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Abstract
This paper considers a passive target localization problem based on the noisy time of arrival measurements obtained from
multiple receivers and a single transmitter. Themaximum likelihood (ML) estimator for this localization problem is formulated
as a highly nonlinear and non-convex optimization problem, where conventional optimization methods are not suitable
for solving such a problem. Consequently, this paper proposes an improved adaptive hybrid firefly differential evolution
(AHFADE) algorithm, based on hybridization of firefly algorithm (FA) and differential evolution (DE) algorithm to estimate
the unknown position of the target. The proposed AHFADE algorithm dynamically adjusts the control parameters, thus
maintaining high population diversity during the evolution process. This paper aims to improve the accuracy of the global
optimal solution by incorporating evolutionary operators of the DE in different searching stages of the FA. In this regard,
an adaptive parameter is employed to select an appropriate mutation operator for achieving a proper balance between global
exploration and local exploitation. In order to efficiently solve the ML estimation problem, this paper proposes the well-
known semidefinite programming (SDP) method to convert the non-convex problem into a convex one. The simulation results
obtained from the proposed AHFADE algorithm and well-known algorithms, such as SDP, DE and FA, are compared against
Cramér–Rao lower bound (CRLB). The statistical analysis has been performed to compare the performance of the proposed
AHFADE algorithm with several well-known algorithms on CEC2014 benchmark problems. The obtained simulation results
show that the proposed AHFADE algorithm is more robust in high-noise environments compared to existing algorithms.

Keywords Localization · Time of arrival · Firefly algorithm · Differential evolution · Hybrid optimization · Cramér–Rao
lower bound

1 Introduction

The problem of finding the position of passive target based
on noisy TOA measurements is an essential task that has
received extensive attention in various applications, such as
radar, wireless communications, navigation, environmental
monitoring, biomedical health monitoring (Wu et al. 2016;
Deak et al. 2012; Sachs 2013), etc. In general, depending on
the nature of the target to be determined, localization systems
can be classified into active and passive, based on the target’s
participation in the localization process (Deak et al. 2012). In
the active localization, the target actively participates in the
localization process. Unlike active localization systems, in

B Maja B. Rosić
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passive localization systems, the target is not involved in the
localization process. The passive localization aims to deter-
mine the position of the target without any device or tag; in
fact, the target can only reflect or scatter the signals from
transmitter to receivers (Wu et al. 2016).

Generally, the global positioning system (GPS) and other
similar global navigation satellite systems provide access
for obtaining the exact position of an object anywhere on
the Earth surface (Yan et al. 2018). However, their posi-
tioning accuracy is not satisfactory due to the restriction
of signal arrival in special environments, such as indoor,
urban and underwater acoustics, and therefore, other solu-
tions are required for target localization (Choi et al. 2014;
Noroozi and Sebt 2015). In this context, the passive localiza-
tion system is one of the widely used systems to estimate the
unknown position of the target, due to its ability to achieve
very high localization accuracy. Hence, this paper consid-
ers the passive target localization problem using noisy TOA
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measurements, as the sum of the signal propagation time
from the known position of the transmitter to the target with
unknown position, and that from the target to each receiver
with known position. In this case, the signal propagation time
can be measured and used to estimate ranges (transmitter–
target–receiver distances). In fact, the obtained noisy distance
measurements are nonlinear with respect to the unknown
position of the target. Hence, the sum of transmitter-target
and target-receiver ranges defines an ellipse. In this way, the
estimated position of the passive target can be found inside
the region bounded by the corresponding ellipses. In this con-
text, the estimation of the target position is one of the most
challenging optimization problems, which in recent years
has become of practical significance (Chalise et al. 2014).
In the line-of-sight (LOS) environment, the TOA measure-
ment errors can be modeled as Gaussian distributed random
variables. Therefore, the ML estimator which is based on
an a priori statistical information of the measurement error
by maximizing the likelihood function, can be employed in
order to obtain the unknown target position (Wang et al.
2014). The corresponding ML objective function for the
given localization problem is a highly nonlinear and non-
convex function, where conventional optimization methods
are not suitable for solving such a problem. Consequently,
this has motivated the development of different efficient
optimization methods, which can accurately solve the ML
estimation problem. Among them, the SDP has gained con-
siderable attention as an efficient method that can be used to
solve convex relaxations for the given localization problem
(Chalise et al. 2014). The basic idea of the SDP method is
to transform the non-convex problem to a convex one that
monotonically converges to the global optimal solution. The
main advantage of the SDP method is that it does not require
an initial guess at the beginning of the optimization process,
and in this way, the global optimal solution of the ML objec-
tive function can be efficiently found (Chan et al. 2013). In
fact, the SDP method has received significant attention due
to its numerical reliability and robustness in solving a variety
of localization problems. The SDP problem can be efficiently
solved using theMATLABpackageCVX,where the solver is
SeDuMi (Grant and Boyd 2014). However, the SDP method
has some disadvantages in the presence of significant mea-
surement noise, which is reflected in the accuracy of the
global optimal solution, and thus, it cannot provide high esti-
mation accuracy (Wang et al. 2013). In view of this, the
problem of finding the global optimal solution with high
accuracy for the multimodal objective function becomes a
significant challenge.

Motivated by these facts, this paper proposes evolutionary
algorithms (EAs) to overcome these drawbacks in finding the
global optimal solution for a given multimodal optimization
problem (Zhang et al. 2016). Generally, the evolution process
of EAs consists of two stages, namely global exploration and

local exploitation, which have the crucial role for the perfor-
mance of the algorithm (Mohamed and Almazyad 2017). In
such a context, the exploration stage refers to search for the
global solution, while the exploitation stage concentrates on
the promising area to refine the solution around the current
global best solution. Hence, finding an appropriate balance
between exploration and exploitation of the search space is
an important challenge for the optimization algorithm.

Various EAs have been successfully applied to solve com-
plex optimization problems, such as genetic algorithm (GA)
(Kuila et al. 2013), DE (Storn and Price 1997), FA (Wu
et al. 2019), cuckoo search algorithm (CSA) (Goyal and Pat-
terh 2014), particle swarm optimization (PSO) (Zhang et al.
2015b), etc. Among the various existing algorithms, the DE
and FA have been widely applied for different multimodal
optimization problems, due to their compact structure, easy
implementation, reliability and robustness (Wu et al. 2019,
2018).

The FA is nature-inspired metaheuristic algorithm, which
is based on the flashing behavior of fireflies. The search pro-
cess of FA depends on the attraction of fireflies, whereby
a less bright firefly moves toward a brighter firefly (Yang
2010b). Hence, the characteristics of the flashing light of fire-
flies provide effective diversity in searching for the global
optimal solution. In this regard, the objective function for
a given optimization problem is associated with the light
intensity. The FA has been successfully employed to solve
different complex optimization problems, and it has shown its
superiority in comparisonwith the optimization performance
ofwell-known algorithms, such asGAandPSO (Yang 2009).
Similar to other EAs, the FA has some drawbacks, such as
premature convergence to a local optimum, slowconvergence
rate, especially in the later stage of the evolution process, and
sensitivity to the choice of control parameters (Wang et al.
2017).

The hybridization of FA with other metaheuristic algo-
rithms has been performed, in order to overcome drawbacks
of conventional algorithms, which results in a powerful and
highly effective optimization algorithm. For this purpose,
the simulated annealing (SA) has been hybridized with FA
into hybrid SFA, with the aim to improve the accuracy of
the global optimal solution during the evolution process
(Alweshah andAbdullah 2015).Moreover, to control the ran-
domization movement of the FA, the crossover and mutation
operators of GA have been integrated into the FA, which has
increased convergence speed (Luthra and Pal 2011). There
are also different hybrid variants of the FA with other meta-
heuristic methods, such as hybrid FA with DE (AHEFA)
(Lieu et al. 2018), FA with PSO (HFPSO) (Aydilek 2018)
, FA with harmony search (HS/FA) (Guo et al. 2013) and FA
with ant colony optimization algorithm (HAFA) (Goel and
Maini 2018), which are very robust in finding global opti-
mal solutions. Therefore, hybridization of these algorithms
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has been successfully applied to solve various complex opti-
mization problems, due to their effectiveness, improvement
of convergence speed and solution accuracy, and the ability
to avoid being trapped in local minima.

The DE is another population-based stochastic algorithm,
developed by Storn and Price (Storn and Price 1997), that can
be used for solving numerous optimization problems in dif-
ferent fields of science and engineering (Baraldi et al. 2016;
Awad et al. 2018). The performance of the DE algorithm
is significantly influenced by its control parameters, such as
scale factor (F), crossover rate (CR) and population size
(NP), and trial vector generation operators, i.e., mutation and
crossover operators (Cui et al. 2016). In the DE algorithm,
the values of the control parameters are kept fixed through-
out the evolution process, which may cause the algorithm to
be easily trapped in local optima of a multimodal objective
function. Therefore, in order to improve the search perfor-
mance of DE algorithm, many different mechanisms have
been introduced to adjust control parameters in an adaptive
or self-adaptive manner (Das et al. 2016). Among them, the
JADE is awell-knownDEvariantwith an effective parameter
adaptation technique, where control parameters F and CR,
associated with each individual in the population, are ran-
domly and independently generated according toCauchy and
Gaussian distributions, respectively (Zhang and Sanderson
2009). Their expected mean values are adaptively updated
using the successful values of F and CR during the evo-
lution process to maintain diversity of the population and
improve the robustness of the algorithm. Building on the
success of JADE, the SHADE is proposed as the improved
success history-based parameter adaptation technique,where
the values of F and CR are adapted based on learning from
successes and failures of past generations to accurately locate
the global optimum (Tanabe and Fukunaga 2013).

Besides the control parameters, the mutation operator
plays an important role in the evolution process of the DE
algorithm. Various mutation operators have been suggested
in the literature, such as DE/rand/1, DE/rand/2, DE/best/1,
DE/best/2, DE/current-to-best/1, DE/current-to-rand/1 and
other variants of them (Mohamed and Suganthan 2018). In
addition, in the JADE algorithm, an effective mutation oper-
ator DE/current-to-pbest/1 is developed by improving the
classic DE/current-to-best/1 operator (Zhang and Sanderson
2009). More recently, in composite DE (CoDE), a newmuta-
tion operator is proposed, which combines three trial vector
generation strategies, such asDE/rand/1/bin/, DE/rand/2/bin,
DE/current-to-rand/1, and three control parameter settings to
generate trial vectors (Wang et al. 2011). In this regard, in
order to achieve a proper balance between exploration and
exploitation abilities, the mutation operator cannot be the
same at different stages of the evolution process (Qian et al.
2018).

Motivated by the above considerations, in this paper, an
improved adaptive hybrid algorithm, based on hybridization
of the DE and FA, named AHFADE, is presented in order to
efficiently solve the passive target localization problem. This
paper aims to maintain population diversity and improve the
convergence speed by incorporating evolutionary operators
of the DE into the FA. To further improve the optimiza-
tion performance, the control parameters of DE and FA are
automatically and adaptively updated during the evolution
process, where parameters F and CR are generated using
Cauchy and Gaussian distributions, respectively. In addition,
the proposed AHFADE algorithm incorporates two muta-
tion operators DE/rand/1 and DE/current-to-pbest/1 into the
FA to achieve an effective trade-off between exploration and
exploitation abilities. Therefore, the purpose of this paper
is to develop a robust optimization algorithm to solve the
passive target localization problem for a wide range of mea-
surement noise.

The CRLB is an important andwidely applied in the local-
ization for the analysis of the accuracy of the estimated target
position, which provides a lower bound for the root mean
square error (RMSE) of any unbiased estimator (Shen et al.
2012). Hence, the CRLB for the passive target localization
problem is compared with the RMSE performance of the
proposed AHFADE algorithm and the existing SDP, DE and
FA.

The main contributions of this paper are summarized as
follows:

– The passive target localization problem is defined in
two dimensions based on the noisy TOA measurements
obtained from a single transmitter and multiple receivers
in LOS environment. Since the ML objective function of
this localization problem is a highly nonlinear and non-
convex function, it is necessary to provide sophisticated
optimization algorithms, to estimate the position of the
target.

– In order to efficiently solve the above ML estimation
problem, the well-known SDP method can be employed
to transform the non-convex optimization problem into a
convex problem.

– The improved AHFADE algorithm, as a hybridization
of the DE and FA, is established to provide desirable
accuracy in LOS environment. The proposed AHFADE
algorithm aims to improve the accuracy of the global
optimal solution by incorporating evolutionary operators
of the DE into the FA. Furthermore, the control param-
eters of the proposed AHFADE algorithm have been
dynamically updated at each iteration to generate poten-
tial solutions with higher diversity.

