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Abstract

The non-degeneracy is one of the conditions to check for bifurcation analysis. Therefore, we need to compute the critical
normal form coefficients to verify the non-degeneracy of the listed bifurcations. Using the critical normal form coefficients
method to examine the bifurcation analysis makes it avoid calculating the central manifold and converting the linear part of the
map into Jordan form. This is one of the most effective methods in the bifurcation analysis that has not received much attention
so far. So in this article, we turn our attention to this method. In this study, the dynamic behaviors of the discrete Bonhoeffer—van
der Pol (BVP) model are discussed. It is shown that the BVP model undergoes codimension one (codim-1) bifurcations such
as pitchfork, fold, flip (period doubling) and Neimark—Sacker. Besides, codimension two (codim-2) bifurcations including
resonance 1:2, 1:3, 1:4 and Chenciner have been achieved. For each bifurcation, normal form coefficients along with its
scenario are investigated thoroughly. Bifurcation curves of the fixed points are drawn with the aid of numerical continuation
techniques. Besides, a numerical continuation not only confirms our analytical results but also reveals richer dynamics of the

model especially in the higher iteration.

Keywords BVP model - Neimark—Sacker - Resonance - Bifurcation - Numerical continuation - Period doubling

1 Introduction

Neurons are the basic elements in the nervous system; they
depend on each other and are responsible for stimulating
and directing emotions. There are approximately 10'! neu-
rons in the human’s brain and 10° in spinal nerve, and each
one has nearly 10* synaptic connections with other neurons.
Every neuron consists of Axon, Myelin, and Dendrite as its
main components. Action potential or the firing of the neuron
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sourcing from abrupt changes of the cell’s electrical potential
has a prominent role in the connection between the neurons
which gets to the other cells through Axon and synaptic rela-
tions after production.

The abrupt changes of cell’s membrane usually take place
due to ions displacement including sodium (Na™), calcium
(Ca%*t) and potassium (KT). These ions are present in the
neuron’s cell membrane, and through sodium, calcium and
potassium valves called voltage gates, they are allowed to
enter and exit the cell membrane. The first neural model,
Hodgkin—Huxley (H-H), was introduced in 1952 by the pio-
neers named Hodgkin and Huxley. This model is based on
the electrophysiological experiments conducted on the Axon
of a squid-like creature called the squid giant. See Izhikevich
(2000a, b), Wang and Wang (2011), Guchenhermer and Oliva
(2002), Hodgkin and Huxley (1952) and their references.

The BVP model was developed by FitzHugh and Nagumo
by simplifying the Hodgkin—-Huxley (H-H) model in 1961,
see FitzHugh (1961), Nagumo et al. (1962). They reduced
the four-dimensional H-H model to a two-dimensional one
which might be considered as a reasonable extension of van
der Pol equation because the BVP model can be examined by
a circuitry Rocsoreanu et al. (2000). Besides, this equation
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Fig.1 BVP oscillator

can be achieved using a nonlinear conductor in a circuitry.
Nowadays, BVP equation has turned into a well-known non-
linear oscillator.

A full investigation from the BVP model with the non-
linearity of cubic order was carried out by Bautin (1975).
In Kitajima et al. (1998) the bifurcation diagrams of this
system were studied and a great diversity of nonlinear phe-
nomena was observed compared to the van der Pol equation.
The applications of the BVP equation with the mentioned
background could be observed in Hoque and Kawakami
(1995), Papy and Kawakami (1996), Tsumoto et al. (1999).
More bifurcations of the model can be found in Rocsoreanu
et al. (2001), Flores (1991), Freitas and Rocha (2001), Jones
(1984), Jing et al. (2002). Figure 1 shows the main BVP
model, and the circuit equations are as follows:

ciV = 1 —g(V),
{ dr g(V) o

L¥ =V -RI+E.

We presume that g(V) is an odd function and E is skipped.
Therefore, the above equation is symmetry under (V, [) —
(—=V, —I) permutation. Thus, E as a voltage source applies
to eliminate the symmetric feature of the model.

In this paper, nonlinear conductance is considered as

g(V)y=—A <BV - %(BV)3> ;

and the model turns into a discrete one by applying the Euler
scheme. Then, we examine the dynamics of the discrete-time
BVP oscillation equation and we have:

i=—y+yx—iyx)d, o
y=x—ky+§,
where
. dx . dy vV /C
= —, = —, X = — -,
dr Y dr AV L
1 . t k—R/C
y A’ _\/ﬁ’ - L’
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In Wang and Guanggqing (2010), the authors propose the fol-
lowing discrete-time BVP model:

{xn-i-l =Xp +e(=yn+yxn — %(Vxn)3)» 3)
Yn+1 = Yn + €y — kyn + B),

where € is the integral step size and k, y, € are positive con-
stants and S € R.

The existence and stability of the fixed points of model
(3) as well as some bifurcations of it, through the numeri-
cal method, have been investigated in Wang and Guangqing
(2010). In this paper, we study all of the codim-1 bifurcation
analysis such as pitchfork, fold, flip (period doubling) and
Neimark—Sacker, analytically by regarding k as bifurcation
parameter; also, all of the codim-2 bifurcations of the sys-
tem are extracted by regarding € and k as free parameters.
It will be shown that the system undergoes some bifur-
cations like Chenciner, resonance 1:2, resonance 1:3 and
resonance 1:4 bifurcations under change of these two param-
eters. Moreover, all the bifurcation curves for the model will
be drawn with the aid of numerical continuation methods.
The numerical results prove the analytic results and reveal
more complicated dynamic of the system.

The bifurcation theory allows us to identify and predict
changes or metamorphoses in the dynamics of a system.
Hence, bifurcation theory is one of the important branches
of dynamic systems. Bifurcations in a dynamic model are
examined from both analytical and numerical aspects. Many
methods have proposed to study the bifurcations in each of
these two aspects, among which some methods are more
efficient than others. One of the most effective analytical
methods in the bifurcation theory is the computation of the
critical normal form coefficients. This method is more prone
to be noticed in many dynamical systems. In this paper, the
computation of the normal form coefficients is done analyti-
cally which is also confirmed numerically using MatContM,;
for more details, see Kuznetsov and Meijer (2005), Govaerts
et al. (2007). Furthermore, this paper provides an efficient
analytical and numerical method for extensive implementa-
tion on different discrete-time models.

