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Abstract
The main goal of intelligent camera path planning is to determine an optimal pathway that proceeds from the starting

position to the target position under several constraint conditions in the given environment. Genetic algorithm-based

method has found wide application in path optimization problem in the intelligent camera community recently. Because the

roaming environments are very complex, the planning path of the intelligent camera should meet other constraint con-

ditions in addition to the path length constraint and the obstacle-free constraint. In this study, a new fitness function was

developed in the genetic algorithm, which can consider the constraint conditions in terms of free obstacle, path length, path

smoothness, and the visibility of the objective of interest in advance during the camera roaming. In addition, a new

evolving operator was introduced into the genetic algorithm, so that the number of iteration can be significantly reduced,

and thus, the efficiency of the genetic algorithm can be improved. Experimental results show that the proposed genetic

algorithm can obtain a high-quality path under multi-constraint conditions for intelligent camera with less numbers of

iteration as compared with several conventional methods.

Keywords Path planning � Intelligent camera � Genetic algorithm � Multiple constraints � Fitness function �
Evolving operator

1 Introduction

With the rapid development of artificial intelligence, sci-

entific visualization has attracted increasing attentions in

many fields, which include chemistry, medicine, astron-

omy, and agriculture, etc. Over the past decades, many

researches have been conducted to improve scientific

visualization (Bryson 1996; Liang and Li 2008; Pierre and

Zakaria 2011; Wang and Tao 2017). Intelligent camera

control, first introduced by Drucker and Zeltzer (1994), is

the core issue of scientific visualization, which aims to plan

an optimal pathway from the starting position to the target

one in order to meet several constraint conditions.

Although there exist a number of researches on the path

planning problem in the literature, path planning is still a

main subject of scientific visualization and deserves further

investigation in the future.

It has been reported that path planning problem is a NP-

hard optimization one (Srinivas and Patnaik 1994; Kuang

et al. 2006; Manikas et al. 2007), which can be only solved

by heuristic algorithms (Chaudhari et al. 2017; Liu et al.

2017; Contreras-Cruz et al. 2015; Sahoo et al. 2018;

Tharwat et al. 2019). In recent years, the membrane algo-

rithm area is focusing on developing new variants of

heuristic algorithms for solving complex optimization

problems, including the motion planning problem in

robotics, by using either the hierarchical or network

membrane structures, evolution rules and computational

capabilities of membrane systems (Wang et al. 2015;

Zhang et al. 2017; Perez-Hurtado et al. 2018, 2020).

Among these heuristic algorithms, the genetic algorithm

has been proved to be an effective and popular method to

deal with the path planning problem. Nowadays, a variety

of algorithm-based methods have been proposed to solve
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the path planning problem (Hu and Yang 2004; Pol and

Murugan 2015; Song et al. 2016; Elhoseny et al. 2018;

Patle et al. 2018; Nazarahari et al. 2019). For example, Ali

et al. (2005) employed the genetic algorithm to determine

the collision-free path of manipulators and found that the

genetic algorithm works better than the conventional A*

method in terms of path length and computation time.

Karami and Hasanzadeh (2015) designed a novel selection

operator for a new adaptive genetic algorithm in order to

maintain the diversity of individuals and escape from the

local optima. And they confirmed that their algorithm

outperforms the related methods in terms of solution

quality and finding an optimum path based on the experi-

mental results. Lee and Kim (2016) proposed an effective

initialization method for genetic algorithm with variable-

length chromosomes for robot to find a feasible path

without intersecting any obstacles in the given environ-

ment. The results reveal that the proposed initialization

method can effectively improve the performance of the

genetic algorithm. Despite a lot of interesting achievements

on the genetic algorithms for path planning, researches on

the improvement of path planning by the genetic algo-

rithm-based methods have never cease. One of the reasons

lies in the fact that many existing genetic algorithms

require huge execution time in order to find a high-quality

path. Therefore, in order to promote the application of

genetic algorithms on the path planning problem, it is of

necessity to conduct studies on the genetic algorithms in

terms of their efficiency.

The optimal solution of the path planning problem

determined by genetic algorithms refers to the one that can

satisfy certain constraint conditions, e.g., the planning path

is the shortest among all the feasible cases or it won’t pass

through any obstacles in the working field, etc. Up to now,

lots of genetic algorithms have been put forward for path

planning problem, and most of them focused on the opti-

mization of path planning under a single constraint con-

dition. Researches on the path planning problem under

multi-constraint condition are relatively limited (Ahuactzin

et al. 1991; Xiao et al. 1997; Wang et al. 2004; Zhou et al.

2008; Mou et al. 2008). In fact, the roaming environments

are very complex, so the planning path of the intelligent

camera should meet other constraint conditions in addition

to the path length constraint and the obstacle-free con-

straint. For example, a sharp turn must be avoided during

the roaming process of the intelligent camera, and the

planning path should be as smooth as possible in order to

minimize the dizziness effect. Besides, the objective of

interest should enter the vision field as soon as possible, so

that the user can experience a pleasant interaction with the

objective during the roaming process. Although several

studies have been conducted to investigate the multi-con-

straint optimization of path panning (Brindle 1980;

Vadakkepat et al. 2000; Ahmed and Deb 2013; Ramirez-

Atencia et al. 2017; Nazarahari et al. 2019), this issue is far

from being fully solved since the constraint conditions are

complex and will vary with the working field (e.g., UAVs,

vehicles, and robots). Therefore, in order to obtain the

optimal path under the constraint conditions in real-life

situation, it is important to study the path planning of

intelligent camera under the multi-constraint condition.

The purpose of this study is to propose a new path

planning method by introducing an evolving operator, with

the aim to reduce the number of iteration and improve the

efficiency of the genetic algorithm. In addition, a new fit-

ness function is developed for the proposed method, so that

the optimized path can satisfy the multiple constraint

conditions, i.e., (1) the path is obstacle-free, (2) the

objectives can enter the vision field of camera as soon as

possible, (3) the path is relatively short, and (4) the path is

smooth enough to reduce the dizziness effect during the

roaming process. The rest of this paper is organized as

follows: Section 2 presents a brief introduction about how

to conduct path planning by genetic algorithm. The new

fitness function to characterize the multiple constraint

conditions and the new evolving operator to improve the

efficiency of the genetic algorithm during the path planning

are described in Sect. 3. In Sect. 4, we will introduce the

experimental settings of the numerical tests and compare

the simulation results by our algorithm with those by some

of the state-of-the-art methods. Finally, the main findings

are summarized in Sect. 5.