– The statistical analysis using the Wilcoxon signed-rank
test and Friedman test has been performed, in order
to compare the performance of the proposed AHFADE
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algorithm to several well-known algorithms onCEC2014
benchmark test problems. The obtained results further
confirmed that the hybridization proposed in this paper
can improve the overall optimization performance of the
proposed AHFADE algorithm.

– The obtained numerical simulation results have shown
that the AHFADE algorithm achieves the CRLB and
has significantly better performance than existing algo-
rithms. Furthermore, the simulation results indicate that
the AHFADE is robust against large measurement noise
and changes in the geometric configuration of the trans-
mitter, target and receivers compared to SDP, FA and DE
algorithms.

The rest of the paper is organized as follows. Section 2 gives
a review of background and related work. The passive target
localization system based on the noisy TOA measurements
is presented in Sect. 3. In Sect. 4, the ML objective func-
tion is derived. The SDP method for solving the passive
target localization problem is presented in Sect. 5. Section 6
introduces the DE algorithm, followed by the corresponding
improvements. FA with an adaptive attractiveness function
is described in Sect. 7. Section 8 introduces an improved
AHFADE algorithm. In Sect. 9, the CRLB for passive target
localization problem is derived.Numerical simulation results
are provided in Sect. 10. The conclusions and some possible
directions for future work are given in Sect. 11.

2 Background and related work

The accuracy of passive target position has always been an
important and challenging issue in many applications that
has received significant interest among the research commu-
nity (Shen et al. 2012). It is well known that the reliability
and accuracy of the localization depend on the geometric
configuration of the transmitter, receivers and target, themea-
surement accuracy and the environment (e.g., ambient noise)
(Bishop et al. 2010). Consequently, numerous localization
algorithms have been proposed in the literature for different
applications,which canbedivided into twocategories: range-
based and range-free algorithms (Chowdhury et al. 2016).
The range-based localization algorithms utilize range mea-
surements, such as distance or angle information between
the unknown position of the target and the known position of
each receiver in order to estimate the position of the target.
These algorithms use various measurement techniques, such
as TOA (Shen et al. 2012), time difference of arrival (TDOA)
(Huang et al. 2015), received signal strength (RSS) (Li et al.
2017), angle of arrival (AOA) (Xu and Doğançay 2015)
or combination of them (Coluccia and Fascista 2018). The
localization accuracy is dependent on the distance or angle
measurements to estimate the position of the target for a given

localization problem. Generally, the unknown position of the
target can be determined using geometric methods such as
triangulation, trilateration and multilateration or by applying
an estimation method (Asmaa et al. 2014). Among them, the
TOA is a promising method for target localization based on
a set of receivers with known positions, which has attracted
considerable research focus, due to its low cost and high
localization accuracy (Sadowski and Spachos 2018). Con-
versely, the range-free localization algorithms do not require
range or angle information between sensor nodes, and they
utilize only connectivity information for localization. Basi-
cally, wireless sensor networks (WSNs) have tremendous
ability to collect and transfer information of the deployed
sensors, which can be used to determine the possible posi-
tion of the target in their radio range (Halder and Ghosal
2016). The well-known range-free localization algorithms
are: the centroid or weighted centroid algorithm, distance
vector hop (DV-hop) and approximate point-in-triangulation
test (APIT) (Singh and Sharma 2015). Comparedwith range-
based algorithms, the range-free algorithms do not need
additional hardware to determine the actual range; hence,
they are cost-effective, easy to implement and have a low
power consumption; however, this leads to less accurate
localization performance (Halder and Ghosal 2016).

One of the most commonly used estimation methods to
estimate the unknown position of the target is the nonlinear
least squares (NLS) estimator (Zekavat and Buehrer 2011).
Hence, the estimated target position can be obtained by min-
imizing the squared sum of the measurement errors with
respect to the unknown target position. Thus, the given local-
ization problem can be formulated as nonlinearminimization
problem, which does not have closed-form solution, and it is
difficult to solve.

Local search optimization algorithms have been widely
applied for solving various localization problems (Kaur et al.
2016). These optimization algorithms can be classified into
gradient-based and direct search methods, which only per-
form local search around the initial solution (Rao and Rao
2009). Different gradient-based algorithms such as steep-
est decent, Gauss–Newton and conjugate gradient have been
proposed in the literature to find the unknown position of
the target for the given NLS problem (Arora 2004). How-
ever, local search algorithms require feasible starting point
to find the global optimum (Rao and Rao 2009). Therefore,
these algorithms cannot guarantee convergence to the global
optimum of a multimodal optimization problem and thus,
cannot be used to solve passive target localization prob-
lem. In order to obtain a closed-form solution, the nonlinear
optimization problem has been linearized using linear least
squares (LLS) and weighed least squares (WLS) algorithms
under the small Gaussian noise assumption (Wang 2015;
Einemo and So 2015). To further improve the localization
performance, especially in the presence of high-noise mea-
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surements, the constrained weighted least squares (CWLS)
algorithm is developed, to obtain the estimated position of
the target (Qu and Xie 2016). The CWLS rearranges the non-
linear equations into a set of linear equations, by explicitly
incorporating the relationship between the target position and
the auxiliary variable as a second-order equality constraint. In
fact, the CWLS problem can be formulated as a quadratically
constrained quadratic program (QCQP), which is converted
to an unconstrained optimization problem. In this regard, the
simulation results have shown that the RMSE of the CWLS
algorithm can achieve the CRLB accuracy under small mea-
surement errors (Lin et al. 2013). Another widely employed
estimation method in the literature is the ML estimator,
which maximizes the likelihood function of the unknown
target position (Destino and Abreu 2011). However, the cor-
responding ML objective function is a highly nonlinear and
non-convex function,where conventional optimizationmeth-
ods are not suitable for solving this kind of optimization
problem. In order to overcome the non-convexity of the ML
estimation problem, it can be transformed into a convex
optimization problem using SDP or second-order cone pro-
gramming (SOCP) (Kocuk et al. 2016). In this respect, both
the SDP and SOCP methods can be effectively employed
to approximately solve non-convex optimization problems,
and find a global or near-global optimal solution. Simula-
tion results have shown that the SDP method provides better
localization accuracy compared to SOCP method. However,
these methods cannot provide a high estimation accuracy
in the presence of significant measurement noise (Biswas
et al. 2006). To overcome this problem, there has been great
interest to improve and develop efficient metaheuristic opti-
mization algorithms, which can successfully find the global
optimal solution for a given localization problem, without
using gradient information during the search process.

Numerousmetaheuristic algorithms like PSO,CSA, artifi-
cial bee colony (ABC), etc., havebeenwidely applied in order
to solve the localization problem in terms of determining the
unknown position of the target (Kulkarni et al. 2019; Jiang
et al. 2018). Therefore, there is still a need to choose an appro-
priate optimization algorithm as the straightforward way to
minimize the localization error in all environments for a
given localization problem. In this regard, the PSO algorithm
and its improved variants have been employed to improve
the localization accuracy for the passive target localization
problem based on TDOA measurements (Cakir et al. 2014).
The considered localization algorithm estimates the target
position based on the nonlinear least squares residuals. The
comparative analysis has shown that the improved variants
of PSO algorithm can provide higher localization accuracy
in comparison with the conventional PSO and well-known
LLS and WLS algorithms for the given problem. Further-
more, the TDOA passive localization algorithm based on the
ML objective function and CSA has been proposed to esti-

mate the possible position of the target (Jiang et al. 2018). In
the proposed algorithm, the Lévy flight mechanism has been
adopted to effectively avoid being trapped in local optimum
of a multimodal objective function by improving popula-
tion diversity. Additionally, the simulation results show that
the CSA has more efficient global exploration ability of the
search space than existing conventional PSO algorithm. The
DE algorithm and its hybrid variants such as PSO and DE
(PSODE) (Zhang et al. 2015a) and DE and FA (HFDLA)
(Harikrishnan et al. 2016) have been also proposed to esti-
mate unknown position of the target in order to improve
the localization performance and overcome the drawbacks
of getting trapped in a local minimum during the evolution
process.

Therefore, this paper proposes an improved robust
AHFADE algorithm, based on the hybridization of DE and
FA, to solve the multimodal passive target localization prob-
lem with high accuracy even in highly noisy environments.

3 Localization problem

In this section, the passive target localization problem
based on TOA measurements is presented to estimate the
unknown position of the target in LOS environment. The pro-
posed localization system consists of N receivers, {Ri }Ni=1,

whose known positions are xri = [xri yri
]T ∈ R

2,∀i ∈
{1, 2, . . . , N } such that N ≥ 3, where Tx is the trans-
mitter located at the origin of the coordinate system, i.e.,

xT = [0 0
]T ∈ R

2, as illustrated in Fig. 1. Assume that the

true coordinates of the target are x = [x y
]T ∈ R

2.
The passive target localization problem uses noisy TOA

measurements, where the transmitter emits a signal and the
receivers subsequently receive the signal reflected from the
target. Thus, each receiver captures two signals in a row:
one direct signal from the transmitter and the reflected signal
from the target. It is assumed that the transmitter and receivers
are perfectly synchronized, and the target reflects the TOA
signal in all directions without any interaction with the trans-
mitter and receivers in the network (Shen et al. 2012). The
additive white Gaussian noise is widely used in localization
algorithms, which is a reasonable assumption in LOS condi-
tions (Wu et al. 2016). In order to find the estimated position
of the target, there must be at least three TOAmeasurements.
In fact, the noisy TOA measurements are composed of time
from the transmitter to the unknown target position, and the
time from the target to each receiver, which are functions of
the unknown target position, i.e.,

ti = 1

c

(‖x‖2 + ∥∥x − xri
∥∥
2

)+ n̄i , ∀i ∈ {1, 2, . . . , N } , (1)
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Fig. 1 Passive target localization system using noisy TOA measure-
ments

where‖·‖2 denotes theEuclideandistance in two-dimensional
space, c is the speed of light, and n̄i is the zero-meanGaussian
measurement noise with variance of σ 2

i . Then, multiplying
both sides of Eq. (1) by the speed of light c, yields rangemea-
surements (transmitter–target–receiver distances) denoted by{
d̃i
}N

i=1
, which can be expressed as follows:

d̃i = c · ti
= di + ni , ∀i ∈ {1, 2, . . . , N } , (2)

where the true range measurement di = ‖x‖2 + ∥∥x − xri
∥∥
2

is the sumof transmitter–target and target–receiver distances,
ni = cn̄i followsGaussian distributionN

(
0, σ 2

ni

)
with zero-

mean and variance of σ 2
ni = c2σ 2

i . Hence, the TOA range
measurements for every transmitter and receiver (Tx − Ri )

pair have positive errors, which imply that the range mea-
surements are greater than the true ones, as shown in Fig. 1,
(Zhang et al. 2014).

In the absence of measurement errors, from the geometric
interpretation, the sum of transmitter–target and target–
receiver ranges di at time ti , defines the solid-line ellipse
Ei , whose foci are placed at transmitter and receiver posi-
tions xT and xri , respectively, as shown in Fig. 1. Therefore,
the true range di of each transmitter and receiver (Tx − Ri )

pair is constant for every point on an ellipse Ei , which can
be defined as follows:

Ei =
{
(x, y) ∈ R

2 : di =
√
x2 + y2 +

√(
x − xri
)2 + (y − yri

)2
}

.

(3)

Hence, the vector of true range measurements can be
expressed as follows:

d (x) =

⎡

⎢⎢⎢
⎣

‖x‖2 + ∥∥x − xr1
∥∥
2‖x‖2 + ∥∥x − xr2
∥∥
2

...

‖x‖2 + ∥∥x − xrN
∥∥
2

⎤

⎥⎥⎥
⎦

. (4)

Therefore, d (x) defines a set of ellipses {Ei }Ni=1, with respect
to different transmitter and receiver pairs Tx − Ri , ∀i ∈
{1, 2, . . . , N }, with two foci placed at positions xT and xri ,
respectively. Thus, the true position of the passive target x
is obtained by the intersection of three or more solid line
ellipses {Ei }N≥3

i=1 , as shown in Fig. 1. Therefore, the target
position is obtained as the unique solution in the absence of
measurement errors.

Additionally, in the presence of measurement errors, the
vector form of Eq. (2) can be expressed as follows:

d̃ = d (x) + n, (5)

wheren = [n1 n2 . . . nN
]T

is the vector of zero-mean noise.
In this case, three or more dashed-line ellipses derived from
noisy TOA measurements do not have a unique intersection
point. Thus, the estimated position of the target can be found
within the shaded region caused by error in theTOAmeasure-
ments, as depicted in Fig. 1. Consequently, the localization
accuracy is related to the size of this region which includes
the target, i.e., the obtained small region can result in high
localization accuracy.

Hence, in this paper, themain goal is to estimate the actual
position of the target based on noisy TOA measurements by
solving a highly nonlinear and multimodal ML estimation
problem, as explained in the next section.