The paper structure is organized as follows: In Sect. 2, the
basic assumptions are introduced and the existence of the
fixed points of (3) is presented. In Sect. 3, all of the codim-
1 bifurcations of (3) by considering k as a free parameter
are investigated. In Sect. 4, the codim-2 bifurcations are dis-
cussed by considering € and k as free parameters. In Sect. 5,
the numerical continuations are provided. Finally, this paper
ends with some concluding remarks.
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2 Existence of the fixed points and
bifurcation analysis

The fixed points (x4, ys) of (3), are satisfied in the following
equation:

—ys Fyxe = 3(yx0) =0,
X« —kys + 8 =0.

The conditions of asymptotic stability of the fixed point
Ey = (x4, L +kx*)of (3) can be found in Wang and Guangqing
(2010).

First, let us consider model (3) as follows:

x _ x+e<—y+yx—%<yx>3)>
(y)HN(s’ﬁ)_< y+ex—ky+B) @

where £ = (x, y)T and ¥ = (e, y,k, ,B)T. The Jacobian
matrix of the map (3) is given by:
3,2
_[(—ey’x"+ey+1  —e
j(é’ﬁ)_( € —6k+1>'

Similar to Kuznetsov and Meijer (2005), the second and third
multi-linear forms of (3) can be expressed as

2 2
N (E,9)
B(I',2,9) =Y ————yo,
L BE;DE
Jj.k=1
2 3 (x, v, b )
Gr.2.r.0)= Y ———yqu,
e 08050
],k l=
where
r=w,mw' Y=@,o)", T=@uw,un.

Then, the multi-linear forms corresponding to the model (3)
are given by

_ 3
B(I', 2,9) = ( 2”0”1‘”),

_ 3
C(r, 2. 7.9 = ( 2ey e “‘).

Since A is smooth enough, it can be written as follows:

1 1

3 Codim-1 bifurcations

In this section, we consider y, §, € as fixed parameters and
k as a free parameter. We have the following theorems for
local codim-1 bifurcations.

Theorem 1 E, experiences a non-degenerate limit point
. . 1 .
T = ———5 5, Pl
bifurcation, at k TGy P ovided
eyt —2eytn 2 — 3l tey? —ety

0
X 7& ’ v (yzx*z — 1)

£ +1.

Proof There is a fixed point of (3) with multiplier +1 if

{N(E,ﬂ)=é, )

det(J(§,9) — 1) =0.

Clearly

1
ILp: (-xv yﬂk) = <X*, z(-x*-i_ﬂ)v -

1
Y (sz*2 - ])) ’

satisfies the algebraic system (5). The Jacobian matrix at the
curve 7 p has a simple multiplier Ay = +1 and the other
multipliers are not on the unit circle provided

epdnt —2eyin — il Heyi—e+y
14 (sz*z - 1)

£+1. (6)

The center manifold at k =
as

1 .
v R can be considered

M) =vv+mn? +00%, M:R - R?

my = (may, man)’, @)
where
Jv=v, JTw=w, (wv)=1,
and
__ 1
v= [ r@xi-1) ],
1
V(sz*z_l)

y6x*472 y4x*2+)£27]
Vz(yzx*z_l)
Yot =2 42 4y2—1

The restriction of the map (3) on (7) has the following form:
vi> G)=v4arpv: +0O (v3) .
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The center manifold invariance requires
NM ), 9,) = M(G(1)). ®)

The following linear system is obtained by collecting the
vZ—terms in (8):

(J — I)my =2arp — B(v, v, V), 9)

—onry BT

v (Y2x2-1)°
The solvability condition (9) is as follows:

where 9, = (¢, y,

(w,2arp — B(v, v, %)) =0;

therefore,

€ Xy

2.2 1)3'

aLp = —
(r2x? -

So the fold bifurcation is non-degenerate provided x, #= O.
O

Theorem 2 On the curve
1
tpitch » (x,y,k) =10,0, )

there is a pitchfork bifurcation provided € # 13_);2’ y # 1.

Proof Clearly the map (3) has a fixed point with multiplier +1
on the curve #p;;p. Since ar p = 0, a pitchfork bifurcation
is expected on this curve.

Let us consider the center manifold at k = % as follows:

Mp@) = w +ma® +ms + 00, Mp:R— R?,
mi = (mar,mn)", i=2,3, (10)
where
Jv =, ijzw, (w,v) =1,
and

= (7).

The map (3) can be restricted to (10) as follows:

L Gp(t) = L+ cpitent® + OWH).

@ Springer

Due to the center manifold properties the following equation
can be obtained:

N (Mp), %) = Mp (Gp() . Y

The following linear systems are obtained by collecting the
power of ¢ terms up to the cubic order:

(j - 12)m2 = _B(U9 v, ﬁ*)a (12)
(J — I)m3z = 6¢pitch — C(v, v, v, V%) — 3B (v, m2, ¥y),
(13)

where %, = (€, v, k, )T = (€, y, %» BT
Since

(w, B(v, v, 94)) =0,

the system (12) is solvable and m, = ( 8 ) is its solution
obtained by the bordering technique. The system (13) is solv-

able if
<w7 6CPi[Ch - C(U, v, v, ‘0*) - 3B(U7 my, ﬁ*)) = O;

therefore,

€
CPitch = —5—-
3y

]

Theorem 3 There is a non-degenerate period doubling bifur-

. _ 2¢€ )/316*2—62—26 V_4
cation of Ey at k = = (e Vixl—ey-2)

, provided

2y0x,t —22y*x,2 =3y + 2y — 2 +3ey +2
eyixl—ey -2

# 1.

Proof There is a fixed point with multiplier +1 for the map
3)if

(14)

{N(E,ﬂ)—é =0,
det(J(€,9) + 1) = 0.

