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Abstract
Pareto-based multi-objective evolutionary algorithms use non-dominated sorting as an intermediate step. These algorithms
are easy to parallelize as various steps of these algorithms are independent of each other. Researchers have focused on the
parallelization of non-dominated sorting in order to reduce the execution time of these algorithms. In this paper, we focus
on one of the initial approaches for non-dominated sorting also known as naive approach, proposed by Srinivas et al. and
explore the scope of parallelism in this approach. Parallelism is explored in the considered approach in three different ways
considering Parallel Random Access Machine, Concurrent Read Exclusive Write model. The time and space complexities of
three different parallel versions are also analyzed. Analysis of parallel algorithms is usually carried out under the assumption
that an unbounded number of processors are available. Thus, the same assumption has been considered in our analysis too
and we have obtained the maximum number of processors required for three parallel versions.

Keywords Multi-objective optimization · Non-dominated sorting · Parallelism · PRAM CREW model

1 Introduction

Pareto-based multi- and many-objective evolutionary algo-
rithms use non-dominated sorting as an intermediate step
(Deb et al. 2002; Deb and Jain 2014). Non-dominated
sorting is also used in other domains such as economics,
databases, game theory and computational geometry. In non-
dominated sorting, the solutions are sorted based on the
dominance relationship between the solutions. Let P =
{sol1, sol2, . . . , solN } be a set of N solutions where each
solution is associated with M objectives. The set of solu-
tions is known as population. Actually, these solutions are
in an M-dimensional objective space. A particular solution
soli (1 ≤ i ≤ N ) in the population is represented as soli =
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{ f1(soli ), f2(soli ), . . . , fM (soli )}where fm(soli ), 1 ≤ m ≤
M is the value of soli for themth objective. We consider here
the optimization problems where the focus is to minimize all
the objectives. For sorting the solutions, the dominance rela-
tion between them is required, which is defined as follows.

Definition 1 (Dominance) A solution soli is said to dominate
another solution sol j which is represented as soli ≺ sol j iff
it satisfies the two following conditions:

1. fm(soli ) ≤ fm(sol j ),∀m ∈ {1, 2, . . . ,M}
2. fm(soli ) < fm(sol j ), ∃m ∈ {1, 2, . . . ,M}.

The notation soli ⊀ sol j is used to represent that solution
soli does not dominate solution sol j . We call two solutions
soli and sol j as non-dominated when neither solution dom-
inates another, i.e., neither soli ⊀ sol j nor sol j ⊀ soli . In
non-dominated sorting, the set of solutions are divided into
non-dominated fronts as formally defined next.

Definition 2 (Non-dominated sorting) Given a set of N solu-
tions {sol1, sol2, . . . , solN }. In non-dominated sorting, these
solutions are divided in K (1 ≤ K ≤ N ) non-dominated
fronts {F1, F2, . . . , FK } in decreasing order of their domi-
nance such that
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1. ∪K
i=1Fi = P

2. ∀soli , sol j ∈ Fk : soli ⊀ sol j and sol j ⊀ soli (1 ≤ k ≤
K )

3. ∀sol ∈ Fk , ∃sol ′ ∈ Fk−1: sol ′ ≺ sol (2 ≤ k ≤ K )

In these sorted fronts, F1 has the highest dominance, F2 has
the second highest dominance and so on. The last front FK

has the lowest dominance.

Parallel programming has attracted a lot of attention
in recent years as a means to reduce the execution time
of algorithms. Evolutionary algorithms are normally easy
to parallelize due to their low data dependency, and this
has motivated a considerable amount of research in this
area (Luna and Alba 2015; Van Veldhuizen et al. 2003; Kim
and Smith 2004;Maulik and Sarkar 2010; Shinde et al. 2011;
Wong and Cui 2013). Consequently, the parallelization of
non-dominated sorting algorithmshas also attracted the inter-
est of several researchers (see for example Smutnicki et al.
2014; Gupta and Tan 2015; Ortega et al. 2017; Moreno et al.
2018; Mishra and Coello 2018).

The main focus of the current research in this area has
been on the parallelization of the naive approach for non-
dominated sorting proposed by Srinivas and Deb (1994).
However, there are several other non-dominated sorting
approaches which have also the parallelism property such as
the fast non-dominated sorting Deb et al. (2002), ENS Zhang
et al. (2015), BOS Roy et al. (2016), DCNS Mishra et al.
(2016), T-ENS Zhang et al. (2018) and ENS-NDT Gustavs-
son and Syberfeldt (2018), among others.

