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Abstract
This research provides a study on how the weights of artificial neural networks (ANNs) can be automatically updated by
applying bio-inspired algorithms, particularly using the particle swarm optimisation (PSO) algorithm, grasshopper optimisa-
tion algorithm (GOA) and grey wolf optimisation (GWO). These evolutionary computation algorithms were used to evolve
the synaptic weights of ANNs to find a particular architecture of ANNs. The developed nonlinear models were targeted to the
identification of a particular nonlinear prediction system, an industrial winding process, as a case study. These new models
were referred, respectively, to as ANN-PSO, ANN-GOA and ANN-GWO. The proposed models were compared with other
linear and nonlinear conventional models including least square error andmultiple nonlinear regressionmethods, respectively,
as well as other state-of-the-art models including multilayer perceptron-type NNs, radial basis function and recurrent local
linear neuro-fuzzy. The performance of the developed models was assessed using several metric criteria. Comparison of
the proposed ANN-PSO, ANN-GOA and ANN-GWO models with other traditional and state-of-the-art models asserts the
efficacy of the proposed modelling approaches.

Keywords Artificial neural network · Particle swarm optimisation · Grasshopper optimisation algorithm · Grey wolf
optimisation · Industrial winding process · Multiple nonlinear regression

1 Introduction

Machine learning (ML) algorithms have progressed sub-
stantially through the past two decades, from laboratory
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curiousness to a workable technology in prolonged commer-
cial use. Artificial neural networks (ANNs), support vector
machines (SVMs), fuzzy logic (FL) and neuro-fuzzy are
well-known ML techniques that have proliferated as pre-
ferred methods of solving a broad range of problems in many
areas. The research interest in ANN is related to its attractive
benefits it manifests, like adaptation ability, learning capac-
ity and its aptitude to generalise. As a score of this interest,
ANN has been extensively used to solve an extensive set
of problems such as in colour recognition Al-Azzeh et al.
2019, classification problems Arunkumar et al. 2020 and
many other applications Chang et al. 2019. In effect, clas-
sification using ML methods is one of the most widespread
and preferred applications in varied fields of study suchlike
decision-making tasks that face human activity. For instance,
ANNs have been effectively used to solve a large assortment
of real-world classification problems in industry Wang et al.
2012, engineering Pirdashti et al. 2013 and medicine Sari-
tas and Yasar 2019. Essentially, SVM is a binary classifier
that builds a linear separating hyperplane to categorise data
instances. SVMs have been appreciably used for classifica-
tion Wang et al. 2012 as well as speech recognition Jain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-020-05464-9&domain=pdf
http://orcid.org/0000-0002-4469-5786
https://doi.org/10.1007/s00500-020-05464-9


4546 M. Braik et al.

et al. 2020 due to its appealing features in various appli-
cations Khosravi et al. 2018. FL, as one of the popular
ML techniques, has gained a large popularity by researchers
because of its benefits such as effective performance, ease of
implementation and easy interpretation of the outcomes. Its
impact has been felt widely across scientific and engineering
fields and across a range of industries concerned with data-
intensive issues, such as classification of faults in mechanical
differential Asadi Asad Abad et al. 2015 and modelling of
industrial systems Sheta et al. 2009. Neuro-fuzzy computing,
which is a wise combination of FL and ANNs, enables the
construction of more intelligent decision-making systems.
Basically, this system integrates the general features ofANNs
such as robustness and adaptive learning with the strengths
of FL with the aim of covering the weaknesses of these two
techniques. These two techniques have been applied together
to solve several types of engineering problems Babuška and
Verbruggen 2003; Sheta et al. 2013 and have achieved fruit-
ful accomplishments in medical imaging Omotosho et al.
2018 and classification problems Rajasekaran and SriMeena
2012. An outstanding benefaction of soft computing and
neuro-fuzzy is the evolution of adaptive neuro-fuzzy infer-
ence system (ANFIS) Ansari and Gupta 2011, where it has
been appropriately applied to address several applications
in engineering and industrial fields Khosravi et al. 2018 and
has been adopted to prediction problemsNaderpour andMir-
rashid 2019.

With the evolution of industrial process plants, it has
become more complicated and burdensome to control them.
In this context, increased global competition in the con-
trol and monitoring of industrial processes has driven to the
development of new approaches for the design and analy-
sis of industrial processes Wang et al. 2015. This is to fulfil
the high request for product quality process safety and even
the productivity of all working equipments. Thus, industrial
modelling techniques are increasing in approval and have
earned a notable development in practical sites and academic
community Schlei-Peters et al. 2018.

Numerous applications in engineering and scientific fields
have been suggested to control and monitor industrial pro-
cesses based on the inference of mathematical models Sheta
et al. 2013. The rotor system is one of base components in
web conveyance systems, which have a significant impact on
the dynamics of the systems. Many models have been pro-
posed in the literature to control and monitor the operational
processes of the rotor systems, which have been thoroughly
explored in many research works and have played a crucial
role in various industrial machines. As one of comprehen-
sive and precise approaches, Liu and Shao (2018) presented
a thorough investigation of dynamic modelling and simula-
tion system for foretelling the vibration attributes of rolling
element bearings with and without local and distributed
flaws. El-Thalji and Jantunen (2015) provided an elabo-

rate review of the predictive health controlling methods, the
corresponding abilities, drawbacks and merits in detecting
and identifying the localised and distributed flaws in rolling
element bearings. However, some industrial processes form
a challenge in creating such mathematical models. Devel-
opment of mathematical models is essential to automate
and increase the possibility of simulating complex indus-
trial operations. This imposes a great demand to evolve high
quality models for the industrial systems to assure produc-
tivity and quality of service. There are two common ways
to establish a relationship between the specified input and
output variables for a nonlinear system.

– Traditional empirical modelling methods, which dep-
end on building an automated physicalmodel on the basis
of raw data registered in empirical or industrial system
characteristics. There are some circumstances where tra-
ditional modelling methods require prolonged time to
fulfil a task that may lead to unfavourable results. This
takes place if there is a shortage of precise or systematic
knowledge about the system or the experimental data are
subject to a high degree of uncertainty. Thesemodelsmay
produce imprecise outcomes for many situations that do
not represent the data so quite. Sometimes, the devel-
oped models are not incomprehensible and will not be
well interpreted Ljung 1987.

– Model-based methods, which derive a mathematical
relationship between the observed data and the true data
of the system with a primary aim to reduce the variations
between the target and the original datasets Braik et al.
2008; Sheta et al. 2009. Consequently, there is a diffi-
culty in building a model based for a challenge industrial
system with sufficient suitability that allows the model
to efficiently identify the data measurements. Extracting
an appropriate model for an industrial system is essential
for model-based systems. The best design in industry is
often associated withmultiple design goals under nonlin-
ear constraints. Diverse objectives often clash with each
other, and occasionally, there are no really optimal solu-
tions, and so often there is a need to some concessions
and approximations Liu and Shao 2018.

Many mathematical models have been applied presented
in the literature to model plant-wide industrial processes.
Among these processes, the real winding process (WP)
Nozari et al. 2012 was one of the challenging processes used
extensively in researchworks for both academic and practical
purposes. It has been widely used for judging and exploring
the efficiency of the development of newmathematical mod-
els. To proffer an obviously and in-depth understanding of
modelling industrial processes, we present a model-based
method to simulate the WP using ANNs trained based on a
set of bio-inspired algorithms (BIAs). The winding process
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Nozari et al. 2012 is an important and appropriate process
in all disciplines of system theory. This includes conduct-
ing comparative studies, verification of new algorithms and
evaluation of control systems. However, to model the WP is
a challenge because it is a nonlinear process and has incon-
stant conditions. Thus, extracting an appropriate model for a
WP sounds necessary for model-based control and diagnosis
experiments. Here, particle swarm optimisation (PSO) algo-
rithm Kennedy 2011, grasshopper optimisation algorithm
(GOA) Saremi et al. 2017 and grey wolf optimiser (GWO)
Mirjalili et al. 2014 were used as a new type of learning
approach to adjust the weights of the ANN.

The rest of the paper is organised as follows: In Sect. 2,
several methods of modelling manufacturing processes are
reviewed. Section 3 describes the linear and nonlinear pro-
cedures of modelling the dynamic systems. In Sect. 4, we
briefly present the evolutionary optimisation algorithms of
our interest. Then, in Sect. 5, we briefly describe the winding
process case study. After that, Sect. 6 presents a description
of data used in our experimentation followed by a discussion
of the preliminary operations performed on the data. The pro-
posed system identification procedure is presented in Sect. 7.
The evaluation metrics are given in Sect. 8. The simulation
and evaluation outcomes are given in Sect. 9, and finally, the
paper is concluded in Sect. 10 accompanied with insights for
future research directions.

2 Previous works

Today, there is a swift development in the modelling, moni-
toring and identification of industrial processes. In this sense,
there are a substantial number of methods reported in the lit-
erature formodellingmany types ofmanufacturing processes
as well as the winding process Sheta et al. 2019; Chang et al.
2019; Naderpour andMirrashid 2019. However, it is not fea-
sible to study and analyse all the research methods used for
modelling andmonitoring of theWP. Besides the studies that
have used empirical methods to model the winding machines
Sievers et al. 1988; Parant et al. 1992, there are many meth-
ods used data-based methods to develop suitable models for
industrial systemsBabuška andVerbruggen 2003; Sheta et al.
2013; Khosravi et al. 2018.

Earlier, genetic programming (GP) was adopted to cre-
ate a nonlinear model for a winding machine Hussian et al.
2000, and a nonparametric ANN model was suggested for
modelling an industrial winding process Hussian et al. 2001.
A linear model was created for faults diagnosis for a wind-
ing machine using an Auto-Regressive with eXternal inputs
(ARX) structure Noura et al. 2009. Sheta et al. (2013) have
used ANFISwith Takagi–Sugeno technique to create models
for the dynamics of a hot rolling industrial for datasets gath-
ered from the Eregli Iron and Steel factory in Turkey. Nozari

et al. (2012) have presented a technique for modelling an
industrial winding process. Their proposed approach used an
incremental tree-based algorithm, referred to as LOLIMOT,
to train a recurrent local linear neuro-fuzzy (RLLNF) net-
work. The performance of the RLLNF modelling approach
was compared to least square error (LSE)method, multilayer
perceptron (MLP) and radial basis function (RBF) identifiers.