Clearly, the curve

1 2ey3xt—€2—2ecy —4
Ipp: (x,y,k)=<x*,k(x*+/3), VL Y

€ (ey3x*2—ey—2)

satisfies the system (14). Let us consider

Mpp(¢) = vp +mad* +m3¢® + O(¢*), Mpp : R — R?,
i =23, (15)

mi = (mi1, mi2)",
as the center manifold corresponding to the map (3) at k =
2ey3x,2—e2—2ey—4

(e ni—ey-2) where
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Jv=—v, JTw=—-w,

(w,v) =1,

in which

€
T e 3y.2
v:( €y x*l—ey—2>’

(e yIx2—e y—Z)e

2yox, A —2e2y4x,2—4ey3x, 22yl —e2+de y+4
(e y3x2—ey—2)

e2yox, 22yt 2 —dey3x2+e?yl—e2+dey+4

w =

The map (3) can be restricted to (15) as follows:

¢ = Gpp =—¢ +bpp¢’ + 04, (16)
the center manifold property implies that

N (Mpp(9), 9«) = Mpp (Gpp(9)).

Collecting the power of ¢ terms up to the third order gives

(\7 - 12)m2 = _B(U9 v, ﬁ*)v (]7)

(\.7 + 12)m3 = 6bPD - C(U, v, v, 19*) - 3B(v7 mj, '{9‘*)’
(18)

3,2 _.2_ _
whereﬁ*z(e,y, 2ey xy"—€"—2ey—4 ﬂ)

e(eydxl—ey-2) °
The system (17) is non-singular and

€y X

(26 yIx2—e2-2¢ }/74)62}/3,’(* )
T (e i 2e il 232 teyi—et2y) (e yinl—ey—2)

- 2
my = ( (evbxt—2eyin2-2y3x2 e y2—e+2y) (e y3r2—e y-2)

bi(y, €, x¢) = — (55 yﬁx*4 — 362)/3)6*2 —4e y4x*2
—10)/3)c*2 —€ y2 +e— 2y) )/365,

by(y,€,x4) =3 (e y6x*4 —2€ y4x*2 — 2y3x*2 + € y2
—e+2y> (ey3x*2—ey —2)2
<€2y6x*4 2242 —de a2 4 €2y2
—€? +4e y + 4) .

The flip bifurcation is non-degenerate provided bpp # 0. If
b pp is positive, the bifurcation is supercritical and the double
period cycle is stable. When bpp < 0, it is subcritical and
unstable. O

Theorem 4 On the curve

1 Vx4 e+y
st (6,3, k) = | X (0 + B), ———5—5 ,
k ey xc—ey —1

there is a non-degenerate Neimark—Sacker bifurcation.

Proof The map (3) has a fixed point with a pair complex
multiplier on the unit circle if

(19)

NE D) =6§,
det(J ©J) =1,

where © is the bi-alternate matrix product. Clearly the curve
tns satisfies the algebraic system (19).

Along the curve ¢y s there is a pair of complex multipliers
on the unit circle

Yox e + 2942 + 232 —y2e? —2ye+ €2 -2 n iu

1 —
Mo2=—
1273 v3ixyle —ye—1

that satisfy on the non-resonance conditions, where

2y3x,2¢ —2ye—2’

U= \/_ (Yord — 2452 + y2 — 1) €2 (yOx,4e? — 24x,2¢2

—4y3xle+y2e2 +dye— €2 +4).

is its solution. The singular system (18) is solvable provided

(w,6bpp — C(v, v, v, ) —3B(v,mp, Uy)) =0.

Thus,

bPD _ b] (y7 67 x*)
ba(y, €, x5)’

where

3.2 )
VX HeHY can be consid-

The center manifold at k = ——5—5—",
ey xsc—ey—1

ered as

1

k=l
(k+l)!mkl§ [

Mys(s, &) =vs+3Sv+ Y
2<k+l1
(S (C, mg; € C, (20)

where

@ Springer
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Jv=1¢%y, JTw=c""y, (v,w)=1,

and

1
V=11 Oxte2—2y4x,2e2 -2 y3x,2e+y 22 +iu+e?+2ye | »
2 e (Yixle—ye—1)

2 e (Yxle—ye—1)

1 1
w = _ 1 —)/G.X*462+2 ]/4)6*262-‘1-2 y3x*26—y252+iu—62—2 ye |l

rq

g = (P, v, x4)

4¢2 (y3x*2e —ye— 1)27
(P1(e, v, x3) = 2y0x, 4t —4ytx,2et —4y3x, %
6,3

3
12,84 £ 4910, 664 4409,
6yttt — 1297043 + 4y6x*24
+ 12 ysx*ze3 —2iue’ — 2iy2u €2
—4diyue —et 4 —4]/6)6*462
+ 8 )/4x*262 —4 )/262 +4e2 -2 iyﬁu xite?

+4 iy4u xi2e? +4 iy3u xil€

+2)/2€4+4)/63 — y4e4 —4)/33.
The restriction of the map (3) on (20), at the critical value k
has the form

¢ Gys =e®c +dysslcP + 0, ¢eC, (2

where dy s is a complex number. Given the properties of the
center manifold, the following equation is obtained

N (Mys(s, 9x) = Mys (Gns(s)) - (22)

The following equations can be found by collecting the power
of ¢ terms up to the third:

(T — ¥ Lymag = —B(v, v, 0y), (23)
(J — ymy; = —B(v, v, ), (24)

(J — ¥ Dymyg = —C(v, v, v, 94) — 3B(v, ma, D),
(25)

(J — €% L)may = 2dysv — C(v, v, ¥, 9)

- B(‘Da myo, ﬁ*) - ZB(U, mii, ﬁ*)'
(26)

—y3xltety
ey3xl—ey—1’

where , ¥, = (e, Y, — ,3). Equations (23)—

(25) have a unique solution because 1, ¢%% and 3% are
not eigenvalues of 7. To avoid the complexity of the com-
putation, we consider

y=132, B=1, e=07.

@ Springer

The solutions of (23)—(25) can be calculated as

may = —(J — ¥ 1) ' B(v, v, 9,)

—1.5298 — 0.861861i
—0.14670 — 0.95607i )’

miy=—(J —h)"'Bv, v, 9,)

i — (1-0487 —0.00000021703 i
1=10.41699 — 0.000000086299 ) °

myo = (J — L) (—=C(v, v, v, 9,) — 3B (v, ma, V)

0.59123 —9.3739
—1.6095 —3.7344; ) °

:>m20=<

$m3o=(

The system (26) is singular; therefore, it is solvable if

<wa szSU - C(U, v, 61 19*) - B(l_)v myo, 1}*)
—2B(v,mi1,9%)) = 0.