It is worth noticing that approaches such as ENS Zhang
et al. (2015), BOS Roy et al. (2016), DCNS Mishra et al.
(2016), ENS-NDT Gustavsson and Syberfeldt (2018) and T-
ENS Zhang et al. (2018), require to sort 2N solutions (in
case of NSGA-II Deb et al. (2002), NSGA-III Deb and Jain
(2014), and others) unlike the naive approach (Srinivas and
Deb 1994), fast non-dominated sort (Deb et al. 2002) and
deductive sort (McClymont and Keedwell 2012) where the
process of sorting can be stopped when we have enough
fronts which contain N solutions. Let the Nth solution be
inserted into the kth front. As soon as any other solution is
inserted into the k + 1th front, the process of non-dominated
sorting stops in case of the naive approach (Srinivas and
Deb 1994), fast non-dominated sort (Deb et al. 2002) and
deductive sort (McClymont and Keedwell 2012). How-
ever, ENS Zhang et al. (2015), BOS Roy et al. (2016),
DCNS Mishra et al. (2016), ENS-NDT Gustavsson and
Syberfeldt (2018) andT-ENSZhang et al. (2018) continue the
process until all 2N solutions are sorted. So, we have focused
on the scope of parallelism in the naive approach. The worst
case time complexity of the naive approach isO(MN 3), and
the best case time complexity isO(MN 2) (Srinivas and Deb
1994). The best case of the naive approach occurs when all

the solutions are non-dominated with respect to each other.
Generally, when all the solutions are in single front (non-
dominated with respect to each other), several approaches
have their worst case (e.g., deductive sort McClymont and
Keedwell 2012, ENS Zhang et al. (2015), DCNS Mishra
et al. (2016), T-ENS Zhang et al. (2018) and ENS-NDTGus-
tavsson and Syberfeldt (2018)), having a O(MN 2) time
complexity. The naive approach performs close to its best
case when the number of fronts are less in number.

The organization of the rest of the paper is as follows.
Some of the approaches for non-dominated sorting are
described in Sect. 2. The naive approach is illustrated in
Sect. 3 along with its time and space complexities. Paral-
lelism in the naive approach is explored in Sect. 4, and three
parallel versions are proposed. The time and space com-
plexities of the parallel versions are mathematically derived.
Finally, Sect. 5 concludes the paper with some possible paths
for future research.

2 Previous related work

We discuss here some of the approaches for non-dominated
sorting that have been proposed in the specialized litera-
ture. Deb et al. (2002) proposed fast non-dominated sort
which requires O(MN 2) time and has a space complex-
ity of O(N 2). Jensen (2003) proposed a recursive approach
based on a divide-and-conquer strategywith time complexity
O(N logM−1 N ) and space complexity O(MN ). When two
solutions have the same value for a particular objective, then
this approach is not able to correctly sort the solutions. For
two objectives, the time complexity of Jensen’s approach is
O(N log N ). Fang et al. (2008) proposed another approach
based on a divide-and-conquer strategy. The worst case time
complexity of this approach is O(MN 2). However, the best
case time complexity is O(MN log N ) and its space com-
plexity isO(MN ). This approach has improved the best case
time complexity. However, in case of duplicate solutions, this
approach considers one solution as dominated by another.
Tang et al. (2008) proposed an approach based on arena’s
principle with a worst case time complexity O(MN 2) and a
best case time complexity O(MN

√
N ).

McClymont andKeedwell (2012) proposed twoapproach-
es: Climbing sort and Deductive sort. The worst case time
complexity of both the approaches is O(MN 2). However,
deductive sort performs half the comparisons of climbing
sort in the worst case. The best case time complexity of
deductive sort is O(MN

√
N ). This approach reduces the

number of comparisons by inferring the dominance rela-
tionship between the solutions. The limitation of Jensen’s
approach is removed by adopting the proposal of Fortin et al.
(2013). However, the limitation is removed at the cost of an
increasedworst case time complexitywhich isO(MN 2). The
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average case time complexity of Fortin’s approach is same
as Jensen’s approach which is O(N logM−1 N ).