4 Maximum likelihoodmethod

The estimation of the unknown position of the passive target
can be obtained through maximizing the likelihood function.
Under the assumptions of Gaussian noisy TOA measure-
ments, which are independent and identically distributed,
with a single transmitter, it is possible to express the likeli-
hood function L (x) for the target position (Shen et al. 2012)
as follows:

L (x) = f
(
d̃ |x
)

= 1

(2π)N/2 det (C)1/2

× exp

(
−1

2

(
d̃ − d (x)

)T
C−1
(
d̃ − d (x)

))
, (6)
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where f
(
d̃ |x
)
denotes the probability density function of

the measurements, det (·) is the determinant of matrix, and
C is the diagonal covariance matrix given as:

C = diag{σ 2
n1, . . . , σ

2
nN }. (7)

The logarithmof the likelihood function is usedmore often in
practice as it turns the product of the terms into summation.
Thus, the logarithm of Eq. (6) can be expressed as:

ln L (x) = k − 1

2

(
d̃ − d (x)

)T
C−1
(
d̃ − d (x)

)
, (8)

where k = ln
(
1/((2π)N/2 det (C)1/2)

)
is a constant inde-

pendent of x.
Consequently, the ML estimator requires the maximiza-

tion of the log-likelihood function, which is equivalent to
minimizing the negative logarithm of the likelihood func-
tion. Hence, the ML estimation problem can be formulated
as:

min
x∈R2

JML (x) , (9)

where the corresponding ML objective function JML (x) can
be written as:

JML (x) =
(
d̃ − d (x)

)T
C−1
(
d̃ − d (x)

)
. (10)

Therefore, the estimated target position x̂ can be obtained by
minimizing the objective function JML (x) with respect to x,
as follows:

x̂ = argmin
x∈R2

(JML (x)) . (11)

Figure 2 shows the corresponding contour plot for a given
optimization problem and the gradient vectors, which indi-
cate the direction of minimum of the objective function
JML (x).

From the contour plot in Fig. 2, it can be noticed that the
objective function JML (x) is a highly nonlinear and non-
convex function, whose global minimum x̂ corresponds to
the unknown position of the target. In respect of this, the
global optimal solution of the ML estimation problem can-
not be obtained in closed form. Thus, in order to solve this
kind of complex optimization problem, it is necessary to use
sophisticated optimization algorithms, which are described
in the next sections.
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Fig. 2 Illustration of the objective function JML (x) with the corre-
sponding contour plot

5 Semidefinite programmingmethod

In this section, the SDP method is applied to transform the
non-convex ML estimation problem into a convex optimiza-
tion problem. According to Eqs. (9) - (11), theML estimation
problem with respect to x can be formulated as:

x̂ = argmin
x∈R2

(
d̃ − d (x)

)T
C−1
(
d̃ − d (x)

)
. (12)

Based on the approach (Wang andWu 2016), the vector d (x)
can be introduced as follows:

d (x) = Hg, (13)

in which the (N + 1) × 1 vector g is defined as:

g = [‖x‖2
∥∥x − xr1

∥∥
2

∥∥x − xr2
∥∥
2 . . .
∥∥x − xrN

∥∥
2

]T
, (14)

and

H = [1N IN
] =

⎡

⎢⎢⎢
⎣

1 1 · · · 0 0
1 0 · · · 0 0
...

...
. . .

...
...

1 0 · · · 0 1

⎤

⎥⎥⎥
⎦

. (15)

here 1N and IN are column vector of length N with all entries
equal to one and the N ×N identity matrix, respectively. The
equality constraints are introduced between the transmitter
xT and the unknown position of the target x, and that target
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and i th receiver located at xri , denoted by
[
g
]2
1,1 = ‖x‖22

and
[
g
]2
i,1 = ∥∥x − xri

∥
∥2
2 , ∀i ∈ {1, 2, . . . , N }, respectively.

Then, the optimization problem in Eq. (12) can be rewritten
as the following constrained optimization problem:

min
x,g

(
d̃ − Hg

)T
C−1
(
d̃ − Hg

)

s.t.
[
g
]2
1,1 = ‖x‖22,
[
g
]2
i,1 = ∥∥x − xri

∥∥2
2,

∀i ∈ {1, 2, . . . , N } . (16)

The objective function for the above optimization prob-
lem, by corresponding algebraic manipulation, can be
expressed as follows:

(
d̃ − Hg

)T
C−1
(
d̃ − Hg

)

=
[
g
1

]T [
HTC−1H −HTC−1d̃
−d̃TC−1H d̃TC−1d̃

] [
g
1

] . (17)

Based on the matrix property xTAx = Tr
(
xxTA
)
and

introducing the matrix notation G = ggT , then Eq. (17) is
given as follows:

[
HTC−1H −HTC−1d̃
−d̃TC−1H d̃TC−1d̃

] [
g
1

]

= Tr

([
g
1

] [
gT 1
]
P
)

= Tr

([
G g
gT 1

]
P
) , (18)

in which

P =
[
HTC−1H −HTC−1d̃
−d̃TC−1H d̃TC−1d̃

]
, (19)

where Tr (·) denote the trace of a square matrix.
Introducing the z = xT x , the constraints can be expressed

as:

[G]1,1 = ‖x‖22 = xT x = z,

[G]i,i = ∥∥x − xri
∥∥2
2 = xT x − 2xT xri−1 + (xri−1

)T xri−1

= z − 2xT xri−1 + (xri−1

)T xri−1,

∀i ∈ {2, . . . , N + 1} . (20)

Then, according to Eqs. (18) and (20), the optimization prob-
lem in Eq. (16) can be reformulated as:

min
x,g,G,z

Tr

([
G g
gT 1

]
P
)

s.t. [G]1,1 = z,

[G]i,i = z − 2xT xri−1 + (xri−1

)T xri−1,

∀i ∈ {2, . . . , N + 1} ,

G = ggT ,

z = xT x. (21)

Furthermore, the Cauchy–Schwartz inequality for the off-
diagonal elements of the matrix G can be written as:

[G]i, j = ∥∥x − xri−1

∥∥
2

∥∥∥x − xrj−1

∥∥∥
2

≥
∣∣∣
(
x − xri−1

)T (x − xrj−1

)∣∣∣

=
∣
∣∣∣x

T x −
(
xri−1 + xrj−1

)T
x + (xri−1

)T xrj−1

∣
∣∣∣ ,

∀i, j ∈ {1, 2, . . . , N + 1} , i �= j, (22)

with xr0 = xT = [0 0
]T
.

Due to the nonlinear equality constraints G = ggT and
z = xT x, the optimization problem in Eq. (21) is a non-
convex, where the global optimal solution is very difficult to
obtain. Therefore, the non-convex equality constraints G =
ggT and z = xT x, can be relaxed into the convex inequality
constraints, as follows:

G − ggT � 0,
z − xxT � 0.

(23)

After applying the Schur complement (Boyd and Vanden-
berghe 2004), these constraints can be equivalently expressed
as:

[
G g
gT 1

]
� 0,

[
z x
xT I2

]
� 0. (24)

It should be noted that the matrices given in Eq. (24) are
symmetric and positive semidefinite matrices, and therefore,
the inequality constraints in Eq. (24) should be convex func-
tions.

Finally, based on the above relaxation, the optimization
problem in Eq. (21) becomes a convex problem, which can
be written as follows:

min
x,g,G,z

Tr

([
G g
gT 1

]
P
)

s.t. [G]1,1 = z,

[G]i,i = z − 2xT xri−1 + (xri−1

)T xri−1,

∀i ∈ {2, . . . , N + 1} ,

[G]i, j ≥
∣∣∣∣z −
(
xri−1 + xrj−1

)T
x + (xri−1

)T xrj−1

∣∣∣∣ ,

∀i, j ∈ {1, 2, . . . , N + 1} , i �= j,
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[
G g
gT 1

]
� 0,

[
z x
xT I2

]
� 0. (25)

Therefore, the SDP problem given in Eq. (25) is a convex
one, which can be efficiently implemented and solved by the
CVX toolbox (Grant and Boyd 2014) using SeDuMi as the
solver (Grant and Boyd 2008).

6 Differential evolution algorithm and the
proposed improved versions

In this section, the conventional DE algorithm is first intro-
duced. Then, a brief description of the improved adaptive
versions of the DE such as SHADE and JADE algorithms
with the mutation operator DE/current-to-pbest/1 is pre-
sented and implemented in this work.

6.1 Conventional DE algorithm

The DE is a population-based algorithm, which is based on
four phases: initialization, mutation, crossover and selection,
which are briefly summarized as follows.

6.1.1 Initialization

Generally, the population of NP random individuals at the
current generation G, where each individual is expressed by
n-dimensional vector as a potential solution, can be repre-
sented as follows:
{
x(G)
i : x (G)

i, j ∈
[
x Li, j , x

U
i, j

]}
,

∀i ∈ {1, 2, . . . ,NP} ,∀ j ∈ {1, 2, . . . , n} (26)

where x L
i, j

and xU
i, j

denote the lower and upper bounds of
the j th component of the i th individual xi, j , respectively.
Therefore, the initial j th component of the i th individual
is randomly generated according to a uniform distribution
within the corresponding boundary constraints x Li, j ≤ x (0)

i, j ≤
xUi, j , which can be defined as follows:

x (0)
i, j = x Li, j + rand j

(
xUi, j − x Li, j

)
, (27)

where rand j is a uniformly distributed random number in the
range [0, 1].

6.1.2 Mutation

The mutation operator plays a vital role during the evolution
process, where a mutant vector for each target vector x(G)

i
can be expressed as follows:

v(G+1)
i =

[
v

(G+1)
i,1 v

(G+1)
i,2 . . . v

(G+1)
i, j . . . v

(G+1)
i,n

]T
. (28)

In recent years, a number of different mutation operators
for exploration of the search space, have been developed and
proposed in the literature (Mohamed and Suganthan 2018),
which are described as follows: DE/rand/1

v(G+1)
i = x(G)

r1 + F
(
x(G)
r2 − x(G)

r3

)
, (29)

DE/best/1

v(G+1)
i = x(G)

best + F
(
x(G)
r1 − x(G)

r2

)
, (30)

DE/current-to-best/1

v(G+1)
i =x(G)

i + F
(
x(G)
best−x(G)

i

)
+F
(
x(G)
r1 −x(G)

r2

)
, (31)

where r1, r2 and r3 are distinct integers randomly generated
from the set {1, 2, . . . ,NP} \ {i}, the x(G)

best denotes the indi-
vidual with the best objective function value and F ∈ [0, 1]
is the scale factor.

6.1.3 Crossover

After the mutation phase, the evolution process involves the
crossover operator to generate a new vector, which is called
the trial vector, in order to increase the diversity of the popula-
tion. The DE algorithm uses the binomial crossover operator,
which combines the components of the target vector x(G)

i and

the corresponding mutant vector v(G+1)
i to generate the trial

vector u(G+1)
i according to

u(G+1)
i, j =

{
v

(G+1)
i, j if randi, j ≤ CR ∨ j = jrand
x (G)
i, j otherwise

(32)

where the crossover rateCR ∈ [0, 1] is a pre-defined rate, and
jrand is an integer randomly generated from set {1, 2, . . . , n}
. Thus, if and only if randi, j ≤ CR or j = jrand, then
the binomial crossover operator copies the j th variable of
mutant vector v(G+1)

i to its corresponding element in the trial

vector u(G+1)
i . Otherwise, the parameter is inherited from the

corresponding target vector x(G)
i .

6.1.4 Selection

The next phase is selection, in which the DE compares the

objective function value of the trial vector f
(
u(G+1)
i

)
, with

corresponding objective function value of the target vector

f
(
x(G)
i

)
. If and only if the objective function value of the

trial vector f
(
u(G+1)
i

)
is less than or equal to the objective
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function value of the target vector f
(
x(G)
i

)
, then u(G+1)

i is

set tox(G+1)
i .Otherwise, the old target vectorx(G)

i is retained.
Therefore, the selection operator can be defined as follows:

x(G+1)
i =

{
u(G+1)
i if f

(
u(G+1)
i

)
≤ f
(
x(G)
i

)

x(G)
i otherwise

, (33)

where x(G+1)
i is the target vector selected for the next gener-

ation.
The algorithm is repeated until the termination criterion

(the maximum number of generations Gmax ) is satisfied.