So we conclude that
dys = 3.2480 + 0.86940 ;.

The first Lyapunov coefficient of the Neimark—Sacker bifur-
cation is

ens = N (e_ieodN5> — 1.716436045.

Since cys < 0, the Neimark—Sacker bifurcation is supercrit-
ical and the closed invariant curve is stable. O

4 Codim-2 bifurcations

In this section we consider y, 8 as fixed parameters and k
and € as free parameters. The system (3) has the following
local codim-2 bifurcations.

Theorem 5 There is a non-degenerate 1:2 resonance bifur-
cation of the fixed point E, at the parameter values k =
V3x2—y+2ande =2 (3x2 —y + 1)L

Proof The map (3) has a fixed point with two multipliers —1
if

N(E, 9) =0,
det(JE, )0 TE D) —Dh) =0, 27
k+1=0,

where « is the real part of the critical multipliers % along
the Neimark—Sacker curve. The exact solution of (27) is

X = Xy,

1
y= %(x* +8),
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-1
k=y3x*2—y+2, 6=2(y3x*2—y+1> .

The center manifold of the map (3) atk = y>x,> —y +2 and
e=2 (y3x*2 -y + l)_1 can be considered as follows:

Mg, (1, m2) = nivo + n2v1

1 .
D (28)
2<j+k=<3 ’
where
Jvy = —vo, Jvi = —v1 + v
T wo = —w, TJTwi = —w; + wo,

(wo, v1) = (w1, vo) = 1, (wo, vo) = (w1, v1) =0,

() ()
WG )

The map (3) can be restricted to (28) as follows:

Uil -1+
— G = ,
('72) 1) <—'72 +Crym} + Dm??ﬁ)

n = (n,m) € R%. (29)

Given the invariance property of the central manifold, we
concluded that

N (Mg, (), 0) = Mg, (Gr, (1)) - (30)

The following equations are obtained from (30):

(J — I)myy = —B(vo, vo, )
(V2 —y+2)y3x,
(r3x2—y+1)*
Y X«
(rx2-y+1)°
(J — h)mi1 = =B (vo, vy, %) — mao
_y3x* (3y3x2-3y+7)
(y3x*2—y+1)2
4V
(y3x*2—)/+1)2
(J = )mp = —B(v1, v, U%) — 2my1 +myo
_y3x* (2 y3x*2—2 y+7)
(r3x2—y+1)°
5 VX
(V3X*2,y+1)2

= mpy =

= my =

= mpp =

The cubic part of (30) gives

(J + I)mzg = 6 Cgr,v1 + C(vg, vo, Vo, P+)

— 3B(vo, m2o, )V, (31)
(J + I)ma; =2 Dg,v1 +m3g — C(vo, vo, v, D)

—2B(vo, m11, %) — B(vi, mao, 9%), (32)
(J + I)miz2 = 2ma1 — m3p — C(vo, vo, vo, V)

—2B(vi, m11, 9%) — B(vo, mo2, 9%), (33)
(J + I)moz = 3(m12 — ma1) + m3o

— C(v1, v1, v1, ¥) — 3B(v1, me2, D),
(34)

-1
2(Pxl—y+1) yyint-oy+2, /6).
The solvability condition of the singular system (31) implies
that

where ¥, = (

(wo, 6 Cr,v1 + C(vo, vo, Vo, Ux) — 3B(vo, mao, U)) = 0;

thus,

—4y3 (5 Yot — 4yt 4109302 — 2 42y — 1)

Cr, =
? 3 ()/3)(*2 -V + 1)3

The singular system (32) has an unique solution provided

(wo, 2 Dg,v1 +m30 — C(vg, vo, v1, Ux) — 2B (vg, m11, D)
— B(vy, ma, V) = 0.

Since

(wo, m3g) = —(wy, 3 B(vg, map, ¥«) + C(vg, vo, vo, Ix))

)/3 (5 y6x*4 —4y4x*2 + ]0y3x*2 - y2 +2y — 1)

(a2 —y+1)°

the third-order coefficient of (29) can be calculated as

y3 (7 Yoxet =8y 2 +18y3x 2+t -2y + 1)

Dpr = -2
(a2 -y +1)°

The non-degeneracy conditions of this bifurcation are C1 =
4Cr, # 0 and Dy = —2Dpg, — 6Cg, # 0. The sign of
C determines the type of the critical point. The bifurcation
scenario is indicated by the coefficient D;. O

Theorem 6 There is a non-degenerate 1 : 3 resonance bifur-
cation of the fixed point E, at

k=—
yixd —y tu
1 V3x2—y+u
€= = ,
2 x4 — 2y 2 +y2 —1

@ Springer
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where

u:\/—3y6x*4+6y4x*2—3y2+4.

Proof The map (3) has a fixed point with a pair of complex
conjugate multipliers e F if

NE 9 —&=0,
det (J(,0) ©JE,v) — 1) =0, (35)
K+%=0,

where k = cos(fy) along the Neimark—Sacker curve. The
exact solution of (35) is

1
X =Xe y=70+h)
ot 2yl +yux -y —yu+2

k=—

yix2 =y +u ’
3.2
€=1/2—73 4yx*4 )/2+u2 :
Yoxt =2yt +ys—1

Let us consider

1

- = k7l
Mgy (£, D) =ve + i+ Y muc*e!,
(k+D)!
2<k+l
teC, myeC, (36)
as the center manifold of (3) at s = — =x%x+2 V4x§2+zy3;‘f2*y2*V ut2
yolxxc—y+u
3,2
_ Y X —ytu
ande =1/2 LI, 3 e v where
2z T =2
Jv=e3'v, Jw=e3 'w, (wv)=1,
and

_ yial—y+u
v = iyox/3-2iy*x 23+ ux, 2 4iy2V/3—iV3—yu+l | |
1

g
Il

wv

1

(¥*x? —y +u)’

1 y3x*2—y+u
— | —ivox A3y 34yt ux 2 —iy 23—y uti/3+1 | |

N (Mg, (2). 9+) = Mg, (Grs (D)), (37)

