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Abstract

This paper contributes to cubic aggregation operator and applications in decision-making problem. In this paper, we use
Dombi operational laws and Heronian mean operators, to develop a new concept of cubic fuzzy Heronian mean Dombi
aggregation operators, i.e., cubic fuzzy Heronian mean Dombi aggregation (CFHMDA), cubic fuzzy weighted Heronian
mean Dombi aggregation (CFWHMDA), cubic fuzzy geometric Heronian mean Dombi aggregation (CFGHMDA), and
cubic fuzzy weighted geometric Heronian mean Dombi aggregation (CFWGHMDA) operators. The proposed operators are
not deal single aspect, but also deal with the relation between multi-aspects making them more effectively solving decision-
making (MADM) problems. We proposed a new algorithm to solve a multi-attribute decision-making problem based on
the developed operators. Finally, we solved a MADM problems with the cubic fuzzy Heronian mean Dombi aggregation

operators.

Keywords Cubic fuzzy set (CFS) - Dombi t-norm and t-conorm (DTT) - Heronian mean (HM) operator

1 Introduction

In daily life, we are facing a decision-making problem which
is a very important issue in the management of companies,
for example, a company wants the most suitable supplier to
make a strong supply root. Construction Company wants to
choose a suitable site for construction to get better result
for completing its project. A bus traveling company wants
to estimate routes and select the suitable one and invite the
other companies. In ancient times, decision-making meth-
ods attracted the researcher interest in every field of life.
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Furthermore, owing to the difficulties in decision-making,
problems emerge in daily life. Decision-making problem
options have to be calculated from multi-perspectives in its
place and selecting only one before defining the most suitable
option. Hence, (MADM) problems have invited the scholars
to think about these issues (Shi et al. 2018; Xing et al. 2018;
Xu et al. 2018; Mao et al. 2018; Wang et al. 2018; Yu et al.
2018; Zhang et al. 2017; Li et al. 2018a, b). Nevertheless, the
decision-making information and selecting suitable values in
MADM are a very big issue recently for several causes. The
decision-making of concrete problems has many difficulties
of denoting attribute data very closely, the other point which
is influenced by factors such decision-makers personal expe-
rience and mental skills and sensitivity, and for an expert in
decision-making it is very difficult to utilize all the informa-
tion about the decision. Hence, assign attribute cost is urgent
and correct which is to be needed. In the last few years, schol-
ars have been working day and night to find a way to describe
uncertain information and some theories about them. Zadeh
(1965) is one of them. He presented affective tools called,
fuzzy set (FS), to solve decision-making problems. Since his
foundation, FS made a huge change in the field of math-
ematics. Afterward, Atanassov (1986) explained more FSs
and corrected its defects, the work of Atanassov is called an
intuitionistic fuzzy set (IFS), which shows us about the mem-

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-05512-4&domain=pdf
http://orcid.org/0000-0002-7474-5115

4176

S. Ayub et al.

bership and non-membership degree. As IFSs have many
good points to solve the problems of unclear information
and values, they compile the scholars to find some solution
for them. The notation of the intuitionistic fuzzy weighted
averaging aggregation (IFWA) operators was introduced by
Xu (2007), and Xu and Yager (2006). The notation of intu-
itionistic fuzzy Bonferroni mean operators was (IFBMO)
introduced by the Wang and Liu (2012), Zhang (2017), and
Xu and Yager (2011) and their simplest forms, etc. Arqub
et al. (2017) defined some application of reproducing kernel
algorithm for solving second-order, two-point fuzzy bound-
ary value problems. Patel et al. (2015) introduced a novel
methodology toward a trusted environment in mashup web
applications. Notation of intuitionistic fuzzy Maclaurin sym-
metric mean operators is (IFMSM) proposed by Xia et al.
(2013) and Qin and Liu (2014) in order to show relationship
between multi attributes. Al-Janabi et al. (2020) developed
an innovative synthesis of deep learning techniques (DCap-
sNet & DCOM) for generation electrical renewable energy
from wind energy. Alkaim and Al-Janabi (2019) defined a
multi-objectives optimization to gas flaring reduction from
oil production. Al-Janabi et al. (2020) introduced a new
method for prediction of air pollution based on intelligent
computation. Al-Janabi and Alkaim (2020) defined a nifty
collaborative analysis to predicting a novel tool (DRFLLS)
for missing values estimation. Al-Janabi et al. (2015) pro-
posed design and evaluation of a hybrid system for detection
and prediction of faults in electrical transformers. Liu and Li
(2017) defined some Muirhead mean operators for intuition-
istic fuzzy numbers and their applications to group decision
making. Arqub and Al-Smadi (2020) developed some fuzzy
conformable fractional differential equations, which is the
extended approach and new numerical solutions. Arqub et al.
(2016) proposed the numerical solutions of fuzzy differential
equations using reproducing kernel Hilbert space method.

1.1 Motivation and limitation

IFSs have a good advantage to explain decision informa-
tion in MADM problems for decision-makers. Nevertheless,
IFS has many defects that are not used in many circum-
stances for experts in decision-making to given facts. In the
IFSs, one of the key points is that the unknown power is
to ignore it, for example when experts in decision-making
take an IFN (0.2, 0.3) is denoted his estimation on a posi-
tive attribute. Formerly, the unknown value of the experts in
decision making is 1-0.2-0.3. In actual MADM, the degree
of the unknown should not be found by itself and should be
proposed by decision-makers. Suppose when the degree of
membership and the degree of non-membership are found
then the degree of the unknown is also found. For this
purpose, decision-makers take some values 0.2 is the mem-
bership, 0.3 is the non-membership, the experts in decision
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making are not clear about the value is 0.1, then the experts in
decision making represent resulted value as (0.2, 0.1, 0.3),
which is not contained in IFSs. For the solution of these
problems. Hence, the inherent fuzziness information with a
great effort to solve this. IFSs incorporated fuzzy inference
systems were presented by Le et al. (2017) to improve their
presentation. Commonly saying, MADM methods are of two
types. The first type in decision-making is old way decision-
making. The old way is related to cubic fuzzy information in
MADM problems. A second type is a form of aggregation
observation operators, in which we used the aggregation for
multi-attribute values into a single one and choose the best
one. For a piece of good and suitable aggregation informa-
tion, for a cubic fuzzy number (CFNs) (Fahmi et al. 2018)
proposed some geometric operators with triangular cubic lin-
guistic hesitant fuzzy number and their application in group
decision making.