6.2 Improved DE algorithm

In this paper, the powerful efficient DE variants named JADE
and SHADE have been proposed with the aim to provide the
dynamically adapted control parameters for each individual
in each generation of evolution according to Cauchy distribu-
tion for F (G)

i and normal distribution for CR(G)
i (Zhang and

Sanderson 2009; Tanabe and Fukunaga 2013). Therefore, the
control parameters F (G)

i and CR(G)
i for each individual x(G)

i
in each generation of evolution are independently generated,
as follows:

F (G)
i = randci

(
μ

(G)
F , 0.1

)
, (34)

CR(G)
i = randni

(
μ

(G)
CR , 0.1

)
, (35)

where randci
(
μ

(G)
F , 0.1

)
is a random variable distributed

according to the Cauchy distribution with median μ
(G)
F and

scale parameter 0.1, and randni
(
μ

(G)
CR , 0.1

)
represents a

random number generated from normal distribution with
mean μ

(G)
CR and standard deviation 0.1.

The parameters μ
(0)
F and μ

(0)
CR are initialized to 0.5. If

F (G)
i > 1 , then F (G)

i is set to 1, while when F (G)
i < 0, F (G)

i

can be regenerated using Eq. (34). Similarly, if CR(G)
i > 1,

then CR(G)
i is truncated to 1; otherwise if CR(G)

i is less than

0, then CR(G)
i is set to 0.

In each generation, all successful values of F (G)
i and

CR(G)
i are saved in the sets SF and SCR, respectively. Hence,

at the end of each generation, the parameters μ
(G)
F and μ

(G)
CR

can be updated as below:

μ
(G+1)
F =

{
(1 − c) μ

(G)
F + c · meanWL (SF ) i f SF �= ∅

(1 − c) μ
(G)
F + c · rand (0, 1) otherwise

,

(36)

μ
(G+1)
CR =

{
(1 − c) μ

(G)
CR + c · meanWA (SCR) i f SCR �= ∅

(1 − c) μ
(G)
CR + c · rand (0, 1) otherwise

,

(37)

where c is the learning rate, which is set to c = 0.1 (Zhang
and Sanderson 2009). Here, the meanWL (·) and meanWA (·)
denote the weighted Lehmer mean and weighted arithmetic
mean, respectively, which can be expressed as follows:

meanWL (SF ) =
∑L

k=1 wk · S2F,k
∑L

k=1 wk · SF,k
, (38)

meanWA (SCR) =
∑L

k=1 wk · S2CR,k
∑L

k=1 wk · SCR,k
, (39)

in which L = |SF | = |SCR| denotes the size of the sets SF
and SCR , respectively. Then, the weightwk can be calculated
as follows:

wk = � fi
∑L

k=1 � fi
, (40)

where � fi =
∣∣∣ f
(
u(G)
i

)
− f
(
x(G)
i

)∣∣∣ denotes the absolute

difference between the objective function values of trial vec-
tor and target vector.

6.3 The DE/current-to-pbest/1 mutation operator

One of the improved DE variants, named JADE, introduces
the effective mutation operator DE/current-to-pbest/1 that
accelerates the convergence speed of the algorithm toward
the global optimal solution (Zhang and Sanderson 2009). In
this regard, theDE/current-to-pbest/1 is used in thiswork due
to its simplicity of implementation, in order to provide more
effective search direction during the evolution process. Then,
the corresponding mutation vector based on the proposed
DE/current-to-pbest/1 mutation operator can be generated,
as follows:

v(G)
i = x(G)

i + F (G)
i

(
x(G)
pbest − x(G)

i

)
+ F (G)

i

(
x(G)
r1 − x(G)

r2

)
,

(41)

where F (G)
i is the scale factor for each individual generated

from the Cauchy distribution according to Eq. (34) and x(G)
pbest

is randomly selected from the top (p × 100% × NP) individ-
uals in the current population with p ∈ (0, 1].

Obviously, fromEq. (41), it can be observed that themuta-
tion vector exploits the nearby region of each x(G)

i , in the

direction of the solution x(G)
pbest, which further improves the

search ability of the algorithm, especially in the later stage of
evolution process. Consequently, the global optimal solution
can be easily reached for the given optimization problem.
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7 Firefly algorithm and the proposed
improved version

7.1 Firefly algorithm

The FA is one of themost powerful swarm-basedmetaheuris-
tic algorithms used for solving multimodal optimization
problems, which has been developed byXin-SheYang (Yang
2010b). In essence, the FA is based on the following three
assumptions:

– All fireflies are unisex.
– Attractiveness is proportional to their brightness, imply-
ing that the less bright firefly will move to the brighter
firefly. The firefly will continue to move randomly if no
brighter firefly is found in a swarm.

– The brightness of a firefly represents the objective func-
tion value for a given optimization problem. Thus, for a
minimization problem, the brightness of each firefly is
inversely proportional to the value of the objective func-
tion.

The first step in the application of the FA is to randomly gen-
erate an initial swarm of NP fireflies over the n-dimensional
search space. Generally, in order to properly create the FA,
there are two important issues that need to be defined, such as
the variation of light intensity and the formulation of attrac-
tiveness between fireflies in the swarm.

The light intensity I (r) varies with distance, which can be
described as the following monotonically decreasing expo-
nential function of the distance

I (r) = I0e
−γ r2 , (42)

where I0 is the original light intensity and γ is a fixed light
absorption coefficient. The parameter γ has a crucial impact
on the convergence speed of the algorithm. Theoretically,
the parameter γ should take any value from the interval γ ∈
[0,∞). In most applications, it typically varies from 0.1 to
10, and could be usually set to 1.

The attractiveness function β
(
ri, j
)
between two fireflies

i and j is proportional to the light intensity I (r), and can be
defined as follows:

β
(
ri, j
) = β0e

−γ r2i, j , (43)

where β0 ∈ [0, 1] is the maximum attractiveness at ri, j = 0,
i.e., when two fireflies are found at the same point of search
space.

The Euclidean distance ri, j , between any pair of fireflies
i and j at positions xi and x j , respectively, can be obtained
as follows:

ri, j = ∥∥xi − x j
∥∥
2 =
√√√√

n∑

k=1

(
xi,k − x j,k

)2
. (44)

Here, xi,k and x j,k are the kth element of the i th and j th
firefly positions within the search space, respectively.

The search process of FA depends on the attraction
between fireflies in the swarm. In this regard, the movement
of the less bright firefly i toward another brighter firefly j
determines the new position x(G+1)

i at (G + 1)th iteration,
which can be generated as follows:

x(G+1)
i = x(G)

i + β
(
ri, j
) (

x(G)
j − x(G)

i

)
+ αε

(G)
i . (45)

Hence, Eq. (45) consists of three terms. The first term gives
the current position of the i th firefly, the second term is related
to the attraction, while the third term represents the random
motion of i th firefly. According to Eq. (45), the randomiza-
tion parameter α is normally selected within range [0, 1],
where the ε

(G)
i is a vector of random numbers defined by

the Gaussian distribution, i.e., ε(G)
i = (randi, j − 0.5

)
, and

randi, j is a random number uniformly distributed in [0, 1].

7.2 Improved version of firefly algorithm

The conventional FA suffers from the problem of being
trapped in local optimum of a multimodal objective func-
tion, which can lead to premature convergence. In this regard,
to solve the highly nonlinear and multimodal optimization
problems, there is a need tomodify the FA (Yang 2009;Wang
et al. 2017).

According to Eq. (43), it is obvious that at the early stage
of the evolution process, the distance betweenfireflies and the
global optimal solution is extremely large; thus, the attrac-
tiveness tends to be zero and becomes nearly non-existent.
Then, the movement of fireflies is based on the random walk
through the search space, so the convergence of the algo-
rithm is not guaranteed. On the other hand, with the increase
in generations, the distance between fireflies and the global
optimal solution is extremely small; thus, the attractiveness
remains constant. Therefore, the modification in the search
process of the FA is still needed, in order to enhance the
optimization performance in aspect of balance between the
global exploration and local exploitation abilities.

In order to provide an appropriate balance between explo-
ration and exploitation of the search space of the conventional
FA, this paper proposed the improved attractiveness function
β̃
(
ri, j
)
, which can be created, as follows:

β̃
(
ri, j
) = β0e

−γ r2i, j
G

Gmax
fbest
fmean

, (46)
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Fig. 3 Comparison between the attractiveness functions β
(
ri, j
)
and

β̃
(
ri, j
)
during the evolution process

where fmean and fbest are the mean and best values of the
objective function in the previous generation, respectively.

Based on Eq. (46), the updated firefly position can be
rewritten as:

x(G+1)
i = x(G)

i + β̃
(
ri, j
) (

x(G)
j − x(G)

i

)
+ αε

(G)
i . (47)

Simulation results obtained for attractiveness functions
β
(
ri, j
)
and β̃
(
ri, j
)
according to Eq. (43) (dashed line) and

Eq. (46) (solid line), respectively, during the evolution pro-
cess are presented in Fig. 3.

As presented in Fig. 3, in the early stage of the evolution
process, the attractiveness function β

(
ri, j
)
defined in Eq.

(43) tends to be zero, then, it oscillates between 0 and 1.0,
which can slow down the search process, and therefore, the
convergence of the algorithm is not guaranteed.

On the contrary, the proposed attractiveness β̃
(
ri, j
)

defined in Eq. (46) gradually increases with growth of gen-
erations, in order to enhance the ability of finding the global
optimal solution, as shown in Fig. 3. This modification helps
to maintain the diversity within the swarm and improves the
convergence speed of the algorithm in order to create balance
between the global exploration and local exploitation ability
of the proposed algorithm.

Therefore, in the evolution process, the improved attrac-
tiveness β̃

(
ri, j
)
is adaptively increased and significantly

outperforms the original attractivenessβ
(
ri, j
)
in search abil-

ity.

8 Adaptive hybrid firefly differential
evolution algorithm

Based on the above considerations, this section introduces the
AHFADE algorithm, based on the hybridization of the DE
with the FA. The main goal of the proposed algorithm is to
create an efficient search strategy by incorporating mutation
operators of the DE into the FA, to achieve the global optimal
solution with high accuracy and fast convergence. The muta-
tion operator DE/rand/1 has strong global exploration with
slow convergence speed, while the DE/current-to-pbest/1,
which has been proposed in JADE (Zhang and Sanderson
2009), has more suitable local exploitation ability that leads
to faster convergence speed. Therefore, in order to enhance
the diversity and convergence of the FA, and to prevent the
algorithm from falling into local optimum of a multimodal
objective function, the following two modifications are pro-
posed.

The first modification is performed to improve the explo-
ration of FA using the mutation operator DE/rand/1 by

replacing the term αεi in Eq. (47) with F (G)
i

(
x(G)
r2 − x(G)

r3

)
.

For implementing the first modification, the F (G)
i from Eq.

(34) is substituted in Eq. (47) and x(G)
j in Eq. (47) is replaced

with x(G)
r1 from Eq. (29). Then, the expression for updating

the new position of the i th firefly is given as follows:

x(G+1)
i = x(G)

i + β̃
(
ri, j
) (

x(G)
r1 − x(G)

i

)

+ F (G)
i

(
x(G)
r2 − x(G)

r3

)
. (48)

After mathematical transformations, Eq. (48) can be rewrit-
ten as follows:

x(G+1)
i =

(
1 − β̃
(
ri,r1
))

x(G)
i + β̃

(
ri,r1
)
x(G)
r1

+ F (G)
i

(
x(G)
r2 − x(G)

r3

)
, (49)

where ri,r1 is the distance between fireflies i and r1 at the
positions x(G)

i and x(G)
r1 , respectively.

The secondmodification is aimed to improve the exploita-
tion of the FA using the mutation operator DE/current-
to-pbest/1. To achieve this, the third term in Eq. (49) is

replaced with F (G)
i

(
x(G)
r1 − x(G)

r2

)
and x(G)

r1 is substituted

with
(
x(G)
pbest − x(G)

i

)
, which is given in Eq. (41). As a result,

the new expression for updating the new position of the i th
firefly can be expressed as:

x(G+1)
i =

(
1 − β̃
(
rri,pbest
))

x(G)
i + β̃

(
rri,pbest
) (

x(G)
pbest − x(G)

i

)

+ F (G)
i

(
x(G)
r1 − x(G)

r2

)
, (50)
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where ri,pbest is the distance between fireflies i and pbest at

the positions x(G)
i and x(G)

pbest, respectively.
Based on the above considerations, an adaptive parameter

is proposed in this work that relies on the normalized objec-
tive function values to automatically switch between global
exploration and local exploitation, which can be expressed
as:

� = 1 −
∣∣∣
∣
fmean − fbest
fworst − fbest

∣∣∣
∣ , (51)

where fmean , fbest and fworst are the mean, best and worst
objective function values of individuals in the previous gen-
eration, respectively.