3,2
— Y X" —ytu
where ¥, = (1/2 Vﬁx*4_2y4x*2+y2_l), 12
_ —yOx 42y 2y du A=y —y w2

32—y tu ) ﬂ). The quadratic terms

of (37) gives

(T — 5 Iymay = 2Bg,v — B(v, v, 92, (38)
(J — )mi; = —B(,v), (39)
(T — e ¥ hymey =2 Bryv — B(D, 0, 9y). (40)

Applying the Fredholm condition to singular system (40),
we have

B )
(.2 Bryw — B(@. 5. 9,) = 0= By, = 202 0),
i ) BZR3 (ya x*)

where

Birs (v, xx) = —()/3)6*2 -y + u)4(iy6x*4«@ — 2iy4x*2\/§
+Y3ux?+iy2 V3 —iv3—yu+ yix,,

Bory, (v, %) =2 (=3 20,8 +2ivByu+ 129105
+2iy0x V3 —6iv3y ux,t — 189854
+ y6u2x*4 +2 i\/§y9u x*6 +5 yéx*4 — 2i\/§y3u x*2
+ 61\/5)/514 x*2 + 12 )/Gx*2
-2 y4u2x*2 - Zi\/§y3u —10 )/4x*2 - 4i)/4x*2
V3-2iV3 -3y + 9%t +2iy?V3
+5y2 = =)t -2y 2+ yr - D)
(iy6x*4x/§ — 2iy4x*2f — y3u x*2
+iy* V3 —ivV34+yu—1)>

+ 1.

w = —

2
(iyﬁx*“ﬁ—2iy4x*2ﬁ+y3ux*2+iy2ﬁ—if— yu-+ 1)

The restriction of the map (3) on (36) has the form

¢ > Gry(8) = e Fi¢ + BryZ2 + Cryg |22 + O™,
¢ eC.

The invariance property of the center manifold cause to

@ Springer

The unique solution of the singular system is obtained as
follows:
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2
25 3 (P —y4u) (ot =2yt =y u x4y 4y u-2)

MR,
mip = 3
2 (y3x2—y+u) yix,
MR,
where

milR; = (7/3)6*2 o M) <V6x*4 -2yt 4yt - 1)
(iy6x04\/_— 21')/4)c*2
\/§+y3ux*2+iy2 3—ix/_—yu+1)
(iy6x*4«/_ —2iy* V3 —yPux? +iy?

V3—ivV3+tyu— 1) ,
The ¢%¢ —terms in (37) gives:

(J — ezTﬂilz)m21 =2Cpryv + eiﬁiB_&moz

- 2B(v7 mii, ﬁ*) - B(I_)a myo, ‘0*) - C(va v, 1_)5 ‘0*)-
(4D)

The singular system (41) can be solved if

(0,2 Cryv+ e~ 5 Brymoa — 2B(v, m1, 9,)
— B(v,mpo, %) — C(v, v, 0, 94)) =0;

therefore, Cg, can be obtained as follows:

Cirs (v, X4)

Cgy = ,
P Copy (v, xs)

where C1g, (v, xx) = Q1 +8+ 83+ 84+ 85+ 6+ 87+ 88+ 9,
and

= (P’ —y + )’y QiV3y2u?
—214 y9u x84 354 )/7u Xt —
—38i«fy21ux*14+218i\/§y19ux*12
—14ify18u2x* +38ify18ux 12
—5101«[y17ux*]0+64zf)/16 2x, 10
+14iv/3yPudx, 10 — 180i«/§y16ux*10
+ 143y B2, 10 430173y Pux, 10
+610iv/3y Puxd — 11003y *u?x,8
—54ify13u3x* +8ify12 4x,8
+330iv3y U8 — 5003y Pulx,d
—14ify12u3x* —92i\/§y13ux*8
+28ify12u2x* —3Oix/§y12ux*8

o = —370iv/3y Bux,0 + 80iv/3y 2u%x,0
+76iv/3y i x, 0 —22i\/§y10u4x*6

66 ysu x*z

—280iv/3y ' 2ux,0 +601fy“ 2x,0
+40ify10u3x* —8[«/§y9u X
+68i«/§yllux* —76i«/§y10u2x*6
10ify9u3x*6 +62i«/§y10u x*6
—281f)/9u Xy +781«/§y11ux*4

—10iv3p %254 — 4403y %ux
—6iv3y%ux, % +18iv3y8ux?
+90iv3y 0uxt —20iv/3y%uxt

—361f)/8u3x* +14lfy7 4x 4
+ 4803y u xi* + 60iv3y8u%x,t
—24iv3y i x, +3i«/§y6u4x*4
—6ixf3y8ux*4+48i«5y7u2x 4

:—101[)/ U Xy —3y8+30ixf3y24x*]6
—30iv/3y? x4 + 546137205, 12

—198i+v/3y?2x, 14
+168iv/3y 9x, 12 — 135i4/3y 185,12
— 7983y 18x,10 — 3781 /3y 174,10
+ 6453y 10x,10 4 135i/3y P, 10
+630iv/3y 105,83 +420iv/3y Px,8
—1200i+/3y4x,8 — 51003y 3x,8
— 21003y "4 x,8 + 150i4/3y 12,8
—210iv/3y Bx,0 +1050iv/3y 2x,0
—0—6901'«/3/11)64< 421[}/12 4
—424iv/3y19%,5 — 150i/3y°x
—375iv/3y 1% 4—360i\/§y9x*

4
+ 54i«/§y10x*2 + 372i«/§y8x*4

o4 =42iV3y°x2 + 27413y T x,
—15i/3y8x.2 — 56iy%x,4V3
+15i33y x> = 10iv/3y u
+6ixf3y6u2
—2iv3y*ut = 10iv3y%u + 63y u?
- 98ify5x*2 + 2iﬁy4u3
- 21[}/314 + 281«/’3’]/514 - 8iﬁy4u2
+48iy 45 2V3 - 4i\/§y3u3
+2i3y2u* +28i3y*u — 8i3y3u?
+56iv3y3xs2 — 4i3y%u3
+ Zix/g)/ ut — 26ix/§y3u + Zix/gy u’
- 26i«/§y2u +2i\/§)/ u?
+8iv3y u+22iv3yu x>
- 16i«/§y8u2x*2 + 6i«/§y7u3x*2