Thus, in MADM problems these operators have been very
strongly used in CFNs, and there are few boundaries first
of all cubic fuzzy numbers consists of algebraic operational
laws for cubic fuzzy operators. Nowadays, DTT (Dombi
1982) is very powerful gears in aggregation and used in many
processes of aggregation in single-valued neutrosophic infor-
mation (Chen and Ye 2017), hesitant fuzzy information (He
2018), and intuitionistic fuzzy information (Liu et al. 2018).
So, it is important to extend CFNs to DTT and their basic
operational rules. Therefore, all the cubic fuzzy aggregation
is not interrelated to each other between CFNs. However,
attributes are more practical and MADM issues are interre-
lated, which means the interrelationship among the attribute
values should be considered when it is aggregate. Nowadays,
alarge number of aggregation gears that can be proposed such
interrelationship between aggregated variables have been
come to models, such as the Heronian mean (HM) (Sykora
2009) Bonferroni mean (BM) (Bonferroni 1950). In the lit-
erature (Yu and Wu 2012), the expert has suggested why HM
and has certain meliorist on BM. Therefore, in this article
we work on HM and GHM are the important aggregation
information procedure for combining CFNs based on DTT.
So, we introduced for MADM a new procedure within the
range of CFSs.

In this article, we presented new rules for the CFNs based
on DTT; to present a new cubic fuzzy Dombi Heronian mean
operators for the aggregation of CFN’s and introduced a inno-
vative style to decision making. In this way, the different
sections of this paper are consisting of under. (1) Contain sev-
eral elementary definitions of CFSs, DTT, HM, and GHM. (2)
Contain propose a group of CFHMDA notation is cubic fuzzy
Heronian mean Dombi aggregation operators. (3) Contain an
algorithm for MADM problems with cubic fuzzy informa-
tion. (4) We presented proof and numerical examples to verify
the proposed method and the last result of this article.
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2 Preliminaries

This section provides the basic concept and definition of
fuzzy set and cubic sets.

Definition 1 (Zadeh 1965) Let F # ¢. Then, a fuzzy set E
over F is defined by,

E = {{&(»/y) |y € F}, 2.1

where &, is called membership function of E and is denoted
by & : F — [0, 1]. For each y € F, the value pq(y)
represents the degree of y belonging to the fuzzy set E.

Definition 2 (Atanassov1986) Let F # ¢, then a cubic set
C in F is defined as follows,

C={.&0), va) |y € F}, (2.2)

s0 &4 (y) is an IVF setin E and y (y) is a fuzzy setin E. A
cubic set C1 = {(y, & (¥), v« (¥)) |y € E} is simply denoted
by C = (&4, Vo) ,and C E jsdenoted by the combination of all
cubic setsin E. A cubic set C = (&, Yy) in Which &, (y) =0

and yu(y) = l(resp &, (y) = 1l and yu(y) = 0)Vy € E is
denoted by O (resp 1).

A cubic set C; = {(y,&s(). y8(»))|y € E} is simply
represented by C = (£3, ) denoted by C the combination
of all cubic sets in E. A cubic set C = (£g, yg) in which

£p(y) = 0 and yg(y) = 1(resp §g(y) = 0 and yg(y) = DV
y € E is denoted by O (resp 1).

Definition3 [?] Let E = ¢. A cubic set 8 = (£, (¥), Yo (y))
in E is said to be internal cubic setif &, () < yo(y) < & (y)
forally € E.

Definition 4 [?] Let E = ¢. A cubic set 8 = (§4(), Yo (¥))
in E is said to be an external cubic set if y,(y) ¢
(6, (»). &5 () forall y € E.

Definition5 [?] Let C; = {[&,.65]: v} and C; =
{[Eﬂ_ L€ ; 1; )//3} be two cubic fuzzy sets (CFSs). Then, the
operations on cubic fuzzy sets (CFSs) are defined as follows:

(a) C; C Cyiffforalla, B € C

v 265,60 =& andyy < vp
£, <&5. &5 <gfandy, =y

® Cinrr Co=(T (6.6 .7 [65.65]. 7 [ ws])-
© Crur G =(T 6.6 |7 (& 65].7 [vo 8]

Hence, any pair (7', T*) can be used; T represent a t-norm,
and T* denote a t-conorm.

To compare any two CFNs, firstly we introduced the con-
cept of score function.

Definition 6 (Wei2017) Letacubicnumber C = {[&;, & ]:
Ya}, then a score function S of C can be defined as;

5{-1-5;—%1

S(C) = 3

(2.3)

Definition 7 (Dombi1982) Let A > 0 and y, z € [0, 1]. The
DTT are defined as follows;

Tpa(y.2) = N T 2.4
1— -z
() (=)
and
1
Tg’k(y, 2)=1-— (2.5)

A 2 1/x°
1+(1+(1Ly) +(%) )

is consist on the notation (DTT) Dombi t-norm and t-conorm,
we propose some new rules for CENs.