Obviously, the balance between global exploration and
local exploitation can be controlled by changing the value of
�. Therefore, according to Eq. (51), when the value of � is
close to 0, the population diversity is low, which corresponds
to global exploration of the search space. Hence, Eq. (49) can
be applied in order to explore the search space and locate the
region of the global optimum. On the other hand, when the
value of � is close to 1, the population diversity is high,
which corresponds to local exploitation of the search space.
In this process, Eq. (50) can be employed to improve the local
search ability and enhance convergence speed. Therefore, in
the evolution process, the new position of i th firefly can be
updated based on adaptive parameter �, as shown below:

v(G+1)
i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
1 − β̃
(
ri,r1
))

x(G)
i + β̃

(
ri,r1
)
x(G)
r1

+F (G)
i

(
x(G)
r2 − x(G)

r3

)
, � ≤ ω

(
1 − β̃
(
ri,pbest
))

x(G)
i + β̃

(
ri,pbest
) (

x(G)
pbest − x(G)

i

)

+F (G)
i

(
x(G)
r1 − x(G)

r2

)
, otherwise

(52)

where ω = 0.5 is the predefined threshold value.
Thesemodifications have significant influence on the con-

vergence speed and population diversity of the proposed
algorithm. In this manner, the exploration and exploita-
tion abilities of the proposed algorithm are strengthened.
Additionally, the crossover and selection operators are the
same as in the conventional DE algorithm and can be eas-
ily implemented into the structure of the proposed AHFADE
algorithm.

The flowchart of the proposed AHFADE algorithm for the
passive target localization problem is illustrated in Fig.4.

The methodology of the proposed AHFADE algorithm,
described above, can be divided into following steps:

Step 1 Initialize parameters
Initialize parameters of the proposed AHFADE algo-
rithm, including the population size, the maximum
number of generations, the lower and upper bounds.

Fig. 4 The flowchart of the proposed AHFADE algorithm

Step 2 Generate the initial population of fireflies
The position of fireflies in the swarm is initialized
uniformly and randomly in the n-dimensional search
space.

Step 3 Compute light intensity
Compute light intensity of each firefly in current gen-
eration.

Step 4 The following process is repeated until the stopping
criterion is reached
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Step 5 Calculate the distance between fireflies
Determine the distance ri j between any two fireflies
xi and x j in the swarm, according to Eq. (44).

Step 6 Sort the population
Thefireflies are sorted according to objective function
values.

Step 7 Update the proposed attractiveness β̃
(
ri, j
)

Theproposed attractiveness β̃
(
ri, j
)
is updated accord-

ing the normalized objective function values, as
defined in Eq. (46).

Step 8 Compute the adaptive scale factor F (G)
i

Using Eq. (34) update the value of adaptive scale fac-
tor F (G)

i .

Step 9 Determine the adaptive crossover rate CR(G)
i

Compute the adaptive crossover rateCR(G)
i according

to Eq. (35).
Step 10 Calculate the value of the adaptive parameter �

Calculate the value of the adaptive parameter� using
Eq. (51).

Step 11 Check parameter � and move the fireflies
If � ≤ ω, then Eq. (49) is applied; otherwise, when
� > ω, Eq. (50) is used.

Step 12 Crossover operator
The crossover operator is applied to the population
according to Eq. (32).

Step 13 Selection operator
The selection operator defined in Eq. (33) is applied.

Step 14 Stopping criterion
Stop theAHFADEalgorithm if a termination criterion
is satisfied and continue to Step 15; otherwise, go to
Step 4 and repeat the search for the global optimal
solution.

Step 15 Display of the results
Display the best solution found and its corresponding
objective function value.

Finally, the AHFADE algorithm can be implemented for
solving the passive localization problem. Consequently, Fig.
5 shows the position of fireflies during evolution process with
60 fireflies in the generation.

Based on the initially created swarm, the proposed algo-
rithm guides the swarm of fireflies in each generation toward
better solution, as shown in Fig. 5. It is clearly seen that at
the end of the evolution process, the swarm of fireflies will
gather around the global optimal solution in the search space,
and as a result, the estimated position of the target is found,
which is shown in the same figure. In this way, the proposed
AHFADE algorithm uses 60 generations to satisfy the stop-
ping condition and obtain the global optimal solution of the
considered ML objective function.

-20 -10 0 10 20 30 40 50 60
x /m

-20

-10

0

10

20

30

40

50

60

y 
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Fireflies after 1 generation
Fireflies after 20 generations
Fireflies after 40 generations
Fireflies after 60 generations

Estimated position 
 of target

Fig. 5 The position of fireflies during the evolution process

9 Cramér–Rao lower bound

In the passive target localization problem, the CRLB estab-
lishes a lower bound on the covariance matrix and provides
a useful tool for evaluating the performance of any unbiased
estimator (Shen et al. 2012). The CRLB is obtained from
the diagonal elements of the inverse of the Fisher informa-
tion matrix (FIM), denoted by I (x). Based on the probability

density function f
(
d̃ |x
)
given in Eq. (6), the FIM of the

proposed target localization system is given as follows:

I (x) = E

⎡

⎢
⎣

⎛

⎝
∂ ln
(
f
(
d̃
∣
∣∣ x
))

∂x

⎞

⎠

⎛

⎝
∂ ln
(
f
(
d̃
∣
∣∣ x
))

∂x

⎞

⎠

T⎤

⎥
⎦

= −E

⎡

⎣
∂2 ln
(
f
(
d̃
∣∣∣ x
))

∂x∂xT

⎤

⎦ . (53)

Then, the FIM can be written as:

I (x) =
[
Ixx Ixy
Iyx Iyy

]
, (54)

where the corresponding elements are defined as follows:

Ixx =
N∑

i=1

1

σ 2
ni

(
x − xri∥∥x − xri
∥∥
2

+ x

‖x‖2

)2
, (55)

Ixy = Iyx =
N∑

i=1

1

σ 2
ni

(
x − xri∥∥x − xri
∥∥
2

+ x

‖x‖2

)
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×
(

y − yri∥∥x − xri
∥∥
2

+ y

‖x‖2

)

, (56)

Iyy =
N∑

i=1

1

σ 2
ni

(
y − yri∥∥x − xri
∥∥
2

+ y

‖x‖2

)2
. (57)

Therefore, the inverse of the FIM is expressed as follows:

I−1 = 1

det (I)

[
Iyy −Ixy

−Iyx Ixx

]
. (58)

Derivations of Eqs. (55)–(57) are given in Appendix A. The
CRLB of passive target location vector components is given
by the r th diagonal element of the inverse of the FIM, as
follows:

CRLB ([x]r ) =
[
I−1
]

r ,r
, (59)

where
[
I−1
]
r ,r is the r th row and the r th column element of

the correspondingmatrix I−1 and r = 1, 2.Hence, theCRLB
on the variance of an unbiased estimator x̂ is expressed as:

E
[(
x̂ − x
) (

x̂ − x
)T ] ≥ Tr

(
I−1 (x)

)
, (60)

where x̂ is the estimated value of x.

10 Experimental study

In this section, experiments are conducted to evaluate the
localization performance and to perform the statistical com-
parison of the AHFADE algorithm with other well-known
algorithms onCEC2014 benchmark problems. In this regard,
the obtained numerical results are outlined into two subsec-
tions, which are described below.

10.1 Statistical comparisons of the proposed
AHFADE algorithm on CEC2014 benchmark

In this section, experiments are carried out to compare the
proposed AHFADE with well-known state-of-the-art algo-
rithms, such as SHADE (Tanabe and Fukunaga 2013), jDE
(Brest et al. 2006), FA (Yang 2010b) and Lévy-flight FA
(LFA) (Yang 2010a) algorithms on CEC2014 benchmark.
The formulation of test functions and optimization prob-
lems used in this analysis has been described in (Liang et al.
2013). The CEC2014 benchmark considers the single objec-
tive real-parameter numerical optimization and consists of
30 test functions, where the dimensions of the search space
are D = 10, 30, 50 and 100. Based on the characteristics
of the objective functions defined in CEC2014 benchmark

problem, the 30 test functions can be categorized into the
following groups:

– f1− f3 represent optimization problems with unimodal
objective functions,

– f4− f16 denote simple multimodal objective functions,
– f17− f22 are hybrid functions, where the variables are
divided into subcomponents, in which each component
is defined using a different basic function,

– f23− f30 denote composition functions, which combine
the properties of the sub-functions while maintaining the
continuity in the region of the global optimum.

In order to perform statistical analysis and compare the per-
formance of the proposed AHFADE algorithm, the solution
error measure

(
f
(
x̂
)− f (x∗)

)
has been employed, where x̂

denotes the best solution of the algorithm obtained in one run
and x∗ represents the well-known global optimal solution of
the corresponding CEC 2014 test function. Experiments for
each algorithmon each test function have been independently
run for 50 times, and statistical results are provided. Accord-
ing to the recommendations, the termination criteria are set to
10000D (Liang et al. 2013), and the population size is set to
NP = 100 (Tanabe and Fukunaga 2013). For all considered

problems, the search space is bounded by
[−100 100

]D
.

To perform evaluation, from a statistical point of view, the
obtained solutions have been analyzed and compared using
two nonparametric statistical hypothesis tests, e.g.,Wilcoxon
signed-rank test and Friedman test.

Firstly, the Wilcoxon signed-rank test has been employed
to determine whether the first algorithm obtained statisti-
cally better solution compared to the second algorithm. In
the analysis, the Wilcoxon signed-rank test has been applied
with significance level α = 0.05. Therefore, in the results,
the R+ denotes the sum of ranks where the first algorithm
outperformed the second, and R− represents the sumof ranks
for which the first algorithm performed worse than the sec-
ond algorithm. Furthermore, in the corresponding columns
designated with signs +, ≈, − (better, equal and worse), we
have denoted the number of test functions where the first
algorithm is better than, equal to, or worse than the sec-
ond algorithm, respectively. Based on (Derrac et al. 2011),
for the null hypothesis of the Wilcoxon signed-rank test, it
is assumed that ”there is no difference between the mean
results of the two samples”. On the other hand, the alternative
hypothesis states that ”there is a difference in themean results
of the two samples”. Therefore, p value has been employed
in the statistical analysis and compared to the significance
level α. Thus, the null hypothesis can be rejected, when the
p value is less than or equal to the α = 0.05. The compared
results have been indicated with the following three signs
(+,−,≈) according to the results of the statistical test. In
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this regard, the plus (+) sign designates that the first algo-
rithm is significantly better than the second, minus (−) sign
means that the first algorithm is significantly worse than the
second, and approximation (≈) sign denotes that there is no
significant difference between two algorithms.

Secondly, the Friedman test has been employed to obtain
the ranks of all algorithms over every test function on all
considered dimensions D of the search space, in order to
find the significant differences between the performance of
two or more algorithms. In this respect, the algorithm with
the lowest rank denotes the best performing algorithm, while
the algorithm which has the highest rank is considered as
the worst. According to (Derrac et al. 2011), for the null
hypothesis of the Friedman test, it is assumed that ”there
is no difference among the performance of all algorithms”,
whereas the alternative hypothesis states that ”there is a dif-
ference among the performance of all algorithms”.

The computational results of the proposed AHFADE and
other considered algorithms on CEC2014 benchmark prob-
lems are presented in Table 1, where ”Mean” represents the
mean value of the objective function of the best individual,
”STD” represents the standard deviation, and ”Sign” denotes
whether the considered algorithm has better (+), similar
(≈) or worse (−) performance compared to the proposed
AHFADE algorithm. From the numerical results in Table 1,
it can be observed that the proposed AHFADE algorithm
obtains the best ”Mean” and ”STD” values onmost test func-
tions compared to other considered algorithms. However, on
hybrid functions f17 and f21, and composite function f28 the
AHFADEalgorithmhas the similar performance to jDEalgo-
rithm over the dimensions D = 30, 50 and 100. Compared
to the jDE and SHADE algorithms, the AHFADE algorithm
achieves the similar performance on functions f19 and f4 on
dimensions D = 50 and D = 30, respectively, as well as
on composite functions f26 and f28 on D = 50. Further-
more, the AHFADE algorithm has worse performance than
jDE and SHADE algorithms on unimodal function f2, mul-
timodal function f7 and composite functions f23 and f24 on
dimensions of the problem D = 30, 50 and 100, respectively.
In comparison with the FA and LFA algorithms, it can
be observed that AHFADE significantly outperforms these
algorithms on all considered dimensions. However, onmulti-
modal problems f5, f12 and f16 over the dimensions D = 50
and 100, the proposed algorithmachievesworse performance
compared to the FA and LFA algorithms. Therefore, it can
be concluded that the proposed AHFADE algorithm has
clearly the best performance among the SHADE, FA and
LFA algorithms, and for higher dimensions of the problem,
e.g., D = 30, 50 and 100, it achieves similar performance
to jDE algorithm, especially on composite functions. In this
way, the proposed algorithm successfully finds promising
solutions on all problems and all dimensions.