The sharp increase in empirical data across industries
provides unrivaled chances for data-driven decision mak-
ing, where data-driven models can address experimental
data to control, monitor and improve industry performance.
Sadati et al. (2018) presented a modelling method that uses
data from synthetic experiments to identify control variables
during simplifying process parameters simultaneously. The
method was tested on a real situation of a tire manufactur-
ing company. Torres et al. (2018) used probabilistic boolean
networks (PBNs) to model a manufacturing system, and they
studied the relationship between components of a real indus-
trial machine. The machine was modelled as a PBN, by
specifying the regulatory nodes. The predictors, selection
probabilities, simulation and property verification were used
to assess the accuracy of the PBN model. They used simu-
lation results to create the data needed to make inferential
statistical tests to determine the degree of correspondence
between the forecasts and real machine data.

Currently, many researchers tend to use ANN or one of
its variations to model industrial processes due to its poten-
tiality of generalisation and fitting adaptability Chang et al.
2019; Sheta et al. 2019; Wang et al. 2020. However, fitting
ability of an ANN is typically affected by the configura-
tion used, particularly number of hidden neurons, number
of input parameters and the learning algorithm utilised to
fine-tune its weights Crone and Kourentzes 2009. An itera-
tive process of adding hidden neurons and inputs to the ANN
model should result in a systematic decrease in themodelling
error. The learning algorithm is a fundamental process for
deducing the ANN model parameters that fit with the speci-
fied data set. This has encouraged the development of many
learning algorithms such as gradient-based techniques, like
Levenberg–Marquardt (LM) Ranganathan 2004 and back
propagation (BP) Li et al. 2012 algorithms. These classi-
cal algorithms were preferred to use by many researchers
due to their merits such as their efficient implementation,
low computational burden and good at tuning the weights
of the ANN model. On top of that, the rapid convergence
is a key feature of gradient-based techniques, as the ade-
quate exploitation of gradient information can significantly
increase the convergence speed compared to a technique that
does not calculate gradients. However, these algorithms are
highly dependent on the initial weights when searching for
optimal weights, are prone to falling into local optima with
non-desirable solutions, may fail to explore multimodal and
non-continuous surfaces and sometimes lead to poor perfor-
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mance. Another potential fragility of these classical methods
is that they are comparatively inflexible of obstacles suchlike
noisy target function spaces Zingg et al. 2008.

Many BIAs have been satisfactorily for modelling dif-
ferent types of industrial systems. Nikabadi and Naderi
(2016) have proposed a hybridisation algorithm of simu-
lated annealing (SA) and GA for scheduling unconnected
parallel machines with sequence-based setup times, standby
times, variable due dates as well as some antecedence con-
nections between the jobs. Ayough andKhorshidvand (2019)
have evolved a model for a cellular manufacturing process to
reduce the costs associated with a limited number of cells to
be built by allocating workforce using PSO and SA.Mousavi
et al. (2015) utilisedGA,SAand a combination of SAandGA
to simulate how generators endeavour in the spot electricity
market to increase profits according to thework plans of other
generators. In another aspect of BIAs in industry, cuckoo
search algorithm (CSA) was exercised to a vehicle routing
problem Santillan et al. 2018. In Dixit et al. (2019), GA and
ANN were used to address a modelling problem and optimi-
sation study on dimensional irregularities of square-shaped
microgroove in laser microfabrication of aluminium oxide
ceramic substance. Because assembly forms a large fraction
of the cost of any product in any modern production system,
a study offered in Dao et al. (2017) used GA for an opti-
mum global solution to model a virtual computer-integrated
manufacturing system. An incorporation of clonal selection
algorithm (CSA) and SA, referred as CSA-SA, along with
a mathematical model based on quadratic assignment was
combined to address a stochastic dynamic facility problem
Moslemipour 2018. An outstanding use of BIAs in indus-
try was made by Yıldız (2008) who has presented a hybrid
harmony search method to handle many manufacturing and
engineering design problems.

Although reasonable performance has been achieved in
the modelling of industrial systems using ANNs and BIAs,
the performance ofmodelling industrial systems that are sub-
ject to variable conditions and uncontrolled factors lacks
high precision and is not persuasive either modelled using
ANNs Nozari et al. 2012 or BIAs Nikabadi and Naderi 2016.
Therefore, development of reliable and compact models to
simulate an industrial process is essential to generate a sen-
sible estimate of the process parameters. In this paper, we
have turned our attention to BIAs as learning algorithms for
ANNs, looking for a suitable source of inspiration for learn-
ing ANNs, which can overcome the handicaps of classical
methods in the modelling of an industrial system. Here, three
BIAs, namely PSO Kennedy 2011, GOA Saremi et al. 2017
and GWOMirjalili et al. 2014, were used to training an ANN
model to model an industrial winding machine Nozari et al.
2012. The aim of these algorithms is to get an optimal set of
weights for the ANN model, where an optimal model would
be obtained. These optimisation algorithms have outstanding

exploratory search features and can avert getting caught into
local minimum by exploring the search space, which are then
well suited for adjusting the weights of ANNs and getting an
optimal model structure for the winding process under study.

2.1 Challenges of the winding system

Winding systems are key elements of a broad range of indus-
trial plants. For instance, steel rolling mills Babuška and
Verbruggen 2003 and plants involve web conveyance that
includes paper-making, coating and polymer film extrusion
Braatz et al. 1996. Some researchers have considered lim-
iting the computational efforts correlated with the analysis,
design and active fault-tolerant control in web conveyance
systems Sievers et al. 1988, steel industries Parant et al. 1992
and film and sheet processes Braatz et al. 1996. Developing
accurate and reliable models to describe complex industrial
processes is substantial to create a robust approximation of
the output parameters. This is a specific requirement to create
purposeful industrial process models. The winding systems
have been largely used by control community as a data source
to compare various approaches and evaluate the adequacy of
process control methods Haddad et al. 2017. To sum up, a
great number of literary articles have been directed to process
modelling, performance control and winding process iden-
tification. Nevertheless, these works are short of accuracy
about the winding process and in-depth study concerning
of the many uncontrolled factors that occur in the actual
winding process. In fact, due to these uncontrollable factors,
modelling and monitoring methods of the winding process
encountered a difficulty. The variations in the parameters of
this process are further a challenge. Furthermore, the per-
formance achieved in modelling and control of the winding
process needs to be considered. So, we believe that there is
still scope to do better. How to select suitable system archi-
tecture along with an appropriate algorithm for estimating
system parameters and appropriate assessment criteria are
considered in this paper.

The originality and relevance of this work are related
to: (1) development of three intelligent models to model a
real winding process based on ANNs and PSO, GOA and
GWOwith an aim tomeet the expected theoretical behaviour
aspects of the presentedmodels and (2) assessment of the the-
oretical aspects of the proposed models like error reduction
and performance expansion in addictive process parame-
ters. Adding more hidden neurons to the proposed models
to achieve the desired degree of performance is a sensible
process. The primary objective of this work encompasses
obtaining a specific structure of an ANN with optimum val-
ues of the weights. In addition, it is anticipated that this will
allow it practicable to compare the alternative models of the
case study as a second objective.
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3 Dynamic system identification

There are two popular procedures for the identification of the
dynamic multi-input–single-output (MISO) systems from
input/output sequences:

3.1 Linear dynamic system identification

To build a model for a plant-wide process, the simplest solu-
tions should be tried at outset based on the theory of system
identification, particularly when no beforehand knowledge
is available of its fundamental behaviour. To arrive at a
linear model, a specific sequence of the input and output
parameters perceived with a constant sampling interval is
taken into account. Generally, it is possible to identify a
problem to be solved given a set of input patterns, u(t) ={
u1, u2, . . . , u p

}
, u ∈ R

p and a set of desired patterns,
y(t) = {y1, y2, . . . , yr } , y ∈ R

r , where t is the sampling
time and p and r are the number of samples in the input
and output, respectively. So, it is potential to find a suitable
mathematical model that represents the data model based on
a relationship between input and output patterns, so the error
is reduced between the true data and the estimated data. In the
case of dynamic linear relationships between input and out-
put variables, the relationship among them can be described
by the following model Nozari et al. 2012:

yM (k) =
n∑

l=1

(al yM (k − 1) +
p∑

i=1

p∑

i=1

bilui (k − l) (1)

where al and bil are scale parameters,mi represents the order
of the numerator of the i th input and n represents the denom-
inator order.

Equation 1 represents linear MISO discrete-time sys-
tems, which can simply be converted to the corresponding
discrete-time transfer function. The parameters in Eq. 1 can
be computed by the LSE technique because the prediction
error is linear in parameters Ljung 1987. Choosing an appro-
priate model structure is an important component in any
modelling a system. The purpose of selecting an order for
the model is to select a model that fits a particular data set.
This issue is so important that deficiencies in this selection
process may result in poor accuracy in some key procedures
of the modelling scheme. The Akaike Information Criterion
(AIC) Ljung 1987 is an information criterion that can be used
to fulfil this process. In such a context, the obtained orders
on the basis of linear models can then be tested on nonlinear
approximators in the case of nonlinear identification. In the
particular order selection strategy, the linear model order dis-
played in Eq. 1 is augmented and the AIC index is computed
in each step. At last, after some iterations, the corresponding
order of the lowest AIC value is chosen as a typical model
order:

JAIC = logSSE + 2P

Q
(2)

where Q identifies the number of samples utilised to calculate
the AIC index, P denotes the number of parameters, 2P/Q
stands for a penalty term and SSE is the sum of square errors
set by Nozari et al. (2012):

SSE =
Q∑

N=1

(yp(N ) − yM (N ))2 (3)

where yp and yp are the output parameters of the process and
model, respectively.

