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Abstract
With the proliferation in demand for navigation systems for reconnaissance, surveillance, and other day-to-day activities,

the development of efficient and robust path planning algorithm is an open challenge. The uncertain and dynamic nature of

the real-time scenario imposes a challenge for the autonomous systems to navigate in the environment, avoiding collision

with the moving obstacles without compromising on the energy-time trade-off. Motivated by this challenge, an efficient

gain-based dynamic green ant colony optimization (GDGACO) metaheuristic has been proposed in this paper. The energy

consumption while path planning in a dynamic scenario will be humongous owing to its nature. The proposed algorithm

reduces the total energy consumed during path planning through an efficient gain function-based pheromone enhancement

mechanism. The memory efficiency of Octrees is incorporated for workspace representation because of its ability to map

large 3D environments to limited memory. Comprehensive simulation experiments are conducted to demonstrate the

efficacy of GDGACO. Results are analysed through comparison with other methods in terms of path length, computation

time, and energy consumed. Also, the results are verified for statistical significance.

Keywords Ant colony � Dynamic path planning � Gain-based pheromone � Octrees and sigmoid function

1 Introduction

Strategic path planning is one of the most important

functionalities of logistic systems and supply chain man-

agement in urban environments (Li et al. 2020; Zhao and

Pan 2020; Savuran and Karakaya 2016). An intelligent

logistics distribution planning system will not only increase

the efficiency of distribution but also reduce the overall

cost of delivery (Zhao and Pan 2020). But with the boom

due to rapid development in present-day technology,

enterprises are seeking for intelligent systems for efficient

route planning. Logistic distribution optimization is a

classic NP-hard problem that can be easily related to the

classical travelling salesman problem (Li et al. 2020).

Rational and reasonable route planning systems that can

work on an autonomous system is the need of the hour. The

present-day technology enables us to acquire precise geo-

graphic data on any location. Using this accurate location

information, route planning can be done for logistics dis-

tribution. But the volume of such location information is

high and the variety is heterogeneous. So, the traditional

algorithms may fail to produce an efficient solution. Con-

ventionally, path planning problem is categorized into

static and dynamic based on the nature of their environ-

ment. A static path planning problem will have a prior

knowledge of its environment and the obstacle position.

But on the other hand, dynamic path planning problem will

not have a prior knowledge of the environment with respect

to the obstacle and their position. Real-world scenarios are

dynamic without a prior knowledge of the obstacles in it.

The position of obstacles tends to change over time. In the
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real world, route planning tends to be dynamic in a 3D

environment where the obstacles may be moving and there

would not be a prior knowledge of the environment,

thereby adding additional complexity to the process. In the

past decade, a noticeable change in trend towards meta-

heuristics (Savuran and Karakaya 2016) has been observed

in the areas of path planning for logistics distribution. Their

ability to produce quasi-optimal promising solutions irre-

spective of the environment has made them a strong con-

tender in the field of optimization (Boussaı̈D et al. 2013).

Many works could be found in the literature regarding

dynamic path planning. Table 1 investigates some of the

findings from recent researches. A biogeography-based

optimization with a harmony-based embedded search was

proposed for fault diagnosis and detection by Yu et al.

(2018). The search ability of the algorithm was enhanced at

the mutation stage with a pitch adjustment in the harmony

search. Elhoseny et al. (2018) proposed a modified genetic

algorithm for the robot path planning for behaviour anal-

ysis in dynamic environments. Miao and Tian (2013)

proposed an enhanced simulated annealing approach for

dynamic robot path planning. Experiments were performed

with both static and dynamic obstacles under different

simulated environments. Willms and Yang (2008) pro-

posed a real-time robot path planning system. The system

was able to integrate safety margins around obstacles using

local penalty function and implemented on various real-

time simulations. A probabilistic road map-based ant col-

ony optimization approach was developed by Adolf et al.

(2007) for UAV 3D space planning. The experiments

proved that a path planner could be integrated with a task

planner for real-time uses. Yin et al. (2017) proposed a

multi-objective path planning system for dynamic urban

environments. Safety index maps were designed for both

static and dynamic obstacles, using which the position of

obstacle was predicted. Extensive simulations on both

synthetic and real-time datasets have been performed for

verifying the efficiency of the system. A stochastic

dynamic environment-based path planning system was

proposed by Subramani and Lermusiaux (2019) by con-

sidering the risks in uncertain and dynamic scenarios.

Initially, the probability distribution of environmental

flows and risks were predicted. The path with minimum

risk is chosen as the optimum path.

The system experimented with coastal and urban envi-

ronments. An improved gravitational search-based multi-

robot path planning algorithm in a dynamic environment

was proposed by Das et al. (2016). The positions were

updated using particle swarm optimization and greedy

strategy. The simulations were done in C and Khepera II

environment. Luo et al. (2019) proposed an improved ant

colony-based method for path planning of mobile robots.

Table 1 Investigation of the recent literature

References Method adopted Cost

function

Dataset used Application Optimality achieved

Chou et al.

(2019)

Single source

shortest path

algorithm—

Dijkstra’s

algorithm

Path

distance

Simulated in the international

building of NTUST

Fire rescue

operations

Dynamic and bi-directional handling of

instructions, thereby achieving

accurate and timely evacuation-

rescue operations

Chao et al.

(2019)

D*Lite-RRT*

algorithm

Path

distance,

minimum

dosage

Simulated 25 9 25 grid space.

Hypothetical gamma radiation

cells obtained through Point-

Kernel method

Nuclear

facilities-

radioactive

environments

Minimum dose path in a static and

dynamic environment with improved

re-planning efficiency

Bhasin

et al.

(2016)

Diploid genetic

algorithm

Path

distance

motion planning maps of the

Intelligent and Mobile Robotics

Group

Mobile robots The optimal choice of control points

and shortest path length with least

energy consumption

Patle et al.

(2018)

Firefly algorithm Euclidean

path

distance

Real-time experiments and

simulation analysis

Robot

navigation

Minimum path length and time with

more significant obstacle avoidance

Sanchez-

Lopez

et al.

