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Abstract
The optimal placement of Distributed Generation (DG) units in radial distribution system is one of the important ways for

techno-economic improvements. The maximum technical benefits can be extracted by minimizing the distribution power

loss as well as bus voltage deviation, whereas the maximum economical benefits can be procured by minimizing the total

yearly economic loss which includes installation, operation and maintenance cost. So for the maximum techno-economic

benefits, all three objectives should be simultaneously minimized by considering a multiobjective optimization technique.

For optimal results, a Pareto optimal concept-based novel multiobjective quasi-oppositional grey wolf optimizer

(MQOGWO) algorithm has been proposed. The performance of the proposed algorithm has been tested on IEEE-33 bus

radial distribution system. In this analysis, various voltage-dependent load models such as constant power, constant current,

constant impedance, residential, industrial and commercial load models have been considered at different loading con-

ditions like light load, full load and heavy load. The effects of DG type on the system performance have also been analyzed

to find the best optimal solution.

Keywords Distributed Generation � Yearly economic loss � Power loss � Voltage deviation � Multiobjective quasi-

oppositional grey wolf optimizer

1 Introduction

Distributed Generation (DG) is one of the most significant

trends in power systems used to meet the high-level energy

demand. Its definition is not confined in a particular area as

the concept involves varieties of technologies and impacts.

Generally, it involves small-scale technologies for har-

nessing renewable and non-renewable energy sources (such

as photovoltaic cell, fuel cell, and wind turbine). The DG

can be classified into the four categories depending on the

capacity of generation: a) micro-DG: size up to 5 kW, b)

small DG: size varies from 5 kW to 5 MW, c) medium-

sized DG: 5–50 MW and d) large-sized DG: 50 to

300 MW (Ackermann Andersson and Söder 2001). Since

DG also supports active and reactive power compensation

in distribution systems, it can eliminate the need for

installation of spinning reserve plants (Rebours, and Kir-

schen 2005). The DG units located in the close proximity

of the load stations can reduce the T&D losses, overall

system costs that include the cost of long transmission and

distribution lines, while improves the system voltage pro-

file. Though all these benefits can be harnessed only via

optimal placement and sizing of DGs in the radial distri-

bution system (RDS) (Behera Dash and Panigrahi 2015

March). In this context, several researchers have proposed

different techniques to harness maximum benefits of opti-

mal DG placement (ODGP) in different scenarios.

For optimal allocation of DG in RDS, a teaching

learning-based optimization (TLBO) technique has been
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implemented by Mohanty and Tripathy (2016), while Saha

and Mukherjee (2018) have presented a novel chaos-inte-

grated symbiotic organisms search (CSOS) algorithm to

solve the same problem. In both the above-mentioned

papers, ODGP problems are analyzed by considering the

minimization of real power loss, improvement in voltage

profile and voltage stability index (VSI) as three distinct

objective functions which are optimized by weighting

factor method. In both papers, authors failed to consider the

economic point of view which is also one of the major

aspects. A Pareto-based multi objective particle swarm

optimization (MOPSO) technique is implemented by Zei-

nalzadeh Mohammadi and Moradi (2015) to find the

optimal sizing and placement of DG units and shunt

capacitor banks considering load uncertainty. They have

considered only technical objectives like minimizing active

power losses, improving the voltage stability and balancing

currents in system sections but didn’t considered the cost as

an objective function. A group of authors in Abdel-maw-

goud et al. (2018) have determined the optimal locations

and sizes of DG in RDS via chaotic moth-flame opti-

mization (CMFO) technique and real power loss sensitivity

factor (PLSF) method to gain the maximum reduction in

active power loss only. While by the authors Sujatha Roja

and Prasad (2019), a similar objective (only minimization

of active power loss) has been considered for multiple DG

placements by genetic algorithm and particle swarm opti-

mization method. A multi-objective framework using par-

ticle swarm optimization technique with fuzzy decision

making approach has been presented by Kaur and Jain

(2017) for multiple DG placement considering voltage-

sensitive loads. Musa Gadoue and Zahawi (2014) presented

a new algorithm using discrete particle swarm optimization

(DPSO) for solving optimal DGs placement problems. A

basic PSO technique was used by Aman Jasmon Bakar and

Mokhlis (2013) for simultaneous minimization of power

loss and maximization of voltage stability for ODGP

problem. Another modified version PSO named as hybrid

Nelder-Mead PSO (HNMPSO) technique has been imple-

mented by Senthil kumar, Charles Raja, Srinivasan, and

Venkatesh (2018) to find the optimal size of renewable DG

by optimizing the area required for DG installation for

minimizing power loss considering different load models.

El-Ela El-Sehiemy and Abbas (2018) have shown optimal

allocation and sizing of DG and capacitor banks by using

water cycle algorithm (WCA) where the objective func-

tions are minimization of power losses, total electrical

energy cost, voltage deviation and emissions produced by

generating sources while improving the VSI. A Quasi-

Oppositional Swine Influenza Model Based Optimization

with Quarantine (QOSIMBO-Q) has been used in a multi-

objective function-based ODGP problem in distribution

system (Sharma Bhattacharjee and Bhattacharya 2016).

Here, the main objective was to minimize the power losses,

with an improved voltage regulation. Several other tech-

niques like biogeography-based optimization (BBO)

(Ghaffarzadeh and Sadeghi 2016), bat optimization algo-

rithm (Yuvaraj Devabalaji and Ravi 2018), clonal differ-

ential evolution (Madihah Junichi Hirotaka 2017), Hybrid

Teaching–Learning-Based Optimization (HTLBO) tech-

nique (Quadri Bhowmick and Joshi 2018), stochastic

fractal search algorithm (SFSA) (Nguyen and Vo 2018)

and Stud Krill herd Algorithm (ChithraDevi Lakshmi-

narasimman and Balamurugan 2017) have been proposed

by several authors to solve similar ODGP problem con-

sidering various objective functions in different scenarios.

From the literature, it is seen that most of the authors either

considered single objective function or multi-objective func-

tions using weighted sum method, while a very few authors

used Pareto-based multi-objective optimizations, but in that

case they failed to consider the economic point of view of DG

placements. It is also observed that the complexity increases

significantly when the voltage-dependent load models (such

as constant current, constant impedance, residential, and

industrial and commercial loads) and different types of DGs

are considered (El-Zonkoly 2010). To solve this type of

complex ODGP problem in optimal way, a novel multiob-

jective quasi-oppositional grey wolf optimizer (MQOGWO)

algorithm has been presented in this work. The objective of

this work is to harness the maximum benefits of DGs by

optimal placement and sizing of different types of DGs

considering various types of load models at different loading

conditions. The sizes and its locations in the RDS are opti-

mally chosen by the proposed MQOGWO algorithm in such a

way that all three major objectives like power loss, yearly

economic loss, and voltage deviation can be simultaneously

minimized.

2 System modeling

In this work, the main objective is to maximize the annual

profit with minimal power loss as well as optimum bus

voltage profile. The optimum economical and technical

benefits have been analyzed by optimal placement of dif-

ferent types of DG units in radial distribution systems with

different loading conditions. The different types of DG

units have been mathematically implemented as described

in section ‘‘DG modeling’’, whereas different loading

conditions have been implemented as described in section

‘‘Load modeling’’.