3.2 Nonlinear dynamic system identification

The identification of a nonlinear system is more appropriate
when linear methods do not provide satisfactory outcomes
in the modelling of physical systems. Further, the potential
adaptability, generality and capability to implement a non-
linear relationship between input and output parameters can
be demonstrated using nonlinear regression techniques. The
algorithm selection does not effect on the adjustment statis-
tics value of the model. In many situations of the regression
models, the fact that the change in output, Y , relies on input,
X , is what turns out the relationship between X and Y to
be nonlinear although the model is linear in its estimated
parameters Chang et al. 2010. Yet the model is still consid-
ered a linear regressionmodel in view that it is linear in terms
of the regression coefficients, β1, β2, . . . , βi . One strategy
to demonstrate such a relationship is through a polynomial
regression model. The relationship between the independent
variable X and the dependent variable Y would be modelled
as anmth degree polynomial in X . Such a model for a single
regressor, X , is:

Y = β0 + β1X
1 + β2X

2 + · · · + βmXm + ϒ (4)

where m stands for the degree of the polynomial and ϒ rep-
resents a vector of model errors.

The computational problems of polynomial regression
can be entirely handled using multiple nonlinear regression
(MNLR)models. This canbe achievedusing X1, X2, . . . , Xm

as distinct independent parameters Chang et al. 2010. The
polynomial regression model can be described as:

yi = β0 + β1xi + β2x
2
i + · · · + βmx

m
i + εi (5)

where i = 1, 2, . . . , n and n is the number of coefficients of
the model.

Equation 5 can be expressed by amatrixX of input values,
a response vector y of output values, a coefficient vector fi,
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and a vector 7 of model errors. To sum up, the regression
model can be represented as shown in Eq. 6:

y = Xfi + 7 (6)

The reality that the behaviour of most dynamical systems
is nonlinear has made ANNs suitable for the identification
tasks. MLP neural networks are generic nonlinear model
structures that have proved to be adequate for black-box
modelling and control problems. Several studies have rec-
ommended that MLP neural networks are a proper selection
for defining a nonlinear system and that a variety of ANN
architectures and training algorithms have been suggested
for control problems Braik et al. 2008. Thus, the process
of handling non-linearity as well as the dynamism of a WP
was addressed on the basis of ANNs trained with BIAs as
described below.

4 Evolutionary optimisation algorithms

We have chosen the well-known evolutionary algorithm,
PSO, and two recent evolutionary algorithms, GOA and
GWO, to train ANNs. These SI-based algorithms are well
accepted by the artificial intelligence (AI) community for
their potent optimisation in solving complex real-world prob-
lems. A brief background about each of these algorithms is
given in the following subsections.

4.1 Particle swarm optimisation

The PSO was proposed by Kennedy (2011) to optimise
continuous nonlinear functions by modelling the social
behaviour of swarms of animals like bird flocking and fish
schooling. The term “particle” was adopted because par-
ticles experience velocities and accelerations. In addition,
it also indicates diffuse objects such as clouds. Basically
speaking, PSO is mathematically simple and computation-
ally inexpensive. In PSO, particles explore probable solutions
of the hyperspace and accelerate towards optimum solutions.
The PSO algorithm adjusts velocities and positions of the
swarm particles as per the following equations, respectively
Kennedy 2011:

V (k+1)
i ( j) = ω × V (k)

i ( j)

+α × r1 × (pbest (k)i ( j) − X (k)
i ( j))

+β × r2 × (gbest (k)i ( j) − X (k)
i ( j)) (7)

X (k+1)
i ( j) = X (k)

i ( j) + V (k+1)
i ( j) (8)

where i = 1, 2, . . . , P , is the particle’s index from a pop-
ulation of size P . pbesti is the i th particle’s best known
position and gbesti is the best position known to the swarm.

ω is the inertia weight. α and β are two positive acceleration
constants, called the cognitive and social parameters, respec-
tively,which control the influence of pbesti and gbesti on the
search process. r1 and r2 are two random numbers uniformly
distributed within the range [0, 1]. X (k)

i ( j) identifies the j th
element of the current position of the i th particle in kth step.
X (k+1)
i ( j) identifies the j th element of the new position of

the i th particle in (k + 1)th step. V (k)
i ( j) identifies the j th

element of the current velocity vector of the i th particle in
kth step and V (k+1)

i ( j) stands for the j th element of the new
velocity vector of the i th particle in (k+1)th step of the PSO
model.

PSO has a virtuous approval by AI because it is robust in
findingoptimumornear optimumsolution.Basedon the intu-
itive understanding of PSO model, there is a faction within
the PSO research community that supports the use of PSO in
training the weights of ANNs. This is due to its robust explo-
ration capabilities, diminished susceptibility to being trapped
in local minimum and because it does not suffer from early
convergence as is the case with the global best (gbest).

4.2 Grasshopper optimisation algorithm

The GOA, proposed by Saremi et al. (2017) is a gradient-
free, nature-inspired stochastic optimisation algorithm that
highly avoids local optima and considers the optimisation
problem as a black box. GOA mimics grasshopper swarms
(attraction and repulsion forces between grasshoppers in the
swarm) with a mathematical model represented as Saremi
et al. 2017:

Xi = r1 × Si + r2 × Gi + r3 × Ai , (9)

where the subscript i is the grasshopper’s index from a popu-
lation of size N . Xi stands for the position. Si represents the
social interaction, which is a function of distance between
grasshoppers. Gi represents the force caused by gravity and
is directed towards the Earth’s centre. Ai represents wind
advection and follows the direction of the wind, and r1, r2
and r3 are random numbers ∈ [0, 1]. Accordingly, as shown
in Saremi et al. (2017), (9) can be rewritten as:

Xi =
N∑

j=1, j �=i

s(|χ j − χi |)χ j − χi

di j
− gêg + uêw (10)

where g represents the gravitational constant, êg represents
a unity vector towards the centre of the earth, u represents
a constant drift, êw represents a unity vector in the direction
of wind and s is a social forces function that was defined as:
s(r) = f e

−r
l − e−r .
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Then, authors proceed to show that Eq. (10) becomes
Saremi et al. 2017:

Xd
i = c

⎛

⎝
N∑

j=1, j �=i

c
ubd − lbd

2
s(|χd

j − χd
i |)χ j − χi

di j

⎞

⎠ + T̂d

(11)

where ubd and lbd are the upper and lower limits in the dth
dimension, T̂d represents the value of the dth dimension in
the best target solution and c is a lessening factor to shrink
the comfort area, repulsion area and attraction area.

GOA is different from PSO in that GOA mandates all
search agents to contribute to the calculation of the position
of every search agent. Moreover, GOA keeps a good bal-
ance between exploration and exploitation by adopting the so
called adaptive comfort zone. At the beginning, grasshoppers
experience high repulsion rate; this leads to high exploration
and thus avoids local optima. Then, when the search pro-
ceeds and approaches final steps, the attraction between the
grasshoppers in the swarmmanifests and takes exploitation to
its extent resulting in better search accuracy. In Saremi et al.
(2017), it was shown that GOA excels in solving challeng-
ing real problems albeit with unknown search spaces. Based
on the appealing features of GOA with high exploration and
exploitation capabilities, there is a faction emanated to use
GOA to adjust the weights of ANNs during the training pro-
cess to model the industrial case study process.

4.3 Grey wolf optimisation

The GWO is a flexible metaheuristic optimisation method
that avoids stagnation in local optima spots of the search
space. This algorithmwas proposed byMirjalili et al. (2014);
it imitates the social behaviour of grey wolves in the aspects
of their hierarchical leadership and hunting manoeuvres.
Mathematically, this algorithm models the leadership hier-
archy of grey wolves by categorising them into four sets in
accordance to their superiority from top to bottom as α, β, δ
andω. In terms of hunting, the algorithmmodels prey (target)
encircling by the hierarchical grey wolves pack as Mirjalili
et al. 2014; Masadeh et al. 2018:

D = |C.Xp(t) − X(t)| (12)

X(t + 1) = Xp(t) − A.D (13)

where t defines the current iteration, A and C define coeffi-
cient vectors and X(t) and Xp(t) are the position vectors of
the grey wolf and prey, respectively.

The vectors A and C were computed as follows:

A = 2a.r1 − a (14)

C = 2.r2 (15)

where the items of a are linearly diminished from 2 to 0 over
the course of iterations and r1 and r2 are random vectors
within the range from 0 to 1.

Then, the following equations are used for hunting and
attacking the preyMirjalili et al. 2014;Azizivahed et al. 2018:

X1 =X(t) − A1 · D
X2 =Xfi(t) − A2 · Dfi

X3 =X(t) − A3 · D
(16)

where Xα , Xβ and Xδ are the best, second best and third best
search agents, respectively, and Dα ,Dfi andD are calculated
using Eq. 17.

D = |C1 · X − X|
Dfi = |C2 · Xfi − X|
D = |C3 · X − X|

(17)

AsXα ,Xβ identify the three best solutions obtained so far
Gupta and Deep 2018; Mirjalili et al. 2014, other wolves are
committed to update their positions in the whole population
as shown in Eq. 18:

X(t + 1) = X1 + X2 + X3

3
(18)

GWO has achieved competitive results in solving several
types of complex real problems with unknown search spaces
Mirjalili et al. 2014;Masadeh et al. 2018. The statistical anal-
ysis presented inMirjalili et al. (2014) shows that the general
statements formed about the ability of exploration, conver-
gence and even the solution accuracy of GWO are superior,
and shows that the algorithm can be considered outright,
not even for particular problem sets. Therefore, GWO was
conducted here to train the weights of ANNs due to its attrac-
tiveness in which it has only few parameters to set and can
workwell in awide range of applications aswell as for certain
applications focusing on clearly defined requirements.