(2019)

Probabilistic graph,

Potential field

map, A* search

algorithm

Path

distance

ROS-based simulations Multirotor

aerial robots

An optimal path without dropping at

local minima

Wang

et al.

(2019)

Improved ant

colony

optimization

Safety

value

cost, path

distance

MATLAB simulations Ground robots Effective obstacle avoidance, shorter

path length, smooth trajectories
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An improvement was made on pheromone initialization,

pheromone update, deadlock avoidance, and simulations

that were made in MATLAB. Navigation planning in

dynamic environments using a Genetic algorithm was

proposed by Uçan and Altilar (2012). Simulations were

done using USA waypoints of southern states. The algo-

rithm achieved better results in terms of speedup, flexi-

bility, and quality in dynamic scenarios. An effective

routing protocol for vehicular ad hoc networks based on

fuzzy logic, namely F-Ant was proposed by Fatemidokht

and Rafsanjani (2018), taking into consideration challenges

like self-organization, dynamicity of vehicles. The simu-

lations were done in NS-2 simulator. The proposed method

was able to achieve high packet delivery ratio and low end-

to-end delay. Zhang and Zhang (2018) proposed an

improved ant colony optimization method with strength-

ened pheromone updating mechanism for solving con-

straint satisfaction problems. A set of benchmark CSP test

cases were used for simulation and was able to achieve

better results based on convergence speed and quality of

the solution. A literature review on UAV 3D path planning

was done by Yang et al. (2014). A different perspective in

the application of heuristic method in the process of routing

and planning was experimented by Yu and Wang (2013). A

model-based fault diagnosis system through the vehicle

steering of CyCab electric vehicle was instrumented to

identify different faults abrupt fault, incipient fault, and

intermittent fault. The methods were classified into five

categories based on its nature, and a comprehensive anal-

ysis of its complexity was also stated. From the literature,

then it can be observed that though many algorithms were

proposed for dynamic path planning in the presence of

moving obstacles without a prior knowledge of environ-

ment, a consolidates method for intelligent path optimiza-

tion with obstacle avoidance consuming least energy has

not been proposed.

1.1 Challenges from the literature analysis

From the literature analysis made above, the following

challenges can be observed:

1. In the case of real-time dynamic environments, there

would be no prior information regarding obstacles and

their position. Additionally, 3D real time is generally

large in size and heterogeneous. This increases the

storage complexity of the algorithm. The challenge

regarding handling the huge volume of real-time data is

not effectively addressed in the literature.

2. Though there are algorithms that enable minimum

length and collision-free path in the literature, they

suffer from high energy consumption. Energy effi-

ciency of the path is not elaborated in the literature.

3. When dealing with dynamic environment without a

prior knowledge, the metaheuristic methods in the

literature tend to consume more time and also result in

lengthy paths (Elhoseny et al. 2018; Bhasin et al.

2016). This is because these methods concentrate on

the non-dominated points during their search.

4. When dealing with real-time dynamic environments,

the stability and convergence of the algorithm are

important performance metrics. From the literature, it

is evident that there is an urge for the faster conver-

gence of the algorithm with greater stability.

1.2 Contributions of this paper

Motivated by the challenges mentioned above, and to

alleviate the same, in this work, an energy-efficient gain-

based dynamic green ant colony optimization is proposed

for planning safe and energy-efficient path. The main

contributions of the work are:

1. A gain-based pheromone enhancing mechanism for

cost and energy-efficient dynamic path planning has

been proposed. The enhanced pheromone update phase

of the ant system will eliminate the unwanted traversals

during the current best solution search and thus reduce

energy consumption.

2. Due to the volume and variety of the 3D data, memory-

efficient storage becomes substantial, which is

addressed by using Octrees data structure.

3. In addition to the distance-based obstacle avoidance

during the next node to be visited, an obstacle

avoidance strategy is added during the gain-based

pheromone enhancement phase. Thus, the current best

solution will be collision-free.

4. Faster convergence has been observed because of the

pheromone enhancement mechanism (Fig. 11a–f).

5. The proposed method is found to be stable with a lower

standard deviation (Table 5) and efficient in terms of

satisfying the objectives.

1.3 Organization of the paper

The remainder of the paper is constructed as follows.

Section 2 focuses on the basic ideas that are essential for

the design of the proposed idea. Section 3 is the core

section, which deals with the proposed idea for energy-

efficient path planning in 3D dynamic environments. To

realize the applicability of the proposed algorithm, simu-

lation experiments with real-time data are conducted.

Further, comparative investigation is carried out with state-

of-the-art methods to understand the strengths and weak-

nesses of the proposed algorithm. Finally, Sect. 5 provides
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the conclusion and future direction of research in 3D path

planning.

2 Preliminaries

2.1 Environment modelling

The first step for path planning is environment modelling.

The path of an unmanned vehicle (UV) is continuous,

while computers can process discrete data. The environ-

ment for path planning is represented using a digital ele-

vation model (DEM). With the advancements in modern-

day GIS, DEM is easily available for many locations of the

earth. A DEM is a representation of the ground surface

using the elevation information. The ground elevation is

represented using a surface model that contains regularly

spaces numerical array of elevation values. A DEM is

usually expressed as Xi; Y ; Zið Þ where Xi and Xi are the

planar coordinates, Zi is the elevation for X; Yið Þ. DEM data

can be represented either as a raster format (in terms of the

grid as called as elevation map) or as a vector-based tri-

angular irregular network. Raster-based height maps are

used in this work for DEM representation and processing.

Figure 1a shows a DEM data realized as a surface model,

and Fig. 1b shows the corresponding height map.

The DEM is processed using MATLAB functions and

stored in a two-dimensional array where each array index

contains the elevation value of the corresponding coordi-

nates. To facilitate path planning, the DEM is modelled as

a grid map G with V as nodes and H as edges, where each

node has eight connected neighbours, as shown in Fig. 2.

The environment is modelled into a three-coordinate sys-

tem (XYZ), where each point can be represented in terms of

X; Y ; Zð Þ. Let Vi be the current node denoted as Xi; Yi; Zi
and Vj be the neighbour node that is to be visited next

denoted as Xj; Yj; Zj.