2 Path planning with genetic algorithm

As a natural-inspired algorithm, genetic algorithm was

developed based on the concept of Darwinian evolution.

Genetic algorithm is a kind of random search and opti-

mization algorithm similar to the evolution of biological

population, which involves an initialization method, fitness

function, natural selection, crossover, and mutation oper-

ators. In genetic algorithm, an initial population is gener-

ated randomly. In order to obtain the optimal solution of

the problem, the quality of each chromosome in the pop-

ulation is evaluated by a fitness function. Then, the parents

will be selected to be subjected to the reproduction

according to their fitness values. Crossover is applied to

produce new offspring based on the selected parents in the

previous step. The genetic structures of some chromosomes

will be changed by the mutation operator in order to

guarantee the diversity of the population. The genetic

algorithm will be stopped until the optimal solution is

determined, i.e., the stopping criteria are satisfied (Sugi-

saka and Fan 2001). The pseudo-code of genetic algorithm

is shown in Table 1.
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2.1 Representation of environment

During the process of path planning, the intelligent camera

will interact with the virtual environment to determine the

optimal pathway. Therefore, it is necessary to represent the

environment by a model that can be identified by the

intelligent camera. Recently, several models including

grid-based model, polygon model, and the cell tree have

been used to represent the environment (Lamini et al.

2018). In this study, the grid-based model, one of the most

widely used models, was used to characterize the envi-

ronment due to its good performance and easy implemen-

tation. Figure 1 shows a typical environment during the

roaming of the intelligent camera and the corresponding

grid-based model. As shown in Fig. 1c, the working space

of the intelligent camera is represented by an even num-

bered grid. All the positions in the grid can be divided into

two categories: One is the vacuum space that enables the

intelligent camera to move freely, while the other is

obstacle zone (black zone shown in Fig. 1c) where the

intelligent camera cannot go through. Obviously, a feasible

solution of the path planning problem is the pathway from

the starting position to the target position that crosses a set

of obstacle-free positions.

2.2 Encoding of paths (chromosomes)

In the genetic algorithm, each path corresponds to one

chromosome. The choice of encoding of chromosomes is a

very important step for the successful implementation of

the genetic algorithm. It has been reported that different

methods can be used to encode the pathway, which

depends on the path planning problem to be solved (Lamini

et al. 2018). The binary encoding method is one of the most

Table 1 Pseudo-code of genetic

algorithm for path planning

(b) plan view (a) top view of the roaming environment (c) grid-based model

Fig. 1 Typical roaming environment of intelligent camera and the corresponding grid-based model
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widely used methods. However, we employed an orderly

numbered method to encode the paths since it is simpler in

form and easier to be operated by genetic operator. In the

orderly numbered method, each position in the grid-based

model can be represented by a unique number. For

example, P = {p1, p2, p3, …, pn} denotes a path from the

starting position (p1) to the target position (pn) in the grid-

based model. pi is the ith point on the pathway. More

detailed descriptions about the orderly numbered method

can refer to the reference (Adem and Mehmet 2012). It is

noted that in this study, the length of paths is variable. The

optimal path should be as short as possible in addition to

satisfy other constraints of the path planning problem.

2.3 Initialization of population

The efficiency of the genetic algorithm is greatly influ-

enced by the initial population. An efficient initial popu-

lation method can improve the search effectiveness of the

genetic algorithm. Recently, several methods such as ran-

dom, key cells, potential field, and greedy approach method

have been employed to obtain the initial paths (Lamini

et al. 2018). In order to meet the diversity and randomness

requirements of the initial population, random number

method (Li et al. 2017) was used to generate the initial

population in this study. Since the intelligent camera will

pass through the grids between the starting position and the

target position, one grid will be chosen randomly from

each row of the grid-based model. By setting (x0, y0) as the

starting point and (xn, yn) as the ending point, where xn-
C x0 and yn C y0, the position of current point is (xi, yi),

then the position of the next point ((xi?1, yi?1)) can be

generated randomly by the following equation:

xiþ1 ¼ xi þ xn � xið Þ
yiþ1 ¼ y0 þ yn � y0ð Þ

�
ð1Þ

Then, these randomly selected grids will be connected

into a continuous path based on the midpoint connection

method (Wei and Long 2019). The random number method

used for initialization of population in this study can ensure

the continuity of path; however, the initialized path may go

through the obstacles in the grid-based model, which will

turn into an invalid path. In this study, the invalid path will

be penalized in the fitness function; therefore, it will not be

selected for the rest operations of the genetic algorithm.

The specific process will be introduced in Sect. 3.2 in

detail.

2.4 Fitness function

When the initial population is generated based on the

random number method, the genetic algorithm needs to

evaluate the performance of each individual in the initial

population. Usually, the fitness function can be used to

assess the quality of each individual, which should consider

several constraints of path planning problem such as

length, safety, and smoothness of path. The definition of

fitness function is crucial to the genetic algorithm because

it influences the convergence quality as well as the opti-

mization solution of the genetic algorithm. In this study, a

new fitness function that considers multi-constraints will be

proposed, which will be introduced in Sect. 3.1 in detail.

2.5 Selection operator

The main objective of selection process of genetic algo-

rithm is to choose the potentially better individuals to form

a mating pool. Therefore, individuals with good perfor-

mance can be obtained in the next generation. An appro-

priate selection operator can avoid the loss of useful

information and improve the global convergence and cal-

culation efficiency. Up to now, many selection operators

including roulette wheel selection, rank selection, elitism

selection, tournament selection, and deterministic sampling

selection have been proposed for the path planning prob-

lem by genetic algorithm, which are summarized in

Table 2.

In this study, the deterministic sampling selection

method will be used to conduct the selection process of the

genetic algorithm, which can ensure that some individuals

with great fitness value can be retained in the next gener-

ation, while those with small fitness value can be removed

from the next generation. The main procedures of the

deterministic sampling selection are shown as follows:

1. The expectation of the survival number of individuals

(Ni) in the next generation can be calculated according

to Eq. 2.

Ni ¼ Mp � fi=
XMp

i¼1

fi ð2Þ

where Mp is the number of individuals (chromosomes);

fi is the fitness value of the i th individual.

2. For the i th individual, the number of the survived

individual in the next generation is [Ni], where, [Ni]

represents the rounding down operator.

3. All the individuals are sorted in descending mode in

terms of Ni-[Ni]; then, the first Mp �
PMp

i¼1 Ni½ �
individuals will be added based on the sorting results

into the next generation.