5 Winding process

Thewinding process is a test setup of a real industrialwinding
plant process, which often met in web conveyance systems
Bastogne et al. 1998. This process is a well-presented bench-
mark problem for analysis and control design in the control
community. Figure 1 shows the schematic diagram of the
winding process that we are targeting in this work. This
process consists of multivariate and correlated systems with
process parameters varying during operation. The key role
of this process is to control the web transferring to avert
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Fig. 1 Schematic diagram of a
winding process with control
sensors

the impacts of sliding and friction. The solution relies on
conserving a traction effort on the strip and monitoring the
tension at various points over the web Braatz et al. 1996.
The winding machine considered in this study is composed
of a plastic strip, three reels, referred to as reels 1, 2 and 3
or unwinding reel, traction reel and rewinding reel, respec-
tively, and gear reduction connected with the three reels. The
reels are controlled by three DC motors denoted as M1, M2,
and M3. Motor M1 corresponds to the unwinding reel, M2

corresponds to the traction reel andM3 to the rewinding reel.
Reels 1 and 3 are coupled using the DC motors driven via
set-point currents I1 and I3. Moreover, tension meters are
placed to measure strip tensions in the web between reels 1
and 2, referred to as T1, and between reels 2 and 3, referred
to as T3, in addition to the dynamo tachometer that measures
the angular speeds of each reel (S1, S2 and S3). Each motor
is run by a local controller as displayed in Fig. 1. Speed con-
trol is reached for motor M2, while torque control is attained
for motors M1 and M3, given that the angular velocity of
motor M2 (	2) is measured using a dynamo tachometer. The
data measurements of this process contain the process input
variables and controlled output variables. The measured data
were used to generate the training patterns for the developed
model structures. The key process variables were measured
through sensors at pre-selected points of the process, and the
obtained data were registered at a sampling rate of 0.1s in
the monitoring system. The input and output parameters for
the WP of this case study are described in Table 1.

The output parameters for this case study describe the
behaviour of the WP and show how it responds to var-
ious input sets. At any instant, to estimate the value of
future response of the process, it is substantial to use both
input and output parameters. The variations in the param-
eters that occurred in this process are due to the variation
in the reel radius during the unwinding process. This non-
measurable change of the reel radius remarkably amends
the dynamic behaviour of the system throughout the over-
all process of unwinding Noura et al. 2009. Moreover, the
performance and reliability of the monitoring system can be
significantly affected by the system support stiffness, such

as bearing, housing and rotor Liu and Shao 2017. Interfa-
cial frictional moments are further parameters impact on
the accuracy of control and monitor of dynamical systems.
Thus, many researchers have discussed the effect of housing
support stiffness and interfacial frictional in the construc-
tion of their dynamic models Liu et al. 2014; Zhang et al.
2016. As a result of the uncontrolled influences to which
the WP is subject; this type of process poses a challenge
in modelling, identification and control. To overcome such
problematic issues, non-analytical techniques as presented
below are experimentally applied for the identification of the
winding process models.

6 Model preparation process

Model development process requires some necessary prepa-
ration stages, which must be completed as a pre-step to yield
a good modelling process. This involves data collection and
data pre-processing.

6.1 Training and test datasets

Typically, the success of modelling an industrial process
depends at first on the amount of data that must be large
enough to study the behaviour of the process well. This
assumes a large computational time during training. Thus,
it is useful to use an adequate number of data measurements
to train the model until a highly qualified model is created.
Here, the number of data measurements for each input vari-
able and output variable of the WP consisted of 2500 data
samples, which are publicly available at1. The dataset for
each web tension was divided equally into a training set to
train the model and a test set for evaluating the performance
of the developed model. Consequently, the number of data
samples for each input parameter and output parameter in the
training and testing processes consists of 1250 samples. This
number of data values has the potential to yield an effective

1 https://homes.esat.kuleuven.be/~smc/daisy/daisydata.html.
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Table 1 Input and output
variables of the winding process

Data Variable name Variable description

Inputs S1 Angular velocity of reel 1

S2 Angular velocity of reel 2

S3 Angular velocity of reel 3

I1 Set point current at M1

I2 Set point current at M2

Outputs T1 Web tension between reel 1 and reel 2

T3 Web tension between reel 2 and reel 3

modelling process which could improve the performance of
the identification process. The input variables of the WP in
this study were indicated in the scope of the modelling prob-
lem as S1(t), S2(t), S3(t), I1(t) and I3(t). The models T1(t)
and T3(t) of the winding problem as defined in Sect. 5 cor-
respond to the tension in the web between reels 1 and 2 and
reels 2 and 3, respectively. The measurements I1(t) and I3(t)
were included as the fourth and fifth input variables of the
model to improve the performance of the developed models
in estimating the tension in the web between the unwind-
ing and rewinding reels and between the rewinding and the
traction reels.

6.2 Data pre-processing

The data employed to build a model-based for a nonlinear
systemmust be strictly selected to ensure that it is rich enough
to avoid trapping into an overfitting problem or early con-
vergence. Data pre-processing methods have to be handled
before the learning process to augment the quality of training
patterns to reinforce the acquisition of a high reasonablemod-
elling scheme. In essence, ANNs can perform an arbitrary
nonlinear mapping between input and output data values.
The simplest strategies of pre-processing are data filtering
and scaling.

6.2.1 Data filtration

Homogenisation and smoothing of intensive changes are
needed to apply to the raw datameasurements to extract righ-
teous input and output variables from the empirical datasets.
In this paper, the collected raw data are passed through a first-
order digital Butterworth low-pass filter with a sampling rate
of 3 Hz and a bandwidth rate of 0.3 Hz.

6.2.2 Data scaling

The input and output datasets of the winding process have
diverse ranges, which may lead to unsatisfactory modelling
process accompanied with relatively high error rates in the
evaluation process. Furthermore, the dataset is not usually

used immediately in the creation of models for industrial
systems, as in many cases there is a variation in the mag-
nitude of the variables of the systems. Thus, data scaling is
an important issue concerned with high performance of the
system identification. Data scaling should be conducted in
a fixed range to prohibit data with larger magnitudes from
overriding smaller magnitudes and impeding the early learn-
ing process. In this paper, the input and output data are scaled
in the range between 0.1 and 0.9. The original data X were
mapped to the scaled data X ′ as given in Eq. (19):

X ′ = X − Xmin

Xmax − Xmin
× s + o (19)

where Xmax and Xmin identify, respectively, the maximum
and minimum values of the original data, X , s is the scale
parameter that is equal to 0.9 and o is the offset parameter,
o = 0.1.

The effects of the Butterworth filter and the subsequent
scaling for the inputs of the winding process are shown in
Fig. 2. The raw inputs are shown in blue, and the filtered and
scaled inputs are shown in red and green colours, respec-
tively.

Figure 3 displays a filtration of the angular speed of reel
2 followed by normalisation.

7 Proposed system identification procedure

System identification often uses statistical methods to con-
struct mathematical models for identifying dynamical sys-
tems using sets of measured data. In addition to the model
preparation process described above, there are further three
key issues to be addressed in the design of models for non-
linear industrial processes: model structure selection, model
training process and model validation process. These issues
should be handled accurately throughout the entire proce-
dure to achieve high performancewith aminimummodelling
error. The mathematical structure of the proposed model for
the web tensions of the winding process and the training
algorithms of ANNs is described below:
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Fig. 2 Effects of applying the
Butterworth filter on the original
signals, followed by scaling.
Raw signals are in blue, filtered
signals are in red, and scaled
signals are in green (color figure
online)

Fig. 3 Filtering and scaling the angular speed of reel 2 to the range
between 0.1 and 0.9

• Proposed model structure: the choice of a model struc-
ture with a limited number of parameters to model the
WP is difficult due to its non-linearity. The general class
of the developed model structure used to predict the tar-
get values of the tension webs of the winding process,
T1(t) and T3(t), follows the pattern given in Eq. (20).

y(t) = φ(S1(t), S2(t), S3(t), I1(t), I2(t), θ)T (20)

where y(t) represents the tension reels T1 or T3, φ rep-
resents the system model, θ is the model parameters and
t is the time instances.
To create T1 and T3 models of the WP with explainable
structures that link inputs and output parameters; we use
ANN trained based on PSO, GOA and GWO. These T1

and T3 models implement theweb tensions between reels
1 and 2 and between reels 2 and 3, respectively. TheANN
was organised in three layers; input and output layers in
addition to a hidden layer. The ANN is then expanded,
where hidden neurons are added to a hidden layer, one by
one, until theANNmodel is capable of achieving its func-
tionality with a minimal realizable error. This depends
primarily on the complexity of the modelling problem
which is associated with the complexity of the dataset.
The optimum size ofANNwas obtained in this case study
through train and error process, where the appropriate
number of neurons was identified by an adaptive pro-
cess that added or deleted neurons as required during
the training process. In the feedforward (FF) process: the
external inputs are initially fed to the input neurons of
the input layer; the outputs from the input neurons are
fed to the hidden neurons of the hidden layer; and finally
the outputs of hidden layer are fed to the output neurons
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of the output layer. The first step in training the ANNs
is to initialise the weight parameters w. Then, during the
FF computation, the ANN weights, w, were optimised
using the proposed BIAs. The learning process consists
of adjusting the synaptic weights w until they reach the
desired behaviour. The output is evaluated to measure
the ANN performance; if the output is not as desired, the
weights have to be adapted in terms of the input patterns.
Here, supervised learningwhere the goal is to generate an
output approximation with the desired patterns of input–
output samples set p as described in Eq. (21) is applied:

Tk =
{(

xk ∈ R
Ndk ∈ R

M
)}

, k = 1, 2, . . . , p (21)

where Tk represents the training sample set, x represents
the input patters, d is the desired response, N and M are
the number of samples in the input and output patterns.

The requirement is to design and calculate theNNparam-
eters so that the actual output yk of the NN due to xk is
close statistically to the requireddegree todk for all k. The
use of the classicBP algorithm to adjust theweights of the
ANN as this algorithm, like other traditional algorithms,
is based on the descendant gradient technique, which can
remain stuck in a local minimum. Also, a BP algorithm
cannot solve non-continuous problems. For this reason,
other techniques that can address non-continuous and
nonlinear problems are crucial to reach a better perfor-
mance of the ANN and solve complex problems. Here,
PSO, GOA and GWO, as described below, were used to
adjust the synaptic weights of ANN to obtain a minimum
error.