Definition8 [?] Let C; = {[&; .61 v} and C; =
{[E PRk Er 1; y,g} be a cubic numbers. Then,

c1 ®p 2

c1 ®p 2

. N5 %
e )
o [

@ Springer



4178 S. Ayub et al.
i Proof According to definition, we have;
1 1 .
N\ - 75 |
oo [T )
- ——
1+(1:(11°;a) ) | |
r N1 N |
1 1 len = l+<p<%> > 1+(p<15ﬁ) )
% N % £
¢! = 1+<q(]f“ ) ) l+(q<$) ) 1— 1
L o & A\ /A
- +(n(12%))
(o))
. g 1 1
3 Heronian mean €= N /A N |
1-& 7
1+<q( & ) ) 1+ LI(—f)
Definition 9 (Sykora 2009) Let the series of crisp numbers “ &
isyii=1,2,...,k),if
1 1
5 k k r+q 1— 7
p-q = _— P q . A
HMPI 01200 = | oy 222007 | GD 1+(f1(13’5 ))
i=1j=i vp
1 k k 2
GHMP T (y1, 32, 30) = —— TTIT (pyi +ayj)&D,
Pzt j=i Let
(3.2)
where p, g be a positive numbers, then HM?-9, GHM?*9 is 1—&; 1—&F 1—&5 1 — é;
called Heronian mean (HM) and geometric Heronian mean £ = Ai, ¥+ Aj, £- = Dis §+ Bj,
(GHM) operators. In this unite, we discuss HM to cubic fuzzy “ ya A B
Heronian mean Dombi aggregation (CFHMDA) operators. 1 Ya i 7 F_-c s
— Va — VB

4 The cubic fuzzy Heronian mean Dombi
aggregation (CFHMDA) operator

In this section, we generalized the aggregation operator of
cubic number by using the Heronian mean and Dombi T-
norm and D-T-conorm. We define the cubic fuzzy Heronian
mean Dombi aggregation operators.

Definition 10 Let p,q be positive numbers and ¢; =
([EM', $ﬁi] ;vid@ = 1,2,...,k) be a collection of cubic
numbers and A > 0. Then, the cubic fuzzy Heronian mean
Dombi aggregation (CPHMDA) operator is defined as;

CPFDHM?” Y (cy, ca, ..., Ck)

- k(k+l)ZZC ®cj

i=1j=i

1
r+q

“.1)

Theorem 1 Let p, q be positive numbers and ¢; = ([Em, é‘;ﬂi] ;

yiy(@ = 1,2,...,k) be a collection of cubic numbers and
A > 0. Then, the cubic fuzzy Heronian Mean Dombi aggre-
gation (CFHMDA )operator is defined as,
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Then, we have,

1 1 .
|:1+(17Af+quj\.)1/z > 1+(pB,"+qB’;)mi| ’
-

NI
l+(pCi) +qC’,‘)

P 4 _
¢ ®p ‘j =

k
CI(’ ®p C‘]I_

j=i
. 1 1/x i 1 1/x
1-1/1+ ZW Ly A=1/1+ ,-Z:,-i(pkfwﬁjﬂ ;

. 1/4
/1 + <Z pC‘Jqu )

Jj=i

1/

k k
171/1+(l§“§m ,
ok 1/x
o))
Kk k 1/
1/(‘+(le2,¢qu) )
1

==
(e

1j=i

k k
Sy @l =

i=1j=i
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. 1/
k(k+1) 1
11+ ((2(p+q)> I <i§:1j:i PA}+q A} > ’
. 1/%
_ k(kt1) 1
=3[+ <(2<M>) 1 (;g TEE )
1/%
Kk
k(k+1) 1
-1/ (1 + (2(p+q> ((l;j:’_ pCl+qCl ) ))

Now, putting the value back we have;

CFHMDA?(cy, ca, . .., )

/2
k k
k(k+1) 1
e[y
ll/t,,(sﬂ>+q(§+u>

Kk
—_ Kkt 1
= G X

1-§, 1-&F *

‘ N

- ]"’<s’ﬁ> q(ﬁﬂ)
5 5

1/
) K1) o &
-1 (1+(<1+ (z(erq)[Z“Z,p( ) +"(‘y€ﬂ)) ))

This is the completing proof of CFHMDAP-4. O
Moreover, the CFHMDA operators satisfy the below prop-
erties

Theorem 2 (Idempotency). Let ¢; = <[$0;, S;l] ; J/i)(i =
1,2, ..., k) are the collection of CNs, ifci(i = 1,2,...,k)
are equal, that is ¢c; = ¢ = <[§a L&, ] > Then,
CFHMDA? 9 (cy, ca, ..., cn) 4.2)
Proof Let CFHMDA”(cy, ca, ..., ck) = (&, va), we
willprovethat CFHM DAP4(cy,ca, ..., c) = ([éa , $+]
Ya), since ¢; = ¢ = ([&5.65]:v«), and ¢; = ¢

([Sa,s ] ) we have,

1/
_ k(k+1)
g =1/1+ 2(p+q);;p(1;a) +q(‘giﬂ+)k
1/n
_ k(k +1)
_1/ 1+ 2([7"'6])22 (%) +q(1§i>)\
1/n
k(k +1)
=1/|1+
2(p+q);;(gs> P +q)
1/x

kk+ 1) & k(k + 1)
2p+a) iz 12( )k(p—l—q)

N\ /A
(e () -

1/ {1+

Again, for £

1/2
k(k+1)
=0y +
o 0B Y i)
1/
k(k + 1)
=1/[1+
e e
1/5
B k(k + 1) k(k + 1)
=1/|1+ 2(p+q)12};2(1 S ro

() =

Similarly, for y«,

1/
k K
k(k+1 1
= 1=y 1 | [ 14 GO <y ——
PO () e (25)
ok 1/1
k(k+1) 1
=il e Y
w ’_l’z’p(lzy>A+q(lzy)) ))
1/1
k(k+1) 1
=1-1/]1 N
/ + 2(p+) /ZZ y A
i=1j=i T (p+q)
o 1/
Y ;(k+1) k(k+1)
(p+q)' 1j= 12( y) (p+4q)

-1/ (1 + ((H’y)k)m) =y

Hence, proved. O

Theorem 3 (Monotonicty) Let ¢; = ([&7,&%]:vi)( =
1.2,....k) and ¢ = ([Si_*,§i+*];yi*>(i = 1,2,...,k)

be two CNs, if c; < c;‘,for all i, then,

CFHMDA" (¢, ¢, ..., ck) < CFHMDAP9(cT, ca, ..., c})

4.3)

Proof Let CEFHMDA?(c1, ca, ..., cr) = ([&7,&7]: v)
and CFHMDA?4(cy,c5,....¢f) = <[§f*, §i+*] ; yl-*),

since & < &, then we have;