2.6 Crossover operator

The main purpose of crossover operator is to combine the

features of two parent chromosomes to form the offspring.
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Therefore, the diversity of the population can be enriched,

and the solution to the path planning problem won’t be

easy to fall into local optima. Currently, there exist many

crossover schemes, e.g., single-point crossover, two-point

crossover, uniform crossover, and arithmetic crossover,

which are summarized in Table 3.

In this study, single-point crossover is employed due to

its high computational efficiency. When the two paths have

an intersection, the parts of the two paths will be swapped

after the intersecting point. If there exists more than one

intersecting point, only one point will be selected randomly

to conduct the crossover operation. When there is no

intersection for the two paths, the crossover operation

won’t be performed, which can avoid the discontinuity of

the paths.

It is noted that in the original genetic algorithm, the

crossover probability is fixed, which may lead to premature

convergence and local optima. In order to solve these

problems, a modified self-adaptive adjustment formula that

uses a sigmoid function to adjust crossover probability was

employed in this study, which is expressed as:

Pc ¼

pcmax � pcmin

1þ exp pcmax � pcminð Þ fc � fcave
fcmax � fcave

� �� �þ pcmaxþpcmin

2
; fc � fcave

pcmaxpcmax; fc\fcave

8><
>:

ð3Þ

where Pcmin and Pcmax are the lower and upper limit values

of crossover probability, respectively; fc is the greater fit-

ness of the two individuals involved in the crossover

operation, fcmax and fcave denote the maximum and average

fitness values in the crossover operation, respectively.

It is clear that from Eq. 3 that the crossover probability

of the individuals with fitness value lower than fcave will be

set as pcmax, which can promote the gene changes of such

individuals. In addition, Eq. 3 possesses the characteristics

of decreasing in [fcave, fcmax], which can guarantee the

continuity stability of the crossover probability. Moreover,

when fc approaches fcmax, the crossover probability is
pcmax�pcmin

1þexp pcmax�pcminð Þ þ pcmin, and the local convergence resulting

from very small crossover probability can be avoided.

2.7 Mutation operator

Mutation process is also an important part of genetic

algorithm, which refers to the process that candidate paths

do an actual change at some points; therefore, the popu-

lation diversity can be expanded and the global search for

optimal path can be ensured, which can avoid the prema-

ture convergence. Recently, many mutation operators

including simple mutation, uniform mutation, boundary

mutation, non-uniform mutation, and Gaussian mutation

have been used in genetic algorithm, which are summa-

rized in Table 4.

In this study, the mutation operator is conducted like

this: randomly select two points called mutation points

from the candidate path (the starting and target points are

not included), a segmented path is generated between the

two mutation points, and finally a new path is created by

Table 2 Summary of typical selection operators for genetic algorithm in the literature

Approaches Basic idea Characteristic References

Roulette

wheel

selection

The probability of the selected

chromosome is proportional to the fitness

value

The higher the fitness, the greater the

probability to be selected; however, a

great selection error will be introduced

due to the random nature

Hung et al. (2007), Yao and Ma

(2010), Cai et al. (2016), Song

et al. (2016), Zhang and Ding

(2016), Li et al. (2017)

Rank

selection

It allocates the probability of each

individual to be selected based on the

order of individual fitness

It can reduce the negative effect caused by

the significant difference between the

fitness of individuals

Geisler and Manikas (2002), Tuncer

and Yildirim (2012)

Elitism

selection

It allows the best individual in the current

generation to be passed into the next

generation without any change

It can ensure that the best solutions must

survive in the population; however, it is

easy to fall into local optimum

Alajlan et al. (2013), Wang et al.

(2017), Elhoseny et al. (2018)

Tournament

selection

Every individual in the population is paired

at random with another. The fitness

values of each pair will be compared, and

the fitter individual of the pair moves on

to the next generation

It can reduce the probability of

convergence to local optimum

Tsai et al. (2011), Hsu and Liu

(2014), Yang et al. (2016)

Deterministic

sampling

selection

The selection is conducted based on the

survival expectation of each individual in

the next generation

It can keep diversity and avoid premature

convergence

Yun and Xi (1996)
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combining the segmented path formed by the mutation

points and the other segmented paths formed by the

remaining points in the candidate path.

Similar to the crossover operator, a modified self-

adaptive adjustment formula that uses a sigmoid function

to adjust mutation probability is employed to avoid pre-

mature convergence and local optima, which is expressed

as:

Pm ¼

pmmax � pmmin

1þ exp pmmax � pmminð Þ fm � fmave
fmmax � fmave

� �� �þ pmmaxþpmmin

2
; fm � fmave

pmmax; fm\fmave

8><
>:

ð4Þ

where Pmmin and Pmmax are the lower and upper limit

values of mutation probability, respectively; fm is the fit-

ness value of mutation individuals, fmmax and fmave denote

the maximum and average fitness values of all the indi-

viduals, respectively.

3 Proposed methods for genetic algorithm

3.1 A new fitness function for path planning

The main goal of path planning problem is to find an

optimal path between the starting point and the target point.

Table 3 Summary of typical crossover operators for genetic algorithm in the literature

Approaches Description Characteristic References

Single-

point

crossover

It uses the single-point fragmentation of the

parents and then combines the features of parents

at the crossover point to create the offspring

It is easy to be

implemented and has

fast calculating

speed

Shi and Cui (2010), Miao et al. (2011), Tuncer and

Yildirim (2012), Song et al. (2016), Bakdi et al.

(2017), Li et al. (2017), Ahmadi et al. (2018),

Elhoseny et al. (2018), Patle et al. (2018)

Two-point

crossover

It chooses two crossover points from two parents

randomly and exchanges partial chromosomes of

the two parents at the crossover points

It is less disruptive

with respect to

widely separated

alleles

Yu et al. (2002), Qu et al. (2013)

Uniform

crossover

It swaps bits in the parents to be included in the

offspring by choosing a uniform random real

number

It provides the

uniformity in

combining the bits of

both parents

Mansouri et al. (2008), Wang and Hwang (2009),

Trujillo et al. (2016)

Arithmetic

crossover

It selects two chromosomes randomly for

crossover and creates two offspring which are

linear mixture of their parents

It is usually used for

real-value encoding

Hung et al. (2007), Bai et al. (2011), Han et al.