• Proposed training methods: the ability of an ANN
model is affected by the configuration used, particularly
the hidden neurons, input and output variables numbers;
as the number of model parameters rises, it favours the
network learning, and hence, the fitting is effective. In
principle, adding more hidden neurons to the models in
a systematic strategy should result in regular reductions
in the fit error. A proper training process for estimat-
ing the ANN parameters is the initial point for defining
the model. Prior to feeding the data to the models, an
ANN design was determined as described above. This
is followed by a selection process to estimate the model
parameters. A FF-NNwas configured using the input and
output datasets of the industrial WP with a number of
neurons identified through train and error process. These
design matters are illustrated above, and the behaviour
of the models using train and error process that resulted
in a sensible number of hidden neurons for the models
is presented in the results section. Using train and error
process appears feasible to develop a model that achieves
the desired degree of performance. During training, w is

updated through the use of BIAs until the mean square
error (MSE) function defined in Eq. (22) is small enough.

e = 1

M · p
M∑

i

(yi (xk,w) − dik)
2 (22)

where yi that defines the output value at i th index was
calculated overall p pattern samples and dik is the desired
result.
While the effectiveness of GOA and GWO has been con-
firmed in reliably solving many complex engineering
design problems, there is still a lack of research regard-
ing their values in the area of optimising the weights of
ANNs, particularly in the modelling of complex nonlin-
ear industrial problems. In this work, we explored their
usage in the optimisation of the weights of ANNs in the
modelling of the winding process.
The PSO, GOA and GWO were proposed as learning
search algorithms to train the ANN in order to: (1) pre-
vent the error function from oscillating around a set of
weightswithout any improvement, (2) estimate themodel
parameters and, (3) obtain the optimal weights for which
the optimal model structures could be created for the
winding problem. These optimisation algorithms used
the MSE as a fitness function to measure the closeness
of the estimated output to the actual output. These mod-
elling approaches using ANN with training on the basis
of PSO, GOA and GWO have many merits in generating
models with interpretable structure that can relate input
and output variables fromagiven datasetwithout specify-
ing the key parameters. Further, each proposedmodelling
scheme has a property to produce a highly robust model
and has played an important role in achieving a high
level of performance when modelling a nonlinear sys-
tem for a real industrial process. In the training phase,
the input set given to the particular modelling system
is fed to the ANN and the learning algorithms. Then,
the output of the modelling system is also fed back to
the ANN and BIAs, which act as the target patterns.
The conduction weights of all interconnections between
neurons of ANN are updated based on the proposed opti-
misation algorithms, namely PSO, GOA and GWO, to
reach a predetermined number of iterations or to meet
the MSE criterion, in which the specified inputs produce
the desired outputs. The estimated output vector of each
model and the target vector are iteratively compared dur-
ing the training process to optimise the modelling error
value. This value is used by PSO, GOA andGWO at each
iteration to reduce the MSE value along with adjusting
the ANNweights by varying the parameters of each opti-
misation algorithm.
Through these activities, the structured ANN-BIAsmod-
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els learn the behaviour of the output response, where each
independent model, T1 and T3, of each web tension of
the WP is learned with a compact set of parameters. The
proposed BIAs are expected to evade the local minimum
by exploring a large area of the search domain. Each algo-
rithm has exploratory search features, making it suitable
to optimise the weights of ANNs and providing a better
scope to get an optimum solution. To sum up the above
descriptions of optimising theweight parameters ofANN
using PSO, GOA and GWO, they are summarised by the
iterative procedural codes in Algorithms 1, 2 and 3,
respectively.

Algorithm 1: A pseudo-code of the proposed PSO tun-
ing algorithm for the ANN model.
1: Max I ter ← Maximum number of iterations.
2: I ter ← Current iteration
3: d ← A predefined threshold value
4: P ← Population size
5: The fitness function (MSE) ← f ( )

6: Initialise the particles with random position and velocity vectors
7: Initialise the structure of the feedforward NN
8: repeat
9: for each particle i = 1, 2, . . . , P do
10: Feed ANN model structure with the training patterns
11: if ( f (Xi ) > f (pbesti )) then
12: pbesti ← Xi
13: end if
14: if ( f (pbesti ) > f (gbesti )) then
15: gbesti ← pbesti
16: end if
17: end for
18: for each particle i = 1, 2, . . . , P do
19: Update particle velocity vector using Eq. (7)
20: Update particle position vector using Eq. (8)
21: end for
22: Max I ter ← Max I ter − I ter
23: until (Max I ter = 0 OR MSE < d)
24: return gbest (the optimised ANN structure)

The final optimal solutions for each optimisation algo-
rithm, as described in Algorithms 1, 2 and 3, were used
to get the optimum weights of the final model structures
of the web tensions, T1 and T3, of the winding process.
During the evolution cycle of each optimisation algo-
rithm, the connection weights of the ANN are updated
based on the optimisation algorithms so that they can
be used to constrain the modelling process to identify
the unfamiliar data at the verification processes. In nut-
shell, the modelling procedures in Algorithms 1, 2 and
3 are iterated until a predefined maximum number of
iterations is reached or the improvement in theMSEmea-
sure between the target output and the estimated output
as measured by Eq. (22) falls below a defined thresh-
old value d. The model of each proposed algorithm was
trained several times to solve the problem of local min-

Algorithm 2: A pseudo-code of the GOA for adjusting
ANN weights.

1

1: Max I ter ← Maximum number of iterations.
2: I ter ← Iteration counter
3: d ← A predefined threshold value
4: P ← Population size (number of grasshoppers)
5: The fitness function (MSE) ← f ( )

6: c ← Parameter to balance the exploration and exploitation of
the entire swarms (grasshoppers).

7: cmax ← Maximum value of coefficient c.
8: cmin ← Minimum value of coefficient c.
9: T ← The best search agent value.
10: Xi ← Grasshoppers positions; i = 1, 2, . . . , P .
11: Initialise Xi .
12: Configure feedforward NN structure taking into account input

and output datasets
13: Initialise cmax = 1, cmin = 0.00001 and Max I ter = 1000
14: Calculate the fitness of each searchagent
15: while (I ter < Max I ter ) OR MSE > d do
16: c ← cmax − I ter(cmax − cmin)/I ter
17: for each searchagent , i = 1, 2, . . . , P do
18: Feed the ANN model with the training patterns
19: Evaluate the objective function (MSE)
20: Normalise the distances between grasshoppers ∈ [1, 4]
21: Update the positions of the current search agents as

described in Eq. (11)
22: Fetch the current search agent back if it goes outside of

its bounds
23: end for
24: Update T if is there is a better solution
25: I ter ← I ter + 1
26: end while
27: Return T (the optimised ANN model structure)

ima. In these iterative procedures, to create amodel based
on ANNs trained by the proposed optimisation algo-
rithms, the MSE measure was varied at each iteration
to identify the web tension of the WP that best matched
the estimated web tension values.

In this case study, the goal is not only to generate mod-
els that approximate the values of the underlying web
tensions of the winding system, but also to give insight
onto the behaviour of these web tensions. The PSO, GOA
and GWO summarise the interaction between input and
output variables of the WP and also identify the signifi-
cant variables in this process because these variables will
survive and appear in the best individuals at the end of
the evolutionary process. The T1 and T3 models were
designed to capture the main characteristics of the cor-
rect output responses of theWP alongwith the variability
of the tuned weight parameters. The results of these iter-
ative algorithms are the models that determine the output
vectors representing the web tensions T1 and T3 of the
winding process. A schematic flowchart of the proposed
modelling method for the winding process is shown in
Fig. 4.
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Algorithm 3:A pseudo-code of GWO tuning algorithm
for tuning the ANN weights.

1

1: Max I ter ← Maximum number of iterations.
2: I ter ← Iteration counter
3: d ← A predefined threshold value
4: P ← Population size (number of grey wolfs)
5: The cost function (MSE) ← f ( )

6: A ← A coefficient vector.
7: C ← A coefficient vector.
8: a ← A coefficient vector.
9: Xα ← The best search agent.
10: Xβ ← The second best search agent.
11: Xδ ← The third best search agent.
12: Xi ← Swarm (grey wolfs) positions ; i = 1, 2, . . . , P .
13: Initialise Xi
14: Initialise the feedforward NN structure taking into account

input and output datasets
15: Initialise a to [2, 0]
16: Initialise A as defined in Eq. (14)
17: Initialise C as defined in Eq. (15)
18: Calculate the fitness of each searchagent
19: while (I ter < Max I ter OR MSE < d) do
20: for each searchagent , i = 1, 2, . . . , P do
21: Feed the ANN model structure with the training patterns
22: Evaluate the MSE function
23: Update the position of the current searchagent by Eq.

(18)
24: end for
25: Update a, A, and C
26: Calculate the fitness of all searchagents
27: Update Xα , Xβ , and Xδ using Eq. (16)
28: I ter = I ter + 1
29: end while
30: Return Xα (the optimised ANN model structure)

The first step in Fig. 4 is to read the collected data of the
winding process. The second step is data pre-processing,
which poses a crucial step before building themodel. This
step consists of data filtration and normalisation. Data fil-
tering step aims to ameliorate data quality and transform
it to a more suitable form. Data normalisation aims to
get rid of the scale differences between the variables of
the process. The third step of the proposed modelling
method before model creation is identifying the training
dataset, which is associated with sample and variables
selection. In this step, half of the datasets were used for
training, and all process variables were chosen to create
the model. After preparing the dataset, the next step was
building and configuring the ANN model, where PSO,
GOA and GWO were used to update the weights of the
ANNmodel. Themodel parameters are then updated iter-
atively until a maximum number of iterations is arrived
at or the enhancement in the error measure computed as
given in Eq. (22) is small enough. The green arrow repre-
sents the feedback of the modelling method. This results
in the models, ANN-PSO, ANN-GOA and ANN-GWO,
which are used to test the validity and suitability of the

proposed modelling method using a test dataset indepen-
dent of that used in the training dataset. The last step is
to evaluate the performance of the modelling method for
both training and test datasets.

