

White single solid lane White single solid lane 58 46 43 79% 74%

White single solid lane White single dashed lane 118 101 95 86% 81%

White single dashed lane White single solid lane 299 263 256 88% 86%

NULL NULL 133 0 0 0 0

Fig. 17 False lane detection results

LSD-based adaptive lane detection and tracking for ADAS in structured road environment 5721

123

https://doi.org/10.1007/s12652-019-01496-8
https://doi.org/10.1007/s12652-019-01496-8


Li J, Mei X, Prokhorov D (2016) Deep neural networks for structural

prediction and lane detection in traffic scene. IEEE Trans Neural

Netw Learn Syst 28(3):690–703

Li W, Qu F, Wang Y, Wang L, Chen Y (2018) A robust lane detection

method based on hyperbolic model. Soft Comput Fusion Found

Methodol Appl 2018:1–14

Liu W, Li S (2013) An effective lane detection algorithm for

structured road in urban. In: Intelligent science and intelligent

data engineering, Springer, Berlin, Heidelberg

Liu S, Lu L, Zhong X, Zeng J (2018) Effective road lane detection

and tracking method using line segment detector. In: IEEE 37th

Chinese control conference, proceedings, pp.5222–5227

Mammeri A, Boukerche A, Tang Z (2016) A real-time lane marking

localization, tracking and communication system. Comput

Commun 73(2):132–143

McCall J, Trivedi M (2006) Video-based lane estimation and tracking

for driver assistance: survey, system, and evaluation. IEEE Trans

Intell Transp Syst 7(1):20–37

Miad S, Chung Z (2019) State estimation of nonlinear dynamic

system using novel heuristic filter based on genetic algorithm.

Soft Comput 23(14):5559–5570

Mu C, Ma X (2014) Lane detection based on object segmentation and

piecewise fitting. Telkomnika Indones J Electr Eng

12(5):3491–3500

Nan Z, Wei P, Xu L, Zheng N (2016) Efficient lane boundary

detection with spatial-temporal knowledge filtering. Sensors

16(8):1276–1295

Narote SP, Bhujbal PN, Narote AS, Dhane DM (2018) A review of

recent advances in lane detection and departure warning system.

Pattern Recognit 73(2018):216–234

Niu J, Lu J, Xu M, Lv P, Zhao X (2016) Robust lane detection using

two-stage feature extraction with curve fitting. Pattern Recognit

59:225–233

Paula M, Jung C (2015) Automatic detection and classification of

road lane markings using onboard vehicular cameras. IEEE

Trans Intell Transp Syst 16(6):3160–3169

Shin B, Xu Z, Klette R (2014) Visual lane analysis and high-order

tasks: a concise review. Mach Vis Appl 25(6):1519–1547

Shin B, Tao J, Klette R (2015) A superparticle filter for lane

detection. Pattern Recognit 48(11):3333–3345

Son J, Yoo H, Kim S, Sohn K (2015) Real-time illumination invariant

lane detection for lane departure warning system. Expert Syst

Appl 42(4):1816–1824

Song W, Yang Y, Fu M, Li Y, Wang M (2018) Lane detection and

classification for forward collision warning system based on

stereo vision. IEEE Sensors J 18(12):5151–5163

Toan H, Hyung H, Husan V, Kang P (2016) Road lane detection by

discriminating dashed and solid road lanes using a visible light

camera sensor. Sensors (Basel) 16(8):1313–1335

Von Gioi R, Jakubowicz J, Morel J, Randall G (2010) LSD: a fast line

segment detector with a false detection control. IEEE Trans

Pattern Anal Mach Intell 32(4):722–732

World Health Organization (2018) Global status report on road safety

2018. WHO, Geneva

Wu PC, Chang CY, Lin CH (2014a) Lane-mark extraction for

automobiles under complex conditions. Pattern Recognit

47(8):2756–2767

Wu P, Chang C, Lin C (2014b) Lane mark extraction for automobile

under complex conditions. Pattern Recognit 47(8):2756–2767

Zhao K, Meuter M, Nunn C, Muller D, Pauli, J (2012) A novel multi-

lane detection and tracking system. In: IEEE intelligent vehicles

symposium (IV), proceedings, pp1084–1089

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

5722 J. Tian et al.

123


	LSD-based adaptive lane detection and tracking for ADAS in structured road environment
	Abstract
	Introduction
	Proposed method
	Predetermined ROI selection
	Preprocessing operations
	Grayscale method
	Image smoothing
	Image enhancing
	Image threshold

	Wrap perspective mapping (WPM)
	Lane detection
	Noisy lanes filtering
	Lane classification
	Lane tracking

	Experiments
	Experiment results
	Lane detection method results
	Lane tracking method results
	The lane classification results

	Discussion

	Conclusion
	Acknowledgements
	References