In order to perform the statistical comparison of the per-
formance of considered algorithms, the results have been
analyzed using Wilcoxon signed-rank test. In this regard, in
Table 2 the statistical results of applying Wilcoxon’s signed-
rand test between AHFADE and jDE, SHADE, FA and LFA
algorithms using CEC2014 test functions on over all dimen-
sions have been shown.

From the results in Table 2, it can be observed that for the
dimensions D = 10 and D = 30, the proposed AHFADE
algorithm is significantly better than SHADE, FA and LFA
algorithms. However, the proposed AHFADE algorithm has
higher R+ values than R− when compared to the jDE algo-
rithm on the dimensions D = 10 and D = 30. On the
other hand, for the dimensions D = 50 and D = 100
the proposed algorithm achieves better performance than
FA and LFA algorithms. Additionally, compared to the jDE
and SHADE algorithms it is observed that for D = 50 and
D = 100 the AHFADE algorithm provides higher R+ values
than R−. Therefore, from the results, it can be concluded that
the proposed AHFADE algorithm can achieve better perfor-
mance compared to the individual performances of SHADE
and FA algorithms. This shows the effectiveness of the pro-
posed hybridization between DE and FA algorithms which is
achieved by introducing the dynamically adapted parameter
into the mutation operator, and incorporating the crossover
and selection operators of DE algorithm into the FA.

Furthermore, to compare the overall performance of mul-
tiple algorithms, the Friedman test has been applied. In this
regard, the Table 3 presents the average ranks according to
Friedman test, for the proposed AHFADE and other consid-
ered algorithms on different CEC2014 benchmark functions
for D = 10, 30, 50 and 100 dimensions. In this table, the
algorithm with the best rank is shown in bold and second
best is underlined.

From the results of the statistical analysis using the Fried-
man test, given in Table 3, it can be concluded that the
proposed AHFADE algorithm achieves the best performance
and has the lowest rank among all considered algorithms.
Furthermore, it can be observed that the p values computed
through Friedman test for all considered test functions in all
dimensions are less than significance level α = 0.05. There-
fore, based on the hypothesis, it can be concluded that there
is a significant difference between the performances of the
considered algorithms. According to the statistical analysis,
it can be concluded that the proposed AHFADE algorithm
has an effective mutation strategy and improved adaptive
techniques for setting the control parameter values. Further-
more, the obtained results also show that the hybridization
between DE and FA algorithms significantly enhances the
performance of theAHFADEalgorithm,which demonstrates
the effectiveness of the modifications proposed in this paper.
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Ta
bl
e
1

co
nt
in
ue
d

f
D

A
H
FA

D
E

SH
A
D
E

jD
E

FA
L
FA

M
ea
n
(S
T
D
)
Si
gn

f 8
10

1.
83
3(
1.
71
)

3.
84
E
+
01
(7
.5
2)
+

3.
9E

−0
2(
1.
95
E
−0

1)
-

1.
19
E
+
02
(1
.3
5E

+
01
)+

7.
38
E
+
01
(7
.4
7)
+

30
8.
4(
5.
6)

2.
2E

+
02
(2
.1
5E

+
01
)+

1.
34
E
+
01
(3
.5
5)
+

4.
99
E
+
02
(2
.6
5E

+
01
)+

4.
36
E
+
02
(1
.6
7E

+
01
)+

50
2.
05
E
+
01
(9
.7
)

4.
3E

+
02
(3
.1
E
+
01
)+

3.
6E

+
01
(8
.5
1)
+

9.
24
E
+
02
(4
.3
1E

+
01
)+

8.
62
E
+
02
(2
.3
1E

+
01
)+

10
0

9.
23
E
+
01
(4
.3
1E

+
01
)

1.
02
E
+
03
(3
.7
7E

+
01
)+

1.
36
E
+
03
(2
.1
6E

+
01
)+

2.
03
E
+
03
(5
.9
E
+
01
)+

1.
96
E
+
03
(3
.9
4E

+
01
)+

f 9
10

2.
28
2(
1.
41
1)

5.
81
E
+
01
(1
.2
4E

+
01
)+

4.
23
(2
.0
2)
+

1.
17
E
+
02
(1
.5
E
+
01
)+

7.
56
E
+
01
(8
.8
)+

30
2.
11
E
+
02
(4
.7
2E

+
01
)

2.
72
E
+
02
(2
.9
3E

+
01
)+

2.
95
E
+
02
(3
.2
4E

+
01
)+

6E
+
02
(4
.8
1E

+
01
)+

5.
26
E
+
02
(2
.8
1E

+
01
)+

50
4.
41
E
+
02
(4
.6
5E

+
01
)

5.
07
E
+
02
(3
.2
4E

+
01
)+

4.
89
E
+
02
(3
.0
1E

+
01
)+

1.
17
E
+
03
(6
.6
1E

+
01
)+

1.
08
E
+
03
(4
.6
7E

+
01
)+

10
0

1.
11
E
+
03
(5
.6
E
+
01
)

1.
14
E
+
03
(4
.8
7E

+
01
)+

1.
21
E
+
03
(4
.9
9E

+
01
)+

2.
48
E
+
03
(1
.1
9E

+
02
)+

2.
38
E
+
03
(7
.0
9E

+
01
)+

f 1
0

10
6.
66
E
−0

1(
1.
39
)

1.
58
E
+
03
(3
.0
9E

+
02
)+

8.
1E

+
01
(8
.3
4E

+
01
)+

2.
05
E
+
03
(9
.9
7E

+
01
)+

1.
25
E
+
03
(1
.0
5E

+
02
)+

30
1.
52
E
+
01
(4
.5
4E

+
01
)

7.
33
E
+
03
(5
.3
7E

+
02
)+

5.
03
E
+
02
(2
.0
7E

+
02
)+

8.
59
E
+
03
(2
.3
2E

+
02
)+

7.
26
E
+
03
(2
.7
2E

+
02
)+

50
1.
51
E
+
03
(1
.3
7E

+
03
)

1.
42
E
+
04
(7
.3
8E

+
02
)+

1.
51
E
+
03
(1
.7
3E

+
02
)-

1.
55
E
+
04
(2
.8
7E

+
02
)+

1.
39
E
+
04
(3
.4
1E

+
02
)+

10
0

6.
87
E
+
03
(2
.7
8E

+
03
)

3.
17
E
+
04
(1
.2
8E

+
03
)+

3.
98
E
+
03
(6
.7
6E

+
02
)-

3.
38
E
+
04
(3
.9
6E

+
02
)+

3.
18
E
+
04
(4
.4
6E

+
02
)+

f 1
1

10
8.
74
E
+
02
(4
.1
8E

+
02
)

2.
15
E
+
03
(2
.6
1E

+
02
)+

1.
34
E
+
02
(1
.2
1E

+
02
)-

2.
04
E
+
03
(1
.3
9E

+
02
)+

1.
43
E
+
03
(1
.3
1E

+
02
)+

30
8.
14
E
+
03
(5
.1
9E

+
02
)

8.
9E

+
03
(6
E
+
02
)+

8.
78
E
+
03
(5
.7
1E

+
02
)+

8.
49
E
+
03
(1
.8
8E

+
02
)+

7.
37
E
+
03
(2
.3
5E

+
02
)-

50
1.
55
E
+
04
(7
.5
4E

+
02
)

1.
61
E
+
04
(5
.2
8E

+
02
)+

5.
74
E
+
03
(1
E
+
03
)-

1.
54
E
+
04
(2
.6
8E

+
02
)≈

1.
39
E
+
04
(3
.0
7E

+
02
)-

10
0

3.
45
E
+
04
(8
.5
4E

+
02
)

3.
44
E
+
04
(8
.7
2E

+
03
)≈

1.
58
E
+
04
(4
.7
2E

+
03
)-

3.
35
E
+
04
(4
.7
1E

+
02
)-

3.
15
E
+
04
(4
.2
4E

+
02
)-

f 1
2

10
1.
7E

−0
2(
1.
55
E
−0

2)
3.
5(
9.
59
E
−0

1)
+

9.
54
E
−0

2(
7.
31
E
−0

2)
+

1.
06
(1
.8
6E

−0
1)
+

9.
63
E
−0

1(
1.
33
E
−0

1)
+

30
4.
33
E
−0

1(
8.
66
E
−0

1)
5.
82
(9
.7
6E

−0
1)
+

1.
19
(6
.3
2E

−0
1)
+

2.
5(
2.
52
E
−0

1)
+

2.
51
(2
.3
4E

−0
1)
+

50
5.
01
(2
.2
)

6.
79
(9
.2
2E

−0
1)
+

6.
45
(9
.0
3E

−0
1)
+

3.
6(
2.
35
E
−0

1)
-

3.
42
(2
.7
9E

−0
1)
-

10
0

6.
43
(1
.2
6)

6.
78
(5
.6
E
−0

1)
≈

6.
86
(5
.9
1E

−0
1)
+

4.
26
(1
.9
9E

−0
1)
-

4.
2(
2.
08
E
−0

1)
-

f 1
3

10
1.
6E

−0
1(
1.
4E

−0
1)

5.
82
E
−0

1(
1.
34
E
−0

1)
+

1E
−0

1(
3.
91
E
−0

2)
-

4.
95
(9
.1
5E

−0
1)
+

3.
89
(4
.3
9E

−0
1)
+

30
6.
24
E
−0

1(
1.
31
E
−0

1)
8.
78
E
−0

1(
1.
56
E
−0

1)
+

8.
93
E
−0

1(
1.
87
E
−0

1)
+

1.
05
E
+
01
(1
.0
8)
+

9.
5(
8E

−0
1)
+

50
8.
28
E
−0

1(
1.
35
E
−0

1)
1.
09
(1
.7
2E

−0
1)
+

1.
01
(1
.6
9E

−0
1)
+

1.
21
E
+
01
(8
.9
2E

−0
1)
+

1.
16
E
+
01
(5
.9
3E

−0
1)
+

10
0

9.
73
E
−0

1(
3.
76
E
−0

1)
1.
19
(2
.0
3E

−0
1)
+

1.
26
(2
.4
7E

−0
1)
+

1.
43
E
+
01
(7
.2
6E

−0
1)
+

1.
42
E
+
01
(4
.1
6E

−0
1)
+

f 1
4

10
1.
4E

−0
1(
1.
5E

−0
1)

6.
12
E
−0

1(
1.
91
E
−0

1)
+

4.
94
E
−0

2(
1.
9E

−0
2)
-

5.
16
E
+
02
(1
.2
3E

+
02
)+

3.
33
E
+
01
(8
.3
4)
+

30
7.
69
E
−0

1(
2.
07
E
−0

1)
1.
11
(4
.2
E
−0

1)
+

1.
03
(4
.0
2E

−0
1)
+

4.
12
E
+
02
(4
.9
4E

+
01
)+

3.
65
E
+
02
(3
.0
5E

+
01
)+

50
1.
11
(1
.6
4)

1.
43
(5
.5
5E

−0
1)
+

1.
39
(5
.4
3E

−0
1)
+

6.
88
E
+
02
(7
.2
8E

+
01
)+

6.
71
E
+
02
(4
.6
4E

+
01
)+

10
0

6.
51
E
+
01
(2
.6
E
+
01
)

4.
21
(2
.0
1)
-

6.
72
E
+
01
(3
.1
4E

+
01
)+

1.
71
E
+
03
(1
.2
1E

+
02
)+

1.
66
E
+
03
(8
.0
9E

+
01
)+

f 1
5

10
4.
71
E
−0

1(
1.
37
E
−0

1)
5.
53
(1
.1
6)
+

7.
55
E
−0

1(
2.
39
E
−0

1)
+

1.
49
E
+
05
(1
.3
7E

+
05
)+

2.
24
E
+
04
(1
.5
5E

+
04
)+

30
2.
09
E
+
01
(6
.0
7)

2.
7E

+
01
(3
.0
5)
+

2.
76
E
+
01
(3
.4
3)
+

2.
4E

+
07
(1
.1
E
+
07
)+

1.
1E

+
07
(4
.0
2E

+
06
)+

50
6.
53
E
+
01
(4
.0
9E

+
01
)

6.
21
E
+
01
(7
.6
5)
-

6.
2E

+
01
(7
.5
9)
-

1.
4E

+
08
(7
.8
E
+
07
)+

8.
1E

+
08
(2
.1
E
+
07
)+

10
0

1.
71
E
+
04
(1
.0
1E

+
04
)

2.
35
E
+
03
(1
.2
7E

+
03
)-

7.
04
E
+
01
(1
.5
8E

+
01
)-

6.
7E

+
08
(1
.8
E
+
08
)+

4.
8E

+
08
(9
.7
E
+
07
)+

123



An improved adaptive hybrid firefly differential evolution algorithm for passive target… 5577