(2017)

Table 4 Summary of typical mutation operators for genetic algorithm in the literature

Approaches Description Characteristic References

Simple

mutation

It generates randomly an integer within the range of

the number of genes as a variation point

A small change on the chromosome

results in a new gene fragment

Li et al. (2017), Yao and Ma

(2010), Hsu and Liu

(2014), Song et al. (2016)

Uniform

mutation

It replaces the original gene of the individual with

random numbers that are uniformly distributed in a

certain range with a small probability

The diversity of the population can be

increased by uniform mutation

Cheng et al. (2011), Zhang

et al. (2013), Ramirez-

Atencia et al. (2017)

Boundary

mutation

It replaces the value of the original gene with the

corresponding boundary value

It can be applied to a class of problems

with the best point at or close to the

boundary of the feasible solution

Xidias et al. (2012, 2016)

Non-

uniform

mutation

Each gene is randomly perturbed with the same

probability, and the perturbed result is taken as the

new gene

It can concentrate the search of optimal

solution in the range of interest

Lin et al. (1994), Lee and

Wu (2003)

Gaussian

mutation

It refers to replace the original gene value with a

random number which conforms to the normal

distribution

It can focus on searching a local area of

an individual due to the characteristics

of normal distribution

Amiryan and Jamzad (2015),

Menasri et al. (2015), Qi

et al. (2019)
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The optimal path refers to the path with best performance

under the given constraint conditions. The performance of

the candidate paths can be evaluated by the fitness func-

tion. It should be noted that the ‘‘optimal’’ here means that

the planning must satisfy some criterions including the

length of the planning path is the shortest, or the energy

consumption of robot is the lowest, etc. However, most of

the existing algorithms are developed to meet single con-

straint condition, e.g., the length of planning path should be

the shortest. Actually, in many real-life situations, the path

segment with a sharp turn small should be avoided when

the intelligent camera is used in the virtual environment. If

such path segment exists, it will bring dizziness effect to

users when they are using the head-mounted display

(HMD). Besides, the objective of interest should enter the

vision field as soon as possible, so that the user can

experience a pleasant interaction with the objective during

the roaming process. Intelligent camera path planning can

be regarded as a NP-hard problem with multiple optimal

objects, which is difficult to find the precise solution.

Consequently, a multi-constraint path planning algorithm

for intelligent camera is proposed with the aim to the

multiple constraint conditions. In order to meet the con-

straint conditions in terms of free obstacle, path length,

path smoothness, and the visibility of the objective of

interest in advance during the camera roaming, a new fit-

ness function consisting of four components to consider the

above constraint conditions is developed as Eq. 5. The

greater the fitness function is, the better performance the

path possesses, i.e., the path with a greater fitness value

will have a higher probability of being selected to generate

the optimal path during the genetic algorithm.

fitðpÞ ¼ 1=
X4
i¼1

wifiðpÞ ð5Þ

where fi pð Þ is the fitness component to characterize the i th

constraint for path p; wi is the weight of the i th fitness

component.

3.1.1 Free obstacle constraint

In this study, the fundamental constraint for path planning

problem is that the feasible path cannot pass through any

obstacle during the camera roaming. And the fitness

component is expressed as Eq. 6. Clearly, the fitness

component of all feasible paths that do not pass through

any obstacle will be zero.

f1ðpÞ ¼
1; Ii 2 e i ¼ 1; . . .; nð Þ
0; Ii 62 e i ¼ 1; . . .; nð Þ

�
ð6Þ

where Ii is the i th point in path p; n is the number of points

in path p; e denotes the point set of obstacles in the grid-

based model.

3.1.2 Path length constraint

Finding the shortest path from the feasible solutions is one

important goal of path planning problem. In this study, the

fitness component to take the path length constraint into

consideration is computed based on Euclidean distance,

which can be written as Eq. 7. A smaller f2ðpÞ means the

candidate path exhibits a better performance.

f2ðpÞ ¼
Xn�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ2 þ ðyiþ1 � yiÞ2

q
ð7Þ

3.1.3 Advance visibility constraint

During the roaming of intelligent camera, it is sometimes

required that the objective of interest should enter the

vision field of intelligent camera as soon as possible, so

that the user can experience a pleasant interaction with the

objective. Figure 2 illustrates the advance visibility con-

straint of two possible paths for virtual camera roaming. As

shown in Fig. 2, the objective 1 of interest can be observed

for the first time at Points A1 and B1 on the Paths A and B,

respectively. By considering the path length of the two

paths, objective 1 can be observed more early on Path A

than on Path B. Therefore, Path A performs better than

Path B in terms of advance visibility constraint.

In this study, the fitness component defined as Eq. 8 is

employed to consider the advance visibility constraint. It

can be inferred from Eq. 8 that a feasible path with a better

performance will have a lower value of f3ðpÞ.

y

obstacle 
1start point

target point

x

Pathway A

A1

A2

B1

B2

objective 1

objective 2obstacle 
2

Pathway B

Fig. 2 Illustration of advance visibility of two possible paths for

virtual camera roaming
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f3ðpÞ ¼
Pm�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ2 þ ðyiþ1 � yiÞ2

q
xn � x1j j ð8Þ

where m is the m th point on the possible path at which the

objective of interest can be observed by the intelligent

camera for the first time.

3.1.4 Path smoothness constraint

In order to minimize the dizziness effect caused by the

sudden turn of intelligent camera during the roaming pro-

cess, the optimal path determined by the genetic algorithm

should be smooth as possible. In this study, the mean

turning angle of intelligent camera is introduced to con-

sider the path smoothness constraint. The mean turning

angle denotes the change of angle per unit path length,

which can be expressed as Eq. 9. It is evident that the path

with better performance will possess a smaller mean

turning angle.

f4ðpÞ ¼
Pn�2

i¼1 hiþ1 � hij jPn�1
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ2 þ ðyiþ1 � yiÞ2

q ð9Þ

where hiþ1 � hij j is the angle between the path segments

pipiþ1 and piþ1piþ2, hi ¼ arctan xiþ1�xi
yiþ1�yi

� 	
represents the

angle between the path segment pipiþ1 and the

y coordinate.

3.2 A new evolving operator for path planning

It is widely accepted that one of the main drawbacks of

original genetic algorithm is the premature problem, i.e.,

the result obtained by the genetic algorithm will prema-

turely converge to a local optima. During the process of

finding the optimal solution by genetic algorithm, when

certain individual performs much better than the other

individuals, i.e., its fitness is much greater than those of the

other individuals, this individual will be selected by the

selection operator to generate the next generation with a

high probability. As a result, most of the generated indi-

viduals from the next generation will possess similar fea-

tures with the individual with a much greater fitness in the

former generation. Therefore, the solution of the genetic

algorithm will easily get trapped in a local optimum, and

the selection operator and crossover operator usually fail to

avoid such premature problem. Theoretically, the mutation

operator can contribute to avoiding the premature problem.