-6 1-g
& T &
1—& _
& =&
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Thereafter, 5 The cubic fuzzy weighted Heronian mean
" Dombi aggregation (CFWHMDA) operator
ko k
ke <13 - ! . Definition 11 Let p,g > O and ¢; = ([&.&]: %) =
2p+aq) 4 imip <1§—E’) tyq (1;_‘51) 1,2, ..., k) be a collection of CNs. If
i J
1/
. CFWHMDA (¢1, ¢, . . ., &)
k(k+1) 1 e
2 v <V Y 2 oy
i=1  j=i (1—5-*) 5 S wici)’ @p (wici)? ,
p g +4q 57 k(k—i—l);;( i ’) D( J ./)
And, (5.1)
K+ 1) ko k ! R so the weighted vector is W = (W1, W2, ..., w,)T of ¢
R Evpre x1/y VY, (i =1,2,....k) where i € [0, 1], 7, 1; = 1. Then,
=1 j=ip ( g ') +q ( g J) CFWHMDA?"4 is the cubic fuzzy weighted Heronian mean
1/2 Dombi Aggregation operator.
ko k
k(k+1) 1 - .
=20+ XI/ZZ 1—&r\* N Theorem5 Let p.q > O and ¢; = ([§.§ ]y} =
=t =ip ( 3 ) +4q (ﬁ) 1,2, ..., k) is a combination of CNs. The aggregated value
15 CFWHMDA is still a CNs and,
koK
k(k+1 1
1/(1 + 2((p __:i q)) X 1/12 g CFWHMDA (cy, ¢, ..., )

x A\
il ip(lgéi) _,’_q<1;51) 1/
I : ) k k p
v 11+ (é’fﬁﬂ,ﬁ x1/ (Z,/Z]/( ( : ) i (i"+ )))) |

kk | | |
k(k + 1) l W
<10+ x1 B i

/( 2(p+q) KZZ 1=\ -\ * SR Y LR =TI R VA 3D D1V [ -
i=1 jJP( s#) +4q T’ o e . <l) ’ ( : )
i J o o

1/
k
. .. .. 1/ |14+ [ REED oy 1 L 4
which means & < &%, similarly, we can also prove remaining / (2”’“’) / E],E / a(tey ()

result like this.

Theorem 4 (Boundedness) Let ¢; = ([&7,&7]:vi)( = Proof According to given definition, we have,
1,2,...,n) be a collection of CNs , if c| =

([(max)g;”, (min)&;"]; (min)y;)andc, = ([(min)§;", (max)&;"|; I
(max)y;) . Then, 1 1 - 1
NN Nk
_ + 'lIJiCi = l+<ﬁ)i<EL_> ) 14+ | Eﬁ
¢, < CFHMDAP(cy,c2, ..., cr) < ¢ (4.4) L 1&g =
I
Proof From theorem, we have; 1+<'1'i( lf”yo,) )
CFHMDA” Y (c; , ¢y ..., ¢ ) =¢;
1 1 )
CFHMDA” (¢, ¢, ..., er) = cf . - o T N |
wjc; = 1+<w1<1_‘§;> > 1+(uﬁj<1fég) )
Thereafter - 1 1
-—Ll
- o)
CFHMDAP 9 (¢, ¢5 .., ¢;) (%))
< CFHMDA?9(cy, ca, ..., Ck) Let
< CFHMDA? (¢, ¢, ... k)
_ + %-— €+
Therefore, we get i7 = A, iJr =Aj, b — = B;, £ T
- & 1-& 1-¢; 1—¢
Cy < CFHMDA?” 9 (cy, ca, ..., Ck) SC?r — B Yo - C VB = C;
o e Yo - VB /
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Then, Now, putting values back, then we have,
5 7
. (k(k+ 1)2;2(‘”" )" ®p () />")
(Wic;)? o 1/
1 1 1 Kk k
= ; |1+ ] S 1/(221/( e ))) )
R 1/’ N |’ R 1/ 2p+a) g S eV
[1 + (p/iiAl)* 1+ (priviBl) } 1+ (p/iich) } ( ( FE () ()
~ 1/%
(Wje) Kk
IR R R P B
_ ! ! o ) e()
- 1/n 1/ | 1/ 1/x
NAM . RA N (OA
e aris) ™ v (o) "] o) oo (E2 (o))
T—ya I\ T-yg
This is the complete proof . O
Thereafter, Moreover, CFWHMDA having below properties:
Theorem 6 (Monotonicty) Let ¢; = <[$i_,éi+] ; yi)(i =

(Wici)? @p (Wjcj)?

1 1
N R . —
_ 1+(p/w,-Al.*+q/ij§) l+(p/wiBl-)“+q/ij;-“)
. 1

4 N N I/x
1+ (p/ii Cra /i C7)
And

, koK
YTRTEET Wici)? ®p (Wjc;)?
k(k+1) ;/2:; I

ok 1/
1—-1/11
/ ( + (k(k+l g g (p/w,A +q/u A”))
, ok . 1/x
- = k(””i;]; (p/i; B} +q/1b; B})

ok 1/
2 1
-1/ (1 + (k(k+1)’,§”z=i(1)/Ib,c{~+q/1zv,c;4>) )

Furthermore,

1

2 k k Ptq
(Wici)? @p (Wjcj)?

k(k+1)
1/ (1 + <2<p+q>

1/
x 1 — .
/Zl ,Z, (p/w,A*+q/w,A*)) )

ok 1/x
— k(k+1)
= /1 1+ (2(p+q)lzljzl (p/w,B"+q/w BA )

k
k(k+1)
1/ (1 + (ﬂpﬂ)z

r 1/
1
21,2 <p/wiC}+q/wa§>>

1/x:|

1.2,....k) and ¢ = <[g*

* §+*] .

i*>(i= 1,2,....k)

be two CNs, if ¢; < ¢}, for all i,then,

CFHMDAP (¢, ca, ..., ck) < CFHMDAP?(cf, ¢35, ..., ).