An efficient approach for non-dominated sorting known
as ENS was proposed by Zhang et al. (2015). ENS works
in two phases. In the first phase, the solutions are sorted
based on a particular objective (generally the first objective).
The solutions are ranked in the second phase. There are two
variants of ENS based on how a solution is added to the
existing set of fronts. The first one is ENS-SS which is based
on sequential search, and the second one is ENS-BS which
is based on binary search. ENS-SS and ENS-BS both have
worst case time complexityO(MN 2). However, the best case
time complexity of ENS-SS isO(MN

√
N ) and the best case

time complexity of ENS-BS isO(MN log N ). Buzdalov and
Shalyto (2014) proposed an approach with time complex-
ityO(N logM−1 N ). A Hierarchical Non-dominated Sorting
(HNDS) scheme was proposed by Bao et al. (2017). Like
ENS, this is also a two-phased approach where the solutions
are sorted based on a particular objective in the first phase
and the solutions are ranked in the second phase. The worst
case time complexity ofHNDS isO(MN 2), and the best case
time complexity is O(MN

√
N ). Corner sort was proposed

by Wang and Yao (2014) with a worst case time complexity
O(MN 2).

There are several other recent proposals (Roy et al. 2016;
Zhang et al. 2018; Gustavsson and Syberfeldt 2018; Mishra
et al. 2018b, a; Roy et al. 2018) where, for a solution to be
inserted into a front, there is no need to compare it with all
the other solutions. Best Order Sort (BOS) (Roy et al. 2016)
is based on this same concept. In BOS, the solutions are
initially sorted based on each of the objectives, considered
separately. Then, the solutions are assigned to their respective
front. The worst case time complexity of BOS is O(MN 2),
whereas its best case time complexity isO(MN log N ). BOS
has two advantages: (i) the number of dominance compar-
isons is reduced to a great extent and (ii) all the objectives
values of two solutions are not consideredwhile obtaining the
dominance relationship between them.The second advantage
of BOS is because of the comparison set concept which con-
tains all the objective values of the solution. In spite of these
two advantages, BOS is not able to handle duplicate solu-
tions properly. BOS has been recently updated1 to remove its
limitation. However, BOS loses its second advantage in the
process of removing its limitation. Mishra et al. (2018b) also
worked on the same limitation of BOS and handled duplicate
solutions efficiently without retaining the second advantage
of BOS. Recently, the generalized version of BOS called
“Generalized Best Order Sort” (GBOS) has been proposed
which handles duplicate solutions efficiently and retains the
comparison set concept ofBOS (Mishra et al. 2018a). Thus, it
makes BOSmore effective in terms of the number of compar-

1 https://github.com/Proteek/Best-Order-Sort/.

isons. Bounded Best Order Sort (BBOS) (Roy et al. 2018)
is an improved version of BOS. BBOS works better for a
large number of fronts. A heuristic is proposed to reduce
the computational effort of solution comparisons. The worst
case time complexity of BBOS is O(MN 2), and the best
case time complexity is O(MN log N ). BBOS can achieve
O(MN log N+N 2) time complexity in case of a single front.
The same time complexity has also been achieved by Roy
et al. (2016); Mishra et al. (2018a, b).

A tree-based approach known as T-ENS was proposed
by Zhang et al. (2018). In this approach, a non-dominated
front is represented in the form of a tree to reduce the
number of comparisons. The worst case time complexity
of T-ENS is O(MN 2), and the best case time complexity
is O(MN log N/logM). By extending ENS-BS (Zhang et al.
2015), a tree-based approach known as ENS-NDT (Efficient
Non-dominatedSort based onNon-dominatedTree)was pro-
posed by Gustavsson and Syberfeldt (2018). This approach
is able to handle duplicate solutions efficiently. The worst
case time complexity of ENS-NDT isO(MN 2), and its best
case time complexity is O(MN log N ) when M > log N ;
otherwise, it is O(N log2 N ).

There has been also some research on the parallelization of
non-dominated sorting. A very fast non-dominated sort was
proposed by Smutnicki et al. (2014). This approach focuses
on exploring the parallelization of fast non-dominated
sort (Deb et al. 2002). Parallelism is considered in two dif-
ferent manners. The time complexity of the first parallel
version isO(M+N log N ), and the second parallel version is
O(M+N ).Gupta andTan (2015) proposed aGPU-basedpar-
allel algorithm for non-dominated sortingwhich is also based
on fast non-dominated sort (Deb et al. 2002). Ortega et al.
(2017) also explores the parallelism in fast non-dominated
sort (Deb et al. 2002). Three parallel versions were devel-
oped in this regard (i.e., first based on GPUs, a second one
based on multicores and a third one based on both GPUs
and multicores). Recently, the parallelism in BOS (Roy et al.
2016) has been explored by Moreno et al. (2018). They have
proposed two different parallel versions based on multicore
processors and the GPU. Recently, the parallel version of
ENS Zhang et al. (2015) has been discussed in Mishra and
Coello (2018).