However, in order to ensure the stability of genetic algo-

rithm, the mutation probability of the generated individual

is usually very low (e.g., 0.01); therefore, it will require

many numbers of iteration to generate a new individual that

is quite different from those in the former generation,

which will slow significantly the convergence speed of

genetic algorithm. Furthermore, when the fitness of the

new individual generated by the mutation operator is much

smaller than the sum of the fitness of all the individuals, the

new individual won’t be probably be selected by the

selection operator for the following operations. Thus, the

premature problem cannot be effectively solved by the

conventional mutation operator.

In this study, a new evolving operator was introduced to

solve the premature problem in the path planning by

genetic algorithm, which is similar to the conventional

mutation operator. However, it is noted that the evolving

operator will be performed for all the individuals to ran-

domly and independently generate new individuals that

may possess different features from those in the former

generation. Moreover, in order to ensure that the individual

with great fitness is not destroyed by the evolving operator,

only the generated individual with a greater fitness by the

evolving operator than that of the original one will be

preserved for the following processes of genetic algorithm.

Therefore, the diversity of the population can be increased

significantly, which can extend the searching space of path

planning problem and avoid falling into a local optima, and

thus, the number of iterations of genetic algorithm can be

effectively reduced.

The evolving operator is conducted after the crossover

operation and the mutation operation. The pseudo-code of

the evolving operator is shown in Table 5. The main pro-

cedures of the evolving operator are shown as follows: For

each feasible path in the population, two points except the

starting and target points are randomly selected. Then, the

path segment between these two points is removed. A new

path segment using these two points of the original path

before being evolved is generated. Grids will be chosen

randomly from each row of the grid-based model between

the two points. Then, these randomly selected grids will be

connected into a continuous path based on the midpoint

connection method.

In the midpoint connection method, the following

equation can used to judge whether the two adjacent points

are continuous:

D ¼ maxfjxiþ1 � xij; jyiþ1 � yijg ð10Þ

where (xi, yi) and (xi?1, yi?1) are the coordinates of Points

pi and pi?1, respectively.

It is obvious that D ¼ 1 denotes that Points pi and pi?1

are two adjacent points. Otherwise, more points need to be

inserted between Points pi and pi?1. The inserted point p0i
can be expressed as:

x0i ¼ ðxiþ1 þ xiÞ=2
y0i ¼ ðyiþ1 þ yiÞ=2

ni ¼ x0i þ l� y0i

8><
>: ð11Þ
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where ðx0i; y0iÞ is the coordinate of Points p0i; n
0
i is the grid

number of the inserted point; l is the column number of the

inserted point.

It should be noted that when the inserted point is located

in the obstacle, the free grid nearest to the initial point

located in the obstacle will be selected as the inserted point.

If there exist duplicate grids in the generated path, the

segmented path between the duplicate grids will be

removed from the generated path, which is shown in Fig. 3.

The midpoint connection method used in this study can

ensure the continuity of the randomly generated path;

however, the generated path by connecting all the points

may still go through the obstacles in the grid-based model,

which will turn into an invalid path. In this study, the

invalid path that cannot meet the multiple constraint con-

ditions will be penalized in the fitness function; therefore,

the invalid path that go through the obstacles will not be

selected for the rest operations of the genetic algorithm.

Then, the fitness value of the new path obtained from the

evolving operation will be evaluated according to the new

fitness function proposed in Sect. 3.1, which will be com-

pared with that of the original path. If the fitness value of

the new path is greater than that of the original path, the

original path will be replaced by the new path, which will

be restored for the next operations, otherwise, the original

path will be restored without any operation.

In this study, the evolving operator is controlled by the

maximum number of iteration, i.e., when the specified

maximum number of iteration is reached, the evolving

process will be terminated and the optimal solution will be

output. It is noted that the maximum number of iteration

will vary with the size of grid-based model to represent the

environment. Although it will increase the computing time

of genetic algorithm to a certain extent, the evolving

operation can effectively improve the searching ability of

genetic algorithm to determine the optimal solution and

avoid being trapped in a local optimum. Therefore, the

number of iteration can be significantly reduced, and thus,

the efficiency of the genetic algorithm can be improved.

4 Experimental results

4.1 Experimental settings

In this section, the performance of the genetic algorithm

proposed in the study will be discussed based on the

experimental results. Some of the state-of-the-art methods

were employed in the experiments for comparison. The

experiments were conducted in the two-dimensional grid-

Table 5 Pseudo-code of

evolving operator

S T6 8 2 5 8 7

S 6 8 7 T

Fig. 3 Illustration of elimination duplicate grids in the initialized path
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based model with different numbers of obstacles of dif-

ferent sizes and shapes. All the experimental simulations,

coded in MATLAB language, were performed on a com-

puter equipped with Intel Xeon E5 12 core processor

(2.20 GHz clock rate) and 32 GB of random access

memory. The parameters of the proposed method were

summarized as follows: The population size was set as 200,

the crossover and mutation probability were adaptive, and

the penalty coefficients in fitness function were set as 0.38,

0.04, 0.56, 0.02 for wi (i = 1, …, 4), respectively. The

comparison of the results obtained by our proposed genetic

algorithm and those in the literature in terms of iteration

number, visibility in advance, path length, and path

smoothness will be presented in the following section. All

the simulation experiments were conducted for 50 inde-

pendent runs. Due to the fact that the nature of meta-

heuristic algorithms is stochastic and different results may

be obtained in different runs, the statistical analysis on the

simulated results was performed to support the conclusions

drawn in this study. First, the well-known nonparametric

test, i.e., Kruskal–Wallis test, was used to analyze the data

to validate the performances of all the algorithms used for

comparison and to find out whether there are significant

differences among these algorithms. If there exist signifi-

cant differences among the experimental data of these

algorithms, the multiple comparison procedure using the

analysis of variance (ANOVA) test will be carried out to

analyze the results of Kruskal–Wallis test, and the esti-

mated value of the mean ranks for each group (algorithm)

can be achieved, which can be used to evaluate the per-

formance of the algorithms (Kruskal and Wallis 1952;

Vargha and Delaney 1998; McKight and Najab 2010). A

lower mean rank indicates that the algorithm has a better

performance.

