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Abstract
In this work, we attempt to construct some novel solutions of nematicons within liquid crystals including three types of
nonlinearity namely Kerr, parabolic, and power law, using the generalized exponential rational function method. The inves-
tigation of nematic liquid crystals, using the proposed method, shows that there is diversity between the solutions gained via
this method with those obtained via different methods. Further, we use the constraint conditions to guarantee the existence of
the solutions. The W-shaped surfaces, dark soliton, bright soliton, singular soliton, period singular soliton, periodic waves,
and complex solutions of the studied equations are successfully constructed. Moreover, some obtained solutions are drawn
to a better understanding of the characteristics of nematicons in liquid crystals.

Keywords Nematic liquid crystals · Nonlinearity terms · Exact solutions · W-shaped surfaces

1 Introduction

Recently, nonlinear sciences have received considerable
attention. In general, the nonlinear dynamics and the phys-
ical phenomena of waves are major aspects of the natural
sciences. These often take place in the integrated system of
nonlinear soliton forms, especially in crystals,meta-surfaces,
nonlinear optical fibers, liquid crystals, and meta-materials,
and so on. Particular physical phenomena in the field of
liquid crystals have given rise to common interest among
experts with a well-known name: nematicons that first intro-
duced by Assanto in Assanto et al. (2003a, b) and Alberucci
and Assanto (2007). In optics, spatial optical solitons in
nematic liquid crystals, also defined as nematicons, are now
an excellent issue and have been discussed in a collection of
publications and published studies. Spatial optical solitons
construct a special theme, as the optics in space describe
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diffraction instead of dispersion, beam size instead of pulse
duration, one or two transverse dimensions instead of one in
the temporal domain (Raza and Zubair 2018). Researchers
have recently addressed a significant number of reports on
solitons, and in particular, on space solitons, based on their
importance and wide range of applications. For this pur-
pose, variety of schemes have been constructed to solve
different types of nonlinear evolution equations analytically
and numerically, such as the sine-Gordon expansion method
(Ali et al. 2020d, a; Eskitaşçıoğlu et al. 2019), the extended
sinh-Gordon expansion method (Dutta et al. 2020; Gao
et al. 2019a), the ∂- dressing method (Dubrovsky and Lisit-
syn 2002), the inverse scattering method (Vakhnenko et al.
2003), the generalized exponential rational function method
(GERFM) (Osman and Ghanbari 2018; Ali et al. 2020c;
Ghanbari 2019), the Bernoulli sub-ODE method (Abdulka-
reem et al. 2019; Ali et al. 2020b; Ismael andBulut 2019), the
extended Jacobi’s elliptic function approach (Biswas et al.
2018b), the modified Kudryashov method (Hosseini et al.
2019; Aksoy et al. 2016), the multiple exp-function method

(Wan et al. 2020), the tan
(

φ
2

)
-expansion method (Aghdaei

and Manafian 2016; Manafian et al. 2016; Hammouch et al.
2018), the modified auxiliary expansion method (Gao et al.
2020), the decomposition-Sumudu-like-integral-transform
method (Yang et al. 2017), the Riccati–Bernoulli sub-ODE
method (Yang et al. 2015; Abdelrahman and Sohaly 2018),
themodified exp (−ϕ (ξ))-expansion functionmethod (Ilhan
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et al. 2018; lhan OA, Esen A, Bulut H, Baskonus HM, 2019;
Sulaiman et al. 2019), the

(
m + G ′/G

)
–expansion method

(Ismael et al. 2020; Gao et al. 2019b), the Darboux transfor-
mation (Guo et al. 2014; Ling et al. 2018; Ye et al. 2019),
the modified trial equation method (Bulut et al. 2013; Man-
afian et al. 2017; Biswas et al. 2018a), the solitary ansatz
method (SeadawyandLu2017), the shootingmethod (Ismael
2017; Zeeshan et al. 2018; Ismael and Arifin 2018; Ali
et al. 2017), the Adomian decomposition method (Gonzalez-
Gaxiola et al. 2019; Ismael andAli 2017), the finite difference
method (Yokus et al. 2018; Pandey and Jaboob 2018; Yokus
andGülbahar 2019), theAdams–Bashforth–Moultonmethod
(Baskonus and Bulut 2015), and the improved Adams Bash-
forth algorithm (Owolabi and Atangana 2019).

The dimensionless form of the system that represents the
dynamics of nematicons in liquid crystals can be expressed
as (Ekici et al. 2017):

iΛt + aΛxx + bΘΛ = 0, (1)

cΘxx + λΘ + αF(|Λ|)2 = 0. (2)

The function Λ(x, t) is the wave profile and Θ (x, t) is the
angle of the tilt of the liquid crystal molecule. In Eq. (1), the
first and second terms symbolize the temporal evolution of
nematicons, and the group velocity dispersion, respectively.
The functional F represents the nonlinearity term of equa-
tions, and a, b, c, λ, α all are scalars.