2.1 DG modeling

Depending upon the availability and feasibility, different

types of DGs of optimal sizes can be installed at proper
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locations in the network. For the mathematical imple-

mentation of different types of DGs, it can be modelled as

follows:

2.1.1 DG as a ‘‘negative load’’ model

In this mode of operation, DG is assumed as a constant real

power generator only. In this situation, the real power

output from the DG at ith bus (PDG,i) can be treated as a

‘‘negative load’’ of the specified bus. So, after placement of

this type of DG at ith bus, the real load at ith bus (Pload,i)

can be modified as

Pload;i ¼ Pload;i � PDG;i ð1Þ

2.1.2 DG as a ‘‘constant power factor’’ model

In this mode, DG is assumed as a generator which is

operating at a constant power factor (pf). For the lagging

power factor case, both real and reactive power of DG can

be treated as ‘‘negative load’’ whereas for leading power

factor case, the real and reactive power of DG can be

treated as ‘‘negative load’’ and ‘‘positive load’’ model,

respectively. The reactive power of DG at ith bus (QDG,i)

can be calculated as

QDG;i ¼ PDG;i tanðcos�1ðpfDG;iÞÞ ð2Þ

Pload,i can be modified using Eq. (1), whereas Qload,i can

be modified as follows:

Qload;i ¼ Qload;i � QDG;i ð3Þ

where positive and negative signs can be used for leading

and lagging pf operating mode of DG, respectively.

2.1.3 DG as a ‘‘variable reactive power’’ model

In this mode of operation, DG is assumed as a variable

reactive power source. In this category, the induction

generator-based DG like wind turbine is considered. The

reactive power consumed by such a generator can be cal-

culated as a function of real power generation as mentioned

below (Yammani, Maheswarapu, and Matam 2016):

QDG;i ¼ �Q0 � Q1PDG;i � Q2P
2
DG;i

ð4Þ

where PDG,i can be calculated from the wind turbine power

curve. The coefficients Q0, Q1, and Q2 are provided by the

manufacturer or can be calculated by experimentation. In

this study, the value of Q0, Q1 and Q2 are considered as

0.0004, 0.0395 and 182.34, respectively, which are taken

from Teng (2008).

According to the above modeling strategies of DG, it

can be categorized by four different types as mentioned

below:

• Type I: DGs that can inject only real power to the

system or in other words, the DGs which are operating

at unity power factor (upf) are categorized in this type.

The good examples are PV cell, fuel cell, bio-gas, etc.

• Type II: This type of DG can inject both real and

reactive powers to the line. So, the operating power

factor (pf) of the DGs can be anything between (0,1)

lagging pf. The synchronous machine is one of the

examples of type II DG.

• Type III: In this type, DGs are selected that can inject

only reactive power to the system. It means the

operating pf of DGs would be zero. These types of

DGs are generally used as var compensator. Some

examples are SVC, switched capacitors, synchronous

compensators, etc.

• Type IV: This type of DG can inject real power but

consumes reactive power. Hence, the operating pf of

DGs will vary between (0,1) in the leading zone. Wind

turbines can be assumed as type IV DG.

2.2 Load modeling

In the standard IEEE distribution network system, it is

assumed that both active and reactive loads on every bus

are constant and independent. But in reality, scenarios are

completely different. For analysis purpose, loads can be

categorized as (i) static load models and (ii) dynamic or

realistic load models. The optimal DG placement (ODGP)

problem is generally considered for planning aspects which

can be realized by static load models, whereas optimal

operation of such system can be realized by dynamic or

realistic load models as well as real-time power generations

from DG units. In some cases, the dynamic load model can

also be considered in the ODGP problem for long-term

planning purpose. In this study, different types of static

load modelling have been considered for simplified anal-

ysis on planning aspects. For the static load modelling,

loads are assumed to be voltage dependent. Mathemati-

cally, it can be expressed as:

Pi ¼ c:P0i
Vij j
V0ij j

� �a

ð5Þ

Qi ¼ c:Q0i
Vij j
V0ij j

� �b

ð6Þ

where Pi and Qi are real and reactive power at bus i after

DG placement, whereas P0i and Q0i are their corresponding

nominal or standard power before DG placement. Simi-

larly, Vi and V0i are voltages at bus i after DG and nominal

voltage before DG, respectively. a and b are the exponents

for real and reactive power, respectively, whereas c indi-

cates the multiplier for loading conditions. In this study,
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five different types of load models like constant power

(CP) load, constant current (CC) load, constant impedance

(CI) load, residential (RES) load, industrial (IND) load, and

commercial (COM) loads have been considered. Different

values of a and b are considered for different types of load

models which are taken from Abdi and Afshar (2013) and

also given in Table 1. The analysis has also been performed

with three different loading conditions like light load (LL),

rated or full load (FL) and heavy load (HL) condition and

its corresponding c values are considered to be 0.5, 1.0 and

1.2, respectively.

3 Problem formulation

For the maximum techno-economic benefits, three different

objectives have been considered in this multi-objective

ODGP problem. After DG placement, the minimization of

power loss (PaDG
L ) and voltage deviation (VDaDG) have

been taken as a technological enhancement, whereas min-

imization of yearly economic loss (YELaDG) has been

considered for maximizing economical benefits (Kumar

Mandal and Chakraborty 2019). So, the overall objective

can be presented mathematically as follows:

minimize ½PaDG
L ; YELaDG; VDaDG�

subject to hðxÞ ¼ 0; gðxÞ� 0
ð7Þ

Here, h(x) and g(x) represent equality and inequality

constraints, respectively. Here, the main equality constraint

is power balance equation, whereas line flow or thermal

limit, bus voltage limit and penetration limit or DG

capacity limit, etc. are considered as main inequality con-

straints which should be strictly followed.

The backward/forward sweep load flow analysis is

performed for calculating total power loss (PL) in the RDS.

As described by Kumar Mandal and Chakraborty (2019),

the PL can be converted into the total yearly economic loss

(YEL) for the further cost analysis. According to the

authors, YEL before DG placement (YELbDG) and YEL

after DG placement including the cost of DGs (YELaDG)

can be calculated and re-presented as follows:

YELbDG ¼ PbDG
L � Ce � 8760 ð8Þ

YELaDG ¼ PaDG
L � Ce � 8760þ

CDG

PNDG

i¼1

PDGi

LDG
ð9Þ

where PbDG
L signifies PL before the DG placement, Ce

indicates energy loss cost per kWh in $, NDG indicates the

number of DG installed in RDS, CDG represents the cost of

power generated by DG per kW which include installation,

operation, and maintenance costs of DG, and LDG indicates

the total life of DG in years. So, the total yearly savings

(TYS) will be

TYS ¼ ðYELbDG � YELaDGÞ ð10Þ

The voltage deviation (VD) at different nodes mainly

depends on the loading condition of the system. During the

heavy load condition, it suffers more and then creates the

voltage dip problems, especially in the farthest or remote

locations. After optimal DG placement, DG can tackle its

nearby load demands and that helps to minimize the volt-

age dip phenomena. VDaDG can be calculated by calcu-

lating the standard deviation (rN�1) of all the nodes voltage

after the optimal placement of DGs. Mathematically, it can

be represented as:

VDaDG ¼ rN�1 ¼
1

N � 1

XN
i¼1

ðVi � VÞ2
 !1

2

ð11Þ

where V represents the average value of all the node

voltages. The system having minimum value of VDaDG

showed the minimum voltage dip problems at all buses,

and thus it is also taken as one of the objectives. After

calculating all the three important objectives, a Pareto-

based MQOGWO technique has been applied to minimize

all the objectives simultaneously for selecting the best

optimal point of operation.