4.2 Comparison on iteration number

The iteration number affects the performance and the

computational time of genetic algorithms. The iteration

number of our proposed method was evaluated in the

environment represented by the 2D grid-based model

shown in Fig. 4. The genetic algorithms by Ahuactzin et al.

(1991) and Alajlan et al. (2013) were also employed in the

experimental simulations for comparison. The main fea-

tures of these three genetic algorithms are summarized in

Table 6. And the values for the parameters of the algo-

rithms selected for comparison are summarized in Table 7.

Figure 5 displays the comparison of iteration number of

different genetic algorithms to find the shortest path in the

environment shown in Fig. 4. Three scenarios with dif-

ferent starting and target points shown in Table 8 are

considered. For each scenario, the typical optimal paths

determined by the three genetic algorithms are also shown

in Table 8.

It can be seen from Fig. 5 that the iteration number of

the genetic algorithms by Ahuactzin et al. (1991) and

Alajlan et al. (2013), and our proposed one decrease in

turn. For example, the iteration number of our proposed

algorithm is about 8–82% of that of the genetic algorithm

by Ahuactzin et al. (1991).

In order to examine whether there exist significant dif-

ferences among the performances of all the algorithms used

for comparison, Kruskal–Wallis test was conducted on the

simulated results, which are shown in Table 9. It can be

seen that all p-values for three scenarios are less than 0.05,

so the null hypothesis are false, which indicates there exist

significant differences among the experimental data of

these algorithms. Thus, multiple comparison procedures

were carried out to analyze the results of Kruskal–Wallis

tests, and the estimated value of the mean ranks for each

group is achieved, as shown in Table 10. It can be seen that

the estimated values of the mean ranks of iteration number

of our proposed algorithm are the smallest one for the three

scenarios, which means the computational efficiency of our

proposed algorithm is the best among these three algo-

rithms. The main reason is related to the evolving operator

proposed in our study.

To further illustrate why our proposed algorithm per-

forms better than the other two algorithms, Fig. 6 shows

the comparison of iteration number of our proposed genetic

algorithm with and without the evolving operator. It is

interest to observe from Fig. 6 that the genetic algorithm

Fig. 4 2D grid-based model used in the experiments to evaluate the

iteration number
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with the evolving operator requires less iteration number in

all scenarios, which is only 4–76% of that by the genetic

algorithm without the evolving operator. Through analyz-

ing these data with Kruskal–Wallis tests (Table 11), we can

find that the algorithm with the evolving operator is dif-

ferent from that without the evolving operator since all the

p-values are less than 0.05. Table 12 summarizes the

estimated values of the mean ranks of iteration number for

our proposed genetic algorithm with and without the

evolving operator. It can be seen from Table 12 that the

estimated value of the mean ranks of iteration number of

our proposed genetic algorithm with the evolving operator

is the smallest, which verifies again that the evolving

operator proposed in this study can contribute greatly to the

reduction of iteration number of genetic algorithm for path

planning problem.

4.3 Comparison on visibility in advance

In order to evaluate the advance visibility of objective of

interest on the path, this section conducted experimental

simulation in different scenarios shown in Table 13. The

position to observe the objective of interest on typical paths

obtained by different genetic algorithms is also marked in

Table 13. Figure 7 shows the comparison of the advance

visibility of objective by the genetic algorithms by

Ahuactzin et al. (1991) and Alajlan et al. (2013), and our

proposed genetic algorithm. A smaller advance visibility

means that the genetic algorithm performs better in terms

Table 6 Summary of genetic algorithms used in the experimental simulations

Index Algorithms

GA by Ahuactzin et al.

(1991)

GA by Ahmed and Deb

(2013)

GA by Alajlan et al. (2013) GA in this study

Initialization of

population

Random number method Random number method Greedy approach based on

Euclidean distance

Random number method

Fitness function Single constraint fitness

function

Multi-constraint fitness

function

Single constraint fitness function Multi-constraint fitness

function

Selection operation Roulette wheel selection Modified NSGA-II’s

selection scheme

Combined elitist selection and rank

selection

Deterministic sampling

selection

Crossover operation Two-point crossover Two-point crossover Modified crossover operator Single-point crossover

Mutation operation Simple mutation Bit-wise mutation Single-point mutation Two-point mutation

Evolving operation – – – Randomly evolving

algorithm

Table 7 Summary of the parameters in the genetic algorithms used for comparison

Parameter Algorithms

GA by

Ahuactzin et al.

(1991)

GA by Ahmed and Deb (2013) GA by Alajlan

et al. (2013)

GA in this study

Number of tests for

each case

50

Population size 200

Maximum number

of iteration

100, 1000, 4000, and 8000 for the environment with grids of 20 9 20, 16 9 16, 32 9 32, and 64 9 64, respectively

Crossover

probability

0.8 Self-adaptive

Mutation

probability

0.2 Self-adaptive

Penalty coefficients

in fitness function

1 9 length 0.4 9 length ? 0.4 9 enhancing

safety ?0.2 9 smoothness

1 9 length 0.38 9 free

obstacle ? 0.04 9 length ? 0.56 9 advance

visibility ?0.02 9 smoothness
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of advance visibility constraint. It can be seen from Fig. 7

that the advance visibility determined by the genetic

algorithms by Ahuactzin et al. (1991) and Alajlan et al.

(2013) and our proposed one decrease in turn. For example,

the advance visibility of our proposed algorithm is about

57–80% (79–92%) of that of the genetic algorithm by

Ahuactzin et al. (1991) (the genetic algorithm by Alajlan

et al. (2013)).

Then, both Kruskal–Wallis test and ANOVA test were

performed on the simulated results in terms of advance

visibility by different algorithms; the results are shown in

Tables 14 and 15. It can be seen from Table 14 that all p-

values are less than 0.05, which means at least one algo-

rithm is significantly different from others. Based on the

estimated value of the mean ranks of advance visibility

shown in Table 15, it can be seen that the estimated value

of the mean ranks of advance visibility by our proposed

method is the smallest. The reason lies in that only our

proposed algorithm considers advance visibility constraint

in the fitness function.

Table 8 Typical paths obtained by different genetic algorithms for Scenario 1, Scenario 2, and Scenario 3

Scenarios Scenario 1 Scenario 2 Scenario 3

Typical path

Iteration number-
GA by Ahuactzin et al. 

(1991)
3 86 15

Iteration number-
GA by Alajlan et al. 