Many researchers investigated the soliton solutions of
Eqs. (1) and (2) via different methods. Raza et al. (2019) used
the exp (−φ (ξ))-expansion method to study Eqs. (1) and
(2) and hyperbolic, periodic as well as rational soliton solu-
tions along with their combo type solutions constructed for
both Kerr and parabolic law nonlinearity. Kumar et al. (2019)
used the extended sinh-Gordon equation expansion method
to reveal dark soliton, bright soliton, mixed dark–bright soli-
ton, singular soliton, mixed singular optical, periodic waves,
and dipole optical soliton solutions. Ekici et al. (2017) stud-
ied the nematicons in liquid crystals by using the extended
trial equation method and some soliton solutions regarding
the singular solitons, periodic singular types, shock waves,
snoidal waves, plane waves were successfully constructed.
Arnous et al. (2017) investigated four types of nonlinear-
ity for Eqs. (1) and (2) via the modified simple equation
method and bright soliton, dark soliton, and singular soli-
ton wave solutions to the studied system were derived. Ilhan

et al. (2020) used the tan
(

φ
2

)
-expansion method and derived

the optical dark soliton, optical bright soliton, mixed opti-
cal dark–bright, singular waves, traveling wave, and solitary
wave solutions for four types of nonlinearity.

In this research, we use the GERFM to study the optical
soliton solutions of nematicons with three laws of nonlin-
earity namely: Kerr, parabolic, and power law. The GERFM

not only has the opportunity to provide a unified formulation
to obtain the exact solutions for traveling waves, but it also
guides the classification of the types of these solutions. To
our knowledge, the W-shaped soliton solutions aren’t con-
structed beforehand for the suggested equations.

This article has been designed as follows: in Sect. 2,
the structures of the GERFM are presented. In Sect. 3, the
solutions to the nematic liquid crystals with three laws of
nonlinearity are presented, while in Sect. 4, the physical
dynamics of the solutions are discussed. In last Sect. 5, the
conclusions will be drawn.

2 Method descriptions

Suppose we have nonlinear partial differential equations as
the form:

P1
(
u, v, ux , u

2ux , ut , uxx , . . .
)

= 0, (3)

P2
(
v, u, vx , v

2vx , vt , vxx , . . .
)

= 0. (4)

To investigate the analytical solutions ofEqs. (3–4),wedefine
the wave transformation as:

u (x, t) = U (ξ) , v (x, t) = V (ξ) , ξ = κx − νt . (5)

Here, ξ is the symbol of the wave variable and κ , ν are
nonzero constants. Plugging Eq. (5) on Eqs. (3–4), we get
nonlinear ordinary differential equations (NLODE)

O1

(
U , V , κU ′, κV ′, κ2U ′′, κ2V ′′, . . .

)
= 0 (6)

O2

(
V ,U , κV ′, κU ′, κ2V ′′, κ2U ′′, . . .

)
= 0. (7)

Now consider the trial solutions of Eqs. (6–7) have the fol-
lowing forms:

U (ξ) = a0 +
n∑

K=1

aKψ(ξ)K +
n∑

K=1

bKψ(ξ)−K , (8)

V (ξ) = c0 +
m∑

K=1

cKψ(ξ)K +
m∑

K=1

dKψ(ξ)−K , (9)

where n,m are calculated by the homogeneous balance prin-
ciple and Eqs. (8) and (9) are used to find the exact solutions
to the ordinary differential Eqs. (6) and (7) as an auxiliary
solution. The function ψ (ξ) is defined as

ψ (ξ) = r1es1ξ + r2es2ξ

r3es3ξ + r4es4ξ
, (10)

where rn, sn (1 ≤ n ≤ 4) are real/complex constants and a0,
aK , bK , ck , dk are constants to be determined later. Putting
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Eqs. (8–9) into Eqs. (6–7) with utilizing Eq. (10), as a
result, we get the system of polynomial equations. After this,
we solve the system via equaling the terms that have the
same order and we will determine the values of constants
a0, aK , bK , cK , dk . Finally, we can easily obtain the exact
solutions of Eqs. (3–4).

3 Mathematical analysis

To derive optical soliton solutions of nematicons in liquid
crystals, we define the traveling wave transformation as fol-
lows:

Λ(x, t) = U (ξ) eiϕ(x,t), Θ (x, t) = V (ξ) , (11)

where ξ (x, t) = κ (x − νt) and ϕ (x, t) = −κx + ωt +
θ0. Here ν represent the speed of the soliton, and describe
the functional form of the wave profile. On the other hand,
κ, ω and θ0 are the soliton frequency, the wavenumber of
the soliton, and a phase constant, respectively. Substituting
Eq. (11) into Eqs. (1–2) and then splitting them into real and
imaginary parts leads to a pair of relationships as follows

aκ2U ′′ −
(
aκ2 + ω

)
U + bUV = 0, (12)

cκ2V ′′ + λV + αF
(
U 2

)
= 0, (13)

−κνU ′ − 2aκ2U ′ = 0. (14)

From Eq. (14), to find the nearby solution, we can obtain the
constraint condition and read

ν = −2aκ. (15)

Nematicons can now be examined for the functional F in the
presence of three laws of nonlinearly.