According to the pre-processing phase, the proposed
model structure and the trainingmethods used to optimise
the ANN weights, the developed models, ANN-PSO,
ANN-GOA andANN-GWO, are expected to be effective
in describing and simulating the dynamics behaviour of
the winding process. It is anticipated that these models
can achieve very modest training and evaluation errors.
This result is expected due to the coveted features of
the adopted algorithms, PSO, GOA and GWO, which
can largely avoid local solutions in finding the optimal
weights for the ANN model. Other fascinating features
of these optimisation algorithms include: 1) their abil-
ity to learn ANNs much faster than traditional learning
algorithms suchlike BP and LM methods and 2) their
efficiency in locating the global optimum and obtaining
the optimal set of weights for the ANNs, where an opti-
mal model structural will be obtained. In sum, there are a
host of benefits of an ANN model trained by PSO, GOA
and GWO, including robustness in term of noise resis-
tance anddisturbing signals, rapid training and evaluation
capabilities, avoiding tripping in an undesirable solution
and arriving at a high level of reliability in understand-
ing and describing the process under study. The use of
the algorithms, PSO, GOA and GWO, provides a sta-
ble optimisation for the weights of the ANN model that
will present fast convergence with very low error rates in
modelling. This is due to that these algorithms: (1) search
for optimal weights without relying on the initial weights
and (2) enhance the diversity of solutions and are not sus-
ceptible to converge at local optima. So, these models are
powerful in optimising the ANNweights and have a high
potentiality for capturing the important characteristics of
the web tensions of the winding process with relatively
simple mathematical formulas.

8 Model acceptance and evaluation

Model selection with a suitable evaluation measure is criti-
cal to identify how the model pursues during the evaluation
process. This process is required to validate the model and
illustrate the power of the model-based approach to identify
T1 and T3 data. The capability of the developed models to
characterise the behaviour of the web tensions of theWPwas
verified through the computation of several metric measures.
If the identified models fail to reach a predefined accuracy
with an acceptable degree of performance, the modelling
process returns back to its training phase. Therefore, perfor-
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Fig. 4 A scientific diagram
showing the key procedures of
the proposed modelling
approach (color figure online)

mance criteria are needed to identify the level of similarity
between the data generated by real experiments and the data
produced from the developed models.

The performance of the developed models of the sub-
systems, T1 and T3, of the winding problem was assessed
based upon several criteria as defined below.

1. The mean absolute percentage error (MAPE), as defined
below, is ameasure of the percentage foretellingprecision
of the developed models.

MAPE = 1

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ × 100% (23)

where n stands for the number of data values used in the
experiments and y and ŷ represent the n observed and
modelled values, respectively.

2. The MSE or E as defined below assesses the accuracy of
difference between the actual data produced by the mea-
surement tools and their corresponding predicted data
obtained from the models.

E = 1

n

n∑

i=1

(yi − ŷi )
2 (24)

where (yi , ŷi ) represents a single data web tension value
for observation i of themeasured value acquired from the
experiment and the estimated web tension value created
by the modelling procedure, respectively. An accurate
estimation of a MSE value is achieved if the difference
between the expected and the measured values is within
tolerance.

3. The Pearson product–moment correlation coefficient (R)
as described below was used to test the potentiality of the
developed models:

R =
∑n

i=1(yi − ȳ)(ŷi − ¯̂y)
√∑n

i=1(yi − ȳ)2
∑n

i=1(ŷi − ¯̂y)2
(25)

where yi is the i th actual value of the web tension output
measured by a real experiment, ŷi is the i th predicted
web tension value generated from the model, ȳ and ¯̂y are
the mean values of the actual and foreseen web tension
outputs, y and ŷ, respectively.

4. The coefficient of determination (R2), as given below,
measures the differences between the observed and pre-
dicted means and variances of the observed data that can
be explained by the model.
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R2 = 1 −
∑n

i=1(yi − ŷi )2∑n
i=1(yi − ȳ)2

(26)

5. The variance-accounted-for (VAF) measure, as defined
in Eq. (27), measures the proximity of the measured
web tension values obtained by real experiments to the
estimated web tension values created by the developed
models.

V AF = [
1 − var(y − ŷ)

var(y)
)
] × 100% (27)

where var(y) is the variance of the actual web tension
data and var(y − ŷ) is the variance of the difference
between the actual web tension data (y) and the model
data (ŷ).

The aforementioned evaluation measures are relevant and
compelling to quantify the accuracy of the developedmodels.
These criteria help to assess the potential of the developed
models for the prediction of T1 and T3 and to single out the
degree of agreement between the real output data and the
estimated output data. A statistical analysis was performed
using Friedman statistical test Friedman 1937 to verify the
efficiency of each presented model. This test is able to rank
each model along with other conventional and state-of-the-
art models.

9 Experimental results and discussion

9.1 Machine and software specifications

Speed of computation is influenced by the volume of data to
be processed, the time taken to perform the computation of
each model and the complexity of the algorithm. Here, the
developed models are implemented in Java under Microsoft
Windows 10 platform. All experiments were run on an Intel
Machine with Core i5 processor running at 2.50 GHz with
6.0 GB of RAM. The experiments were designed to assess
the effect of tuning theweights of ANNusing PSO,GOA and
GWO. Each experiment was reiterated 10 times. The results
of the proposed modelling methods are recorded in terms
of the performance criteria defined above and compared
with a set of popular traditional and state-of-the-art meth-
ods reported in the literature. The programming language,
software and hardware specifications were presented to pro-
vide an indication of the efficiency of the developed models
in terms of the computational burden. The average speed of
operations for the 10 experiments using ANN-PSO, ANN-
GOAandANN-GWOare, respectively, about 79.453, 72.283
and 59.172 seconds, each with the controlling parameters
given in Table 2. It is observed that the average computational

time of the developed modelling schemes is relatively low.
This confirms that the computational effort of each developed
model is persuaded and assures that the proposed modelling
schemes are computationally efficient to address the WP.
Indeed, the computational time is only intended to provide
some allusions about the time requirements for the future
researchers. In short, the elapsed computational time affirms
that proposed models are capable of handling WP at a very
high speed on a computer with modest specifications such as
the one described above.

9.2 Experimental setup of ANN-based algorithms

The feedforward ANN was configured with a number of
neurons identified as described along with the input and out-
put data sets of the WP. The ANN weights were controlled
through each of the PSO, GOA and GWO to obtain the opti-
misedmodels for T1 and T3 tensions. The control parameters
of these tuned optimisation algorithms are displayed in Table
2.

The control parameters in Table 2were adjusted by the use
of design of experiments to fit each swarm-based algorithm
to the underlying nature of the modelling problem. The trial-
and-error process was used to find the best parameters for
each tuned algorithm. A reasonable wide range of each con-
trol parameter was initially defined and the experiments were
run systematically. This is to avoid wasting time with untar-
geted experiments and to have an idea of the behaviour of
the optimisation algorithms for different settings, and based
on these results to perform a fine tune. The trends for the val-
ues of parameters were defined to determine whether the best
values are within the range or there is a need to further exper-
iments. The parameter values were varied several times until
a sensible solution was obtained. However, most often only
good settings are obtained, perhaps, not the “‘best”’ settings.

9.3 Simulation of the developedWPmodels

Theproposedmodelling schemes are expected to createmod-
els for T1 and T3 of the WP with explainable structures that
link inputs and outputs with key parameters selection. The
leading objective is to originate T̂1(t) and T̂3(t) models that
describe the aspects of the WP that often resemble the actual
T1 and T3, respectively. Three models were developed using
ANN-PSO, ANN-GOA andANN-GWO for T1 and T3. Each
developed model was trained on a data set of 1250 sam-
ples of each input and output parameters and evaluated on
a separate data set of 1250 previously unseen samples. The
simulation results are shown below during training and ver-
ification stages to illustrate the capability of the modelling
schemes.
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Table 2 Values of the
controlling parameters of the
tuned algorithms

Algorithm Parameter Value

PSO Populations 200

Generations 1200

Cognitive and social constants 1.5 and 2.5

Inertia weights Linearly decrease from 0.9 to 0.3

GOA Search agents 200

Generations 1200

cmax 1

cmin 0.00004

GWO Search agents 200

Generations 1200

The vector a Linearly decreases from 2.0 to 0.0

9.3.1 Simulation result-based regression

Multiple nonlinear regression was used to build a regression
model for the WP. Lease square estimation was used to esti-
mate the model parameters. The produced models for the
web tension models, T1 and T3, are given in Eqs. (28) and
(29), respectively.

T1 = 0.04365 − 0.00217 S1 + 0.00356 S2

−0.00852 S3 − 0.00742 I1 + 0.00169 I2 (28)

T3 = 0.04158 − 0.00019 S1 − 0.00219 S2

−0.00050 S3 − 0.00322 I1 + 0.00729 I2 (29)

The actual and predicted web tension values, T1 and T3,
obtained based on MNLR in both the training and testing
cases are shown in Figs. 5 and 6 for both T1 and T3, respec-
tively.

The study of residuals is essential to MNLR modelling
process and deciding the performance of the proposed mod-
els. The computed correlation coefficients (R) values over
training and testing data for T1 and T3 are shown in Figs. 7
and 8, respectively.

9.3.2 Simulation result-based ANN-PSOmodel

The actual and predicted web tension between reels 1 and 2
and web tension between reels 2 and 3 in both training and
testing cases are shown in Figs. 9 and 10, respectively, where
the models were created based on ANN-PSO.

The obtained correlation coefficients (R) values based on
ANN-PSO models for both the training and testing data for
T1 and T3 are shown in Figs. 11 and 12, respectively.

It is observed from themodelling and identification results
shown in Figs. 9 and 10 that the predicted data output iden-
tified by red plots fit competently to the actual data output
as identified by blue plots for each subsystem of the wind-
ing process reactor, as judged visually. These results appear
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Fig. 5 Actual and predicted T1 in training and testing cases based on
multiple nonlinear regression

particularly prominent given a model with a relatively large
training dataset. These results further underline the validity
and feasibility of such ANN-PSO model in describing the
dynamic behaviour of the winding process, enabling it to
model any industrial process. This in turn means that refine-
ment and data normalisation procedures are valuable to retain
the significant aspects of the datasets.