(2013)
5 12 5

Iteration number-
GA in this study 2 7 5

Note:    denotes the starting point,    denotes the ending point. 
is the path generated by GA by Ahuactzin et al. (1991).
is the path generated by GA by Alajlan et al. (2013). 
is the path generated by GA in this study. 

0

10

20

30

Scenario 1 Scenario 2 Scenario 3

Ite
ra

tio
n 

nu
m

be
r

 GA by Ahuactzin et al. (1991)

 GA by Alajlan et al. (2013)

 GA in this study

Average=75
Standard deviation=29

Fig. 5 Comparison of iteration

number of different genetic

algorithms to find the shortest

path in the environment shown

in Fig. 4
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Based on the above results, it can be concluded that the

visibility constraint of objective of interest in advance

during the roaming of intelligent camera can be realized by

our proposed genetic algorithm.

4.4 Comparison on path length

The length of the optimal path is an important index to

assess the performance of the genetic algorithm in the path

planning problem. In this study, three environments shown

in Table 16, namely the 16 9 16-gird environment

(Scenario 7), the 32 9 32-gird environment (Scenario 8),

and the 64 9 64-gird environment (Scenario 9), were used

in the experimental simulations. It is noted that the mini-

mum unit of path length shown in this section is one pixel.

In addition to our proposed genetic algorithm, the genetic

algorithms by Ahuactzin et al. (1991), Ahmed and Deb

(2013), and Alajlan et al. (2013) were used in the experi-

mental simulation. The typical optimal path determined by

these four genetic algorithms in the three environments is

also plotted in Table 16. It can be seen that the optimal

path varies with the employed genetic algorithm.

Figure 8 shows the comparison of length of the optimal

paths determined by different genetic algorithms. As the

environment becomes more complex, i.e., the grid size of

the environment becomes larger, the length difference

between the original and modified genetic algorithms is

more significant. For example, the length of the optimal

path can be reduced by up to 39–97% by our proposed

genetic algorithm as compared with the one by Ahuactzin

et al. (1991).

Based on the Kruskal–Wallis ANOVA Table of length

of the optimal paths determined by different genetic

algorithms shown in Table 17, it can be seen that all p-

values are less than 0.05, which means at least one algo-

rithm is significantly different from others. Table 18 shows

the estimated value of the mean ranks of path length by

Table 9 Kruskal–Wallis

ANOVA Table of iteration

number for different genetic

algorithms to find the shortest

path in the environment shown

in Fig. 4

Scenarios Source SS df MS Chi-sq Prob[Chi-sq

Scenario 1 Groups 168758.760 2 84379.380 101.566 8.817E-23

Error 78815.740 147 536.161

Total 247574.500 149

Scenario 2 Groups 186954.520 2 93477.260 99.749 2.187E-22

Error 92308.480 147 627.949

Total 279263.000 149

Scenario 3 Groups 56602.330 2 28301.165 30.271 2.744E-7

Error 222499.170 147 1513.600

Total 279101.500 149

Table 10 The estimated values of the mean ranks of iteration number for different genetic algorithms to find the shortest path in the environment

shown in Fig. 4

Scenarios Source Iteration number-GA by

Ahuactzin et al. (1991)

Iteration number-GA

by Alajlan et al. (2013)

Iteration number-GA

in this study

Scenario 1 Estimated value of the mean ranks 63.66000 121.20000 41.64000

Standard errors 4.631032 4.631032 4.631032

Scenario 2 Estimated value of the mean ranks 125.38000 52.44000 48.68000

Standard errors 5.011781 5.011781 5.011781

Scenario 3 Estimated value of the mean ranks 102.14000 67.99000 56.37000

Standard errors 7.781002 7.781002 7.781002
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Table 11 Kruskal–Wallis

ANOVA Table of iteration

number for our proposed

genetic algorithms with and

without the evolving operator

Scenarios Source SS df MS Chi-sq Prob[Chi-sq

Scenario 1 Groups 36290.250 1 36290.250 51.739 6.339E-13

Error 33149.250 98 338.258

Total 69439.500 99

Scenario 2 Groups 62500.000 1 62500.000 74.901 4.948E-18

Error 20108.500 98 205.189

Total 82608.500 99

Scenario 3 Groups 23012.890 1 23012.890 27.487 1.582E-7

Error 59874.110 98 610.960

Total 82887.000 99

Table 12 The estimated values of the mean ranks of iteration number for our proposed genetic algorithms with and without the evolving operator

Scenarios Source Iteration number-GA in this study

without the evolving operator

Iteration number-GA in this study

with the evolving operator

Scenario 1 Estimated value of the mean ranks 69.55000 31.45000

Standard errors 3.678356 3.678356

Scenario 2 Estimated value of the mean ranks 75.50000 25.50000

Standard errors 2.864882 2.864882

Scenario 3 Estimated value of the mean ranks 65.67000 35.33000

Standard errors 4.943522 4.943522

Table 13 The position to observe the objective of interest on typical paths obtained by different genetic algorithms for Scenario 4, Scenario 5, and

Scenario 6

Scenarios Scenario 4 Scenario 5 Scenario 6

Typical path

Advance visibility-
GA by Ahuactzin et al. 

(1991)
0.69 0.88 6.54

Advance visibility-
GA by Alajlan et al. 

(2013)
0.69 0.88 6.54

Advance visibility-
GA in this study 0.55 0.70 6.04

Note:    denotes the starting point,    denotes the ending point,    denotes the position to observe the objective of interest. 
is the path generated by GA by Ahuactzin et al. (1991).
is the path generated by GA by Alajlan et al. (2013). 
is the path generated by GA in this study.

c2,c3c1

b2,b3
b1

a1

a2,a3
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different algorithms, which reveals that the estimated value

of the mean ranks of path length by our proposed algorithm

is the smallest. What’s more, the length of the optimal path

determined by our proposed genetic algorithm is slightly

shorter than that of the other two genetic algorithms in the

environments shown in Table 16, confirming that our

proposed genetic algorithm can perform well in the path

planning problem in terms of the path length constraint.

4.5 Comparison on path smoothness

Path smoothness is also a key factor that needs to be

considered during the path planning for intelligent camera,

since the dizziness effect caused by the sharp turn of the

intelligent camera will lead to a bad user experience. This

section is dedicated to the assessment of the smoothness of

the optimal path determined by our proposed genetic

algorithm. For better illustration, the other three genetic

algorithms used in Sect. 4.4 were employed in the exper-

imental simulations.