—72iy0%2V3 + 203y 03
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{5 = —14if)/7u x*4 - Zi\/§y6u4x*2 + 423 y19u x*lz + 76)/18142)6*12
— 14iv/3y% x*4+12ify8ux*2 — 963y ux 360;/16 2,10
101f)/7u2x*2+8lfy u x* +8y15u3x* —348)/ ux* —76y15u2x*10
+6ix/§)/ U Xy —4ify5u4x*2 +312y15ux*10+1095y15ux*8
—82ify7ux* 4zfy6 2x,? +660y14u2x* —28y13u3x*8
+181fy u x* —51«[)/ u x* y 2y x* +615y ux*8+284y13 2y 8
—54ify ux>,< l2lf)/5 2x 2 —8y12u3 —1171y ux* 40)/12 2y 8
+ 143y 3,2 = 33y ut 2 — 58513y 560;/12 23,0 432911350
+46tfy U Xy +12lfy u?x,? +4)/10 4x 6 5)/ uw x* —480)/ ux*6
—2iV3y 3 ki 4+ 2003y u x,? —376y M uPx8 — 2932 + 2y 03 + 243

+14iV3y3u% x> — 8iN3y uxi? —44yTx, 2 + 77y + 423U
6 4
+24y +24u + 214y u xy
L9 = —6)/2143 +72x*10y15 - 259x>,<8)/13

t6 = —140y*u x> + 78 yOu x> — 357 13161591 — 114x,%9° — 42 %42, 2
— 238y x0 + 426970, — 22942 42920, — 42T — 696 1 Bu x,
—|—22yux>,< +29y +6yux*2 +10yux* —4yux*4

10143)6*6 9.4.6

+75y 81 x, ! +20)/ + v U Xy —309y12ux*8—|—850)/10ux*6+29y6

+1564y“ux*6+78y10 x 6—1—2]/ uxy 8 —50y4—50y3+24yu
+45y“ux*4+180y10u2x*4 —24y3ux*2+24y2
—87/9 3 6)/8 4x 4+9y7u5x*4 +144y4x*2+168y3x*2— 168)/6x 4
+ 105y 0ux,* + 184202, —229%u%x 4+44y4 252 —74y3u
— 12980304 = 3y Tutnt + 5900 x, +238912x,8 — 664y 10x 6+564y8x*
—786y9ux* +6y 82 x, —22y2u2—88y6x*2+u —747/ u
— 10973 — 9y %utx* + 87y U x,2 —12iv3y8 — 12i/3y7 +30iv/3y°
+249802x,2 — 8y uix,2 +30iv/3y% — 26iv/3y* — 26iv/3)°
. 3 ) . .
{7:4)/6 4, 2—3y5u5x*2+60y8ux*2 +2iv3u 4+ 8iy>v3 + 8iv3y +8iv3u)
7 2 2 6 3 5 4 2
+ayTutel —ayoutel 377 Cory (v %) =2 (%% —y = DOt +4iy°x V3
7 6 2 2
—4y*udx, +4)’ ux:? —86y%u — 2% = 8iy A3+ 2 +4iyAV3 —4iV3 —u?)
5 3 4 4 2 2
+ 14y°u +8y —27/ u x* (3y12x*8+2i«/§y9ux*6—12y10x*6
21 20 19 12
+372 0 =84y 200,12 — 21y P, +6iv3y uxe? —2iv3y3u + 1885, — y0ulx?
18, 12 18, 10
=71y Px " + 168 y Py +2ifyu—5y6x*4+2iy6x*4«/§+2iy2\/§—12)/6)6*2
+63J/17x*10+3267/16x*10—210]/1635*8 +2y u X* —21\/§V3MX*2+10V4X*2
15 8 14 8
=105y “xs” =565y Tk —6iv3yTuxt —4iy*x2V3+ 3%
+168y14x*6+105y13x*6 — 2t —2iV3 -5y +u +2)
12 12 4 11_ 4
+ 420y " “xx —84)/ — 63y Xy (y3x*2—y—u)(iy6x*4«[—2iy4x*2\/§
—65)/10)@,< +24y Xy +21y9x 2—747/8x>,<2 —y3ux*2+iy2\/§—i\/§+)/u—l)
7 3.5
—27y u—20y +4y u’ —y u® —yu (iy6x*4«/§—2iy4x*2«/§+y3ux*2+iy2«/§
—27y6u—20y5u —|—4y4 3 y u® —if—yu—kl)
—y2u5—|—77y u+42y u —6y3u3 (y6 4—2y4x*2+y2—1)2
6
{8:y2u4+yu5+yu4—138y5x*2 (=3 xx +21f)/ U Xy +6y x*
S 32,16 404, 20 14 75,21, 14 —2iVByu+2iv3-3y*+u’ +2)
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The stability of the bifurcating closed invariant curve is deter-
mined by

m}

Theorem 7 There is a non-degenerate 1 : 4 resonance bifur-
cation of the fixed point E, at

YO — 24 — w2+ tuy —2

k =
Yt —y tu
e vxioytu
B V6x*4 - 2)/4x*2 + 72 -1
where

u= \/—yéxﬁ +2y4x2 —y2 4 2.

Proof The map (3) has a fixed point with a pair of complex
conjugate multipliers ¢’ T if

N(E D) —&=0,
det(JE, MO TE D) —Dh)=0, (42)
k=0,

where k = cos(fp) along the Neimark—Sacker curve. The
exact solution of (35) is

1
X=Xy, Y= E(X*Jrﬁ),

k=

VSt — 2 2 —u i+ yituy —2
yint —y +u ’

2 (202 1)y* (P32 —y+u) ' x.
= Moy = mao| ,
20 -2 (y3x*2—y+u)3y3x*
ma01

(\7 - 12)"”11 = _B(va 1_)7 0*)7

Suppose that

_ _ 1 .
Mm@wn=vg+wwk§: muoe',

2<k+l (k+D!
[2S (C, mg; € (C, (43)

as the center manifold of (3) at the

YO — 24 — w242 tuy —2

yixt—y +u
Vxl—y+u
- Vﬁx*4 - 2V4x*2 + VZ -1

k =

(w,v) =1,

_ v xl—ytu
v = iyoxt=2iytnlu 3l 4iy2—uy+1-i | |
1

1 y3x*2—y+u
w=— [ —iroxt 20y tuydnl—iy2—uy+1+i | |
vw 1

The restriction of the map (3) to (43) has the form

o+ Gg,(0) =i 0+ Cro0°0+ Dgd> +0@), 0€C.
(44)