4 Multiobjective quasi-oppositional grey
wolf optimizer (MQOGWO) algorithm

The proposed MQOGWO algorithm is a novel and modi-

fied form of well known, tried and tested grey wolf opti-

mization (GWO) algorithm. The GWO algorithm is a

nature inspired meta-heuristic algorithm, and it was first

proposed by Mirjalili, Mirjalili and Lewis (2014). It fol-

lows the leadership hierarchy and the hunting strategy of

grey wolves for the optimization process. In the leadership

hierarchy, alpha (a) wolf is considered as the main leader

and decision maker of the group followed by beta (b) and
delta (d) wolves. The remaining all wolves are considered

Table 1 Load model exponent values

Types of load model Exponent a Exponent b

Constant power (CP) 0 0

Constant current (CC) 1 1

Constant impedance (CI) 2 2

Residential load (RES) 0.92 4.04

Industrial load (IND) 0.18 6

Commercial load (COM) 1.51 3.4
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as omega (x) wolves and they follow a, b and d wolves.

The main hunting strategies like searching of prey, encir-

cling the prey, and then attacking on the prey are mainly

guided by all three a, b, and d wolves and x wolves trail

rest of three wolves for better optimum solution. The

proposed MQOGWO algorithm also follows the similar

concept of hunting strategies like GWO algorithm, but the

major changes have been proposed in initialization process

and in selection process. The proposed algorithm uses

quasi-oppositional (QO) scheme instead of random gener-

ation scheme used in basic GWO for generating position

vector of grey wolves in initialization process. This QO

scheme for initialization can be implemented in basic

GWO algorithm for more thrust from the beginning of

searching prey and to obtain a better approximation of the

current position vector of wolves.

4.1 Initialization based on quasi-oppositional
scheme

For the QO scheme of initialization, firstly, both random

estimated and its corresponding opposite estimated points

are generated. Mathematically, the random estimated

points (Pi,j) can be generated as follows:

Pi;j ¼ Pmin;i þ ri;j: Pmax;i � Pmin;i

� �
i ¼ 1; 2 :::D; j ¼ 1; 2 :::NP

ð12Þ

Here, D represents the dimension of the problem; In

other words, D is the decision variable of the problem

under consideration; NP is the size of the population. Pmin,i

and Pmax,i represent the minimum and maximum value of

ith decision variables, respectively. ri;j indicates a random

number within [0, 1].

For this particular problem, DG sizes (SDG) and their

corresponding locations (LDG) are considered as the ele-

ments of the randomly generated matrix of position vectors

(P). These variables are arranged in the matrix in such a

way that the upper half elements consist only of the size of

DG units, whereas lower half elements consist only of their

corresponding locations. Mathematically, it can be mod-

elled as:

P ¼

SDG1;1 SDG1;2 � � � SDG1;NP

..

. ..
.

� � � ..
.

SDGn;1 SDGn;2 � � � SDGn;NP
LDG1;1 LDG1;2 � � � LDG1;NP

..

. ..
.

� � � ..
.

LDGn;1 LDGn;2 � � � LDGn;NP

2
666666664

3
777777775

ð13Þ

Here, subscripts DG1, DG2, …, DGn indicate the DG

numbers. So, SDGn,NP and LDGn,NP indicate the size and

location of nth DG unit, respectively, in NPth population.

For the penetration with n number of DG units, the size of

this matrix will be (2n 9 NP).

Now, the generated random estimated points (Pi,j) are

converted to its corresponding opposite estimated points

(OPi,j) which are defined as the components of Pi,j. It can

be represented as (Tizhoosh 2005):

OPi;j ¼ Pmin;i þ Pmax;i � Pi;j ð14Þ

This QO scheme was first proposed by Rahnamayan,

Tizhoosh, and Salama (2007), and in that work they proved

that quasi-oppositional points (QOPi,j) are more likely to be

closer to the solution than its corresponding opposite esti-

mated points. With the help of Pi,j and OPi,j, QOPi,j can be

generated as (Rahnamayan, Tizhoosh & Salama 2007; Roy

& Sarkar 2014):

QOPi;j ¼ randðci;OPi;jÞ

Where; ci ¼
Pmin;i þ Pmax;i

2

ð15Þ

For the selection of best estimated populations among

Pi,j and QOPi,j, the fitness values for both the points are

calculated and then consider the best among two points as

the position vector of the corresponding grey wolf (Xj) as

follows:

Xj ¼
QOPj if f QOPj

� �
� f Pj

� �
Pj else;

�
ð16Þ

The position vector of grey wolves (X~) is formed in such

a way that X~ ¼ fX1;X2; :::;Xjg.

4.2 Social hierarchy

The fittest solution is assumed as a solution, and its posi-

tion vector is assumed as Xa. Consequently, the second and

third best solutions are named as b and d solutions and their
respective position vectors are assumed as Xb and Xd,

respectively. The rest solutions are assumed as x solutions.

The x solutions follow a, b and d solutions.

4.3 Encircling prey

The grey wolves encircle prey before hunting, and it can be

mathematically modeled as:

D~ ¼ C~:X~pðkÞ � X~ðkÞ
��� ��� ð17Þ

X~ðk þ 1Þ ¼ X~pðkÞ � A~:D~ ð18Þ

where X~pðkÞ and X~ðkÞ indicate the position vector of the

prey and the grey wolf, respectively, in the kth iteration.

Here, ‘k’ varies from 1 to maximum allowed number of

iteration, i.e., ITmax. Vectors A and C are the coefficient

vectors and calculated as follows:
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A~¼ 2a~:r~1 � a~ ð19Þ

C~ ¼ 2r~2 ð20Þ

where r1 and r2 are the random vectors in [0,1] and vector

a decreases linearly from 2 to 0 over the course of

iterations.

4.4 Hunting

Since all three a, b and d solutions have better idea about

the potential location of prey, the hunting process is guided

by all three solutions. The positions of all the x solutions

are updated by following the positions of all three solu-

tions. The mathematical model for hunting process can be

formulated as:

D~a ¼ C~a:X~a � X~
��� ���; D~b ¼ C~b:X~b � X~

��� ���; D~d

¼ C~d:X~d � X~
��� ��� ð21Þ

X~1 ¼ X~a � A~a:D~a; X~2 ¼ X~b � A~b:D~b; X~3 ¼ X~d � A~d:D~d

ð22Þ

X~ðk þ 1Þ ¼ X~1 þ X~2 þ X~3

3
ð23Þ

where vectors A and C can be calculated using Eqs. (19)

and (20), respectively.

4.5 Attacking prey (exploitation) and searching
prey (exploration)

Since r1 and r2 are the random vectors in [0,1], so as per

Eqs. (19) and (20), C 2 ½0; 2� and A 2 ½�a; a�. Hence from
Eqs. (17) and (18), it can be noticed that positive value of

vector A forces the wolves to attack toward the prey and

that is responsible for exploitations, whereas its negative

value forces the wolves to diverge from the prey or search

for another prey and that is responsible for explorations.