Ta
bl
e
1

co
nt
in
ue
d

f
D

A
H
FA

D
E

SH
A
D
E

jD
E

FA
L
FA

M
ea
n
(S
T
D
)
Si
gn

f 1
6

10
4.
09
E
−0

1(
7.
23
E
−0

1)
4.
16
(2
.2
7E

−0
1)
+

1.
45
(5
.3
E
−0

1)
+

3.
98
(1
.2
E
−0

1)
+

3.
73
(1
.0
2E

−0
1)
+

30
1.
33
E
+
01
(8
.7
3E

−0
1)

1.
4E

+
01
(2
.2
E
−0

1)
+

1.
04
E
+
01
(7
.4
5E

−0
1)
-

1.
35
E
+
01
(1
.2
9E

−0
1)

≈
1.
33
E
+
01
(2
E
−0

1)
≈

50
2.
35
E
+
01
(4
.9
6E

−0
1)

2.
38
E
+
01
(2
.7
8E

−0
1)
+

2.
07
E
+
01
(8
.1
8E

−0
1)
-

2.
32
E
+
01
(1
.3
9E

−0
1)
-

2.
31
E
+
01
(1
.5
2E

−0
1)
-

10
0

4.
81
E
+
01
(4
.0
6E

−0
1)

4.
84
E
+
01
(3
.0
3E

−0
1)
+

4.
57
E
+
01
(5
.0
7E

−0
1)
-

4.
74
E
+
01
(1
.8
2E

−0
1)
-

4.
74
E
+
01
(2
.5
7E

−0
1)
-

f 1
7

10
2.
67
E
+
02
(1
.7
7E

+
02
)

3.
23
E
+
04
(3
.6
4E

+
04
)+

1.
25
E
+
03
(1
.0
4E

+
03
)+

8.
58
E
+
06
(8
.1
9E

+
06
)+

4.
86
E
+
04
(3
.2
6E

+
04
)+

30
2.
58
E
+
05
(1
.2
5E

+
05
)

2E
+
07
(9
E
+
06
)+

2.
43
E
+
05
(1
.6
6E

+
05
)≈

3.
2E

+
08
(1
.7
E
+
08
)+

6.
2E

+
07
(2
.2
E
+
07
)+

50
1.
2E

+
06
(2
E
+
06
)

4.
07
E
+
07
(1
.8
4E

+
07
)+

1.
3E

+
06
(2
E
+
06
)≈

1.
2E

+
09
(4
.6
E
+
08
)+

4.
5E

+
08
(9
.1
E
+
07
)+

10
0

4.
5E

+
06
(1
.3
9E

+
06
)

1.
81
E
+
08
(5
.5
E
+
07
)+

4.
52
E
+
06
(1
.4
1E

+
06
)≈

3.
7E

+
09
(7
.1
E
+
08
)+

2.
2E

+
09
(3
.6
E
+
08
)+

f 1
8

10
1.
15
8(
7.
4E

−0
1)

2.
2E

+
03
(2
.9
9E

+
03
)+

2.
2E

+
03
(3
.4
7E

+
03
)+

1.
39
E
+
08
(1
.6
1E

+
08
)+

9.
25
E
+
04
(1
.9
5E

+
05
)+

30
9.
86
E
+
01
(1
.0
6E

+
02
)

5E
+
06
(3
E
+
06
)+

5.
94
E
+
03
(5
.4
2E

+
03
)+

8.
8E

+
09
(2
.9
E
+
09
)+

5E
+
09
(1
.3
E
+
09
)+

50
5.
98
E
+
04
(3
.6
1E

+
05
)

3.
77
E
+
06
(2
.1
8E

+
06
)+

3.
46
E
+
06
(2
.0
1E

+
06
)+

2.
9E

+
10
(5
.9
E
+
09
)+

2.
3E

+
10
(3
.9
E
+
09
)+

10
0

5.
3E

+
07
(3
.5
E
+
07
)

1.
8E

+
07
(5
.7
E
+
06
)-

6.
78
E
+
07
(4
.2
9E

+
07
)+

8.
1E

+
10
(9
.4
E
+
09
)+

7.
4E

+
10
(6
.4
E
+
09
)+

f 1
9

10
1.
55
(7
.8
8E

−0
1)

3.
63
(6
.7
E
−0

1)
+

9.
32
E
−0

1(
7.
9E

−0
1)
-

6.
49
E
+
01
(3
.3
9E

+
01
)
+

1.
33
E
+
01
(4
.1
6)
+

30
1.
48
E
+
01
(1
.7
3E

+
01
)

1.
49
E
+
01
(2
.2
5)
+

1.
53
E
+
01
(2
.3
6)
+

1.
19
E
+
03
(4
.0
6E

+
02
)+

6.
72
E
+
02
(1
.2
7E

+
02
)+

50
6.
73
E
+
01
(1
.9
E
+
01
)

6.
65
E
+
01
(1
.1
3E

+
01
)≈

6.
72
E
+
01
(2
.0
6E

+
01
)≈

5.
51
E
+
03
(1
.8
1E

+
03
)+

3.
21
E
+
03
(6
.2
3E

+
02
)+

10
0

2.
71
E
+
02
(5
.4
1E

+
01
)

1.
88
E
+
02
(1
.8
7E

+
01
)-

2.
71
E
+
02
(5
.5
6E

+
01
)≈

2.
1E

+
04
(4
.9
E
+
03
)+

1.
69
E
+
04
(2
.2
2E

+
03
)+

f 2
0

10
3.
72
E
−0

1(
4.
12
E
−0

1)
3.
87
E
+
01
(1
.7
2E

+
01
)+

2.
78
(1
.6
3)
+

2.
3E

+
06
(5
.3
1E

+
06
)+

2.
85
E
+
03
(2
.1
6E

+
03
)+

30
2.
46
E
+
03
(1
.0
8E

+
03
)

1.
63
E
+
05
(1
.6
9E

+
05
)+

1.
25
E
+
02
(4
.1
8E

+
01
)-

9.
86
E
+
06
(1
.2
E
+
07
)+

1.
44
E
+
05
(8
.0
7E

+
04
)+

50
7.
07
E
+
03
(1
.5
E
+
03
)

7.
79
E
+
05
(7
.5
1E

+
05
)+

7.
96
E
+
05
(7
.7
8E

+
05
)+

1.
3E

+
07
(8
.9
4E

+
06
)+

7.
56
E
+
05
(3
.6
5E

+
05
)+

10
0

2.
19
E
+
04
(4
.0
8E

+
03
)

3.
11
E
+
06
(2
.1
3E

+
06
)+

3.
46
E
+
06
(2
.2
9E

+
06
)+

5E
+
07
(2
.7
E
+
07
)+

8.
21
E
+
06
(2
.9
2E

+
06
)+

f 2
1

10
6.
43
E
−0

2(
1.
21
E
−0

1)
1.
38
E
+
03
(6
.5
2E

+
02
)+

2.
52
E
+
01
(4
.1
5E

+
01
)+

2.
51
E
+
06
(3
.4
6E

+
06
)+

5.
24
E
+
03
(2
.9
1E

+
03
)+

30
5.
25
E
+
04
(2
.5
6E

+
04
)

4E
+
06
(4
E
+
06
)+

6.
3E

+
04
(5
.6
8E

+
04
)≈

1.
4E

+
08
(7
.8
E
+
07
)+

1.
7E

+
07
(8
.1
9E

+
06
)+

50
6.
4E

+
05
(2
.1
8E

+
05
)

2.
8E

+
07
(1
E
+
07
)+

7.
1E

+
05
(6
E
+
05
)≈

4.
5E

+
08
(1
.7
E
+
08
)+

1E
+
08
(3
E
+
07
)+

10
0

4.
44
E
+
06
(1
.3
2E

+
06
)

1.
2E

+
08
(4
.8
E
+
07
)+

4.
43
E
+
06
(1
.5
7E

+
06
)≈

1.
8E

+
09
(3
.8
E
+
08
)+

9E
+
08
(1
.5
E
+
08
)+

f 2
2

10
1.
56
E
+
01
(9
.4
4)

1.
25
E
+
02
(8
.8
E
+
01
)+

5.
75
(9
.0
1)
-

5.
14
E
+
02
(1
.2
4E

+
02
)+

1.
07
E
+
02
(3
.1
4E

+
01
)+

30
2.
38
E
+
02
(1
.5
6E

+
02
)

1.
32
E
+
03
(2
.5
4E

+
02
)+

2.
2E

+
02
(1
.1
8E

+
02
)≈

2.
44
E
+
04
(6
.5
3E

+
04
)+

2.
21
E
+
03
(5
.2
8E

+
02
)+

50
1.
99
E
+
03
(5
.9
8E

+
02
)

2.
79
E
+
03
(3
.1
9E

+
02
)+

2.
63
E
+
03
(3
.0
4E

+
02
)+

6.
34
E
+
05
(6
.5
7E

+
05
)+

5.
89
E
+
04
(4
.3
E
+
04
)+

10
0

5.
83
E
+
03
(3
.2
6E

+
02
)

6.
23
E
+
03
(4
.9
E
+
02
)+

6.
44
E
+
03
(5
.0
2E

+
02
)+

2.
27
E
+
06
(1
.2
6E

+
06
)+

7.
12
E
+
05
(2
.8
6E

+
05
)+

123



5578 M. B. Rosić et al.
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Table 2 Results of the
Wilcoxon test between
AHFADE and other considered
algorithms using CEC2014 for
D = 10, 30, 50 and 100

D Algorithms R+ R− p value + ≈ − Dec.

10 AHFADE versus SHADE 443 22 0.000 28 2 0 +

AHFADE versus jDE 316.5 148.5 0.101 17 4 9 ≈
AHFADE versus FA 465 0 0.000 30 0 0 +

AHFADE versus LFA 465 0 0.000 30 0 0 +

30 AHFADE versus SHADE 349.5 115.5 0.017 27 1 2 +

AHFADE versus jDE 263 202 0.590 14 9 7 ≈
AHFADE versus FA 464 1 0.000 28 2 0 +

AHFADE versus LFA 424.5 40.5 0.000 27 2 1 +

50 AHFADE versus SHADE 325 140 0.067 19 5 6 ≈
AHFADE versus jDE 288.5 176.5 0.252 14 6 10 ≈
AHFADE versus FA 453 12 0.000 26 1 3 +

AHFADE versus LFA 447 18 0.000 26 0 4 +

100 AHFADE versus SHADE 289.5 175.5 0.273 16 4 10 ≈
AHFADE versus jDE 268.5 196.5 0.487 15 5 10 ≈
AHFADE versus FA 453 12 0.000 26 0 4 +

AHFADE versus LFA 447 18 0.000 26 0 4 +

Table 3 Average ranks
computed through the Friedman
test for all considered algorithms
across all functions and over all
dimensions using CEC2014, at
the significance level 0.05

Algorithm 10D 30D 50D 100D Mean ranking Rank

AHFADE 1.500 1.800 1.916 2.083 1.825 1

jDE 1.800 2.133 1.983 2.100 2.004 2

SHADE 3.216 2.750 2.866 2.566 2.850 3

FA 3.700 3.616 3.616 3.666 3.650 4

LFA 4.783 4.700 4.616 4.583 4.670 5

Friedman p value 0.0000 0.0000 0.0000 0.0000

10.2 Localization performance

This section presents the simulation results of the proposed
AHFADE algorithm and the well-known algorithms such as
SDP, DE and FA, which are performed to verify and com-
pare their performance under the same noisy environment. In
the following simulations, the CRLB is employed as a bench-
mark for evaluating theRMSEperformance of the considered
algorithms.

The numerical simulations are conducted for the pas-
sive target localization system in LOS environment, which
consists of one transmitter, four receivers located at known
positions and the passive target located at different positions.
The evaluation should show how sensitive is performance
of all considered algorithms under the noisy TOA mea-
surements. Besides, this work demonstrates the influence
of changing the position of the target with respect to the
geometry of transmitter and receivers on the localization per-
formance of the existing algorithms.

In this regard, three simulation scenarios are conducted
here based on different positions of the target such as: i) the
true position of the target lies inside the convex hull of the

four receivers; ii) the position of the target is outside of the
convex hull of the four receivers; iii) the position of the target
is randomly deployed in the 200m × 200m square area, and
its position varies for each simulation run.

For the proposed passive target localization system, each
simulation scenario has the same configuration with trans-
mitter which is located at the origin of the coordinate
system and the four receivers forming the convex hull,
at: xr1 = [100 100]Tm, xr2 = [100 − 100]Tm, xr3 =
[−100 − 100]Tm, and xr4 = [−100 100]Tm.