The Euclidean distance (planimetric distance) between

current node Vi and neighbouring node Vj in the X–Y plane

is given by Eq. (1),

pdðVi;VjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXi � XjÞ2 þ ðYi � YjÞ2
q

ð1Þ

The difference in elevation between Vi and Vj along the

Z plane is given by Eq. (2),

hðVi;VjÞ ¼ Zi � Zj ð2Þ

The Euclidean surface distance between Vi and Vj on a

three-dimensional space (XYZ) is thus given by Eq. (3),

dðVi;VjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðXi � XjÞ2 þ ðYi � YjÞ2 þ hðVi;VjÞ2
q

ð3Þ

The slope between Vi and Vj is given by Eq. (3),

hðVi;VjÞ ¼
hðVi;VjÞ
pdðVi;VjÞ

ð4Þ

On DEM, plain euclidean distance (plainmetric length)

is different from surface length (Jenness 2004). The ratio-

nale behind calculation true distance using Eqs. (3) and (4)

is adapted from Ganganath et al. (2015).

The main objective of dynamic path planning is mini-

mizing the total path length during the target seeking

behaviour without colliding with the obstacles, but through

the least energy consumption. With regard to the first

objective, path length can be determined using Eq. (3).

Obstacle avoidance behaviour and energy cost model for

path planning will be discussed in the forthcoming

sections.

Fig. 1 a A DEM data realized as surface model and b height map
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2.2 Linear regression-based energy cost model

Energy reduction is one of the main challenges when using

a UV for path planning. Researchers have identified many

factors like road grade, velocity, on-board system config-

uration, vehicle mass, driving style as some of the factors

that play a major role in determining the energy con-

sumption of UV. From the methods in Sadrpour et al.

(2012, 2013) and Jabbarpour et al. (2017), the energy

consumption of UV during path planning can be deter-

mined. Parameters like vehicle mass and velocity, road

grade, and rolling resistance are considered from Sadrpour

et al. (2012). Power at (t) can be calculated by Eq. (5) as

PðtÞ ¼ FðtÞvðtÞ þ b

¼ ðW sinðcðtÞÞ þ fW cosðcðtÞÞ þ maðtÞ þ CÞ � vðtÞ þ bþ eðtÞ
ð5Þ

where PðtÞ = power at t; FðtÞ = traction force; vðtÞ = ve-

locity at t; m = mass of vehicle; aðtÞ = acceleration at t;

W = weight of vehicle; c(t) = road grade; f = rolling

resistance coefficient; C = internal resistance coefficient;

b = energy consumed by on-board equipment, e(t) =
model error.

By Sadrpour et al. (2012), the value of c does not

increase more than 15�. Therefore Eq. (5) can be linearized

into Eq. (6).

PðtÞ ¼ FðtÞvðtÞ þ b

¼ ðW cðtÞ þ fW þ maðtÞ þ Cð Þ � vðtÞ þ bþ eðtÞ
ð6Þ

Rewriting Eq. (6) as a linear regression model, we get

Eq. (7).

PðtÞ � maðtÞvðtÞ ¼ vðtÞWðcðtÞ þ f þ C�Þ þ bþ eðtÞ ð7Þ

where C� ¼ C=W .

Rewriting Eqs. (7) to (8), the regression model for

energy reduction calculation can be got.

A tð Þ ¼ bþ C:B tð Þ þ e tð Þ ð8Þ

where the response is A tð Þ ¼ P tð Þ � ma tð Þv tð Þ½ �; predictor
is v tð ÞW ¼ B tð Þ; and the regression model is C ¼
c tð Þ þ f þ C�ð Þ½ � containing information regarding road

grade, resistance, and fractional losses.

Recursive least squares prediction method is used to

determine the values of C and b. From Sadrpour et al.

(2012, 2013) and Jabbarpour et al. (2017), more details on

the method can be found. The time taken to reach the

destination TD can be found using the known start and

destination positions. The energy consumed during path

planning can be got by integrating power over the mission

duration as given by Eq. (9)

Fig. 2 Eight-neighbour

representation of DEM data
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Ec ¼
Z

TD

0

PðtÞdt �
X

v

i¼1

PðjÞDt ð9Þ

2.3 Obstacle avoidance and target seeking
behaviour

The main aim of path planning towards the target seeking

behaviour of UV is to minimize the distance towards the

destination and maximize the distance towards obstacles.

Path planning in a dynamic environment is a challenging

task because of the changing position of the obstacles.

Figure 3 shows the navigation of UV in the presence of

dynamic obstacles. A safe path planning requires effective

obstacle avoidance mechanism. From Fig. 3, let UV be the

position of unmanned vehicle. As the UV moves forward,

it is confronted by static and moving obstacles. The UV

senses obstacles in its sensing range. Upon sensing the

obstacles, a collision cone is formed by the UV (Luh and

Liu 2007). From Fig. 3, PP and QQ are the tangents from

the UV to obstacle forming the collision cone. Let VUV-Ob

be the relative velocity between the UV and obstacle. Let

VOb be the velocity of obstacle and VUV be the velocity of

UV. For the UV to avoid collision, the relative velocity

between UV and obstacle, VUV-Ob should lie outside the

collision cone. Also, from Luh and Liu (2007) VUV-Ob is the

result of velocity between UV and obstacles. Though VOb

can be measured using sensors, it cannot be adjusted. Thus,

for safe path planning of UV, during the neighbour search,

the next position is chosen based on the maximum distance

from the obstacle.

Let o be the number of obstacles in the environment

represented as ðOb1;Ob1;Ob2;Ob3; . . .;OboÞ with the

coordinates as ððXOb1 ; YOb1Þ; ðXOb2 ; YOb2Þ � � � ðXObo ; YOboÞÞ.
Let s be the number of obstacles in the environment rep-

resented as ðOb1;Ob1;Ob2;Ob3; . . .;ObsÞ. The Euclidean

surface distance between the current position and the

nearest obstacle is given by Eq. (10),

d Vi;Obið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XObi � Xið Þ2þ YObi � Yið Þ2þ ZObi � Zið Þ2
q

ð10Þ

where XObi and YObi are X and Y coordinates of the nearest

obstacle Obi such that Obi 2 Obs, ZObi is the elevation of

ðXObi ; YOb1Þ.
During the pursuit of destination, it is mandatory to

choose the shortest path with the minimum distance to the

goal for effective planning. The UV must move towards the

next best position without colliding with the obstacle to

reach the destination safely. The Euclidean distance

4754 V. Sangeetha et al.
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between the current position and the destination node Vdest

is given by Eq. (11),

d Vi;Vdestð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xdest � Xið Þ2þ Ydest � Yið Þ2þ Zdest � Zið Þ2
q

ð11Þ

where Xdest and Ydest are the X and Y coordinates of the

destination and Zdest is the elevation at (Xdest; Ydest).