3.1 Kerr law

Kerr law is the basic form of nonlinearity observed in the
nonlinear optics sense. In this situation, the refractive index
of light is dependent on intensity, as formulated by the so-
called Kerr law. The nonlinearity of the Kerr rule arises if

F (s) = s. (16)

By using Eqs. (16) and (2) can be rewritten as

cΘxx + λΘ + α|Λ|2 = 0. (17)

So, Eq. (13) reduces to

cκ2V ′′ + λV + αU 2 = 0. (18)

Balancing U ′′ with UV in Eq. (9) and V ′′ with U 2 in Eq.
(15), we get n = 2 and m = 2. Applying these values on
Eqs. (8–9), we set up

U (ξ) = a0 + a1ψ (ξ) + b1ψ(ξ)−1 + a2ψ(ξ)2 + b2ψ(ξ)−2,

(19)

V (ξ) = c0 + c1ψ (ξ) + d1ψ(ξ)−1 + c2ψ(ξ)2 + d2ψ(ξ)−2.

(20)

Putting Eqs. (19) and (20) into Eqs. (12) and (18), we can
study the solutions for the following families:

Family 1. When we set r = {−1,−2, 1, 1}, s =
{1, 0, 1, 0}, then Eq. (10) becomes:

ψ (ξ) = −eξ − 2

eξ + 1
. (21)

Inserting Eqs. (19–20) with Eq. (21) into Eqs. (12) and (18),
we can investigate the following cases of solutions.

Case 1. When A1 = 18
√
aλ√

bcα
, B1 = 0, C1 = − 18aλ

bc , D1 = 0,

A2 = 6
√
aλ√
bcα

, B2 = 0, C2 = − 6aλ
bc , D2 = 0, A0 = 13

√
aλ√

bcα
,

C0 = − 13aλ
bc , κ =

√
λ
c , ω = − 2aλ

c then

Λ =
√
aλe

i(cθ0−√
cλx−2aλt)
c

(
cosh

(√
cλx+2aλt

c

)
− 2

)

√
bcα

(
1 + cosh

(√
cλx+2aλt

c

)) , (22)

Θ = aλ

2bc

(
3sech2

(
1

2

√
λ

c
x + aλ

c
t

)
− 2

)
. (23)

These are W-shaped and bright optical solutions to Eqs. (1)
and (2) as shown in Fig. 1.

Case 2. When A1 = 0, B1 = 36
√
aλ√

bcα
, C1 = 0, D1 =

− 36aλ
bc , A2 = 0, B2 = 24

√
aλ√

bcα
, C2 = 0, D2 = − 24aλ

bc , A0 =
13

√
aλ√

bcα
, C0 = − 13aλ

bc , κ =
√

λ
c , ω = − 2aλ

c then

Λ =
√
aλe

i(cθ0−√
cλx−2aλt)
c

(
4 − 8e

√
λ
c x+ 2aλ

c t + e

√
λ
c 2x+ 4aλ

c t
)

√
bcα

(
2 + e

√
λ
c x+ 2aλ

c t
)2 ,

(24)

Θ = −
aλ

(
4 − 8e

√
λ
c x+ 2aλ

c t + e

√
λ
c 2x+ 4aλ

c t
)

bc

(
2 + e

√
λ
c x+ 2aλ

c t
)2 . (25)

Eqs. (24) and (25) are W-shaped and bright optical soliton
solutions to the studied system as seen in Fig. 2, respectively.
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Fig. 1 3D surfaces of Eqs. (22) and (23) are drawn when a = 1, c =
2, λ = 0.2, α = 1, b = 0.1, θ0 = 1 and t = 2 for 2D

Family 2. When we choose r = {−2 − i,−2 + i, 1, 1},
s = {i,−i, i,−i}, then Eq. (12) becomes:

ψ (ξ) = sin (ξ) − 2 cos (ξ)

cos (ξ)
. (26)

Inserting Eqs. (19–20) with Eq. (26) into Eqs. (12) and (18),
we can investigate the solutions for the following families:

Case 1. When A1 = − 6
√
aλ√

αbc
, A2 = − 3

√
aλ

2
√

αbc
, C1 = − 6aλ

bc ,

C2 = − 3aλ
2bc , B2 = 0, D1 = 0, D2 = 0, A0 = − 15

√
aλ

2
√
bcα

,

C0 = − 15aλ
2bc , κ = −

√
λ

2
√
c
, ω = − 5aλ

4c , B1 = 0 then

Λ = −
3λ

√
ae

i(4cθ0+2
√
cλx−5aλt)

4c sec2
(√

cλx−aλt
2c

)

2
√
bcα

, (27)

Θ = −3aλ

2bc
sec2

(√
cλx − aλt

2c

)
. (28)

Eqs. (27) and (28) are dark and bright periodic singular solu-
tions to the studied system, respectively.
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(a) Effect of the parameter

(b) Effect of the parameter a on bright optical soliton solution.