In this way, the localization accuracy is evaluated in terms
of RMSE, which can be defined as follows:

RMSE =
√√√√ 1

Nm

Nm∑

n=1

∥
∥x̂(n) − x

∥
∥2
2, (61)

where x is the true target position, x̂(n) is the estimated target
position and Nm is the number of simulation runs for a given
variance of the noise σ 2

ni . A Monte Carlo simulation, which
consists of Nm = 1000 runs, is conducted to determine the
RMSE performance of the considered algorithms.
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Fig. 6 RMSE curves in terms of p of the considered algorithms for the
first simulation scenario

Figure 6 shows the simulation results of the comparison
between CRLB and the RMSEs of all considered algorithms
as a function of the measurement noise p = 10 log

(
σ 2
ni

)
, for

the first simulation scenario, when the true position of the
target is located at x = [20 30]Tm.

As shown in Fig. 6, it can be observed that the RMSE of
the proposedAHFADE algorithm attains the CRLB accuracy
for all the considered range of p. Furthermore, from this fig-
ure it should be noted that the SDP, FA and DE algorithms
can achieve performance several dBs above the CRLB. How-
ever, numerical results of this simulation show that the SDP
method has significant deviation from theCRLB for high val-
ues of p (i.e., p > 20 dB), compared with other algorithms.

Figure 7 shows the results of the comparison between
CRLB and the RMSEs of all considered algorithms in terms
of measurement noise p for the second simulation sce-
nario, when the true position of target is located at x =
[120 100]Tm.

From Fig. 7, it is observed that the proposed AHFADE
algorithm can attain the CRLB accuracy in Gaussian noise
environment and outperforms all other considered algorithms
as p increases. The simulation results also show that the FA
and DE algorithms have degradation of localization perfor-
mance compared to the proposed AHFADE algorithm. It can
be also observed that the SDP method has the worst per-
formance, especially when the measurement noise becomes
very large ( i.e., p ≥ 30 dB).

Figure 8 shows the results of comparison between CRLB
and the RMSEs of all considered algorithms in terms of mea-
surement noise p for the third simulation scenario, where the
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Fig. 7 RMSE curves in terms of p of the considered algorithms for the
second simulation scenario
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Fig. 8 RMSE curves in terms of the p of the considered algorithms for
the third simulation scenario

true position of the passive target is randomly located within
the considered area for each simulation run.

As it could be expected, the results show that the proposed
AHFADE algorithm attains the CRLB accuracy for all the
considered range of p, and provides superior performance
over the FA, DE and SDP algorithms, as shown in Fig. 8.

The comparison between numerical results of the above
three simulation scenarios, clearly shows that the RMSE of
each considered algorithm is lowest when the true position
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Table 4 The average computational time of the considered algorithms

SDP AHFADE DE FA

Scenario 1 0.737 0.0389 0.0116 0.0115

Scenario 2 0.7751 0.027 0.0091 0.009

Scenario 3 0.79 0.0419 0.011 0.01

of the target lies inside the convex hull of the four receivers.
On the other hand, the obtained RMSEs of all the consid-
ered algorithms are highest when the position of the target is
outside of the convex hull of the four receivers. It should be
noticed that the proposed AHFADE algorithm has the best
performance and its RMSE attains the CRLB accuracy for
all the considered range of p in every considered scenario.
However, the RMSE performance of the SDPmethod rapidly
deviates from the CRLB, especially in the presence of sig-
nificant measurement noise.

The average computational time in searching the global
optimal solution of each algorithm is another important factor
that has a strong influence on the localization performance.
To this aim, the average time consumed to obtain the global
optimal solution of the considered algorithms can be deter-
mined on the same computer with 3.2 GHz CPU and 16
GB of RAM. Based on the proposed simulation scenarios,
Table 4 shows the corresponding average computational time
to achieve the global optimal solution taken by each algo-
rithm to satisfy the stopping condition.

It can be seen from Table 4 that the SDP method has
the highest average computation time among all examined
algorithms, while the FA and DE algorithms have the best
average execution time. Generally, it can be concluded that
the AHFADE algorithm achieves the best trade-off between
the benefit of the localization accuracy and computational
complexity, and in this way becomes attractive for applica-
tions in sensor networks in noisy environment.

In order to further evaluate the localization performance,
the cumulative distribution functions (CDFs) of localization
errors of the considered algorithms are conducted for mea-
surement noise σ 2

ni = 1 m2 . The localization error (LE) is
defined as the Euclidean distance between the estimated and
the true position of the passive target, i.e.,

LE =
∥∥∥x̂(n) − x

∥∥∥
2
,∀n ∈ {1, . . . , Nm}. (62)

Figure 9 represents the simulation results for the second
scenario with the corresponding CDFs in terms of localiza-
tion error obtained for each algorithm.

From Fig. 9, it is observed that the proposed AHFADE
algorithm provides the lowest localization error compared to
the other considered algorithms. Additionally, it is evident
that the AHFADE algorithm has localization error less than
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Fig. 9 CDFs of passive target localization error of the considered algo-
rithms for the second simulation scenario

1.18 m in 90% of the cases, while the FA, DE and SDP
have localization error less than 1.4 m, 1.45 m and 1.64 m,
respectively. Therefore, the proposed AHFADE algorithm
has smaller localization error in terms of CDFs compared to
other considered algorithms.

Finally, the influence of the number of receivers N at
known positions on the localization accuracy of all algo-
rithms is also considered in this section. In this context, the
corresponding coordinates of the i th receiver can be obtained
as follows:

xri =
[
R cosϕi
R sin ϕi

]
, ∀i ∈ {1, . . . , N } , (63)

where R = 100
√
2 m is the radius of the circle and the

angular separation between receivers can be expressed as
ϕi = 2π/i .

Hence, Fig.10 depicts the RMSE curves of all considered
algorithms as a function of the number of receivers N , for
the first simulation scenario where the target position is set
at x = [20 30]Tm inside the convex hull of receivers, when
the variance of measurement noise is σ 2

ni = 1 m2.
As can be seen from Fig. 10, by increasing the num-

ber of receivers from 4 to 10, the RMSEs of all considered
algorithms significantly decreased. As shown, the proposed
AHFADE algorithm can achieve the CRLB under the given
noise environment. It can also be noticed that with increasing
the number of receivers from 4 to 12, the proposed AHFADE
algorithm provided approximately 42.77% improvement in
localization accuracy.
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Fig. 10 RMSEs of the considered algorithms as function of the number
of receivers

Based on the above obtained simulation results, it can be
concluded that the performance of the proposed AHFADE
algorithm shows better robustness tomeasurement noise than
all other considered algorithms in solving the passive target
localization problem.

11 Conclusion

In this paper, the passive target localization problem based
on the noisy TOAmeasurements, utilizing multiple receivers
and a single transmitter, has been considered and investi-
gated. In this context, an improved robust AHFADE algo-
rithm has been proposed, based on the hybridization of DE
and FA, to solve this nonlinear and non-convex localization
problem with high accuracy even in highly noisy environ-
ments. In the proposed algorithm, a dynamically adapted
parameter has been introduced to select the appropriatemuta-
tion operator for achieving a proper balance between global
exploration and local exploitation during the evolution pro-
cess. Moreover, the crossover and selection operators of DE
algorithm are incorporated into FA, where the control param-
eters of both DE and FA are dynamically adjusted during
the evolution process. To evaluate the performance of the
proposed algorithm, the CRLB for the passive target local-
ization problem has been derived. In addition, to compare the
optimization performance, the statistical analysis has been
conducted between AHFADE and several well-known algo-
rithms on CEC2014 benchmark test problems.

From the numerical results of statistical comparison
between AHFADE algorithm and other well-known algo-
rithms, such as SHADE, jDE, FA and LFA, it can be
concluded that the hybridization proposed in this paper can
improve the overall optimization performance, especially
compared to the individual optimization performance of
SHADE and FA algorithms. Furthermore, simulation results
have shown that the proposed AHFADE algorithm exhibits
better robustness in high-noise environments and provides
better localization performance in comparison with well-
known algorithms such as SDP, DE and FA. Additionally, the
results have shown that theAHFADEalgorithm can attain the
CRLBaccuracy and is robust against changes in the topology.
Finally, theAHFADEalgorithm can provide a proper balance
between localization accuracy and computational complex-
ity, thus making it more attractive for applications in sensor
networks in noisy environment.

In the future research, the focus will be on the problem
of finding the optimal geometry of the receiver configuration
for the passive target localization in the presence of non-
line-of-sight (NLOS) propagation. In addition, the research
can be extended to parameter sensitivity analysis and influ-
ence of parameter variations during the evolution process to
further enhance the optimization performance for the given
localization problem.
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ADerivation of CRLB

From Eq. (8), the first partial derivative of the log-likelihood
function with respect to x is given as:

∂ ln
(
f
(
d̃ |x
))

∂x

= −1

2

∂

∂x

((
d̃ − d (x)

)T
C−1
(
d̃ − d (x)

))
,

(64)
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where

∂

∂x

((
d̃ − d (x)

)T
C−1
(
d̃ − d (x)

))

= −2
∂d(x)T

∂x
C−1
(
d̃ − d (x)

)
. (65)

Then, Eq. (64) can be expressed as:

∂ ln
(
f
(
d̃ |x
))

∂x
= ∂d(x)T

∂x
C−1
(
d̃ − d (x)

)
. (66)

Hence, taking the partial derivative with respect to x follows:

∂ ln
(
f
(
d̃ |x
))

∂x
= ∂d(x)T

∂x
C−1
(
d̃ − d (x)

)
. (67)

Then, the first diagonal element of the FIM can be derived
as follows:

Ixx = E

⎡

⎢
⎣

⎛

⎝
∂ ln
(
f
(
d̃
∣∣∣ x
))

∂x

⎞

⎠

⎛

⎝
∂ ln
(
f
(
d̃
∣∣∣ x
))

∂x

⎞

⎠

T⎤

⎥
⎦

= E

[(
∂d (x)

∂x

)T
C−1
(
d̃ − d (x)

) (
d̃ − d (x)

)T

(
C−1
)T (∂d (x)

∂x

)]

=
(

∂d (x)
∂x

)T
C−1E
[
nnT
] (

C−1
)T (∂d (x)

∂x

)

=
(

∂d (x)
∂x

)T (
C−1
)T (∂d (x)

∂x

)
. (68)

The remaining elements of the FIM can be derived in the
same way as above:

Ixy = Iyx = E

⎡

⎢
⎣

⎛

⎝
∂ ln
(
f
(
d̃
∣∣
∣ x
))

∂x

⎞

⎠

⎛

⎝
∂ ln
(
f
(
d̃
∣∣
∣ x
))

∂ y

⎞

⎠

T⎤

⎥
⎦

=
(

∂d (x)
∂x

)T (
C−1
)T (∂d (x)

∂ y

)
, (69)

Iyy = E

⎡

⎢
⎣

⎛

⎝
∂ ln
(
f
(
d̃
∣
∣∣ x
))

∂ y

⎞

⎠

⎛

⎝
∂ ln
(
f
(
d̃
∣
∣∣ x
))

∂ y

⎞

⎠

T⎤

⎥
⎦

=
(

∂d (x)
∂ y

)T (
C−1
)T (∂d (x)

∂ y

)
. (70)

According to Eq. (4), the partial derivative of d (x) with
respect to the components of x can be expressed as:

∂d (x)
∂x

=

⎡

⎢⎢⎢⎢⎢⎢
⎣

x−xr1‖x−xr1‖2
+ x

‖x‖2
y−yr1‖x−xr1‖2

+ y
‖x‖2

x−xr2‖x−xr2‖2
+ x

‖x‖2
y−yr2‖x−xr2‖2

+ y
‖x‖2

...
...

x−xrN‖x−xrN‖2
+ x

‖x‖2
y−yrN‖x−xrN‖2

+ y
‖x‖2

⎤

⎥⎥⎥⎥⎥⎥
⎦

, (71)

where ∂d (x) /∂x is the N × 2 Jacobian matrix.
Performing thematrixmultiplication, the following expres-

sions can be easily obtained

Ixx =
(

∂d (x)
∂x

)T (
C−1
)T (∂d (x)

∂x

)

=
N∑

i=1

1

σ 2
ni

(
x − xri∥
∥x − xri

∥
∥
2

+ x

‖x‖2

)2
. (72)

Similarly, the expressions for the remaining elements of FIM
can be obtained as:

Ixy = Iyx =
(

∂d (x)
∂x

)T (
C−1
)T (∂d (x)

∂ y

)

=
N∑

i=1

1

σ 2
ni

(
x − xri∥∥x − xri
∥∥
2

+ x

‖x‖2

)(
y − yri∥∥x − xri
∥∥
2

+ y

‖x‖2

)

,

(73)

Iyy =
(

∂d (x)
∂ y

)T (
C−1
)T (∂d (x)

∂ y

)

=
N∑

i=1

1

σ 2
ni

(
y − yri∥∥x − xri
∥∥
2

+ y

‖x‖2

)2
. (74)

Finally, Eqs. (55)-(57) of the corresponding elements of FIM
are obtained.
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