Figure 9 shows the comparison of smoothness of the

optimal paths determined by different genetic algorithms in

the environments shown in Table 16. The smoothness is

evaluated by the mean turning angle shown in Eq. 9.

Similar to path length results, the genetic algorithm by

Ahuactzin et al. (1991) gives an optimal path with less

smoothness; the smoothness difference between the genetic

algorithm by Ahuactzin et al. (1991) and the other ones

tends to increase with increasing grid size of the

environment.

In this section, both Kruskal–Wallis test and ANOVA

test were performed on the simulated results in terms of
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Fig. 7 Comparison of advance visibility of different genetic algo-

rithms to find the shortest path in the environment shown in Table 13

Table 14 Kruskal–Wallis

ANOVA Table of advance

visibility for different genetic

algorithms to find the shortest

path in the environment shown

in Table 13

Scenarios Source SS df MS Chi-sq Prob[Chi-sq

Scenario 4 Groups 187600.000 2 93800.000 145.283 2.833E-32

Error 4800.000 147 32.653

Total 192400.000 149

Scenario 5 Groups 177855.310 2 88927.655 115.354 8.935E-26

Error 51875.190 147 352.892

Total 229730.500 149

Scenario 6 Groups 225525.000 2 112762.500 132.449 1.734E-29

Error 28181.500 147 191.711

Total 253706.500 149

Table 15 The estimated values of the mean ranks of advance visibility for different genetic algorithms to find the shortest path in the

environment shown in Table 13

Scenarios Source Advance visibility-GA by Ahuactzin

et al. (1991)

Advance visibility-GA by Alajlan

et al. (2013)

Advance visibility-GA in

this study

Scenario

4

Estimated value of the

mean ranks

99.50000 101.50000 25.50000

Standard errors 1.142857 1.142857 1.142857

Scenario

5

Estimated value of the

mean ranks

102.59000 97.00000 26.91000

Standard errors 3.757086 3.757086 3.757086

Scenario

6

Estimated value of the

mean ranks

120.00000 81.00000 25.50000

Standard errors 2.769194 2.769194 2.769194
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path smoothness by different algorithms; the results are

shown in Tables 19 and 20, respectively. It can be seen

from Table 19 that all p-values are less than 0.05, which

means at least one algorithm is significantly different from

others. Based on the estimated value of the mean ranks of

path smoothness shown in Table 20, it can be seen that the

estimated value of the mean ranks of path smoothness by

our proposed algorithm is the smallest, which indicates that

our proposed algorithm performs better than other algo-

rithms in terms of path smoothness. What’s more, the mean

turning angle of the optimal path determined by our pro-

posed genetic algorithm is smaller than that of the other

two genetic algorithms in the environments shown in

Table 16, which indicates that the dizziness effect during

the roaming of intelligent camera can be minimized by our

proposed genetic algorithm.

The above experimental results reveal that our proposed

genetic algorithm is capable of reducing the dizziness

effect during the path planning of intelligent camera.

5 Conclusions

In this study, a modified genetic algorithm for the path

planning problem of intelligent camera was proposed. In

the proposed method, a new fitness function was developed

with the goal to meet the multi-constraint requirements

during the roaming of intelligent camera. In addition, an

evolving operator was also introduced into the modified

Table 16 Comparison of path length and path smoothness of the optimal path determined by different algorithms in 2D grid-based environments

Algorithms GA by Ahuactzin et al. (1991) GA by Ahmed and Deb (2013) GA by Alajlan et al. (2013) GA in this study

16
×1

6-
gr

id
 e

nv
iro

nm
en

t

Typical 

path

length 23 23 22 22
smoothness 0.31 0.31 0.28 0.18

32
×3

2-
gr

id
 e

nv
iro

nm
en

t

Typical 

path

Length 59 53 48 47
Smoothness 0.34 0.19 0.33 0.13

64
×6

4-
gr

id
 e

nv
iro

nm
en

t

Typical 

path

length 237 115 104 93
smoothness 0.61 0.22 0.32 0.14

Note:    denotes the starting point,    denotes the ending point. 
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genetic algorithm, which is designed to improve the effi-

ciency of the algorithm.

Based on the experimental results conducted in different

environments, our proposed genetic algorithms perform

well in terms of iteration number, visibility in advance,

path length, and path smoothness as compared with some

state-of-the-art genetic algorithms. This confirms the

feasibility and efficiency of our proposed method in the

path planning problem of intelligent camera under multiple

constraint conditions.

For the future work, different experiments in a real

large-scale dynamic environment will be conducted in

order to further verify and improve our proposed genetic

algorithm. In addition, we would like to extend this work to
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Fig. 8 Comparison of length of the optimal paths determined by

different genetic algorithms in the environments shown in Table 16

Table 17 Kruskal–Wallis

ANOVA Table of length of the

optimal paths determined by

different genetic algorithms in

the environments shown in

Table 16

Scenarios Source SS df MS Chi-sq Prob[Chi-sq

Scenario 7 Groups 182313.610 3 60771.203 83.788 4.723E-18

Error 250687.890 196 1279.020

Total 433001.500 199

Scenario 8 Groups 360185.840 3 120061.947 115.404 7.534E-25

Error 260907.660 196 1331.162

Total 199

Scenario 9 Groups 569040.010 3 189680.003 173.157 2.648E-37

Error 84925.490 196 433.293

Total 653965.500 199

Table 18 The estimated values of the mean ranks of length of the optimal paths determined by different genetic algorithms in the environments

shown in Table 16

Scenarios Source Path length-GA by

Ahuactzin et al. (1991)

Path length-GA by Ahmed

and Deb (2013)

Path length-GA by

Alajlan et al. (2013)

Path length-GA in

this study

Scenario

7

Estimated value of the

mean ranks

125.69000 135.31000 70.50000 70.50000

Standard errors 7.152677 7.152677 7.152677 7.152677

Scenario

8

Estimated value of the

mean ranks

163.40000 111.08000 78.52000 49.00000

Standard errors 7.297017 7.297017 7.297017 7.297017

Scenario

9

Estimated value of the

mean ranks

175.26000 109.75000 91.49000 25.50000

Standard errors 4.163140 4.163140 4.163140 4.163140

0

0.2
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Scenario 7 Scenario 8 Scenario 9
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Fig. 9 Comparison of smoothness of the optimal paths determined by

different genetic algorithms in the environments shown in Table 16
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dynamic environments with moving obstacles and goal

positions.
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