Fig. 2 Effect of the parameter a is drawn under Eqs. (22) and (23) when
c = 2, λ = 0.2, α = 1, b = 0.1, θ0 = 1, t = 2

Case 2. When B1 = 0, A1 = − 12i
√

λω√
5bα

, A2 = − 3i
√

λω√
5bα

,

C1 = 24ω
5b , C2 = 6ω

5b , B2 = 0, D1 = 0, D2 = 0, κ =
√

λ

2
√
c
,

A0 = − 3
√
5λωi√
bα

, C0 = 6ω
b , a = − 4cω

5λ then

Λ = −
3
√

λωie
1
2 i

(
2θ0−

√
λ√
c
x+2ωt

)
csc2

( √
λ

2
√
c
x − 2ω

5 t
)

√
5bα

, (29)

Θ = 6ω

5b
csc2

( √
λ

2
√
c
x − 2ω

5
t

)
. (30)

Eqs. (29) and (30) are dark periodic singular solutions to the
studied system.

Family 3.When r = {2, 0, 1, 1}, s = {−1, 0, 1,−1}, then
Eq. (12) becomes:

ψ (ξ) = sech (ξ) (cosh (ξ) − sinh (ξ)). (31)

Inserting Eqs. (19–20) with Eq. (31) into Eqs. (12) and (18),
we can study the following cases of solutions.

Case 1. When B1 = 0, A1 = − 3
√
aλ√
bcα

, A2 = 3
√
aλ

2
√
bcα

, C1 =
3aλ
bc , C2 = − 3aλ

2bc , B2 = 0, D1 = 0, D2 = 0, A0 =
√
aλ√
bcα

,
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C0 = − aλ
bc , κ =

√
λ

2
√
c
, ω = − 5aλ

4c , then

Λ =
√
aλe

i(4cθ0−2
√
cx

√
λ−5atλ)

4c

(
3tanh2

(√
cλx+aλt
2c

)
− 1

)

2
√
bcα

,

(32)

Θ =
aλ

(
1 − 3tanh2

(√
cλx+aλt
2c

))

2bc
. (33)

These are W-shaped and dark optical soliton solutions to the
nematic liquid crystals.

Case 2. When A0 = 0, C0 = 0, A1 = 3
√
aλ√
bcα

, A2 =
− 3

√
aλ

2
√
b
√
c
√

α
, C1 = − 3aλ

bc , C2 = 3aλ
2bc , B1 = 0, B2 = 0,

D1 = 0, D2 = 0, κ =
√−λ

2
√
c
, ω = − 3aλ

4c then

Λ =
3λ

√
ae

i(4cθ0−2x
√−cλ−3atλ)
4c sech2

(√−cλx−atλ
2c

)

2
√
bcα

, (34)

Θ = −
3aλ sech2

(
x
√−cλ−atλ

2c

)

2bc
, (35)

providing that λ < 0. Eqs. (34) and (35) are bright soliton
solutions to Eqs. (1) and (2).

3.2 Parabolic law

The nonlinearity of the parabolic rule arises when

F (s) = C0s + C1s
2. (36)

By using Eqs. (36 and 2) can be rewritten as

cΘxx + λΘ + α
(
C0|Λ|2 + C1|Λ|4

)
= 0. (37)

So, Eq. (13) reduces to

cκ2V ′′ + λV + α
(
C0U

2 + C1U
4
)

= 0. (38)

Balancing U ′′ with UV in Eq. (9) and V ′′ with U 4 in Eq.
(38), we get n = 1 and m = 2. Applying these values on
Eqs. (8–9), we get

U (ξ) = a0 + a1ψ (ξ) + b1ψ(ξ)−1, (39)

V (ξ) = c0 + c1ψ (ξ) + d1ψ(ξ)−1 + c2ψ(ξ)2 + d2ψ(ξ)−2.

(40)

Putting Eqs. (39) and (40) on Eqs. (12) and (38), we can
conclude the following families of solutions:

Family 1. If we select r = {−1,−2, 1, 1} , s =
{1, 0, 1, 0} , then Eq. (12) becomes:

ψ (ξ) = −eξ − 2

eξ + 1
. (41)

Inserting Eqs. (39–40) with Eq. (41) into Eqs. (12) and (38),
we can construct the following cases of solutions.

Case 1. When A1 = 0, C1 = 0, B1 = −2

√ √
3aλ√
a2bcα

− 3a1
a2

,

D1 = 1
bc

(
6a1

√
3abcα√
a2

− 6aλ
)
, D2 = 1

bc

(
4a1

√
3abcα√
a2

− 4aλ
)
,

C2 = 0, A0 = − 3
2

√ √
3aλ√

a2abα
− 3a1

a2
,

C0 = 1
16

(
34

√
3aαa1√
a2bc

+ 3a12α
a2λ

− 35aλ
bc

)
then

Λ =
ei(θ0−κx+ωt)

(
eκ(x+2aκt) − 2

) √ √
3aλ√

a2bcα
− 3a1

a2

2
(
2 + eκ(x+2aκt)

) , (42)

Θ = 3a12α

16a2λ
− aλ

(
12 − 20eκ(x+2aκt) + 3e2κ(x+2aκt)

)

16bc
(
2 + eκ(x+2aκt)

)2

+ a1
√
3αa2abc(4 − 12eκ(x+2aκt) + e2κ(x+2aκt))

8a2bc
(
2 + eκ(x+2aκt)

)2 . (43)

These are dark soliton solutions to the suggested system of
equations (see Fig. 3).