The larger value of a in initial stage of iteration provides

more thrust to the wolves for exploring the search space,

whereas the smaller value of a in latter stage force the

wolves to converge toward the prey.

4.6 Archive formation with Pareto optimal
fronts

After updating the position vectors of grey wolves, fitness

values of all the wolves have been calculated and then the

non-dominated solutions have been selected. If the solution

X1 is not worse than the solution X2 for all the objectives

and it is strictly better than X2 for at least one of the

objectives, then the solution X1 is said to dominate the

solution X2. Mathematically, it can be represented as

(Kumar Mandal and Chakraborty 2019):

8m 2 f1; 2; :::;Nobjg ! fmðX1Þ� fmðX2Þ
^ 9n 2 f1; 2; :::;Nobjg ! fnðX1Þ\fnðX2Þ

ð24Þ

where Nobj is the maximum number of objectives to be

considered and fm(X1) indicates the value of mth objective

function corresponding to X1 solution. The solution X1 is

called non-dominated if and only if the above condition is

strictly followed. The set of all non-dominated solutions is

called Pareto optimal set or Pareto front. For the first time,

create an archive which is nothing but a matrix that can

store or retrieve non-dominated Pareto optimal solutions

obtained so far. For the subsequent iterations, update the

archive as follows:

• If the new non-dominated solution is dominated by

anyone of the current archive member, then this

solution is not allowed to enter in the archive.

• If the new solution dominates one or more solutions in

the archive, then this new solution replaces the existing

dominated solutions in the archive.

• And, if both new solution and the archive members are

non-dominated, then just add the new member to the

archive.

In most of the problems, the archive size becomes so

large that it is very difficult to handle the archive matrix for

further analysis. In that situation, the size of archive matrix

can be truncated by clustering or crowding distance metric

strategy.

4.7 Reduction of archive matrix by crowding
distance metric

Crowding distance (Cr) metric is an iterative process used

for the elimination of the most crowded points by penal-

izing those points. The lower value of Cr represents that

the corresponding point is located in the most crowded area

and hence that point is eliminated from the archive. This

process is repeated until the archive size is reduced to its

maximum allowable size or maximum number of Pareto

fronts (PFmax). The boundary points are very much

important; therefore, Cr is not calculated for boundaries.

The Cr of ith Pareto front (Cri) can be calculated as

(Modiri-Delshad & Rahim 2016):

Cri ¼
XNobj

n¼1

f niþ1 � f ni�1

�� ��
Bn

� �
ð25Þ

where f niþ1 and f ni�1 indicate the nearby next and previous

Pareto fronts to ith Pareto front along the nth objective in

the archive. Bn indicates the maximum boundary gap for

nth objective.
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4.8 Selection of best compromised solution
by fuzzy set theory

In the multi-objective scenario, it is not possible to choose

a single optimal solution which can satisfy all the objec-

tives simultaneously due to the conflicting nature of all the

objectives. In that scenario, a single best compromised

solution is chosen from the archive which consists of

desired number of Pareto optimal fronts. A concept based

on fuzzy set theory has been implemented to choose the

best compromised solution. For implementing this concept,

first of all a linear membership function is used to evaluate

the Pareto fronts in the interval of [0,1]. Mathematically, it

can be calculated as (Modiri-Delshad & Rahim 2016):

lni ¼

1 f ni � f nmin

f nmax � f ni
f nmax � f nmin

f nmin\f ni \f nmax

0 f ni � f nmax

8>><
>>:

ð26Þ

where lni is a linear membership function of ith Pareto front

for the nth objective. f ni indicates the ith Pareto front,

whereas f nmin and f nmax are its minimum and maximum

values for the nth objective function, respectively. After

evaluation membership function of all the Pareto fronts for

all objectives, all these Pareto fronts are normalized to a

single objective with the help of normalized membership

function (l). The normalized membership function of ith

Pareto front (li) has been calculated as follows (Kumar

Mandal and Chakraborty 2019):

li ¼

PNobj

n¼1

ðwn:lni Þ

PPFmax

i¼1

PNobj

n¼1

lni

ð27Þ

where wn is the per-unit weighting factor of nth objective

function. In this work, equal weights have been given to all

objectives. After calculating l for all the Pareto fronts, all

these values are arranged in descending order. The order of

l reflects the priority order of the solution. That means the

solution which has maximum value of l is considered as

the best compromised solution which is nothing but the

best optimal solution considering all the objective func-

tions. The complete flowchart of the proposed MQOGWO

algorithm is presented in Fig. 1.

Fig. 1 Flowchart of the proposed MQOGWO algorithm
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5 Results and discussion

In this work, two different case studies have been per-

formed for testing the performance of the proposed algo-

rithm in both single-objective and in multiobjective

environments. For the single objective case, only PaDG
L is

considered as the fitness or objective function which is

required to be minimized. For both single objective and

multiobjective cases, two different scenarios have been

studied. In scenario-1, three numbers of type-I DGs have

been taken, whereas same numbers of type-II DGs have

been considered in scenario-2. For multiobjective case, at

Table 2 Single objective case: Loss minimization

No. of

DG

Methods Location of DG (bus

no.)

Size of DG

(kW/kVAr)

Minimum bus voltage

(p.u.)

Weakest

bus

Real

power

loss

(kW)

Active power from

substation (kW)

Case 1: DGs operating at upf

3 QOGWO 13 801.81/0.0 0.9687 33 72.784 841.674

24 1091.29/0.0

30 1053.01/0.0

3 OTCDE 13 801.80/0.0 0.9687 33 72.785 841.075

24 1091.31/0.0

30 1053.60/0.0

3 OCDE 13 801.84/0.0 0.9686 33 72.848 847.968

24 1091.46/0.0

30 1046.58/0.0

3 KHA 13 810.7/0.0 0.9610 18 75.412 –

25 836.8/0.0

30 841.0/0.0

3 SFSA 13 802.0/0.0 – – 72.785 –

24 1092.0/0.0

30 1053.7/0.0

Case 2: DGs operating at 0.95 lagging pf

3 QOGWO 13 830.21/

272.88

0.9880 33 28.532 549.162

24 1124.60/

369.64

30 1239.56/

407.42

3 OTCDE 13 830.23/

272.88

0.9880 33 28.533 549.093

24 1124.65/

369.66

30 1239.56/

407.42

3 SFSA 13 830.6/273.0 – – 28.533 –

24 1125.6/

370.0

30 1239.6/

407.4

3 QOSIMBO-

Q

13 830.3/272.9 – – 28.5 –

24 1123.9/

369.4

30 1239.8/

407.5
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the same time five different types of load models at dif-

ferent loading conditions have also been considered to

analyze the effects of load variations on system perfor-

mance. It is considered that the sizes of DGs may vary

from 10 to 80% of total load demands, whereas all the

nodes voltages should be between 0.95 p.u. to 1.05 p.u.

(Rao and Sivanagaraju 2012). The total DG life is assumed

to be 10 years. The cost of power generated by DGs

including capital investment, installation, operation and

maintenance cost is taken as $ 30.00 per kW. The energy

loss cost per kWh is considered to be $ 0.05 (Rao and

Sivanagaraju 2012). In this case study, NP, ITmax, and

PFmax are taken to be 50, 500 and 50, respectively.