There are also other approaches (Drozdik et al. 2015;
Mishra et al. 2016; Li et al. 2017;Mishra et al. 2017;Yakupov
and Buzdalov 2017) where in spite of performing the com-
plete non-dominated sorting, an offspring solution is inserted
into its proper place in the existing sorted set of fronts.
This kind of scenario is generally used in steady-state multi-
objective evolutionary algorithms (Mishra et al. 2017).
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3 Naive approach: serial version

In this section, we discuss the naive approach (Srinivas and
Deb 1994) in its serial version. In the naive approach, each
solution is compared with all the other solutions. After com-
paring the solutions with each other, the solutions which are
not dominated by any other solution are assigned to the first
front. Now, the solutions of the first front are not considered.
The rest of the solutions are compared with each other. Now,
the solutions which are not dominated by any other solution
are assigned to the second front. This process is repeated
until all the solutions are assigned to their respective front.
The naive approach is described in Algorithm 1.

Algorithm 1 Naive Approach
Input: P: Population of size N where each solution is associated with

M objectives
Output: Ranked solutions
1: rank ← 1
2: repeat
3: isDominated[1, 2, . . . , |P|] ← False// Initialize an array of size

|P| to store whether a solution is dominated by any other solution
in P or not

4: for each solution sol ∈ P do
5: for each solution sol ′ ∈ P do
6: if sol is dominated by sol ′ then
7: isDominated[sol] ← True
8: BREAK // sol is dominated by sol ′ so there is no need to

compare sol with others
9: end if
10: end for
11: end for

/* Check for each solution in P whether it is not dominated by
any other solution */

12: for each solution sol ∈ P : isDominated[sol] = False do
13: solrank ← rank // Assign rank to sol
14: P ← P \ {sol} // Remove sol from P as it has been ranked
15: end for
16: rank ← rank + 1 // Increase the value of rank
17: until P becomes empty

The worst case of the naive approach occurs when all
the solutions are in the different fronts. In this case, in each
iteration of the algorithm, a single solution is ranked. Thus,
the time complexity in the worst case is given by Eq. (1).

T1worst =
N∑

i=1

⎡

⎣

⎧
⎨

⎩

N−i+1∑

j=1

M(N − i)

⎫
⎬

⎭ + (N − i + 1)

⎤

⎦

= 1

3
MN

(
N 2 − 1

)
+ 1

2
N (N + 1) = O

(
MN 3

)

(1)

The best case of the naive approach occurs when all the solu-
tions are in the same front. In this case, each solution is
comparedwith other solutions only once and they are ranked.

Thus, the best case time complexity is given by Eq. (2).

T1best =
1∑

i=1

⎡

⎣

⎧
⎨

⎩

N−i+1∑

j=1

M(N − i)

⎫
⎬

⎭ + (N − i + 1)

⎤

⎦

= MN (N − 1) + N = O
(
MN 2

)
(2)

To sort the solutions into different fronts, an array
‘isDominated[ ]’ is needed to store whether a solution is
dominated by any other solution in the population or not.
The maximum size of the population is N . Thus, the space
complexity of the naive approach is O(N ).

4 Scope of parallelism

In this section,wediscuss the scopeof parallelism in the naive
approach. Parallelism is analyzed in the naive approach in
three different manners. Before discussing the parallelism in
detail, we first discuss the computing environment for which
parallelism will be explored.

4.1 Computing environment

In our study, we are considering the PRAM CREW (Paral-
lel random-access machine with Concurrent Read, Exclusive
Write) model as considered in Smutnicki et al. (2014). The
PRAM CREW model is earliest and best-known model of
parallel computation (JáJá 1992; Kumar et al. 1994). In this
model, simultaneous read at the same memory location is
allowed. However, simultaneous write is not allowed. As
simultaneous write operations are not allowed, so there will
be no concurrent write operations in our parallel version.
Analysis of parallel algorithms is usually carried out under
the assumption that an unbounded number of processors is
available (Niculescu 2007; Mikloško and Kotov 1984). So
we have also considered this assumption. In our analysis, we
have also obtained themaximumnumber of processorswhich
can be required for the parallel version of the algorithm.