Case 2. When A1 =
√ √

3aλ√
a2

√
bcα

− 3a1
a2

, D1 = 0, B1 = 0,

C1 = 1
bc

(
3a1

√
3abcα√
a2

− 3aλ
)
, C2 = 1

bc

(
a1

√
3abcα√
a2

− aλ
)
,

D2 = 0, A0 = 3
2

√ √
3aλ√
a2bcα

− 3a1
a2

,

C0 = 1
16

(
34a1

√
3aα√

a2bc
+ 3a12α

a2λ
− 35aλ

bc

)
,

ω = 1
16

(
10a1

√
3abα√

a2c
+ 3a12bα

a2λ
− 11aλ

c

)
,

κ =
√

aa2λ−a1
√
3aa2bcα√

2aca2
, then we have

Λ =
ei(θ0−κx+ωt)

(
eκ(x+2aκt) − 1

) √
λ
√
3a√

a2bcα
− 3a1

a2

2
(
1 + eκ(x+2aκt)

) , (44)

Θ = 3a12α

16a2λ
− aλ

(
3 − 10eκ(x+2aκt) + 3e2κ(x+2aκt)

)

16bc
(
1 + eκ(x+2aκt)

)2

+a1
√
3aa2bcα

(
1 − 6eκ(x+2aκt) + e2κ(x+2aκt)

)

8a2bc
(
1 + eκ(x+2aκt)

)2 . (45)

Eqs. (44) and (45) are dark and bright soliton solutions to the
nematic liquid crystals as shown in Fig. 3.
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Fig. 3 Effect of the parameter a is drawn under Eqs. (22) and (23) when
a = 1, c = 2, λ = 0.2, α = 1, θ0 = 1, t = 2

Family 2. If we select r = {−2 − i,−2 + i, 1, 1}, s =
{i,−i, i,−i}, then Eq. (12) becomes:

ψ (ξ) = sin (ξ) − 2 cos (ξ)

cos (ξ)
. (46)

Inserting Eqs. (39–40) with Eq. (46) into Eqs. (12) and
(38), we can reveal the following cases of solutions.

Case 1. When A1 = 0, B1 = 5A0
2 , D1 = 5A0

2(A0
2a2−3a1

)
α

3λ ,

C1 = 0, D2 = 25A0
2(A0

2a2−3a1
)
α

12λ , C0 = A0
2(17A0

2a2−48a1
)
α

48λ ,

C2 = 0, κ =
√
A0

2bα
(
3a1−A0

2a2
)

2
√
6aλ

, ω = − A0
2(A0

2a2−6a1
)
x

48λ ,

c = 3aa2λ2

bα
(
A0

2a2−3a1
)2 , we get

Λ = ei(θ0−xκ+ωt)

(
A0 + 5A0 cos (κ (x + 2aκt))

2 (sin (κ (x + 2aκt)) − 2 cos (κ (x + 2aκt)))

)
,

(47)

Θ =
A0

2α
(
A0

2a2 − 4a1
) (

12 sin (2κ (x + 2aκt))
−9 cos (2κ (x + 2aκt))

)

96λ(sin (2κ (x + 2aκt)) − 2 cos (2κ (x + 2aκt)))2
+

A0
2α

(
25A0

2a2 − 60a1
)

96λ(sin (2κ (x + 2aκt)) − 2 cos (2κ (x + 2aκt)))2
. (48)

These are period singular solutions to the studied system of
equations.

Case 2. When B1 = 0, C1 = 4A1
2(4A1

2a2−3a1
)
α

3λ , D1 = 0,

C2 = A1
2α

(
4A1

2a2−3a1
)

3λ , D2 = 0, A0 = 2A1, C0 =
A1

2(17A1
2a2−12a1

)
α

3λ , κ = A1

√
bα

(
3a1−4A1

2a2
)

√
6aλ

,

ω = A1
2bα

(
3a1−2A1

2a2
)

6λ ,

c = 3aa2λ2(
3a1−4A1

2a2
)2
bα
, then

Λ = A1e
1
6 i

(
6θ0+ A1

2(3a1−2A1
2a2)bα

λ
t−α2x

)

tan (α1t + α2x) ,

(49)

Θ = A1
2α

3λ

(
A1

2a2 +
(
4A1

2a2 − 3a1
)
tan2 (α1t + α2x)

)
.

(50)

Where α1 = 6a1A1
2bα−8A1

4a2bα
6λ , α2 = A1

√
6bαλ

(
3a1−4A1

2a2
)

6λ
√
a

.

Eqs. (49) and (50) are dark and bright periodic solutions to
Eqs. (1) and (2), respectively.