9.3.3 Simulation result-based ANN-GOAmodel

The actual and predicted web tension between reels 1 and
2 and between reels 2 and 3 in both training and testing
processes based on the final developed ANN-GOA models
for T1 and T3 of the winding process is shown in Figs. 13 and
14, respectively. The top part of the figure gives the training
results, while the test results are given in the bottom part. The
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Fig. 6 Actual and predicted T3 in training and testing cases based on
multiple nonlinear regression
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Fig. 7 Multiple nonlinear regression: computed R over training and
testing data of T1
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Fig. 8 Multiple nonlinear regression: computed R over training and
testing data of T3
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Fig. 9 Actual and predicted results of T1 in training and testing cases
(color figure online)
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Fig. 10 Actual and predicted results of T3 in training and testing cases
based on ANN-PSO (color figure online)

actual web tension values are shown in red, and the predicted
web tension values are shown by a blue line.

The computed correlation coefficients (R) values based
on ANN-GOAmodels for training and testing cases for both
T1 and T3 are shown in Figs. 15 and 16, respectively.

Figure 13 shows that in the case of T1, the simulation
results visually are a little better than the T3 case, as shown
in Fig. 14 for training and testing data (shown in red and
blue, respectively), and both results are reasonable. However,
a modest error can be observed between the target and the
predicted output in the testing cases, but it is non-significant.
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Fig. 11 Computed R over training and testing data of T1 using ANN-
PSO
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Fig. 12 Computed R over training and testing data of T3 using ANN-
PSO

0 200 400 600 800 1000 1200

-2

0

2

4

6

0 200 400 600 800 1000 1200

-2

0

2

4

6

Fig. 13 Actual and predicted results of T1 in training and testing cases
based on ANN-GOA (color figure online)
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Fig. 14 Actual and predicted results of T3 in training and testing cases
based on ANN-GOA (color figure online)

-2 -1 0 1 2
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 15 Computed R over training and testing data of T1 using ANN-
GOA
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Fig. 16 Computed R over training and testing data of T3 using ANN-
GOA
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Fig. 17 Actual and predicted results of T1 in training and testing cases
using ANN-GWO (color figure online)

These simulation results affirm the effectiveness of theANN-
GOA-based approach for creating a model-based system.
The nature of the errors in Figs. 13 and 14 was associated
with the fact that the predicted web tensions between reels 1
and 2 and between reels 2 and 3 are not following exactly the
corresponding actual web tensions and that the target values
were not detected well.

9.3.4 Simulation result-based ANN-GWOmodel

The actual and the predicted T1 and T3 values based on the
developed ANN-GWO models are appeared in Figs. 17 and
18 for both training and testing cases. The actual values are
identified by blue and the predicted values by a red line.

The correlation coefficients (R) values obtained based on
ANN-GWO models for training and testing cases for both
T1 and T3 are shown in Figs. 19 and 20, respectively.

The simulation results shown in Figs. 17 and 18 confirm
the validity and appropriateness of the ANN-GWO-based
model for modelling the winding process in both training
and testing cases. It is observed that the ANN-GWO-based
modelling approach showed better results for T1 than the T3

as visually observed.
In short, the correlation coefficients (R) results obtained-

based ANN-PSO, ANN-GWO and ANN-GOA modelling
approaches for both training and testing cases demonstrate
that a high degree of performance and consistent results were
repeatedly obtained over the entire period of the sampling
time.

The results illustrated in Figs. 9, 10, 11, 12, 14, 14, 15,
16, 17 and 18 show the ability and reliability of the proposed
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Fig. 18 Actual and predicted results of T3 in training and testing cases
using ANN-GWO (color figure online)
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Fig. 19 Computed R over training and testing data of T1 using ANN-
GWO
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Fig. 20 Computed R over training and testing data of T3 using ANN-
GWO
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Fig. 21 Best convergence curves over ten experiments for the ANN-
PSO, ANN-GOA and ANN-GWO models for the web tension T1 at
different MSE values

modelling approaches in themodelling of theweb tensions of
the WP. The plot results of the models for the actual and pre-
dicted web tension between reels 1 and 2 and between reels
2 and 3 in the training and testing cases are almost replica
to each other, meaning that there is no much difference with
a deviation in the data in the corresponding points of the
plots, as visually shown. So, these obtained results prove a
highly convincing level of modelling and identification for
training and testing processes for both web tension cases.
It is also observed from Figs. 9, 10, 11, 12, 14, 14, 15, 16,
17 and 18 that the presented ANN-PSO-, ANN-GOA- and
ANN-GWO-based data modelling is at a high degree of per-
formance, such that the estimated T1 and T3 outputs highly
resemble the actual T1 and T3 outputs, respectively.

We can observe from all these figures that the estimated
winding process output is almost identical to the actual wind-
ing process output. This demonstrates the efficacy of each of
ANN-PSO, ANN-GOA and ANN-GWO in training ANNs.
These results further show superior performance of the pro-
posed modelling methods compared to previous methods in
the literature such as MNLR method.

9.4 Convergence

The convergence curves that identify the performance of the
ANN-PSO, ANN-GOA and ANN-GWO models, for mod-
elling the web tension T1 of the WP, are presented for up to
1200 iterations in Fig. 21.

The data of the plots in Fig. 21 represent the mean of the
sum of the squared errors between the estimated data values
created by the presented modelling schemes and the cor-
responding real data measurements. The vertical error bars
that appear on the convergence curves represent one standard
error of the mean.

The standard error of the mean was used to determine
whether the differences between the means of the data mea-
surements of the models are statistically significant. The
convergence curves show that the ANN model-based PSO,
GOA and GWO converge rapidly to the desired global
minimum error. There is a consistent difference between
ANN-PSOandANN-GOAaswell as theANN-GWOresults.
The error bars of the curves generated by ANN-GOA and
ANN-GWO overlap at many points along the curves. The
curve plots of ANN-PSO and ANN-GOA in addition to
ANN-GWO models are obviously separated and the error
bars do not interfere along the curves. In sum, the con-
vergence curves in Fig. 21 confirm that the ANN-PSO,
ANN-GOA and ANN-GWO models have reached a high
degree of performance in modelling T1.

9.5 Evaluation results

To obtain a quantitative assessment of the performance of the
proposed models: ANN-PSO, ANN-GOA and ANN-GWO,
a set of measures were calculated to identify the degree of
similarity between the actual output data and the correspond-
ing estimated data. The performance results for modelling
the web tensions T1 and T3 are shown in Tables 3 and 4,
respectively.

Tables 3 and 4 show that the modelling and evaluation
results are reasonable in both training and testing. There is
a relatively high correlation between the predicted and true
web tensions datasets as observed in Tables 3 and 4, whereas
a minimum value of 99.707 was reported for the correlation
R at testing the ANN-GWO model. Interestingly, the ANN-
PSO models reported better results than the ANN-GOA and
ANN-GWO models. The ANN-GOA models reported cor-
relation rates in training and testing for both T1 and T3

comparable to the correlation rates reported by ANN-PSO
model. The ANN-GWO model did not perform as the other
models on both T1 and T3 datasets. However, the difference
margin to the corresponding data of ANN-GOA results is
relatively small.

The results in terms of VAFmeasure for a series of experi-
ments to evaluate T1 and T3 models for all proposed models,
with a different number of hidden neurons in each experi-
ment, are shown in Tables and, respectively.

It is observed from Tables 5 and 6 that there is a grad-
ual improvement in the VAF rate as the number of hidden
neurons increases. Further, there is a very small increase in
the VAF rate when the number of neurons increases from 18
to 24. The difference is less than 0.02 on average which is
a small and not statistically significant. This finding shows
that 18 or 24 hidden neurons in the models are not critical to
performance. The application of a smaller number of neurons
will bemore rapid. There is a factor of approximately 0.04 on
average in VAF rate between the smallest and biggest num-
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Table 3 Training and testing
results of web tension T1 arrived
at by the proposed models

Model Training T1 data Testing T1 data

Evaluation criteria Evaluation criteria
MAPE R(%) R2(%) MAPE R(%) R2(%)

ANN-PSO 0.0727 99.988 99.966 0.0966 99.893 99.786

ANN-GOA 0.101 99.969 99.937 0.155 99.827 99.653

ANN-GWO 0.153 99.865 99.731 0.194 99.707 99.414

Table 4 Modelling and
evaluation results of web tension
T3 based on the proposed
models

Model Training T3 data Testing T3 data

Evaluation criteria Evaluation criteria

MAPE R(%) R2(%) MAPE R(%) R2(%)

ANN-PSO 0.0931 99.980 99.960 0.105 99.884 99.768

ANN-GOA 0.143 99.907 99.814 0.190 99.791 99.581

ANN-GWO 0.192 99.847 99.694 0.232 99.535 99.072

Table 5 Web tension T1:
Evaluation VAF results of the
proposed models

Number of hidden neurons Training case

ANN-PSO ANN-GOA ANN-GWO

6 99.7252 98.9331 97.8358

12 99.7592 98.9973 97.8588

18 99.7768 99.0158 97.8769

24 99.7852 99.0244 97.8846

Testing case

6 98.7218 97.6211 96.1001

12 99.0237 98.163 96.9871

18 99.0237 98.1806 97.0047

24 99.0332 98.2182 97.0143

Table 6 Web tension T3:
Evaluation results based on the
proposed models

Number of hidden neurons Training case

ANN-PSO ANN-GOA ANN-GWO

6 99.6215 98.7143 96.9842

12 99.6842 98.7762 97.0928

18 99.7008 98.7961 97.1095

24 99.7196 98.8133 97.1362

Testing case

6 98.2276 97.8533 96.7754

12 98.8143 98.002 96.8221

18 98.9063 98.0236 96.8577

24 98.9239 98.0412 96.8753

ber of neurons. This is a major difference in computational
burden.

To sum up, the evaluation results in Tables 5 and 6 divulge
that theANN-PSOapproach showed a large level of accuracy
in terms of training and testing in comparison with ANN-
GOA andANN-GWO; also, there is no significant difference
between ANN-GOA and ANN-GWO in this study. Further,

the results showed that ANN-PSO, ANN-GOA and ANN-
GWO models have a significant level of modelling ability,
where the ANN-PSO model has better accuracy.