4.2 Parallelism in dominance comparisons

In general, the dominance relation between two solutions can
be obtained in O(M) time as M objectives need to be com-
pared. The dominance relation between each pair of solutions
in the population can be obtained simultaneously. The dom-
inance relationship between each pair of solutions can be
stored in a matrix of size N × N . We call this matrix dom-
inance matrix. Thus, the dominance matrix can be obtained
in O(M) time if the dominance relation between each pair
of solutions can be obtained simultaneously. Smutnicki et al.
(2014) has obtained the dominance matrix in the same man-
ner. The time complexity of obtaining the dominance matrix
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Fig. 1 The process to obtain the
dominance relationship between
the two solutions soli and sol j
in a parallel manner

can be further improved if the time complexity of obtaining
the dominance relation can be improved. Now,we discuss the
improved way to compute the dominance relation between
two solutions.

Let us have two solutions soli and sol j . For these two
solutions, we create two Boolean arrays, each of size M .
Let the first array be Bi and the second array be Bj . Bi is
used to store whether soli is better than sol j for each of the
M objectives. Similarly, Bj is used to store whether sol j is
better than soli for each of the M objectives. If the objective
value of soli is better than (less than as we focus to minimize
all the objectives) the objective value of sol j for the same
objective, then the corresponding cell of Bi is set to ‘True’;
otherwise, it is set to ‘False’. Similarly, Bj is also filled.

These two arrays Bi and Bj are processed simultane-
ously. As the size of both the arrays is M , so these arrays
are processed at logM levels. At each level, ‘OR’ opera-
tions between two consecutive array cells are performed. The
number of ‘OR’ operations at the lth level is M/2l . Thus, the
number of ‘OR’ operations at the last level is one and we
get either ‘True’ or ‘False’ after the ‘OR’ operation at the
last level. Two values are obtained after processing both the
arrays Bi and Bj . Let the value obtained from Bi beVi and the
value obtained from Bj be Vj . The dominance relationship
between two solutions soli and sol j can be obtained from Vi
and Vj based on the following four conditions:

1. Vi = Vj = False: Solutions soli and sol j are the same
in terms of the objective values.

2. Vi = Vj = True: Solutions soli and sol j are non-
dominated.

3. Vi = True and Vj = False: Solution soli dominates
sol j .

4. Vi = False and Vj = True: Solution soli is dominated
by sol j .

The arrays Bi and Bj can be filled inO(1) time, in parallel.
Different ‘OR’ operations at the same level can be performed
simultaneously in both Boolean arrays, so the time com-
plexity of processing these arrays in a parallel manner is
O(logM). Thus, the dominance relationship between a pair
of solutions can be obtained in O(logM) time. Hence, the
dominance matrix can also be obtained in O(logM) time
in parallel, as the dominance relation between each pair of
solutions can be obtained simultaneously. Once the domi-
nance matrix is obtained, the time complexity of obtaining
the dominance relationship between two solutions isO(1) as
only a lookup in the dominance matrix is required.

The dominance relation between two solutions is obtained
using two Boolean arrays of size M which require O(M)

space. There are a total of N 2 pairs of solutions, so the over-
all space required to obtain the dominance relation between
each pair of solutions is O(MN 2). Also, the space required
to store the dominance matrix is O(N 2). Thus, the overall
space complexity to obtain the dominancematrix in a parallel
manner is O(MN 2).

Example 1 Let us consider two solutions soli= {4, 2, 6, 5}
and sol j= {4, 2, 6, 1} which are in four-dimensional objec-
tive space. For obtaining the dominance relationship between
these two solutions, we fill the Boolean arrays Bi and Bj .
After obtaining two Boolean arrays, these arrays are pro-
cessed simultaneously using ‘OR’ operations. The final value
obtained after processing Bi is ‘False’ and after processing
Bj is ‘True’. So, soli is dominated by sol j . The complete
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process of filling both Boolean arrays and processing them
is shown in Fig. 1.

Boolean array Bi can be filled using maximum of M pro-
cessors in parallel as its size is M . In the same manner, array
Bj can also be filled using maximum of M processors. Both
these arrays can be filled simultaneously. Thus, themaximum
number of processors required to fill both the Boolean arrays
is 2M . To obtain the dominance relationship between solu-
tions soli and sol j , Boolean arrays Bi and Bj are processed at
logM levels. The maximum number of processors required
to process any of the Boolean arrays is M/2. Both the Boolean
arrays can be processed simultaneously, thus, the maximum
number of processors required to process both the Boolean
arrays is M/2 + M/2 = M . Hence, using maximum 2M pro-
cessors, the dominance relationship between two solutions
can be obtained.As the dominance relationship between each
pair of the solutions can be obtained simultaneously and there
are N 2 pairs of solutions, so the maximum number of pro-
cessors required to obtain the dominance matrix in a parallel
manner is 2MN 2.