Family 3. If we choose r = {−(2 + i), 2 − i,−1, 1}, s =
{i,−i, i,−i}, then Eq. (12) becomes:

ψ (ξ) = cos (ξ) + 2 sin (ξ)

sin (ξ)
. (51)

Inserting Eqs. (39–40) with Eq. (51) into Eqs. (12) and (38),
we can study the following cases of solutions.
Case 1. When A1 = − A0

2 , B1 = 0, C1 = 8aκ2

b , D1 =
0, C2 = − 2aκ2

b , C0 = 4aκ2
(
cκ2−2λ

)
bλ , a2 = 192acκ4

A0
4bα

, ω =
aκ2

(
4cκ2+λ

)
λ

, a1 = 8aκ2
(
8cκ2+λ

)
A0

2bα
, D2 = 0 then

Λ = ei(θ0−κx+ωt)

(
A0 − 5A0 sin (κ (x + 2aκt))

2 (cos (κ (x + 2aκt)) + 2 sin (κ (x + 2aκt)))

)
,

(52)

Θ =
A0

2α
(
A0

2a2 − 4a1
) (

9 cos (2κ (x + 2aκt))−
12 sin (2κ (x + 2aκt))

)

96λ(cos (2κ (x + 2aκt)) + 2 sin (2κ (x + 2aκt)))2

+ 25A0
2a2 − 60a1

96λ(cos (2κ (x + 2aκt)) + 2 sin (2κ (x + 2aκt)))2
.

(53)

These are period singular soliton solutions to Eqs. (1) and
(2).
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Case 2. When A1 = 0, B1 = − 5A0
2 , C1 = 0, D1 = 40aκ2

b ,

C2 = 0, D2 = − 50aκ2

b , c = A0
4a2bα

192aκ4
, ω = aκ2 + A0

4a2bα
48λ ,

a1 = A0
2a2
3 + 8aκ2λ

A0
2bα

, C0 = A0
4a2α
48λ − 8aκ2

b , then

Λ = e
i

(
θ0−κx+

(
aκ2+ A0

4a2bα
48λ

)
t

)

(
A0 − 5A0 sin (κ (x + 2aκt))

2 (cos (κ (x + 2aκt)) + 2 sin (κ (x + 2aκt)))

)
,

(54)

Θ = 5
(
A0

4a2bα − 96aκ2λ
)

96bλ(cos (2κ (x + 2atκ)) + 2 sin (2κ (x + 2atκ)))2
+

(
A0

4a2bα + 96aκ2λ
) (

4 sin (2κ (x + 2atκ))

−3 cos (2κ (x + 2atκ))

)

96bλ(cos (2κ (x + 2atκ)) + 2 sin (2κ (x + 2atκ)))2
.

(55)

These are singular soliton solutions to the system of nematic
liquid crystals.

3.3 Power law nonlinearity

The nonlinearity of the power rule arises if

F (s) = sn . (56)

By using Eqs. (56 and 2) can be rewritten as

cΘxx + λΘ + α
(
|Λ|2

)n = 0. (57)

So, Eq. (13) reduces to

cκ2V ′′ + λV + αU 2n = 0. (58)

Assume that

U = H
1
n , (59)

then Eqs. (9) and (58) can be rewritten as

aκ2
(
nHH ′′ + (1 − n)

(
H ′)2) − n2

(
aκ2 + ω

)
H2 +

n2bR2V = 0, (60)

cκ2V ′′ + λV + αH2 = 0. (61)

Balancing HH ′′ with R2V in Eq. (60) and V ′′ with H2 in
Eq. (61), we get n = 2 and m = 2. Applying these values on
Eqs. (8–9), we get

U (ξ) = a0 + a1ψ (ξ) + b1ψ(ξ)−1 + a2ψ(ξ)2 + b2ψ(ξ)−2,

(62)

V (ξ) = c0 + c1ψ (ξ) + d1ψ(ξ)−1 + c2ψ(ξ)2 + d2ψ(ξ)−2.

(63)

Inserting Eqs. (62) and (63) into Eqs. (60) and (61), we can
study the following families of solutions:

Family 1. If we set r = {−1,−2, 1, 1} , s = {1, 0, 1, 0} ,

then Eq. (12) becomes:

ψ (ξ) = −eξ − 2

eξ + 1
. (64)

Inserting Eqs. (62–63) with Eq. (64) into Eqs. (60) and (61),
we can successfully reveal the following cases of solutions.

Case 1. When D2 = 0, B1 = 0, C1 = A1
2α

18λ , D1 = 0,

A2 = A1
3 , B2 = 0, C2 = A1

2α
54λ , A0 = 2A1

3 , C0 = A1
2α

27λ ,

κ = i
√

λ
c , ω = A1

2bα
(
n2−1

)
108λ(2+n)

, a = A1
2bcn2α

108λ2(2+n)
then

Λ = 3− 1
n e

iθ0+ iA1
2b(n2−1)α

108(2+n)λ
t+

√
λ√
c
x

(
−A1e

A1
2bn2α

54(2+n)λ
t+ i

√
λ√
c
x
(
e

A1
2bn2α

54(2+n)λ
t + e

i
√

λ√
c
x
)−2

) 1
n

,(65)

Θ = −αA1
2

54λ
e

A1
2bn2α

54(2+n)λ
t+ i

√
λ√
c
x
(
e

A1
2bn2α

54(2+n)λ
t + e

i
√

λ√
c
x
)−2

. (66)

These are complex solutions to the studied system.