In the presence of multiple moving obstacles, the

chances of collision with each obstacles must be calculated

so that an obstacle which has more chances of collision can

be avoided. The collision distance index (Luh and Liu

2007) is calculated using Eq. (12) as

C Id ¼ d Vi;Obið Þ
VOb � Dt

ð12Þ

From Eq. (12), an obstacle with high collision index has

least chances of collision.

2.4 Ant colony optimization

Ant colony optimization proposed by Italian Scholars

Marco Dorigo et al.(1996) is a swarm-based stochastic

algorithm that was inspired by the foraging behaviour of

ants to obtain their food. It is a population-based meta-

heuristic that is carried out by a colony of ants resulting in

an optimal path between their nest and food source. Ants

communicate among themselves through Stigmergy. As the

ants move, they deposit a chemical liquid named pher-

omone on their way. The remaining ants follow the pher-

omone trail. The amount of pheromone on a trail increases

when more ants take the path and decrease vice versa. A

typical food searching behaviour of ants is shown in Fig. 4.

The process of adding up pheromone on a trail is called

pheromone reinforcement/accrual leading to positive

feedback. Artificial ants are the counterparts of real-world

ants. They are most similar to natural ants, but they possess

their memory and internal state. Like any other meta-

heuristics, a proper balance between exploration and

exploitation will help in the optimal convergence of the ant

colony optimization. Pheromone evaporation on least-used

trails helps in the exploration process, thus avoiding con-

vergence to local optima. In the case of no evaporation, all

ants will tend to follow the path by the first ant without

exploring the solution space. There are many variants of

ACO like ant colony system, elitist ants, ant density model,

and so on (Padhy 2005). In this work, the ant system is

used because of its simplicity and robustness towards

applications of any interest.

Performing a local search on the current neighbour

window of the ants will lead to exploitation. In this work, a

pheromone enhancement mechanism adopted from San-

geetha et al. (2019) is used to determine the current best

path among moving obstacles.

Fig. 3 Scenario representing obstacle avoidance behaviour

Fig. 4 Foraging behaviour of ants in finding the shortest path between

food and source
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The notations and parameters used in ant colony opti-

mization are as given in Table 2.

3 Materials and methods

3.1 Problem formulation and dataset description

Given S and D as start and destination positions, Vf as the

set of traversable nodes such that Vf � V , the problem of

path planning, can be formulated as a minimization

problem.

The main objective is to minimize target distance with

collision avoidance from Eqs. (10) and (11). The objective

function for obstacle avoidance and target seeking can be

framed as given by Eq. (13). The final solution obtained

should be of least distance without any collision with the

obstacles thus satisfying both the objectives. An energy-

efficient safe path is obtained by minimizing Eq. (13)

Min gðxÞ

¼
X

r

i¼1

X

r�1

j¼1

xij G1

1

minimumObo2Obs d Vi;Obið Þð Þ

� �

þ G2 d Vi;Vdestð Þð Þ
� �

ð13Þ

Subject to

X

r�1

i¼1;i6¼j

xij ¼ 1; j ¼ 1; . . .; r � 1; 8j 2 Knf Sg ð14Þ

X

r�1

j¼1;j6¼i

xij ¼ 1; i ¼ 1; . . .; r � 1; 8i 2 KnfDg ð15Þ

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xi � Xj

� �2þ Yi � Yj
� �2þ Zi � Zj

� �2
q

ð16Þ

xij ¼
1 for path between i and j
0 otherwise

�

ð17Þ

where r is the size of input.

Equations (14) and (15) indicate that there can be only

one arrival (except start S) and one departure (except

Destination D) at a time. Equation (16) represents the

distance function to calculate distance that can be calcu-

lated using. Equation (17) indicates that either the node is

included or discarded from the list.

In Eq. (13), let Obs be the obstacles sensed by UV

during its course of navigation. G1, G2, are weightage

parameters given to the objective function. From Eq. (13),

it can be inferred that the value of d Vi;Vdestð Þð Þ decreases
as the UV gets nearer to the destination. Also, the value of

minimumObo2Obs d Vi;Obið Þð Þ increases as the UV is away

from an obstacle. Equation (13) can be divided into two

parts viz., obstacle avoidance and target seeking. The first

part of Eq. (13) can be related to obstacle avoidance, where

the focus is to maintain a maximum distance from the

obstacle. The farther the UV is from obstacle, the higher is

the value of this part of (13). The second part of Eq. (13)

can be related to target seeking, where the focus is to

minimize the total distance to the target. Since the problem

of path planning can be formulated as a minimization

problem, obstacle avoidance is given in the denominator of

the first part of Eq. (13), target seeking, and intermediate

path optimization is giving in the numerator of the second

and third part. If the primary focus of navigation of UV is

towards safe path planning, then G1 can be given maxi-

mum weightage. If G2 is given maximum weightage, then

the focus of navigation is towards shortest path planning. If

G2 is given maximum weightage, then the focus of navi-

gation is towards optimizing the intermediate path seg-

ments. Proper selection of weightage parameter will decide

the success of the objective function towards path planning.

In this work, equal importance is given to both the

weightage parameters and its value is considered as 0.5,

thus realizing energy-efficient and safe path for traversal.