The effectiveness of the proposed MQOGWO algorithm

has been tested on the standard IEEE 33-bus RDS, and its

corresponding data are taken from Kumar and Jayabarathi

(2012). In this standard test system, the total connected

load demands are 3.715 MW and 2.3 MVAr, whereas its

substation base voltage and base MVA are 12.66 kV and

100 MVA, respectively. The connected loads in this stan-

dard system are assumed as the loads at full load condition.

By performing the load flow analysis on standard test

system, it is seen that 210.987 kW and 143.128 kVAr

power loss has occurred during the distribution process.

This power loss is converted to its equivalent YELbDG

which is equal to $92,412.502. Bus number 18 is found to

be highly sensitive bus because its voltage falls to 0.9038

p.u. which is the lowest among all buses.

Fig. 2 Histogram plots of the 50 distinct trial results obtained by QOGWO algorithm under a DG@upf b DG@0.95pf

Fig. 3 Box-and-Whisker plots of the 50 distinct trial results obtained by different algorithms under a DG@upf b DG@0.95pf
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5.1 Single objective case: minimization of PaDGL

In this case study, only one objective PaDG
L is considered as

objective function and type-I and type-II DG with operat-

ing power factor of 0.95 are chosen for comparative per-

formance analysis with other state-of-the-art algorithms.

For performing the task of single objective minimization,

some steps that are mentioned in Sects. 4.6, 4.7 and 4.8 of

the proposed MQOGWO algorithm have been omitted and

made some needful changes. It can also be performed

easily by just putting the value of Nobj from 3 to 1 for this

case. This proposed algorithm for single objective case is

named as QOGWO algorithm. Table 2 shows the optimal

results obtained by this technique. Table 2 also shows the

results obtained by techniques like novel opposition-based

tuned-chaotic differential evolution (OTCDE) technique

(Kumar Mandal and Chakraborty 2020), opposition based

chaotic differential evolution (OCDE) (Kumar Mandal and

Chakraborty 2019), krill herd algorithm (KHA) (Sultana

and Roy 2016), SFSA (Nguyen and Vo 2018), and

QOSIMBO-Q (Sharma Bhattacharjee and Bhattacharya

2016). By analyzing these results, it can be noticed that the

proposed algorithm is able to produce the better results

compared to other above-mentioned techniques. In sce-

nario-1, the power loss obtained by QOGWO algorithm is

72.784 kW which is slightly better than 72.785,

72.848 kW, 75.412 kW, and 72.785 kW that are the losses

obtained by OTCDE, OCDE, KHA, and SFSA algorithms,

respectively. Similarly in scenario-2, the loss reduces to

28.532 kW after placement of 3 numbers of type-II DG

which is slightly better than the loss obtained by recently

proposed OTCDE, SFSA and QOSIMBO-Q algorithms.

Table 3 Multiobjective case with constant power (CP) load model

Loading

condition

DG location

(bus no.)

DG size

(kW)

DG size

(kVAr)

Minimum Bus

Voltage (p.u.)

Weakest

bus no

power loss

(kW/kVAr)

Total yearly

economic loss ($)

Total yearly

saving ($)

Case 1: DGs operating at upf

LL Without DG penetration 0.9540 18 48.787/33.049 21,368.694 NA

14 396.54 0 0.9850 33 17.658/12.302 12,110.455 9258.239

24 523.21 0

30 539.04 0

FL Without DG penetration 0.9038 18 210.987/

143.128

92,412.502 NA

13 801.02 0 0.9686 33 72.787/50.672 40,678.149 51,734.399

24 1079.49 0

30 1051.91 0

HL Without DG penetration 0.8822 18 314.490/

213.479

137,746.404 NA

14 1054.85 0 0.9681 33 108.124/

75.605

58,542.869 79,203.535

24 1249.94 0

30 1423.44 0

Case 2: DGs operating at 0.866 lagging pf

LL Without DG penetration 0.9540 18 48.787/33.049 21,368.694 NA

13 376.14 217.190 0.9958 8 3.825/3.078 6059.310 15,309.384

24 488.17 281.878

30 597.02 344.730

FL Without DG penetration 0.9038 18 210.987/

143.128

92,412.502 NA

13 756.86 437.025 0.9921 8 15.352/12.413 15,667.397 76,745.152

24 1012.65 584.722

30 1211.61 699.605

HL Without DG penetration 0.8822 18 314.490/

213.479

137,746.404 NA

13 906.12 523.210 0.9900 8 22.232/17.906 20,327.676 117,418.728

24 1178.10 680.256

30 1445.80 834.831
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The robustness of the proposed algorithm can be ana-

lyzed by the histogram plots which are depicted in Fig. 2. It

is plotted against 50 independent distinct trial runs. From

the histogram plots under both operating power factor

cases of DG units, it can be easily noticed that the deviation

of the optimal results is very less, and most of the times, it

can produce the optimal results. The robustness of the

proposed algorithm as compared to other algorithms like

OTCDE (Kumar Mandal and Chakraborty 2020) and

OCDE (Kumar Mandal and Chakraborty 2019) can be

noticed from the Box-and-Whisker plots which are pre-

sented in Fig. 3. In this plot, the variations of the results are

pointed by small dots and circles, whereas small-square

boxes and cross marks indicate its mean value and min–

max points, respectively. The standard deviation (SD) and

min–max points of the results are considered as the box

range and whisker range, respectively. From these plots, it

can be noticed that the least deviations in the results of both

cases can be found by the proposed algorithm. So from

these plots, it can be said that the proposed QOGWO

technique is most robust technique followed by OTCDE

and OCDE technique.

5.2 Multiobjective case: minimization
of PaDGL , YELaDG, and VDaDG

In this case study, all three objectives have been considered

simultaneously to find the best optimized solution for the

techno-economic analysis. This ODGP problem has been

solved by the proposed MQOGWO algorithm considering

different voltage-dependent load models instead of con-

stant loads. The analysis has been further extended by

Table 4 Multiobjective case with constant current (CC) load model

Loading

condition

DG location

(bus no.)

DG size

(kW)

DG size

(kVAr)

Minimum bus

voltage (p.u.)

Weakest

bus no.

Power loss

(kW/kVAr)

Total yearly

economic loss ($)

Total yearly

saving ($)

Case 1: DGs operating at upf

LL Without DG penetration 0.9557 18 45.581/30.837 19,964.576 NA

14 369.55 0 0.9838 33 17.249/11.973 11,630.152 8334.424

24 487.62 0

30 501.26 0

FL Without DG penetration 0.9114 18 182.479/

123.448

79,926.005 NA

13 764.81 0 0.9680 33 69.242/48.136 38,763.807 41,162.197

24 1063.82 0

30 983.25 0

HL Without DG penetration 0.8936 18 262.862/

177.823

115,133.597 NA

14 1006.95 0 0.9667 33 101.723/

70.965

55,189.586 59,944.011

24 1218.20 0

30 1319.78 0

Case 2: DGs operating at 0.866 lagging pf

LL Without DG penetration 0.9557 18 45.581/30.837 19,964.576 NA

13 372.72 215.215 0.9957 8 3.810/3.065 6033.010 13,931.567

24 485.68 280.440

30 596.39 344.366

FL Without DG penetration 0.9114 18 182.479/

123.448

79,926.005 NA

13 751.30 433.814 0.9919 8 15.226/12.299 15,556.992 64,369.012

24 1012.38 584.566

30 1198.94 692.290

HL Without DG penetration 0.8936 18 262.862/

177.823

115,133.597 NA

13 895.07 516.830 0.9898 8 21.987/17.712 20,170.615 94,962.981

24 1187.11 685.459

30 1431.32 826.470
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considering three different loading situations like LL, FL,

and HL as well as two different types of DGs. The corre-

sponding results for CP load model are shown in Table 3.