Case 2. When A1 = 0, A2 = 0, C1 = 0, D1 = − 12a(2+n)κ2

bn2
,

D2 = − 8a(2+n)κ2

bn2
, B1 = 12κi

√
3aλ(2+n)

n
√
bα

, B2 = 8κi
√
3aλ(2+n)

n
√

αb
,

A0 = 4κi
√
3aλ(2+n)

n
√
bα

, C0 = − 4aκ2(2+n)

bn2
, ω = aκ2

(
1
n2

− 1
)
,

c = − λ
κ2
, C2 = 0 then

Λ = 3
0.5
n 4

1
n e

i
(
θ0−κx+aκ2

(
1
n2

−1
)
t
)

(
− iκ

√
aλ (2 + n)eκ(x+2aκt)

n
√
bα

(
2 + eκ(x+2aκt)

)2
) 1

n

, (67)

Θ = 4a (2 + n) κ2eκ(x+2aκt)

b
(
2 + eκ(x+2aκt)

)2
n2

. (68)

Eqs. (67) and (68) are bright soliton solutions to Eqs. (1) and
(2).

Family 2. If we choose r = {−2 − i,−2 + i, 1, 1}, s =
{i,−i, i,−i}, then Eq. (12) becomes:

ψ (ξ) = sin (ξ) − 2 cos (ξ)

cos (ξ)
. (69)

Inserting Eqs. (62–63) with Eq. (69) into Eqs. 60) and (61),
we can obtain the following cases of solutions.
Case 1. When A2 = 0, A1 = 0, C1 = 0, D1 =
− 40aκ2(2+n)

bn2
, D2 = − 50aκ2(2+n)

bn2
, B1 = 20κ

√
3aλ(2+n)

n
√
bα

,
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(a) Effect of the parameter

(b) Effect of the parameter c on bright optical soliton solution.

Fig. 4 Effect of the parameter a is drawn under Eqs. (22) and (23) when
a = 1, b = 0.1, λ = 0.2, α = 1, θ0 = 1, t = 2

B2 = 25κ
√
3aλ(2+n)

n
√
bα

, A0 = 5κ
√
3aλ(2+n)

n
√
bα

, C0 = − 10aκ2(2+n)

bn2
,

ω = − aκ2
(
4+n2

)
n2

, c = λ
4κ2

, C2 = 0, then

Λ = 3
0.5
n 5

1
n e

i

(
θ0−κ

(
x+ a(4+n2)κ

n2
t

))

(
κ
√
aλ (2 + n)

n
√
bα(sin (κ (x + 2aκt)) − 2 cos (κ (x + 2aκt)))2

) 1
n

,

(70)

Θ = − 10aκ2 (2 + n)

bn2(sin (κ (x + 2aκt)) − 2 cos (κ (x + 2aκt)))2
.

(71)

Eqs. (70) and (71) are dark and bright periodic singular solu-
tions to the suggested system of equations as shown in Fig. 4.
Case 2. When B2 = 0, A1 = 4A2, C1 = − 2a(2+n)λ

bcn2
, D1 =

0, D2 = 0, B1 = 0, C2 = − a(2+n)λ

2bcn2
, A0 = 5A2, C0 =

− 5a(2+n)λ

2bcn2
, ω = − a

(
4+n2

)
λ

4cn2
, κ =

√
λ

2
√
c
, α = 3a(2+n)λ2

4A2
2bcn2

then

Λ = e
1
4 i

(
4θ0− 2

√
λ√
c
x− a(4+n2)λ

cn2
t

)(
A2sec

2

(√
cλx + aλt

2c

)) 1
n

,(72)
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Fig. 5 Effect of the parameter a is drawn under Eqs. (22) and (23) when
a = 1, b = 0.1, c = 2, α = 1, θ0 = 1, t = 2
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Fig. 6 Effect of the parameter α is drawn under Eq. (22) when a =
1, c = 2, λ = 0.2, λ = 0.2, b = 0.1, θ0 = 1, t = 2

Θ = −a (2 + n) λ

2bcn2
sec2

(√
cλx + aλt

2c

)
. (73)

These are dark and bright periodic singular solutions to the
nematic liquid crystals, respectively.
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Fig. 7 3D surfaces of Eqs. (24) and (25) are drawn when a = 1, c =
0.5, λ = 0.2, α = 1, b = 0.1, θ0 = 1 and t = 1 for 2D

Family3. Ifwe choose r = {−1, 0, 1, 1}, s = {0, 0, 1, 0} ,

then Eq. (12) becomes:

ψ (ξ) = − 1

1 + eξ
. (74)

Inserting Eqs. (62–63) with Eq. (74) into Eqs. 60) and (61),
we can investigate the following cases of solutions.