The invariance property of the center manifold cause to

N (Mg, (0), 9+) = Mg, (Gr,(0)) , (45)
3,2_
where ¥, = (yﬁx*f_;*y4xzz—:ily2_l, v,
6. 4 4.2 3.2,.2
rxe 2y );,*3);'51/;:,,” tuy=32 ,3). The quadratic terms of
(45) gives

2
2 X4 y3(y3x*2—y+u) (yﬁx*4—2 y4x*2—u y3x*2+y2+u y—2)

ming

=>mi] =

ming

2 (y3x*2—y+u)3y3x*

V32 —y +u
7/6)5*4 - 2)/4)6*2 + V2 -1

€ =

where
maor = (yx? —y —u) (vox* —2y%0% + y* — 1)
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Fig. 2 Phase portraits of (3) for y = 1.32, 8 = 1, € = 0.7. a Attractor before a Neimark—Sacker bifurcation for k = 2.48. b Neimark—Sacker
bifurcation for k = 2.514. ¢ The invariant closed curve created after Neimark—Sacker bifurcation for k = 2.9. d The breakdown of the closed

invariant curve for k = 3.1

. . . 2
(l)/6x*4 - 21)/4x*2 +u y3x*2 + l)/2 —uy+1-— l) ,
mi = (73x*2 -V - “) (V6x*4 - 2)’4x*2 + VZ - 1)
(iy6x*4 - 21')/4)6*2 +u ny*z + iy2 —uy+1— i)
(iy(’x*4 - 2i)/4x*2 —u y3x*2 + iy2 +uy —1-— i) .
Collecting the resonance terms of (45), we get

(J — 3 h)ma; =2Cryv — C(v, v, , 9,) — 2B(v, myy)

@ Springer

- 2B(v7 mii, 19*) - B(l_ja myo, 19*)7
(46)

(J — €2 I)moz = 6 Dr,v — C(0, 0, , D)
—3B(0, mga, B). (47)

The solvability conditions of the singular systems (46) and
(47) are as follows:

(w,2Cpg,v — C(v,v,v, ) —2B(v, mq1, ¥4)
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Fig. 3 a Continuation of fixed point in (k, x)-space. The Neimark—Sacker (NS) and period-doubling (PD) points. b PD curve of the first iterate
consists of R2 point, rooted at the PD point

1.3 .\\
1.4 F '\\
12F \ R4, R1 N
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1.4+ ) — \ Rz \
“ra S \ |
1k 1.2 N . | \
/ NN | N\
voosr “ 11 b R\‘\ | \
| N\
NS Curve .
0.8 CH \\
1+ Ry N
CH == N
o7r \ N
09t AN
0.6 [ TS N\
N J
05 081
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
K
Fig. 4 Neimark—Sacker bifurcation curve consists of resonance 1:2 Fig.5 Neimark—Sacker bifurcation curves of the first and third iterate
(R2), resonance 1:3 (R3), resonance 1:4 (R4) and Chenciner (CH) bifur-
cation

_ Copy(vs Xs) = (ySx* —2ip*n? +uyx?
_2B(U’ mig, 1-9*) - B(U7 my, 19*)) = 0’

) 32 . 6.4
o _ +iy T —uy+1 -0 0" —y —w)iy’x
(w, 6 Dpyv — C (3,9, 0, ) — 3B(@, moa, 9)) = 0. ) ’

—2iy4x*2—uy3x*2+iy2+uy —1-19)

Thus, 0Ot =2y 0 + 92 = D=y "8
- 4i7/4x*2 —|—4y10x*6 +6iy5ux*2 - 6y8x*4
C , D , .
Ry = —1R4(y x*)’ Dpg, = —IR“(J/ x*), + %202 —6iyTuxt + 0%t
C2R4(y7 -x*) D2R4(V7 -x*)

where

4 2

C1R4(Vs Xx) = (Vgx*6 - y7x* =5 J’GM x*4 - st*
+4y4ux*2 —7y3x*2 + )/3 + y2u —y —u)

Vul -y +u),

_2i7/3’4+47/6X*2—2y4u2x*2+2iy2
+2iyu—2y4x*2—2iuy3x*2—y4
+ 92 +2iy0xt 42
iy9ux*6+y2—u2—2i)

(3.2 5
Dig, (¥, xx) = =(y x" —y +u)
(iy6x*4—2iy4x*2+uy3x*2+iy2—uy+1—i)
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Fig.6 Continuation of fixed point in (k, x)-space. The fold point (LP),
Neimark—Sacker point (NS) and period-doubling (PD) point

y3(7 ygx*6 —15 y7x*4 +5 y6u x*4 +9 ysx*2

2

—dytux -yl -y —yiuty +w

Dog, (v, x+) =3 (=2 —4iy*e® + 490,85 161y ux,?

-6 ysx*4 + y6u2x*4 — 6iy7u X

4
+ y6x*4 - 2iy3u + 4y6x*2 - 2)/4u2x*2 + 21')/2
+2iyu—2y4x*2—2iuy3x*2

— y4+y2u2 +2iy6x*4

+ 21')/914 x*6 + )/2 —u? - 2i)(y6x*4 - 2y4x*2 + )/2 — 1)2
(iy6x*4 - 2iy4x*2 —u y3x*2 + iy2 +uy—1-— i)3

3 =y —u)

The bifurcation scenario near the R4 point is determined by

iCr,
0= "~ -
|l)R4

5 Numerical continuation

In this section, we perform a continuation method in order to
numerically illustrate the dynamical behavior of system (3)
by using the MATLAB package MATCONTM.