Satellite images with their corresponding ground truth

and digital surface model (DSM) have been taken from

International Society for Photogrammetry and Remote

Table 2 Parameters of the ant

colony algorithm
Parameter Description

M Total no of ants

so Initial pheromone amount

sij Amount of pheromone deposited while traversing from i to j

gij Heuristic function indicating the visibility of route between i and j; gij ¼ 1
dij

dij Cost of the route (i, j) obtained by kth ant

a Influence of pheromone on the choice of next vertex

b Impact of heuristic function on the choice of next vertex

q Rate of pheromone evaporation; 0\q\ 1

visitm A table containing nodes that are feasible to be visited by mth ant

Q Constant related to the pheromone increment
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Sensing (ISPRS) (http://www2.isprs.org/commissions/

comm3). Elevation data of 100 points of 30–90 m resolu-

tion can also be freely acquired from Shuttle Radar

Topography Mission (SRTM) (Farr 2007). SRTM eleva-

tion data are obtained from http://earthexplorer.usgs.gov/.

3.2 Gain-based green obstacle avoidance
and intermediate path optimization

Two important aspects namely ant colony optimization:

pheromone trail sij and the heuristic gij guide ACO. These

two aspects are related to the exploration and exploitation

of ant colony optimization. An extensive search on the

solution space is made possible by the heuristic, whereas

pheromone update determines the speed of convergence of

the algorithm. As the ant traverses around the solution

space, it constructs complete solutions. Once solutions are

built, pheromone evaporation and pheromone reinforce-

ment are performed using the pheromone update rules. The

pheromone update rule generally increases the pheromone

on the most used trail and decreases the amount of pher-

omone on the least used trail, thereby reducing the possi-

bility of trapping in local optima.

The traditional pheromone update mechanism updates

trails based on the intensity of pheromone on them. In this

work, the pheromone enhancement is carried out based on

the gain quantity. The gain is determined by a local

heuristic based on the relative distance to the destination

with respect to the neighbour and the maximum distance

from the obstacle. This gain quantity enhances the pher-

omone on the current best path based on the local heuristic.

It enables all the ants to move towards the current best

solution without colliding with the obstacles. The proposed

gain function will help in avoiding unnecessary traversals

and obstacle collision, thus leading to minimum energy

consumption.

3.2.1 Calculating gain

Pheromone gain is an additional amount of pheromone

added to the best path found so far to make the process of

pathfinding quicker. Thus, the new quantity added will

enable quicker pathfinding by eliminating the unwanted

traversals during the local search. Pheromone gain is given

by (19).

progressjDest ¼
djDest þ d Vi;Obið Þ

diDest
ð18Þ

Gainij ¼
1

1þ e�k�dprogressjDestð Þ ð19Þ

where Vdest = destination vertex; Vj = neighbour vertex;

Vi ¼ current node. k decides the degree of smoothness,

which ranges from 0 to 1; djDest = djDest, where djDest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vj � VDest

� �2þh2jDest

q

for j = 1, 2, 3,…, 8,d Vi;Obsð Þ is the
maximum distance between the UV and the nearest sensed

obstacle as computed by Eq. (10) and hij is the elevation

difference calculated using Eq. (2) and

dkiDest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vk
i � Vk

Destð Þ2þh2jDest

q

. For all values of k and

progress, the value of the gain always lies between 0 and 1.

Values obtained from the Sigmoidal function will help in

the smooth traversal of UV to the destination.

Consider a configuration space of 20 9 20, as shown in

Fig. 5.

The algorithm starts from the known start position.

Upon reaching Vi (current position), the next node to be

visited is searched from the neighbours (Vj1 to Vj8). The

node with relative minimum distance to destination

Fig. 5 Pictorial representation of pheromone gain process
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ðprogressjDestÞ is marked as the next node to be visited, and

the corresponding pheromone trail is updated. During

pheromone update, Gainij is added to snewij of node with

minimum progressjDest, and subtracted from the snewij of

other neighbours. If all the neighbours of current nodes

have the same distance, then gain is added to all nodes.

Mathematically the procedure can be written as,

djDest = djDest, where djDest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðVj � VDestÞ2 þ h2jDest

q

for j = 1, 2, 3,…,0.8. hij is the elevation difference calcu-

lated using Eq. (2). If the path provides minimum djDest and
max1;2;...s d Vi;Obsð Þð Þ, then the gain will be added along

with the current pheromone quantity, otherwise subtracted.

snewij

¼
1� qð Þsoldij þ

P

N

k¼1

Dskij þ Gainkij for minðdijÞ and max1;2;...s d Vi;Obsð Þ

1� qð Þsoldij þ
P

N

k¼1

Dskij � Gainkij otherwise

8

>

>

>

<

>

>

>

:

ð20Þ

Using Eq. (20), snewij is calculated and used in Eq. (22).

Adding the Gainkij of kth ant to the trail from a node with

min djDest, max1;2;...s d Vi;Obsð Þð Þ and subtracting from other

trails by Eq. (20) will result in the accumulation of pher-

omone on the current best path and evaporation from other

paths. This enhancement will induce the ants to settle down

towards the current best solution and thereby leading to

faster convergence.

3.3 Methodology for GDGACO

Path planning using GDGACO on uneven terrain consists

of two stages, and its detailed explanation is given below:

1. Terrain data preparation.

2. Gain-based green ant colony optimization.

3.3.1 Terrain data preparation

The acquired satellite images from ISPRS and its corre-

sponding elevation data are processed using MATLAB

2018b.

From the terrain matrix, slope (h) is calculated for all

points. With the help of slope values, the traversable map is

prepared. In addition, the obstacles that are already present

in the environment, certain areas in the environment may

not be traversable by the UV because of the geographic

elevation of the location. To handle such situation, two

mechanisms, surpassing and searching, is considered.

Surpassing: For z\h\�z; the corresponding points of h
will be considered traversable. Ants will be able to surpass

those points and continue their traversal.

Searching: For h 62 z; �z½ �, the corresponding points of h
will be considered non-traversable. Ants will treat them as

obstacles.

The parameters �z; z are tunable depending upon the

unmanned system. �z; z is the upper and lower limits of the

tunable parameters. They determine the maximum and

minimum value of h that can be surpassed by the unman-

ned system.