Case 1. When D2 = 0, B2 = 0, C1 = − 2a(2+n)κ2

bn2
, D1 = 0,

B1 = 0, A2 = A1, C2 = − 2a(2+n)κ2

bn2
, A0 = 0, C0 = 0,

ω = a
(
−1 + 1

n2

)
κ2, α = − 12a(2+n)κ2λ

A1
2bn2

, c = − λ
κ2
, then we

get

Λ = e
i
(
θ0−κx+a

(
1
n2

−1
)
κ2t

)(
− A1eκ(x+2atκ)

(
1 + eκ(x+2aκt)

)2
) 1

n

, (75)

Θ = 2a (2 + n) κ2eκ(x+2aκt)

bn2
(
1 + eκ(x+2aκt)

)2 . (76)

Eqs. (75) and (76) describe the bright optical soliton solutions
to the studied system of equations.

Fig. 8 3D figures of Eqs. (42) and (43) drawn when a = 1, c = 0.1,
λ = 0.2, α = 1, b = 0.1, θ0 = 1, a1 = −0.1, a2 = 0.1, κ = 0.2,
ω = 1 and t = 2 for 2D

Case 2. When B1 = 0, B2 = 0, A1 = 2
√
3
√

(2+n)λω√
b(n2−1)α

, C1 =
2(2+n)ω

b(−1+n2)
, D1 = 0, D2 = 0, A2 = 2

√
3
√

(2+n)λω√
b(n2−1)α

, C2 =
2(2+n)ω

b(−1+n2)
, A0 = 0, C0 = 0, a = − n2ω

(n2−1)κ2
, c = − λ

κ2
then

Λ = 2
1
n 3

1
2n ei(θ0−κx+ωt)

⎛
⎜⎜⎜⎝

-
√

(2 + n) λωe
κx+ 2n2ω

n2−1
t

√
b

(
n2 − 1

)
α

(
eκx + e

2n2ω

n2−1
t
)2

⎞
⎟⎟⎟⎠

1
n

,

(77)

Θ = − 2 (2 + n) ωe
κx+ 2n2ω

n2−1
t

b
(
n2 − 1

) (
exκ + e

2n2ω

n2−1
t
)2 . (78)

The above equations are bright and dark optical solutions to
the nematic liquid crystals, respectively.
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Fig. 9 3D figures of Eqs. (70–71) when a = 1, λ = 0.2, α = 1,
b = 0.1, θ0 = 1, n = 3, κ = 1 and t = 2 for 2D

4 Graphical analysis and discussion

In this section, the graphical representation of some new
traveling wave solutions has been illustrated. A family of
W-shaped, bright, dark, periodic and singular solitons are
displayed for a set of values for various parameters. Matlab
software is used to carry out simulations and the 3D plot
visualizes the behavior of nematic liquid crystals with three
nonlinearity terms constructed from Eqs. (1) and (2).
Figure 1 illustrates |Λ(x, t)|2 andΘ(x, t) established in Eqs.
(22) and (23) fora = 1, c = 2,λ = 0.2,α = 1,b = 0.1, θ0 =
1, respectively; Fig. 2 represents the effect of free parameter
a and shows that increase the value of a increases the peak of
the solutions on |Λ(x, t)|2 andΘ(x, t) found in Eqs. (22) and
(23), whereas Fig. 3 determines the effect of a parameter b on
|Λ(x, t)|2, Θ(x, t) and has the opposite effect of parameter
a, while Fig. 4 shows the effect of a parameter c found in
Eqs. (22) and (23) and shows that the parameter is look like
a decreases coefficient on |Λ(x, t)|2 and Θ(x, t); likewise
Fig. 5 demonstrates the effect of the parameter λ and look
like a increases coefficient; Fig. 6 gives the effect of α and

show that increasing its value will decreases the peak of the
optical soliton solutions.
Figure 7 demonstrates |Λ(x, t)|2 and Θ(x, t) found in Eqs.
(24) and (25) for a = 1, c = 0.5, λ = 0.2, α = 1, b =
0.1, θ0 = 1, whereas Fig. 8 illustrates |Λ(x, t)|2 and Θ(x, t)
established in Eqs. (42) and (43) for a = 1, c = 0.1, λ = 0.2,
α = 1, b = 0.1, θ0 = 1, a1 = −0.1, a2 = 0.1, κ = 0.2,
ω = 1, andFig. 9 determines |Λ(x, t)|2 andΘ(x, t)observed
in Eqs. (70) and (71) for a = 1, λ = 0.2, α = 1, b = 0.1,
θ0 = 1, n = 3, κ = 1.

5 Conclusion

In the present paper, the GERFM utilized to derive some
novel optical soliton solutions to the nematic liquid crystals
includes Kerr law, parabolic, and power law nonlinearities.
Three families of solutions for each nonlinearity are shown.
W-shaped surfaces, dark soliton, bright soliton, singular soli-
ton, period singular soliton, periodic waves, and complex
solutions are successfully obtained via this method. The
outcomes illustrate that the proposed technique is highly
accurate and gives different solutions compare with those
obtained via other methods, as well as we can construct more
different types of solutions. All gained solutions are inserted
into the system that represents the dynamics of nematicons in
liquid crystals and they satisfy it. Graphically, the effects of
free parameters on the peak of soliton solution are also pre-
sented. Moreover, we use the constraint conditions to verify
their existence. The solutions gained in this research paper
may help us to better understand the molecules of soliton in
liquid crystals.
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