Similarly, the results obtained by considering CC, CI, RES,

IND, and COM types of load models are depicted in

Tables 4, 5, 6, 7, and 8, respectively. In all the tables, the

DGs that are operating at upf are considered in scenario 1,

whereas scenario 2 considers the DGs with operating

power factor of 0.866 lagging. It is worth mentioning that

all the equality and inequality constraints are strictly fol-

lowed during LL and FL situations. But during HL situa-

tion, no any valid solutions are found by following all these

constraints. Since at rated load or FL the power flow across

some few branches are already very close to their maxi-

mum rated capacity limits, these lines are not capable of

handling 20% increased load demand. If we increased the

load demand by 20%, then these lines will be failed and

burned out. So for the analysis purpose, the line flow

capacity limit constraints cannot be followed during the

considered HL situation and hence omitted.

From Table 3, it is seen that the power loss before DG

placement is comparatively reduced from the loss during

FL condition, i.e., 210.987 kW/143.128 kVAr to

48.787 kW/33.049 kVAr during the LL condition, whereas

it is increased to 314.490 kW/213.479 kVAr during HL

condition. After optimal placements of 3 DGs in scenario

1, the losses are drastically reduced to 17.658 kW /12.302

kVAr, 72.787 kW/50.672 kVAr, and 108.124 kW/75.605

kVAr during LL, FL, and HL loading conditions, respec-

tively. At the same time, the minimum bus voltages are

improved and yearly economic losses are decreased dras-

tically compared to the cases without DG penetration

Table 5 Multiobjective case with constant impedance (CI) load model

Loading

condition

DG location

(bus no.)

DG size

(kW)

DG size

kVAr)

Minimum bus

voltage (p.u.)

Weakest

bus no.

Power loss

(kW/kVAr)

Total yearly

economic loss ($)

Total yearly

saving ($)

Case 1: DGs operating at upf

LL Without DG penetration 0.9573 18 42.795/28.918 18,744.329 NA

14 363.27 0 0.9837 33 16.836/11.675 11,364.667 7379.663

24 485.45 0

30 481.40 0

FL Without DG penetration 0.9174 18 161.186/

108.788

70,599.458 NA

13 733.79 0 0.9677 33 65.909/45.756 36,983.812 33,615.646

24 1048.09 0

30 923.37 0

HL Without DG penetration 0.9021 18 226.714/

152.943

99,300.931 NA

14 943.96 0 0.9651 33 95.384/66.358 51,830.250 47,470.681

24 1197.71 0

30 1209.00 0

Case 2: DGs operating at 0.866 lagging pf

LL Without DG penetration 0.9573 18 42.795/28.918 18,744.329 NA

13 373.34 215.573 0.9959 8 3.782/3.052 6062.561 12,681.769

24 499.18 288.236

30 596.11 344.205

FL Without DG penetration 0.9174 18 161.186/

108.788

70,599.458 NA

13 747.23 431.464 0.9919 8 15.096/12.192 15,474.756 55,124.702

24 1015.01 586.085

30 1192.00 688.282

HL Without DG penetration 0.9021 18 226.714/

152.943

99,300.931 NA

13 885.48 511.292 0.9896 8 21.746/17.504 19,991.590 79,309.341

24 1188.70 686.377

30 1414.71 816.879
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during all three loading situations. Similar trends with even

better performance can be noticed in scenario 2. The better

performance in every objective is due to the active as well

as reactive power compensation by placements of lagging

pf operated DGs in scenario 2. The maximum yearly

economic benefits (as compared to without DG penetration

case) of $117,418.728 can be extracted by the placement of

type II DG during the HL situation, whereas maximum

technical benefits (such as improvements in bus voltage

profile and reduction in power loss) can be extracted by

placement of similar type of DGs in LL situation. From this

table, it can easily be noticed that total PL and YEL are

found to be lowest during LL situation in scenario 2,

whereas highest during HL situation in scenario 1. Simi-

larly, minimum bus voltage is found to be highest (0.9958

p.u.) during LL situation in scenario 2, whereas lowest

(0.9681 p.u.) during HL situation in scenario 1.

As compared to Table 3, very similar trends can be seen

for all types of load models and that can be noticed from

Tables 4, 5, 6, 7, and 8. The corresponding Pareto optimal

fronts for all types of load models are shown in different

section of Fig. 4. In every figure, the Pareto optimal fronts

for all 6 different situations (each for LL, FL and HL sit-

uations for both scenarios) are plotted simultaneously.

After optimal DG placements considering different load

models, it is observed that the minimum power loss of

3.755 kW/3.031 kVAr is found in scenario 2 during LL

situation with IND type load model, whereas it increased

maximum up to 108.124 kW/75.605 kVAr in scenario 1

during HL situation with CP type load model. In every type

of load models, the minimum power loss occurs during LL

Table 6 Multiobjective case with residential (RES) load model

Loading

condition

DG location

(Bus No.)

DG size

(kW)

DG Size

kVAr)

Minimum bus

voltage (p.u.)

Weakest

bus no.

Power Loss

(kW/kVAr)

Total yearly

economic Loss ($)

Total yearly

saving ($)

Case 1: DGs operating at upf

LL Without DG penetration 0.9570 18 43.074/29.129 18,866.594 NA

14 401.85 0 0.9854 33 16.292/11.349 11,406.977 7459.617

24 501.46 0

30 520.44 0

FL Without DG penetration 0.9160 18 164.541/

111.237

72,068.928 NA

14 711.12 0 0.9673 33 60.972/42.385 34,733.005 37,335.923

24 1052.36 0

30 912.27 0

HL Without DG penetration 0.9001 18 233.154/

157.612

102,121.498 NA

14 971.40 0 0.9649 33 87.443/60.936 48,295.711 53,825.787

24 1171.66 0

30 1188.88 0

Case 2: DGs operating at 0.866 lagging pf

LL Without DG penetration 0.9570 18 43.074/29.129 18,866.594 NA

13 377.86 218.183 0.9961 8 3.771/3.048 6095.662 12,770.932

24 503.77 290.886

30 599.62 346.231

FL Without DG

penetration

0.9160 18 164.541/

111.237

72,068.928 NA

13 749.63 432.850 0.9917 8 14.990/12.102 15,380.872 56,688.056

24 1014.41 585.739

30 1174.43 678.137

HL Without DG penetration 0.9001 18 233.154/

157.612

102,121.498 NA

13 889.63 513.688 0.9893 8 21.550/17.345 19,850.137 82,271.361

24 1194.27 689.593

30 1386.58 800.636
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situation in scenario 2 and then followed by FL in scenario

2, LL in scenario 1, HL in scenario 2, FL in scenario 1 and

HL in scenario 1. Similarly in all types of load models, the

YEL is found to be minimum during LL situation in sce-

nario 2 followed by LL in scenario 1, FL in scenario 2, HL

in scenario 2, FL in scenario 1 and HL in scenario 1,

whereas the minimum bus voltage is found to be maximum

during LL situation in scenario 2 followed by FL in sce-

nario 2, HL in scenario 2, LL in scenario 1, FL in scenario

1 and lowest during HL in scenario 1. But it is seen that no

any common trends are followed for TYS in all types of

load models. The bus voltage profile for all types of load

models considering all three loading situations in both

scenarios are shown in Fig. 5. The minimum bus voltage

trends for all types of load models can also be noticed from

this figure. It is seen that bus number 18 was the weakest

bus before DG penetration, whereas position of weakest

bus changes to bus number 33 in scenario 1 and to bus

number 8 in scenario 2 after DG penetration.