The applications of the models proposed to the wind-
ing process presented very satisfactory results, where there
are always gains when adding more hidden neurons to the
ANN, systematically increasing fit performance. In addition,
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Table 7 A comparison in terms
of the MSE between the
proposed modelling approaches
and other reported modelling
approaches for T1 and T3 of the
WP for a set of ten experiments

Model Number of neurons Training data Testing data

MSE MSE

T1 T3 T1 T3 T1 T3

MNLR – – 0.3925 0.4024 0.5912 0.6346

LSE – – 0.1247 0.2547 0.1359 0.2430

MLP 12 5 8.93e–04 9.27e–04 8.61e–04 1.10e–03

RBF 10 10 8.76e–04 8.37e–04 8.54e–04 2.20e–03

LLNF 20 25 1.44e–04 8.86e–04 7.72e–04 1.10e–03

ANN-PSO 18 18 3.17e–06 3.54e–06 4.22e–06 4.91e–06

ANN-GOA 18 18 1.22e–04 1.58e–04 3.17e–04 4.13e–04

ANN-GWO 18 18 4.91e–05 5.08e–05 5.21e–05 5.95e–05

it is possible to reach levels close to unit in performance,
indicating that it is possible to reach desired levels of fit
performance, even when the target of performance is unit.
This ratifies that the proposed models achieved a high level
of modelling performance in the modelling of the winding
process.

While the effectiveness of the proposed models is highly
reliable in modelling the winding process, there is a need
in some evaluation cases to increase the number of hidden
neurons to augment the performance level of the devel-
oped models. Another limitation of the proposed models is
related to the relatively high computational cost. The compu-
tational cost of the proposed modelling method depends on
the parameters of both the ANN model and the optimisation
algorithms used to optimise the ANN weights, as the opti-
misation algorithms require a number of search agents and
generations that are sufficiently adequate to obtain a high
level of performance.

9.6 A comparison with other reportedmodels

The aforementioned rendering criteria are used to obtain a
quantitative evaluation of the performance obtained through
the modelling schemes proposed. The models were trained
ten times on a data set of 1250 samples for each input variable
of the WP. The models were then tested on a different data
set of 1250 samples for each input variable of the WP. The
performance of the proposed ANN-PSO, ANN-GOA and
ANN-GWO models is compared to conventional and state-
of-the-art approaches reported in the literature, in which they
are modelled the same process. The conventional approaches
include MNLR and LSE. The state-of-the-art approaches
are the ANN-based RBF and MLP as well as the RLLNF
reviewed in the literature. The performances of the devel-
oped models for the web tensions between reels 1 and 2 (T1)
and between reels 2 and 3 (T3) in terms of the MSE are dis-
played in Table 7 for both training and testing data sets. In
Table 7, the number of neurons of the neural network is given.

Table 8 Variance account for values for T1 and T3 of the WP using the
developed models over ten experiments

Model Training data Testing data

VAF VAF

T1 T3 T1 T3

MNLR 55.5995 47.3457 54.6961 44.3654

LSE 87.3062 75.2313 86.7406 73.9855

MLP 98.4746 93.5317 98.6752 89.9052

RBF 98.5999 94.4855 98.6899 86.7895

LLNF 99.6915 94.0865 98.8234 92.2721

ANN-PSO 99.7768 99.7008 99.0237 98.9063

ANN-GOA 99.0158 98.7961 98.1806 98.0236

ANN-GWO 97.8769 97.1095 97.0047 96.8577

The evaluation results presented in Table 7 show the
appropriateness of the proposed model-based methods for
modelling T1 and T3. It is clear that a high level of perfor-
mance was achieved using the proposed ANN-PSO model
in both training and testing. Besides, the ANN-GOA-based
approach achieved a faintly better degree of performance
for T1 and T3 than the ANN-GWO model-based RMLP
approach. As Table 7 demonstrates, the proposed mod-
els presented superior performance compared to the other
model-based traditional and state-of-the-art methods.

The evaluation training and testing results for the pre-
sented modelling systems in modelling the T1 and T3 are
summarised in terms of the VAF criterion in Table 8.

Table 8 compares the evaluation strategy and the perfor-
mance accuracy of the models presented in this paper to
four modelling methods for the same industrial process. It
is clear that a high level of performance is obtained using
the proposed models. Moreover, the VAF results of the
proposed models are significantly much better than the con-
ventional models and slightly better than a state-of-the-art
model Nozari et al. 2012. This illustrates that the presented
models were managed to be a well representation of the WP
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Table 9 Average rankings of the
presented models (Friedman)

Model Ranking

LSE 7.0

MLP 5.0

RBF 4.5

LLNF 3.25

ANN-PSO 1.0

ANN-GOA 3.0

ANN-GWO 4.25

MNLR 8.0

web tensions. The results in Tables 7 and 8 reveal that PSO,
GOA and GWO algorithms are efficacious in adjusting the
weights of ANNs and reaching optimal MSE and VAF val-
ues. The overall results prove that the proposed modelling
techniques have produced valuable and adaptable models in
representing the behaviour of the WP web tensions and fur-
ther are capable of obtaining good mathematical models for
other complex industrial and control problems.

9.7 Statistical analysis

A statistical analysis was performed using Friedman statisti-
cal test Friedman 1937, at a significance level of α = 0.05, to
verify the efficiency of each model presented and to rope the
statistical preciseness of the proposed models with the accu-
racy of conventional and state-of-the-art models. This is to
rank the presented models alongside conventional and state-
of-the-artmodels. It is also able to identify the bestmodel that
yielded thebest performance that canbedefined as the control
model. Holm’s procedure Holm 1979 was then performed in
accordance to the Friedman test results to identify the degree
of significance of the differences between the control model
and the othermodels. In addition,Holm’s procedurewas con-
ducted to obtain the adjusted p values for each comparison
addressed between the control model and the other models,
as well as rejecting the null hypothesis of comparable per-
formance between the models. Table 9 shows the ranking
produced by Friedman test for the presented model.

The ranking results in Table 9 show that ANN-PSOmodel
is ranked first, followed in order by ANN-GOA, LLNF,
ANN-GWO, RBF, MLP and LSE models. The p− value of
Holm’s procedure in Table 10 was adjusted using the ANN-
PSO model because it was identified as the control model.
The p value computed by Friedman test is 0.00651, which is
less than α = 0.05. Thismeans that there is a large difference
between the results of the evaluated models. Thus, Holm’s
procedurewas applied to demonstratewhether this difference
is statistically significant between the control model and the
other models.

Table 10 Adjusted p value and the null hypothesis based on theHolm’s
procedure with α = 0.05 (Friedman)

i Model p value α ÷ i Null hypothesis

7 MNLR 5.3121E–5 0.0071 Rejected

6 LSE 5.3200E–4 0.0083 Rejected

5 MLP 0.0209 0.01 Not rejected

4 RBF 0.0433 0.0125 Not rejected

3 ANN-GWO 0.0606 0.0166 Not rejected

2 LLNF 0.1939 0.025 Not rejected

1 ANN-GOA 0.2482 0.05 Not rejected

Holm’s procedure rejects those hypotheses that have a
p value ≤ 0.01. The Holm’s results, presented in Table 10,
show thatANN-PSOmodel, statistically, reported results sig-
nificantly better than the classical and state-of-the-art models
for the winding process data. Further, the results shown in
Table 10 confirm that ANN-GOA and ANN-GWO models
are, statistically, exhibited a considerable level of perfor-
mance.

To recapitulate, the sensible performance of the ANN-
based PSO, GOA and GWO models demonstrates the gen-
eralisation capabilities and substantiates the modal basis for
these models in modelling the case study.

The developed models have learned to precisely charac-
terise the behaviour of the winding process due to the finding
of the optimum weights for the proposed ANNmodel on the
basis of the algorithms PSO, GOA and GWO. As a result,
the developed models have achieved high accuracy values
and very low error rates. This high degree of performance
is considered a big advantage of the proposed modelling
method. However, due to the use of PSO, GOA and GWO
in training the ANN, the models ANN-PSO, ANN-GOA and
ANN-GWO are subject to a relatively high computational
burden. Additionally, increasing the number of neurons in
the ANN model will raise the cost.

The nonlinear simulator models, ANN-PSO, ANN-GOA
and ANN-GWO, presented in this work, have the ability to
simulate winding plant behaviour afterward training without
requiring real winding plant output data, but simply by pro-
viding the models with the inputs. This feature allows the
proposed models to design and simulate model-based con-
trollers over the full operating ranges of a nonlinear winding
system. In short, theANN-PSO,ANN-GOAandANN-GWO
models are highly efficient in the modelling of the winding
processwhich can further be utilised tomodel any other com-
plex industrial process.
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10 Conclusion and future work

The proposed work has demonstrated the use of three
bio-inspired algorithms (BIAs) to train artificial neural net-
works (ANNs) to derive three intelligent models for an
industrial winding process (WP). These BIAs include par-
ticle swarm optimisation (PSO), grasshopper optimisation
algorithm (GOA) and grey wolf optimiser (GWO). These
models are referred, respectively, to as ANN-PSO, ANN-
GOA and ANN-GWO. In the context of creating an optimal
model structure for the WP, the mean square error (MSE)
was used as a fitness function to evaluate each solution.
The performance of the proposed models was assessed
through conducting several experiments using the MSE,
Variance-Accounted-For (VAF) and the correlation criteria.
All evaluation measures reported a high level of agreement
between modelled and observed WP output data, suggesting
that the presented models are highly accurate. On all crite-
ria, a very high degree of performance was realised by the
proposed intelligent models with a correlation coefficient of
more than 99% in all training and testing processes. In the
simulation results, the proposed ANN-PSO, ANN-GOA and
ANN-GWO models have created a faithful replica for their
corresponding WP output data. These findings clearly evi-
denced the potential of PSO, GOA and GWO as promising
learning algorithms for the optimisation of ANN weights.
The results of the proposed models favourably outperformed
state-of-the-art models and adduced superior performance
rates considerably better than the conventional Least Square
Error (LSE) method. Consequently, the proposed modelling
method can be used as a base system upon to model any
nonlinear industrial system and can offer a way to compare
improvements between convincing modelling methods. The
use of a new model-based identification system to model
the WP is a useful direction and an interesting trend for
future research and experiments. Thismodel-based simulator
approach could be further used to design a model predic-
tive controller system or other winding systems with a set
of variable parameters. Further work is demanded to assess
the aptness of the proposed modelling approach to other real
industrial benchmark datasets.
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