Theorem 7 (Boundedness) Let ¢; = ([Ei_, §i+];
collection of CNs,

1,2,...,k) be a

<|:(§(Tnax)’ g(-:_nin)] 5 )’(min)>andc
where A >

if ¢f =
) = <|:§(:nin)v g(?nax)] ; )’(max)> s

L k(k + 1)
Sma) = 1/ (1 + (2(p+q)

x1/ ZZ]/(

i=1j=i

(1 — (max)&;)
X
(max);”

1/2
)

. k(k +1)

x1/ ZZ]/(

i=1j=i

( 1 — (min)g;" )
X
(min);"

1/

k(k +1)
min) = 1 1
Vomin) /< +<2(p+q)

x1/ ZZI/(

i=l1j=i

1 — (min)y;
( (min)y;

=
)

k(k+1)

x1/ ZZ]/(

i=1j=i Wi

(1 — (min)&,~ )
X
(min)E,’_

/2
q
12)
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- k(1) (1= (max)g”
%_(max) =1/ (1 + <2(p+q) 8 ( (max)$i+ )

1/A
x1/ ZZU(

) 9
i=1j=i

Ve = 1/ (1 n <k(k +1) 9 (1 — (max)yl-)

2(p+q) (max)y;
1/
x1/ 221 / < )
i=1j=i
Then,
¢~ < CEWHMDA? 4 (¢ci,ca, ..., ck) <cT (5.3)

Cubic fuzzy geometric Heronian mean Dombi aggrega-
tion (CFGHMDA) operator

Definition 12 Let a series of crisp numbers is y;(i =
1,2,...,n) and p, g be a positive numbers.If

GHMP4 (y1, y2, ..., y) = m]_[]_[(pyz + qy))

i=1j=i
(5.4)

this is the geometric Heronian mean (GHM) operator.
In this section, we discuss cubic fuzzy geometric Heronian
mean Dombi aggregation (CFGHMDA) operators.

6 The cubic fuzzy geometric Heronian mean
Dombi aggregation (CFGHMDA) operator

Definition 13 Let p,g be a positive numbers and ¢; =
(c1,¢2,...,cy) be acollection of CNs and A > 0. If,

CFHMDAP"’(cl €2y v Ck)

C @ c k(k+l)
p+q]_[]_[(p, D 4c))

i=lj=i

6.1)

the CFGHMDA?4 is the notation of cubic fuzzy Heronian
mean Dombi aggregation operator.
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Theorem 8 Let p, g be a positive number and c; = (cy, ¢3,
., ¢k) be a collection of CNs and ) > 0 . The resultant
value of aggregation CFGHMDA is still a CNs and

Proof According to given definition, we have:

1 1
N\ N1 |
pa=1 | ((2)) (52)
Eot gﬁ
1— L
0\ L/*
1+(p(li‘;a) )
1 1 —_
R R
et et
qc; = 1+<p<';ﬁ) ) 1+(p<liﬂ> )
o Sﬂ
1— ! .
A
(r(5))
Let
g 1-gf 1o
1> + ] —
a 4 &
+
1-& Yo o vB
Bis -+ ij I - J
then,
(pc; ®p qc;)

1 .
1+(p3?+qBj)W] 7
-
1+(pC,~A+qu)1/A

k k
HH(PC,‘ ®©p ch)

i=lj=i

|
= [H(PA?MA_/)I/“
1 —

’
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Then,

P+ ql_[n(PC ®p qc; )L(kﬂ)

i=lj=i

k(k+1)
1/(1 + 48D 1/<,~
. a |
— k(k+1)
l (1 + 2 <V (Z > 1+(p3.*+q3‘4))>

(e ()

[Nysle
~
™M~
T
—~
el
=
+
=
b
>
S—"
v
\_/
=
>

I
~.
[I§

i
<
I
+
—~
bS]
Q
atad
+
Q
a
N

putting values of (A, B, C)

CFGHMDA?(c|, ca, . ..., ck)

- 1/h =
k(k+1) k& 1
IVARER N = SVl D)) —L — .
FE (o) ()

1/

k k
= k(k+1) 1
1+ Yy ] ))

< e\ * e\
i=1j=i 1+ p( ﬂ ) +11<7+‘6
L ¥ £

1/
Kk
Kkt 1 1
-V ‘+2(p+q)>X1,Z,Z 5\
bt 1+(p(]guy ) ra( i) )

This is the complete proof of CFGHMDA?-4. O
Moreover, CFGHMDA has the following properties.

Theorem 9 (Idempotency) Let ¢; = ([ét;i, é;:] ; yi>(i =
1,2, ..., k) are the collection of CNs if c;(i = 1,2,...,k)
are equal, that is ¢c; = ¢ = <[§a_, 53_] ; ya> ,then,

CFGHMDAP1(¢cy, ca, . ..

L C) =1

Theorem 10 (Monotonicty) Let ¢; = ([Si_, S{"] ; Vi) (i =
*

L2k ad e = (g6 ivr)a =120
be two CNs ,if ¢; < ¢}, forall i, then
CFHMDA? 9 (cy, ca, ..., Cr)

< CFGHMDAP 4 (¢}, c5., ..., ¢f) (6.3)

Theorem 11 (Boundedness) Let ¢; = ([Ei_, §i+] ; yi> (i =
1,2,...,k) be a collection of CNs, ifcfL = <[(max)é§i_,

(min)&;" ] ; (min)y;)andc; = ([(min)&,”, (max)&;"]; (max)y;).

Then,

¢5 < CFGHMDAP(c1, ¢z, ..., cx) < ¢ (6.4)

7 The cubic fuzzy weighted geometric
Heronian mean Dombi aggregation
(CPFDWGHM) operator

Definition 14 Let p,q be positive numbers and ¢; =
(&, , f;‘;]; vo)(@ =1,2,...,k) be acollection CNs. If

CFWGHMDAP’q(Cl 2y ..., Ck)
. 1
H]‘[((pc,) " @p (gej)” ) (7.1)
z 1j=i
so the weight vector W = (1, Wy,...,w,)! is of

cii = 1,2,...,k), satisfy w; € [0, 1], Y7_, w; = 1, the
CFWGHMDA?-1 is called the cubic fuzzy weighted geo-
metric Heronian mean Dombi aggregation (CFWGHMDA)
operator .