3.3.2 Gain-based dynamic green ant colony optimization

3.3.2.1 Environment understanding The environment for

path planning must be transformed into a form to carry out

the path planning process. The traversable map created

from the elevation data is modelled into a 3D occupancy

map using the Octree data structure. The grid resolution for

occupancy grid is one cell per metre, i.e. each cell is of 1 m

in size. An Octree data structure recursively subdivides the

environment into cubic volumes called voxels. For a given

map area, space is divided into eight voxels called octants

that stores the probability values for each location. The

entire recursive division is mapped into a tree. The tra-

versable area in the environment are marked as white

nodes, obstacles are marked as black nodes, and current

nodes under consideration are marked as grey nodes.

3.3.2.2 ACO parameter initialization The parameters of

the ant colony system are initialized in this phase. Initially

so is set to 0.a; b; q, start node and destination node are

initialized subsequently. The values used for simulation are

given in Table 4. The ants during the ACO process either

move in a forward direction or backward direction. Using

the Node Transition Probability function, the ants move

forward and reach the destination. The ants use their

memory to travel back to the starting point using the

pheromone update rules. The flow diagram for GDGACO

working is given in Fig. 6.

3.3.2.3 Cost and energy calculation Upon reaching a

vertex, ants check in the visitk for the next node to be

visited, resulting in the forward phase of map exploration.

Using the node transition probability, the next node to be

visited is chosen. By Eq. (21), the pheromone values of all

links are updated. Using Eq. (21), gain is calculated for

pheromone enhancement on the current best trail.
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Gainkij ¼
1

1þ e�k�progressk
jdest

� 	 ð21Þ

where progresskjdest ¼
dkjDestþðd Vi;Obið Þ

dkiDest
.

Here dkjDest ¼ dkjDest; dkjDest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vk
j � Vk

Dest

� 	2
r

þh2jDestd
k
iDest ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vk
i � Vk

Destð Þ2þh2jDest

q

. The pheromone

gain on the current best trail is calculated using a sigmoid

function. Sigmoid function has a characteristic ‘S’-shaped

curve with an interval from 0 to 1. It could be found from

the meticulous observation that the curve is very similar to

a path with smooth turns, which is the desired path in most

of the UV path planning problems (Ravankar et al. 2018).

The natural inclination towards smoothness and bounded

intervals of the sigmoid function is used to determine the

current best path. Also, during the calculation of

progresskjdest, the maximum distance of all the sensed

obstacles is added to dkjDest to enable obstacle avoidance.

Therefore, the pheromone is enhanced on the current trail

that has the maximum distance from the obstacle.

Using the node transition probability, the next node to

be visited is chosen. Equation (22) is used for the forward

move.

NTPk
ijðtÞ ¼

skij

� 	a
gkij

� 	b

P

h2visitk skih
� �a

gkih
� �b

� nj
nj þ 1

if j 2 visitk

0 otherwise

8

>

>

<

>

>

:

ð22Þ

In Eq. (22), gij is the cost of edge (i, j). sij is the pher-

omone intensity in (i, j) and is calculated by (20) through

the backward move. h are those nodes that are allowed to

be visited ant the ants. vj is used to compute the connected

components of the next vertex j. gij is calculated using (23).

gij ¼
1

dij
ð23Þ

where

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vk
i � Vk

j

� 	2

þh2ij

r

ð24Þ

vij denotes the speed of vehicle, u indicates the maximum

speed and is set to 2 m/s (Jabbarpour et al. 2017) to nor-

malize the value, and hij is the elevation difference between

i and j that could be calculated using Eq. (2).

The cost of traversal between i and j is calculated using

(23). By Eq. (23), the choice of the next node has an

inverse relationship with distance.

3.3.2.4 Path planning The final phase is the path plan-

ning phase. Once the forward move is completed, the ants

start their backward move by tracing the path using their

memory. During this move, the pheromone update rule is

used to find the current pheromone quantity. The intensity

of pheromone is updated using (25). The usability of the

path is either increased by pheromone reinforcement or

decreased through pheromone evaporation.

The quantity of Dskij is given by (25),

Dskij ¼
1

dkij
þ 1

Ek
ij

þ d Vi;Obið Þð Þ if kth ant passes i and j

0 otherwise

8

<

:

ð25Þ

where dkij and Ek
ij are the distance and energy consumed

over the edge i and j by kth ant.

According to Eq. (25), pheromone is updated on the trail

that has the least distance to the target and maximum

distance from the obstacle with least energy consumption.

The pseudo-code for GDGACO is given below:
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The algorithm continues until either of the following

conditions is achieved: the shortest path is obtained, or a

predetermined number of iterations have been completed.

4 Results and discussion

4.1 Experimental setup

The proposed algorithm was implemented in MATLAB

R2018b (The MathWorks, Natick, 2018). Simulations were

performed in three different scenarios. Elevation values of

100 9 100 points of 18�N 76�E and 19�N 78�E were

obtained from USGS for scenarios 1 and 2. Real-time city

landscape (1189 9 1002) of the Vaihingen dataset from

ISPRS have been considered for scenario 3. Figure 7a–c

shows the three different scenarios used for simulations.

Table 3 shows the details regarding the obstacles in all

three scenarios. The following assumptions were made for

the simulations:

Fig. 6 Flow diagram of proposed GDGACO
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1. Start and destination are known and remain the same

during the process of path planning. However, they

differ in each scenario.

2. All dynamic obstacles were considered to move at a

uniform speed of 0.5 m/s in the case of uniform

obstacle speed. In the case of varying speed of

obstacle, the speed is taken randomly between 0.5

and 1.2 m/s.

4.2 Performance measures

The proposed method is compared with existing methods

with the following performance measures. Each algorithm

was run for 20 runs, and performance has been analysed.

• Mean, and Standard Deviation of 20 runs is estimated

and compared to determine the stability of the method.

• Average and Median of the Computation time con-

sumed in 20 runs are compared for computational run-

time analysis of the algorithm.

• Energy consumed during path planning is computed

and compared with other algorithms to determine the

reduced energy consumption.