Figure 6 indicates the branch power flow profiles for all

types of load models considering all three loading situa-

tions in both scenarios. From this figure, it is seen that the

power flows from the branches 1 to 5 are comparatively

very high without DG penetration and it reduces drastically

after DG penetration for all types of load modelling during

every loading situation. The reduction in power flows in

scenario 2 is found to be more compared to scenario 1

because DG shares some of the active as well as reactive

power load demands in scenario 2 whereas in scenario 1, it

shares only active power load demand. So, it can be con-

cluded that installing type-II DGs in the RDS are more

Table 7 Multiobjective case with Industrial (IND) load model

Loading

condition

Dg location

(bus no.)

Dg size

(kw)

DG size

(kVAr)

Minimum bus

voltage (p.u.)

Weakest

bus no.

Power loss

(kW/kVAr)

Total yearly

economic loss ($)

Total yearly

saving ($)

Case 1: DGs operating at upf

LL Without DG penetration 0.9569 18 43.104/29.166 18,879.355 NA

14 365.68 0 0.9834 33 15.602/10.823 10,762.942 8116.413

24 476.52 0

30 467.52 0

FL Without DG penetration 0.9153 18 167.792/

113.617

73,492.725 NA

14 720.15 0 0.9674 33 56.796/39.543 32,889.982 40,602.744

24 1049.53 0

30 901.38 0

HL Without DG penetration 0.8988 18 240.518/

162.929

105,346.810 NA

14 998.31 0 0.9660 33 81.341/56.833 45,706.997 59,639.813

24 1162.02 0

30 1199.51 0

Case 2: DGs operating at 0.866 lagging pf

LL Without DG penetration 0.9569 18 43.104/29.166 18,879.355 NA

13 373.63 215.741 0.9957 8 3.755/3.031 6037.878 12,841.477

24 504.06 291.053

30 586.70 338.771

FL Without DG penetration 0.9153 18 167.792/

113.617

73,492.725 NA

13 746.93 431.291 0.9912 8 14.862/11.991 15,242.739 58,249.986

24 1013.85 585.415

30 1150.34 664.227

HL Without DG penetration 0.8988 18 240.518/

162.929

105,346.810 NA

13 891.89 514.993 0.9891 8 21.318/17.175 19,717.376 85,629.434

24 1199.50 692.613

30 1368.70 790.312
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beneficial than type-I DG during every loading situation for

all types of load modelling.

6 Conclusion

In this work, a novel multiobjective quasi-oppositional

grey wolf optimizer (MQOGWO) algorithm has been

proposed and successfully implemented for the optimal

placement of different types of DGs in the radial distri-

bution system (RDS) considering different scenarios. The

current optimal DG placement (ODGP) problem has been

solved for extracting maximum techno-economic benefits.

For maximizing technical benefits, power loss after DG

placement (PaDG
L ) and bus voltage deviation (VDaDG) have

been considered as objective functions, whereas another

objective function yearly economic loss (YELaDG) has

been considered for maximizing economical benefits. Since

all the above-mentioned objectives are contradictory in

nature, so the best compromised solution, which can satisfy

all these objectives to their maximum extent, is chosen for

the optimal techno-economic benefits by formulating the

Pareto-based multiobjective framework. For testing the

effectiveness of the proposed algorithm, the problem has

been further extended by considering different load models

like CP, CC, CI, RES, IND, and COM during various

loading situation like LL, FL, and HL. After successful

implementation of the proposed MQOGWO algorithm in

all the above-mentioned scenarios, it is seen that installing

type-II DGs in the RDS are more beneficial than type-I DG

during every loading situation for all types of load mod-

elling. For comparative performance analysis, the proposed

Table 8 Multiobjective case with commercial (COM) load model

Loading

condition

DG location

(Bus no.)

DG size

(kW)

DG size

(kVAr)

Minimum Bus

voltage (p.u.)

Weakest

bus no.

Power loss

(kW/kVAr)

Total yearly

economic loss ($)

Total yearly

saving ($)

Case 1: DGs operating at upf

LL Without DG penetration 0.9573 18 42.492/28.720 18,611.423 NA

14 403.01 0 0.9854 33 16.479/11.475 11,482.258 7129.164

24 501.07 0

30 517.43 0

FL Without DG penetration 0.9175 18 159.501/

107.708

69,861.394 NA

13 732.60 0 0.9674 33 62.337/43.313 35,331.026 34,530.369

24 1043.33 0

30 899.92 0

HL Without DG penetration 0.9024 18 224.235/

151.369

98,214.987 NA

14 925.19 0 0.9637 33 88.934/61.843 48,727.783 49,487.204

24 1181.05 0

30 1151.95 0

Case 2: DGs operating at 0.866 lagging pf

LL Without DG penetration 0.9573 18 42.492/28.720 18,611.423 NA

13 371.60 214.569 0.9957 8 3.777/3.042 6020.770 12,590.652

24 494.07 285.285

30 589.85 340.590

FL Without DG penetration 0.9175 18 159.501/

107.708

69,861.394 NA

13 742.98 429.010 0.9915 8 15.009/12.111 15,359.940 54,501.455

24 1012.82 584.821

30 1172.86 677.230

HL Without DG penetration 0.9024 18 224.235/

151.369

98,214.987 NA

13 884.78 510.888 0.9893 8 21.592/17.371 19,858.295 78,356.692

24 1188.93 686.510

30 1393.25 804.488
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Fig. 4 Pareto-optimal fronts for a CP load model, b CC load model, c CI load model, d RES load model, e IND load model, f COM load model
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Fig. 5 Bus voltage profile for a CP load model, b CC load model, c CI load model, d RES load model, e IND load model, f COM load model
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Fig. 6 Branch power flow profile for a CP load model, b CC load model, c CI load model, d RES load model, e IND load model, f COM load

model
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MQOGWO algorithm has been modified to QOGWO

algorithm for minimizing single objective function. The

performance of this QOGWO algorithm has been tested

with other newly proposed meta-heuristic techniques, and

it is found that it can produce the superior results and can

prevent the premature convergence.
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Ackermann T, Andersson G, Söder L (2001) Distributed generation: a

definition. Electr Power Syst Res 57(3):195–204

Aman MM, Jasmon GB, Bakar AHA, Mokhlis H (2013) A new

approach for optimum DG placement and sizing based on

voltage stability maximization and minimization of power

losses. Energy Convers Manage 70:202–210

Behera, S. R., Dash, S. P., and Panigrahi, B. K. (2015, March).