Theorem 12 Let p,q be a positive numbers and c¢; =
(c1,¢2,...,cr) be a combination of CNs and » > 0. The
aggregated value by CFWGHMDA is still a CNs and

CFWGHMDAP (c1, cs, ..., ck)

1/x
el () )

1/
_ kGi+1) L q
IR LT i -+ )

i=lj=i 5 ]
/ “r(l—e,) “/(,,ET
B 4

k k
/(|+(§(‘;L‘I’> x 1/ (lel/(
==

Proof According to definition, we have

pei =

+
—
=
/N
an
R | |ov
3
SN———"
>
~——
3
>
I
—_

+
S
<
—
o | T
=™ | |
=
~——
>
~———
I
>

1 - ! 7
A
1+(n(124))
1 - 1 W\ /%0 1 - ] PRV
c;= (o =65
qc; = o I+| p ot
B
1 - L )
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Let
1—& 1—&F -8
— 1 - ’ —
& & Tg
1—&f 1- -
=B, — 2 =B, — L=, — Y ¢
Eﬂ Ya VB
(Pci)w[

1 1
=q|1- , 1= ;
{[ L+ (p/iAn)'™* 14 (p/u”uB?)'”}

1
l-
1+ (p/iict)* }

(ch)ua,-

|:1_ 1 71— : 1/-Ai|;
= l+(q/fv,-A‘-) 1+(q/u)_,3})
1— 1

(q/w, C)\)l/

((pei)™ @b (ae))™)

i I )
N L ON\A N 2 E
_ |:l+(p/w;A;‘+q/w_,'A”]?) 1+(p/w,3,‘v+q/w,3;) }
1

. " 7
l+(p/wi Clq /i Cj:)

k k
2 w; wj
mﬂﬂ((ﬁci) ®p (ch) )

1/5.
-1/ (1 + (k(k+l) )3 Z = (r /wIAA+q/w]AA))
, K ] 1/x
= I=1/11+ k(k+1)i§lj§i (p/IDiB;‘-Fq/IDjB;‘)

& 1/
2 1
1-1/ (1 + (k(k+l)i§§(p/ﬁ),-C,.)“+q/1f1./-C]k.)> )

Furthermore,
Now putting values back,

[
-

Kk k
2 ; ;
——T[ [ [«wen™ @b (g¢;)"™)
|:k(k+ I)i:Ij:i !

k k
k(1) )
1/ (1+ (z<p+q> 1/ (,;,Z_,-l/(. (. . )-A + m (M;)x
by | —2% J +
i o &y

1/
k k
=1y (1 + (;{;L‘I’) x 1/ (Z”Zl/( (.iﬂ—)h + M))) )
w; ? wj E,‘;
1/n
/( (g0 (g2 (et 7)) )
Yo i\ 7

Thus, this is the required proof of the theorem.

The CFWGHMDA satisfies the below properties.

@ Springer

Theorem 13 (Monotonicty) Let ¢; = ([&7,&"]
([ &5

1,2,...,k) and cf =

be two CNs, if c; < c;‘,for all i, then

CFWGHMDAP ¢y, ¢, . ... 1)
< CFWGHMDA?4 (¢}, ¢35, .. .,

Theorem 14 (Boundedness) Let ¢; = ([Si_, §i+] ;
a collection of CNs,

1,2,...,k) be

cr)

yi) (i
i et

(7.2)

+ + 1. — _([e- - 1.
<|:(é(max)’ $(min)] ; V(min)>andcz = <|:‘i:(min)’ s(max)] ; V(max)) )

where A > 0

k(k +1)
Too=1/(1

x1/ ZZI/(

i=1j=i

I — (max)§;”
(max)§;

L k(k + 1)

x1/ ZZI/(

i=1j=i

|
)
<>

(min)&;"

1
Y(min) = 1/<1+ (k(k+ ) X

2(p+q)

x1/ ZZ]/(

i=1j=i

1 - (mm)y,
( e

k(k + 1)

x1/ ZZ]/(

i=1j=i

I — (min)§;"
(min)§;~

k(k + 1)

x1/ ZZI/(

i=l1j=i

(1 (max)§;

(maX)E+

wi

Y(max) = 1/ (1 + <k(k+ D X

2(p+q)

x1/ ZZ]/(

i=lj=i

)
)
)
)
)
D))
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B e e c G G ‘s
I ([.3, .41, .2) ([4,.6];.2) ([.3,.6]:.9) ([.2,.31; .8) ([4,.51;.7)
I ([.L,.2],.7) ([.3,.71; .2) ([.2, .4]; .3) ([4,.5]; .4) ([.25, .8]; .6)
I ([.8,.5];.3) ([.4,.6];.8) ([.1,.25]; .4) ([.2,.7]; .5) ([.3,.6]; .8)
I ([.6,.2]; .3) ([.3,.8];.2) ([.3,.5];.5) ([.9, 41; .2) ([.5,.3]; .6)
Is ([.8,.9]; .2) ([.4,.6];.3) ([.4,.2];.8) ([.7,.3]; .2) ([.2,.3];.5)

Then, to aggregate all the given information. Then, we obtained all
values of C; (i =1, 2, ..., m) of alternatives.
¢~ < CFWGHMDA%(cy, ca, ..., cx) <c* (7.3)

8 A models for cubic fuzzy aggregation
operators with MADM

In this article, we discuss cubic fuzzy aggregation opera-
tors to MADM. Suppose w = (W, Wy, ..., Ww,) be the
weighting vector of the attribute C; (j = 1,2,...,n), sat-
isfying w; € [0, 1], Z’;-:] =11 ={L,0,...,I,}bea
set of alternatives and C = {Cy, C,, ..., C,} be a set of
attribute for decision making the decision-makers commit-
tee are decide over alternatives, for criteria C, the members
of committee are required to use CFNs to show best one
result, which can be represented as 8;; = ([ oc_i,- , 5;;].]; Vaij)
i=12,....m;j=12,...,n).50, F = (Bij)mxn s the
decision matrix.

Here, we apply the CFHMDA, CFWHMDA, CFGH-
MDA, and CFGWHMDA operators to the MADM problems.