4.3 Parameter setting

Simulations were conducted on the different scenarios for

varying values of q. The values used for simulations are

taken from Jabbarpour et al. (2017) and are given in

Fig. 7 a–c Scenarios considered for simulation (all units in metres (m))

Table 3 Scenarios used for simulation

Scenario # Static obstacle Dynamic obstacle

1 5 2

2 5 2

3 4 2
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Table 4. The algorithm executed for 20 runs on each sce-

nario and average for each scenario is considered. Varia-

tions of q on scenario 1 are given in Fig. 8. Varying the

values of q from 0.1 to 0.9, the length is computed as given

in Fig. 8a, and time is calculated as given in Fig. 8b. From

both the box plots, it can be inferred that for q = 0.5, the

algorithm shows minimum deviation with no outliers for

both length and fitness. Also, obstacle avoidance behaviour

was observed for q = 0.5.

4.4 Performance evaluation

The proposed GDGACO was compared with most fre-

quently used metaheuristic algorithms like Modified

Genetic Algorithm (MGA) (Elhoseny et al. 2018), Firefly

Algorithm (FA) (Patle et al. 2018), Modified Ant Colony

Optimization (MACO) (Sangeetha et al. 2019), Grey Wolf

Optimization (GWO) (Rao et al. 2018) and results are

given in Table 5. Although existing algorithms exhibit

obstacle avoidance behaviour, reduction in energy con-

sumption during path planning is not considered effective.

The proposed GDGACO exhibits obstacle avoidance

behaviour with reduced energy consumption.

It can be inferred from the literature that as the number

of turns in a path increases, the energy consumed to tra-

verse on it also increases. Figure 9a–c shows the path

planned on three different scenarios. The scenarios are

simulated with both static and dynamic obstacles. The

Table 4 Parameters and values

of GDGACO (proposed), MGA,

FA, MACO, GWO used in

simulation

Algorithm Parameter Value

GDGACO, MACO, MGA, FA,GWO / 2 m/s

Time interval 3 Dt

Sampling interval 10 s

b 0 W

m 30 kg

Number of iterations 100

N (Number of Individuals) 100

GDGACO and MACO a 0.5

b 0.5

q 0.5

FA Light absorption coefficient 0.5

Randomization parameter 0.5

Attractiveness 0.2

MGA Crossover ratio 0.8

Mutation ratio 0.006
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Fig. 8 a Variation of q with regard to length and b variation of q with regard to time
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motion of dynamic obstacles as represented with a directed

arrow. From Fig. 9a–c, it can be seen that the number of

turns in the path obtained through GDGACO has less

number of turns than the path obtained through other

algorithms with the help of enhanced pheromone update

mechanism. In scenario 1 and 2 (Fig. 9a, b), GDGACO

was able to swiftly reach the destination despite the moving

obstacles with less number of turns and least path length.

Though FA was able to reach the destination promptly, the

path obtained by FA has more number of turns than

GDGACO. In scenario 3 (Fig. 9c), the path obtained by

GDGACO has less number of turns and traverses through

low elevation areas, thereby reducing energy consumption.

In all the three scenarios (Fig. 9a–c), the path obtained by

MGA and MACO has more number of turns. Also in order

to avoid moving obstacles, the obtained paths are longer

than GDGACO and FA. Also From Fig. 9a, b, though the

path obtained from GWO is as good as that obtained from

GDGACO, the path from GWO has more number of turns.

In the case of Fig. 9c, the path obtained from GWO is

longer than that of GDGACO. From Fig. 9, it can also be

inferred that proposed GDGACO exhibits robustness and

effectiveness irrespective of the size of environment. Sce-

nario 1 and 2 differs from 3 in terms of size and nature of

landscape. Scenario 3 is a real-time urban data. In all the

three scenarios, it can be seen that proposed GDGACO

outperforms other methods in terms of length and path

safety. Furthermore, from the effectiveness of GDGACO in

scenario 3 (real-time data from Vaihingen city), it can be

inferred that GDGACO can also be applied for real-time

day-to-day life-based path planning.

4.4.1 Obstacle avoidance behaviour in the case
of obstacles with uniform speed

Of the three objectives of path planning, the main objective

with regard to dynamic path planning is obstacle avoid-

ance. GDGACO was able to compute a smooth and safe

path among moving obstacles. Figure 10a–c shows the

working of GDGACO in the presence of moving obstacles.

As the algorithms begin, the UV starts from the known start

position towards the known destination position. During

path planning, UV senses both the static and dynamic

obstacles as shown in Fig. 10a and calculates the collision

distance index of each obstacle. The spherical obstacle is

found to be the most imminent obstacle since it was found

to be closer to current position of UV. The algorithm steers

the UV out of the collision cone of UV thus avoiding

collision. Since obstacle avoidance is incorporated in

pheromone-enhancing mechanism, GDGACO increases

the pheromone value on the path that is at the maximum

distance from the obstacle. From Fig. 10b, upon con-

fronting the next obstacle, the procedure is again repeated

and UV is steered out of the collision zone. Table 5 shows

the performance analysis of GDGACO against MGA, FA,

MACO, GWO verified through Wilcoxon signed-rank at a

95% confidence level. It can be seen that the path length

obtained through GDGACO is the least in all three sce-

narios. With regard to time, GDGACO computes path in

Table 5 Performance analysis

of GDGACO against MGA, FA,

MACO, and GWO

Scenario # Algorithm Time (s) Length (m) Energy consumed (kJ)

Median SD Median SD Median SD

1 GDGACO 1492.3 23.48 723.44 8.78 293.68 11.49

MGA 1523.96 34.89 806.27 20.16 340.58 24.71

FA 1515.4 26.89 765.95 21.48 342.57 21.49

MACO 1493.67 24.56 752.96 16.89 328.51 17.46

GWO 1521.86 21.84 767.84 14.63 311.96 15.84

2 GDGACO 1782.5 29.73 811.27 18.47 332.91 22.59

MGA 1822.37 50.23 868.75 20.47 370.31 24.18

FA 1816.9 49.87 887.04 19.48 363.98 23.49

MACO 1802.54 49.89 871.97 19.45 353.51 23.15

GWO 1812.48 49.87 844.97 19.76 347.18 23.88

3 GDGACO 2902.5 16.89 1050.41 4.96 513.73 9.56

MGA 3161.4 37.89 1161.92 17.84 650.03 19.78

FA 3012.88 24.78 1144.32 12.49 586.3 18.48

MACO 2994.5 21.47 1099.34 8.48 532.52 16.89

GWO 2968.61 20.87 1097.94 7.34 529.77 11.74

Median from 20 runs

The Wilcoxon signed-rank test is performed and verified at 95% confidence level
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the least time. Standard deviation is used to measure the

stability of the algorithm over a certain number of runs.