We consider two cases:

Case 1: We fix y = 1.32, 8 = 1, € = 0.7 and then vary k
as a free parameter. Phase portraits of system (3) for different
values of k are depicted in Fig. 2. When k varies as a free
parameter, the MATCONTM report is as follows:

label=PD, x=(-1.292804 -0.049974 5.859166),
normal form coefficient of PD=4.107218e+00,
label=NS, x=(-1.269509 -0.107168 2.514818),
normal form coefficient of NS=-1.716436e+00.
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k

Fig. 7 Neimark—Sacker bifurcation curve consists of resonance 1:2
(R2), resonance 1:3 (R3) points

By Theorem 3, the fixed point E, has period-doubling
bifurcations in which period-doubling point is detected as a
PD. By Theorem 4, the fixed point E, has Neimark—Sacker
bifurcations and Neimark—Sacker detected as NS. See Fig. 3a.

Bifurcation curves for two control parameters k and € and
keeping y = 1.32, 8 = 1 fixed are presented in Figs. 3b
and 4. PD curve of the first iterate consisting of R2 point is
presented in Fig. 3b, and the MATCONTM report is as follows:

label=R2,

x=(-1.287227 -0.063957 4.490942 0.572911),
normal form coefficient of R2:
[c,d]=3.737458e+00, -1.798414e+01.

Continuation of the Neimark—Sacker curve is presented
below, and the NS curve is plotted in Fig. 4:

label=R4,

x=(-1.087626 -0.449298 0.195028 1.253345 -0.000000),
normal form coefficient of R4:
A=-5.074101e-01+6.715665e-011,

label=R3,

x=(-1.198018 -0.263155 0.752476 1.097495 -0.500000)
normal form coefficient of R3:
Re(c_{1})=-5.334834e-03,

label=CH,

x=(-1.202052 -0.255120 0.791989 1.080684 -0.510406)
normal form coefficient of CH=4.071841e+00,
label=CH,

x=(-1.219442 -0.219442 1.000000 1.000000 -0.550071),
normal form coefficient of CH=-2.826399e-07,
label=R2,

x=(-1.287227 -0.063957 4.490942 0.572911),

normal form coefficient of R2:
[c,d]=3.737458e+00,-1.798414e+01.

See Theorems 5, 6 and 7.

By selecting R3 point to start the continuation Neimark—
Sacker bifurcation curves of the third iterate are depicted in
Fig. 5 and MATCONTM report is as follows:

label=R1,

x=(-0.166447 0.876093 1.213314 1.331092 1.000000),
normal form coefficient of Rl:s=1,

label=R2,
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x=(-0.155198 0.913682 1.210112 1.321448 -1.000000),
normal form coefficient of R2:
[c,d]1=-1.432277e+03,3.689239%9e+01,

label=R3,

x=(-0.156869 0.905841 1.210583 1.324738 -0.500000),
normal form coefficient of R3:
Re(c_{1})=1.652629e-02,

label=R4,

x=(-0.159336 0.896925 1.211271 1.327411 -0.000000),
normal form coefficient of R4:
A=5.019181e-02-7.855733e-011.

Case 2: We fix y = 2.2, 8 = .5, ¢ = 0.7 and then vary k
as a free parameter, the MATCONTM report is

label=PD, x=(0.088608 0.
normal form coefficient
label=LP, x=(0.371683 0.
normal form coefficient
label=NS, x=(0.652943 0.
normal form coefficient

192468 3.058207),

of PD=5.207281e-03,

635454 1.371749),

of LP=-4.777712e+00,
448438 2.571018),

of NS=-1.104228e+01.

By Theorem 1, the fixed point E, has fold bifurcations in
which fold point is detected as a LP. By Theorem 3, the fixed

Fig.8 Phase portraits of (3) for
k=19,=0.5,¢=0.88.a 0578y
Attractor for y =2.2. b
resonance 1:3 bifurcation for

y = 2.31. ¢ Chaotic attractor for
y =2.33

0578}
o574}
osn2f -
0s7f

0.568

L L ! L

point E, has period-doubling bifurcation in which period-
doubling point is detected as a PD, and by Theorem 4, the
fixed point E, has Neimark—Sacker bifurcations detected as
NS. see Fig. 6.

Bifurcation curves for two control parameters k and € are
presented in Fig. 7, and the MATCONTM report is as follows:

label=R2,

x=(0.730187 0.224601 5.477220 0.446706 -1.000000),
normal form coefficient of R2:
[c,d]=1.177514e+01,-6.499689e+01,

label=R3,

x=(0.588187 0.571752 1.903248 0.885721 -0.500000),
normal form coefficient of R3:
Re(c_{1})=-9.566540e-01.

Giventhat R3 = (0.5881870.5717521.9032480.885721—
0.500000) phase portraits of system (3) for k = 1.9, 8 =
0.5, ¢ = 0.88 and different values of y are depicted in Fig. 8.
Curve of “Neutral Saddle” of the third iterate is presented in
Fig. 9.
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o Flores G (1991) Stability analysis for the slow traveling pulse of the
FitzHugh—-Nagumo systems. SIAM J Math Anal 22:392-399
st Freitas P, Rocha C (2001) Lyapunov functional and stability for
1: '\\ (T FitzHugh—Nagumo systems. J Differ Equ 169:208-227
1.05 \\ \ N Govaerts W, Khoshsiar R, Kuznetsov YA, Meijer H (2007) Numeri-
1h \ \ h “C cal methods for two parameter local bifurcation analysis of maps.
¥ oesh ‘\‘\\\ . SIAM J Sci Comput 29:2644-2667
| e, \\ Guchenhermer J, Oliva RA (2002) Chaos in the Hodgin—Huxley model.
0 S ) SIAM J Appl Dyn Syst 1:105-114
0.85.F = ~ Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potas-
08 sium ions through the membrane of the giant axon of Loligo. J
075L Physiol 116:449-472
. . . . . . . . . Hoque M, Kawakami H (1995) Resistively coupled oscillators with
e mone e 2Bl zE s es e hybrid connection. IEICE Trans Fund 78:1253-1256

Fig.9 Curve of “Neutral Saddle” of the third iterate

6 Conclusion

In this work, we studied the BVP discrete model introduced in
[14]. The bifurcation conditions of this model along with the
computation of normal form coefficients are done through the
reduction of the model to the center manifold. Then, with the
aid of the numerical continuation method, all of the bifurca-
tion curves of the model was drawn and the numerical results
confirmed our analysis results.
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