Step 1 We use the decision information given in a formula
F = (Bij)mxn to remove the different attribute
types. The decision should be normalized:

” wij), Cj €8

([55” Sﬁlj] vgij), Cj € S

where S represents the benefit attribute and S, represents
the cost attribute.

Step 2 Utilizing the CFHMDA, CFWHMDA, CFGHMDA,

and CFWGHMDA operators;
C,‘ = CFHMDA(C“, CiDyonny Cin)
C; = CFWHMDA(c¢i1, ¢i2, ..., Cin)

or
The CFWHMDA and CFWGHMDA operator:

C; = CFGHMDA(c;1, ¢ci2, ..., Cin)
C; = CFWGHMDA(c;1, ¢i2, ..., Cin)

Step 3 Compute the score function of alternatives
1i(1,2,3,4,5).
Step 4 Give ranking to the alternatives according to the

scores.

Step 5 Using CFHMDA, CFWHMDA, CFGHMDA, and
CFWGHMDA operators to aggregate the given
alternatives (I, I, I3, 14, Is) where p = 1,g = 2
and L = (1,2,3,4,5,6,7,8,9, 10).

Step 6 End

9 Numerical example

In this unite, we using a numerical example for decision-
making problems to show the uses of the developed methods.
Let a company decide to impose ERP (enterprise resource
planning) system. About ERP dealer and systems collect-
ing all suitable information, the experts committee choose
I;i(i =1,2,...,5)five possible alternatives as investors. The
organization members are some external experts in decision-
making. The team selects five attribute C;(i = 1, 2, ...,5).
To evaluate the alternatives: (1) function and technology Cy,
(2) strategic fitness C» (3) vendor’s ability C3 (4) vendor’s
reputation C4 (5) vendor’s growth analysis Cs. The experts
committee is to use CFNs to make the original decision
matrix.

C; are five attribute, and I; are five alternatives w =
(0.2,0.15,0.15, 0.25, 0.25)T is the weight vector of them.
Now, let p = 1,g = 1,k = 5 and A = 2, so we aggregate
the five CFNs solution as below(Tables 1, 2, 3 and 4).

are five CNs, p = 1, = 2,k = 5and A = 2, so the
aggregation of the five CFNs. The solution is as below.

9.1 Sensitivity analysis

The versatility of the proposed approach is expressed in two
aspects. Firstly, it is based in DTT, so that the information
aggregation process is also flexible. Second, it is based on
HM, which has two important parameters and plays a key
role in the outcome of the decision. It is therefore possible to
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Table 2 The aggregated results of the ERP systems by the CFHMDA, CFWHMDA, CFGHMDA, and CFWGHMDA operators
CFHMDA CFWHMDA CFGHMDA CFWGHMDA
I ([.3248, .4967] ; .3586) ([.2011, .4551], .6473 ([.3248, .4967] ; .3533) ([.5734, .4632]; .6734)
I ([.2588, .6202] ; .3769) ([.2525, .5799]; .6119 ([.2588, .6202] ; .3601) ([.5225, .5799] ; .6119)
I3 ([.6569, .5689] ; .4080) ([.3059, .3742] ; .6568 ([.6569, .5689]; .3385) ([.6759, .6242] ; .6568)
n ([.7174, .6114]; .2988) ([.4558, .3324]; .6159 ([.7174, .6114]; .3788) ([.5358, .5524]; .6159)
Is ([.6001, .7078] ; .3076) ([.3714, .3670]; .5229 ([.6001, .7078] ; .3876) ([.6414, .7170] ; .5229)
th Z:ieftivse:(jseirrglglés};)l\f/lD A A Score values of alternatives Ranking
operator Iy I I3 Iy Is
1 0.1774 0.1541 0.1665 0.1972 0.1860 Iy>Is>11 >13>1
2 0.1415 0.1724 0.2726 0.2799 0.1811 Ih>L>1s>15L>1
3 0.2619 0.1673 0.2701 0.3101 0.2639 Li>L>15>11>1
4 0.2354 0.2128 0.2644 0.2404 0.1878 L>Iy>11 > >1Is
5 —0.1077 0.3595 0.2652 0.3881 0.0307 Iy >bh>51>15>1
6 0.0511 0.2129 0.1922 0.3047 0.0557 Iy > >1>15s>1
7 0.0510 0.2226 0.1880 0.2511 0.0595 Iy>Db>05L>1s>1
8 0.1973 0.3173 0.1848 0.2301 0.1149 L>1l>11>101>1Is
9 0.0766 0.4745 0.2546 0.2764 0.0840 L>1y>01>15>1
10 0.0621 0.2039 0.2648 0.2400 0.0622 L>1>1>1s> 1
Table 3 The score values of the ERP system 2) Using CFWHMDA operator to aggregate the given
CFHMDA CFWHMDA CFGHMDA CFWGHMDA  Alternatives (11, I, I3, Is, Is) where p = 1,4 = 2 and
A=(,2,3,4,5,6,7,8,9,10). So,
I 0.1543 0.0029 0.1560 0.1210 3) Using CFGHMDA operator to aggregate the given
L 0.1673 0.0735 0.1729 0.1635 Alternatives (Iy, I», I3, I4, Is) where p = 1, = 2 and
L 02726 0.0077 0.2957 0.2144 A=(1,2,3,4,5,6,7,8,9, 10). So,
Iy 0.3433 0.0574 0.3166 0.1574 4) Using CFGWHMDA operator to aggregate the given
Is 03334 0.0718 0.3067 0.2785 alternatives (11, I», I3, I4, Is) where p = 1,¢ =2 and A =
1,2,3,4,5,6,7,8,9,10). So,
Form Tables 5, 6, 7, and 8, we can find out that dif-
Table 4 Ordering of the ERP systems ferent scores of alternatives can be derived with respect to
Operator Ordering different parameter . This characteristic illustrates the flex-
ibility of the proposed method and operators. In real MADM
CFHMDA Iy >1s>1>1 > 1 . .
problems, the values of alternatives can be determined by
CFWHMDA Lh>Is>h>Db>h  gocon-makers according to actual needs. In Tables 5, 6, 7,
CFGHMDA Li>Is>5>h>h " 3,48 weinvestigate the individual effect of the parameter A
CFWGHMDA Is>hL>h>1L>I

obtain various scores of alternatives and rating orders with
regard to parameters A. In the following, we will analyze the
effect of the parameters on the results. We let p = 1 and
g = 2 be a fixed set assign and investigate the influence of A
on the different aggregation operators. Details can be found
in Tables 5, 6, 7 and 8.