From Table 5, it can be inferred that GDGACO is more

stable than MGA, FA, MACO, GWO in terms of time,

length, and energy.

Though MACO performs closely on par with GDACO

in terms of length, GDGACO outperforms MACO in terms

of time and energy consumed. From Table 5, it can be

concluded that for the optimal value of q, GDGACO will

be able to find an optimal path in the presence of moving

obstacles.

Figure 11a–f shows the convergence analysis of

GDGACO against MGA, FA, MACO, GWO in terms of

length and time. Figure 11a–c shows the convergence

graphs of scenario 1, 2, 3 with regard to the number of

iterations and time. Figure 11d–f shows the convergence

graphs of scenario 1, 2, 3 with regard to the number of

iterations and length. GDGACO is found to converge faster

than the other methods because of the enhanced pheromone

update mechanism. Also, it can be inferred that GDGACO

does not meet with local optima, unlike FA and MACO.

4.4.2 Obstacle avoidance in the case of obstacles
with varying speed

Simulations were performed on the above-mentioned three

scenarios with obstacles under varying speed and the

results are tabulated in Table 6. From Table 6, it can be

inferred that the varying speed of obstacles does not affect

the collision avoidance behaviour of the algorithm. It was

found that the path length was 0.4%, 0.3%, 0.7% shorter

than that computed from GDGACO in the case of obstacle

with uniform speed in scenario 1, 2, 3, respectively. In

terms of time and energy GDGACO consumed 0.4%,

0.4%, 0.3% and 0.5%, 0.3%, 0.07% more time and energy

Fig. 9 Path obtained through GDGACO (proposed), MGA, FA, GWO, and MACO in a scenario 1, b scenario 2, and c scenario 3 (all units in

metres (m))
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than that computed from GDGACO in the case of obstacle

with uniform speed in scenario 1, 2, 3, respectively.

Similar to the case of obstacle with uniform speed, the

proposed algorithm GDGACO identifies the imminent and

non-imminent obstacles and calculates the collision index

of each obstacle. Based on the collision index, the UV is

steered out of the collision cone of the imminent obstacle.

4.5 Discussions

From the above performance analysis, the following

inferences are made:

1. In scenario 1, proposed GDGACO outperforms MGA,

FA, MACO, and GWO in terms of length by 9.7%, 5%,

3.4%, 5.3%.

2. In scenario 2, proposed GDGACO outperforms MGA,

FA, MACO, and GWO in terms of length by 7%, 7.9%,

6.3%, 3.3%.

3. In scenario 2, proposed GDGACO outperforms MGA,

FA, MACO, and GWO in terms of length by 9.4%,

7.9%, 4.2%, 6.1%.

4. GDGACO exhibits higher stability when compared

with existing algorithms in all the three scenarios with

low standard deviation among its independent runs.

It can also be inferred clearly from the results in sce-

nario 3 that GDGACO produces promising results on real-

time data with dynamic obstacles.

5 Conclusion

A novel extension to ACO, GDGACO, has been proposed

in this paper for safe, cost, and energy effective dynamic

path planning. The modified pheromone enhancement

mechanism will enable the ants to settle down in the cur-

rent safe path by reducing unwanted traversals. The pro-

posed GDGACO determines a collision-free path with

minimum time and reduced energy consumption. Thus, the

overall energy consumption is reduced. Applicability of the

proposed algorithm is demonstrated by using real-time data

collected from ISPRS repository and performing simula-

tion experiments with dynamic obstacles. Furthermore,

Fig. 10 a–c Working of GDGACO in the presence of moving obstacles (all units in metres (m))
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from the convergence analysis (Fig. 11a–f), it is evident

that the proposed GDGACO algorithm converges faster

than the state-of-the-art methods and also avoids local

optima. From the investigation made on the performance of

GDGACO against other algorithms (Table 5), it is clear

that GDGACO certainly provides safe, cost, and energy

(a)                                                   (b)

(c)                                                   (d)

(e)                                                   (f)
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Fig. 11 a–c Convergence analysis of time w.r.t no. of iterations and d–f convergence analysis of length w.r.t no. of iterations in scenarios 1, 2,
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effective path in minimum time. The stability of the

GDGACO was also analysed in three different scenarios

and is found to be stable with less standard deviation

among the 20 runs of execution. GDGACO algorithm is

also statistically significant at 95% confidence, which is

inferred from the Wilcoxon test. The time complexity of

GDGACO is found to be O N � Vf











 � Nr

� �

, where N is the

number of ants, Nr is the number of iterations, and Vf











 is

the cardinality of traversable vertex set. GDGACO requires

O ph2ð Þ number of operations to update the pheromone at

all traversals. Constructing a complete solution requires

O N � Vf













� �

space. Thus, the space complexity of

GDGACO will be O N � Vf













� �

þ O ph2ð Þ. Some of the

limitations of the proposed work are: Method Perspective-

(i) from simulation results it can be seen that GDGACO

produces slightly less efficient results in the case of higher

uneven terrain. Though scenario 1 and 2 are of same size,

the scenario 2 is more uneven when compared with sce-

nario 1 in terms of altitude variations of the landscape; (ii)

also, GDGACO was found to be less stable in scenario 2

when compared with its stability in scenario 1. As, nature

of terrain gets more uneven in terms of altitude variations,

GDGACO tends to exhibit slightly less stability. Applica-

tion Perspective- (i) modelling of UV with varying speed

introduces additional overhead to the research problem,

which is planned to be addressed in the future; and (iii)

finally, the tuned parameters are feasible for path planning

in ground (uneven/even terrains), but additional investi-

gation and optimization is needed to manage path planning

in aerial and underwater contexts. Limitations mentioned

above are planned to be addressed. With regard to the

future scope, GDGACO can be extended to be hybridized

with reinforcement learning and new algorithms can be

developed along with evolutionary programming concepts

for efficient path planning in dynamic 3D environments.
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