Optimal placement and sizing of DGs in radial distribution

system (RDS) using Bat algorithm. In: 2015 International

Conference on Circuits, Power and Computing Technologies

(ICCPCT-2015), pp 1–8, IEEE.

ChithraDevi SA, Lakshminarasimman L, Balamurugan R (2017) Stud

Krill herd Algorithm for multiple DG placement and sizing in a

radial distribution system. Eng Sci Technol Int J 20(2):748–759

El-Ela AAA, El-Sehiemy RA, Abbas AS (2018) Optimal placement

and sizing of distributed generation and capacitor banks in

distribution systems using water cycle algorithm. IEEE Syst J

99:1–8

El-Zonkoly AM (2010) Optimal placement of multi DG units

including different load models using PSO. Smart Grid Renew

Energy 1(3):160–171

Ghaffarzadeh N, Sadeghi H (2016) A new efficient BBO based

method for simultaneous placement of inverter-based DG units

and capacitors considering harmonic limits. Int J Electr Power

Energy Syst 80:37–45

Kaur N, Jain S (2017) Multi-objective optimization approach for

placement of multiple DGs for voltage sensitive loads. Energies

10(1733):1–17

Kumar KS, Jayabarathi T (2012) Power system reconfiguration and

loss minimization for a distribution systems using bacterial

foraging optimization algorithm. Electr Power Energy Syst

36:13–17

Kumar S, Mandal KK, Chakraborty N (2019) Optimal DG placement

by multi-objective opposition based chaotic differential evolu-

tion for techno-economic analysis. Appl Soft Comput J 78:70–83

Kumar S, Mandal KK, Chakraborty N (2020) A novel opposition-

based tuned-chaotic differential evolution technique for techno-

economic analysis by optimal placement of distributed genera-

tion. Eng Optim 52(2):303–324

Madihah MR, Junichi M, Hirotaka T (2017) Fossil fuel cost saving

maximization: optimal allocation and sizing of renewable-

energy distributed generation units considering uncertainty via

clonal differential evolution. Appl Therm Eng 114:1424–1432

Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv

Eng Softw 69:46–61

Modiri-Delshad M, Rahim NA (2016) Multi-objective backtracking

search algorithm for economic emission dispatch problem. Appl

Soft Comput 40:479–494

Mohanty B, Tripathy S (2016) A teaching learning based optimization

technique for optimal location and size of DG in distribution

network. J Electr Syst Inf Technol 3(1):33–44

Musa I, Gadoue S, Zahawi B (2014) Integration of distributed

generation in power networks considering constraints on discrete

size of distributed generation units. Electric Power Comp Syst

42(9):984–994

Nguyen TP, Vo DN (2018) A novel stochastic fractal search

algorithm for optimal allocation of distributed generators in

radial distribution systems. Appl Soft Comput 70:773–796

Quadri IA, Bhowmick S, Joshi D (2018) A comprehensive technique

for optimal allocation of distributed energy resources in radial

distribution systems. Appl Energy 211:1245–1260

Rahnamayan, S., Tizhoosh, H. R., and Salama, M. M. A. (2007,

September). Quasi oppositional differential evolution. In: Pro-

ceeding of IEEE Congress on Evolutionary Computation (CEC

2007), pp 2229–2236, Singapore

Rao BH, Sivanagaraju S (2012) Optimum allocation and sizing of

distributed generations based on clonal selection algorithm for

loss reduction and technical benefit of energy savings. Advances

in Power Conversion and Energy Technologies, Andhra Pradesh,

India, IEEE, pp 1–5

Rebours Y, Kirschen D (2005) What is spinning reserve, vol 174. The

University of Manchester, Manchester

Roy PK, Sarkar R (2014) Solution of unit commitment problem using

quasi-oppositional teaching learning based algorithm. Int J Electr

Power Energy Syst 1(60):96–106

Saha S, Mukherjee V (2018) A novel chaos-integrated symbiotic

organisms search algorithm for global optimization. Soft Com-

put 22:3797–3816. https://doi.org/10.1007/s00500-017-2597-4

Senthil-kumar J, Charles-Raja S, Srinivasan D, Venkatesh P (2018)

Hybrid renewable energy-based distribution system for seasonal

load variations. Int J Energy Res 42(3):1066–1087

Sharma S, Bhattacharjee S, Bhattacharya A (2016) Quasi-opposi-

tional swine influenza model based optimization with quarantine

for optimal allocation of DG in radial distribution network. Int J

Electr Power Energy Syst 74:348–373

Sujatha MS, Roja V, Prasad TN (2019) Multiple DG placement and

sizing in radial distribution system using genetic algorithm and

particle swarm optimization. Computational intelligence and big

data analytics. Springer, Singapore, pp 21–36

Sultana S, Roy PK (2016) Krill herd algorithm for optimal location of

distributed generator in radial distribution system. Appl Soft

Comput 40:391–404

Teng JH (2008) Modelling distributed generations in three-phase

distributed load flow. IET Gener Transm Distrib 2(3):330–340

Optimal placement of different types of DG units considering various load models using novel ... 4863

123

https://doi.org/10.1007/s00500-017-2597-4


Tizhoosh, H. R. (2005). Opposition-based learning: A new scheme for

machine intelligence. In: Proc. Computational Intelligence for

Modeling Control and Automation Conference, Vienna, Austria,

pp 695–701

Yammani C, Maheswarapu S, Matam SK (2016) A Multi-objective

Shuffled Bat algorithm for optimal placement and sizing of multi

distributed generations with different load models. Int J Electr

Power Energy Syst 79:120–131

Yuvaraj T, Devabalaji KR, Ravi K (2018) Optimal allocation of dg in

the radial distribution network using bat optimization algorithm.

advances in power systems and energy management. Springer,

Singapore, pp 563–569

Zeinalzadeh A, Mohammadi Y, Moradi MH (2015) Optimal multi

objective placement and sizing of multiple DGs and shunt

capacitor banks simultaneously considering load uncertainty via

MOPSO approach. Int J Electr Power Energy Syst 67:336–349

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

4864 S. Kumar et al.

123


	Optimal placement of different types of DG units considering various load models using novel multiobjective quasi-oppositional grey wolf optimizer
	Abstract
	Introduction
	System modeling
	DG modeling
	DG as a ‘‘negative load’’ model
	DG as a ‘‘constant power factor’’ model
	DG as a ‘‘variable reactive power’’ model

	Load modeling

	Problem formulation
	Multiobjective quasi-oppositional grey wolf optimizer (MQOGWO) algorithm
	Initialization based on quasi-oppositional scheme
	Social hierarchy
	Encircling prey
	Hunting
	Attacking prey (exploitation) and searching prey (exploration)
	Archive formation with Pareto optimal fronts
	Reduction of archive matrix by crowding distance metric
	Selection of best compromised solution by fuzzy set theory

	Results and discussion
	Single objective case: minimization of P_{L}^{{{\rm{aDG}}}}
	Multiobjective case: minimization of P_{L}^{{{\rm{aDG}}}} \comma \;{\hbox{YEL}}_{{{\rm{aDG}}}}\comma {\hbox{ and&#38;\,VD}}_{{{\rm{aDG}}}}

	Conclusion
	Acknowledgments
	References