1) Using CFHMDA operator to aggregate the given alter-
natives (I, I, I3, I4, Is) where p = 1,q = 2 and A =
(1,2,3,4,5,6,7,8,9,10). So,
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on the score function and ranking results, i.e., we let p or g be
a fixed value and investigate the influence of another param-
eter A on the ranking results. As we can see from Tables 35, 6,
7, and 8, different scores and ranking results can be obtained
with the change of A. Additionally, it can be noticed that alter-
native ranking is different with the change of parameters A,
the best alternatives are always /4. This feature demonstrates
the robustness of the proposed method. It is worth pointing
out that in the above discussion, we used the proposed aggre-
gation operators to aggregate decision-makers’ preference
information. In the following, we investigate the influence of
parameter A on the scores and ranking orders in the proposed
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Table 6 Score values of

alternatives using CFWHMDA A Score values of alternatives Ranking

operator I I I I Is
1 0.1265 0.1046 0.0957 0.2751 0.2321 L>Is>L1>hL>1
2 0.4216 0.1962 0.3670 0.3353 0.2241 L>h>Li>1s>D
3 0.1660 0.2084 0.1675 0.0679 0.1176 Lh>L>15>1s>1
4 0.0754 0.1078 0.0520 0.2194 0.2382 Ii>Li>hL>5L>1
5 0.2082 0.2116 0.2000 0.0455 0.1569 L>L>h>1s>1L
6 0.2185 0.2110 0.2095 0.2480 0.3755 Ii>L>L>hL>1
7 0.1793 0.1597 0.0079 —0.012 0.3228 Is>L>hL>1>1L
8 0.1566 0.1556 0.0839 0.2078 0.0451 L>L>hL>h>Is
9 —0.0679 —0.0564 0.2259 0.2237 0.0052 L>1>1s>1D > 1
10 0.2154 0.2061 0.3608 0.2146 0.0038 L>L>1Li>Dh>1Is

Z; glre];iviz(:;;:;léfé)éMD A A Score values of alternatives Ranking

operator I I I Iy Is
1 0.1466 0.3365 0.2940 0.3758 0.2534 Iy >0 >151>1s>1;
2 0. 0645 0.0951 0.2574 0.3778 0.0819 Isy > >151>1s>1
3 0.1249 0.2363 0.1141 0.3014 0.2989 Iy >1Is>Db>151>1
4 0.1427 0.3258 0.1385 0.1614 0.2963 h>Is>L>hL>1
5 0.3881 0.3179 0.1345 0.2892 0.1789 L>h>l>1s>13
6 0.1556 0.3397 0.0782 0.2760 0.2373 h>L>Is>5L>1
7 0.1716 0.3141 0.1804 0.1580 0.0780 h>L>1h>14>1s
8 0.1158 0.0502 0.1881 0.1588 0.0337 L>Ii>15>Dh>1Is
9 0.0945 0.0679 0.3151 0.1802 0.243 L>I>L>11>1D
10 0.2463 —0.0024 0.1077 0.3504 0.3483 Li>Is>01>51>1

Z; Zli:?tivi(sxlrseir\:;lues of A Score values of alternatives Ranking

CFGWHMDA operator I I I3 I Is
1 0.3005 0.2992 0.3066 0.4408 0.3851 ILi>Is>L>04L1>D
2 0.1686 0.1443 0.1527 0.2790 0.1303 Li>h>I>0DhL>1Is
3 0.1188 0.0313 —0.0047 0.2057 0.2517 Is>L>11>Lh>1
4 0.1846 0.0683 0.2850 0.3016 0.2333 Ii>hK>Is>11>1
5 0.1323 0.2210 0.1841 0.3432 0.2386 Li>1s>Dh>151>1
6 0.1488 0.0465 0.2886 0.1853 0.2196 L>Is>L>15>D
7 0.2425 0.4046 0.3641 0.1417 0.3939 Lh>Is>hL>1>1
8 0.4206 0.3600 0.1815 0.1622 0.1870 L>h>I1s>5h>1
9 0.3425 0.2966 0.0005 0.3739 0.2222 L>Li>h>1s>1
10 0.1212 0.2192 0.2432 0.2683 0.0571 L>hL>hL>1>1Is

operators. Analogously, we assign the different values to the
parameter A and the corresponding scores of alternatives and
ranking orders are derived. Details can be found in Tables 5,
6,7, and 8.

In this section, we investigate the influence of the param-
eter on the scores and ranking orders. Results illustrate the
flexibility and powerfulness of the proposed method. More-

over, the proposed method exhibits high robustness in the
process of information aggregation and MADM. Thus, the
proposed method is sufficient to deal with practical MADM
problems.
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10 Conclusions

Nowadays, the cubic fuzzy set (CFs) has developed very pop-
ular than an intuitionistic fuzzy set (IFS) and it proceeds
good decision-makers objectivity steps into suppositions.
This paper consists of specific steps on cubic fuzzy aggre-
gation (CFA) operators based on DTT. First, for (CFNs) we
proposed the operational laws on the rules of (DTT) notation
of Dombi t-conorm and t-norm. So, the recently developed
cubic fuzzy operations and HM to CFs. We write in detail and
introduced the CFHMDA, CFWHMDA, CFGHMDA, and
CFWGHMDA operators. The defined operators for aggrega-
tion did not show the relationship between CFNs, but process
the given data very will. For MADM problems, we developed
anew method with the cubic fuzzy information. An enterprise
resource planning provides suitable numerical examples for
the proposed method. We also find out the effect of the result
of the decision based on recently introduced the cubic fuzzy
aggregation operators. Then, we compare our work to oth-
ers existing work for finding their mistakes and for future
progress to make him correct. In the future, we will continue
our struggle to investigate more aggregation operators and
finding out more and more methods related to our topic.
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