4.3 Parallel version-1

The parallel version-1 of the naive approach is described in
Algorithm 2. Here, each solution sol can be simultaneously
compared with other solutions (the outer for loop in lines
4 − 11 can be implemented in a parallel manner). However,
a particular solution sol is compared to other solution sol ′ in
a serial manner (the inner for loop in lines 5 − 10 is imple-
mented in a serial manner). This scenario is shown in Fig. 2a.
In this figure, all the N solutions in the top array are simulta-
neously compared with other solutions in the bottom array.
However, each of the solutions in the top array is compared
with all the solutions in the bottom array sequentially.

In this parallel version, after comparing each solutionwith
all the other solutions, we check each solution sequentially
to see whether it has been dominated by any other solution
or not (lines 12 − 15). The solution which is not dominated
by any other solution is assigned a rank and removed from
the population so that it do not take part is rank assignment
process again. We repeat this process until all the solutions
are ranked.
The time complexity in the worst case is given by Eq. (3).

T∞worst =
N∑

i=1

[M(N − i) + (N − i + 1)]

= 1

2
MN (N − 1) + 1

2
N (N + 1) = O(MN 2) (3)

The time complexity in the best case is given by Eq. (4).

Algorithm 2 Naive Approach: Parallel Version-1
Input: P: Population of size N where each solution is associated with

M objectives
Output: Ranked solutions
1: rank ← 1
2: repeat
3: isDominated[1, 2, . . . , |P|] ← False// Initialize an array of size

|P| to store whether a solution is dominated by any other solution
in P or not
/* PARALLEL SECTION STARTS */

4: for each solution sol ∈ P do // Each solution sol is
simultaneously compared with other solutions

5: for each solution sol ′ ∈ P do // sol is compared with all the
solutions in a serial manner

6: if sol is dominated by sol ′ then
7: isDominated[sol] ← True
8: BREAK

9: end if
10: end for
11: end for

/* PARALLEL SECTION ENDS */
/* Check for each solution in P whether it is not dominated by

any other solution */
12: for each solution sol ∈ P : isDominated[sol] = False do
13: solrank ← rank // Assign rank to sol
14: P ← P \ {sol} // Remove sol from P as it has been ranked
15: end for
16: rank ← rank + 1 // Increase the value of rank
17: until P becomes empty

T∞best =
1∑

i=1

[M(N − i) + (N − i + 1)]

= M(N − 1) + N = O(MN ) (4)

To sort the solutions into different fronts, an array
‘isDominated[ ]’ is needed to store whether a solution is
dominated by any other solution in the population or not.
The maximum size of the population is N . Thus, the space
complexity of this parallel version isO(N ). So, this parallel
version does not add any extra overhead in terms of the space
complexity as compared to the serial version.

In this parallel version, each solution sol can be simultane-
ously compared with other solutions. However, a particular
solution sol is compared with other solutions in a serial man-
ner. There are maximum N solutions; thus, the maximum
number of processors required by this approach is N .

In this parallel version, if the dominance relationship
between different solutions can be obtained initially as
described in Sect. 4.2 and stored in dominance matrix, then
the time complexity in the worst case is given by Eq. (5) and
the time complexity in the best case is given by Eq. (6).

T∞worst = logM +
N∑

i=1

[(N − i) + (N − i + 1)]

= logM + 1

2
N (N − 1) + 1

2
N (N + 1) = O(logM + N 2)

(5)
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(a) (b)

Fig. 2 Different types of parallelism in the naive approach. 1, 2, 3, . . . , N in a denotes the sequential comparisons whereas 1, 1, 1, . . . , 1 in b
denotes the parallel comparisons

T∞best = logM +
1∑

i=1

[(N − i) + (N − i + 1)]

= logM + (N − 1) + N = O(logM + N ) (6)

If the dominance relationship between different solutions
can be obtained initially and stored in amatrix as described in
Sect. 4.2, then the space required for obtaining the dominance
matrix isO(MN 2). Thus, the overall space complexity of this
parallel version, when the dominance relationship between
different solutions can be obtained beforehand, isO(MN 2).

The maximum number of processors required by this
approach is N . When the dominance relationship between
different solutions can be obtained initially and stored in a
matrix as described in Sect. 4.2, then the maximum number
of processors required by parallel version-1 is 2MN 2.

4.4 Parallel version-2

The parallel version-2 of the naive approach is described
in Algorithm 3. In this parallel version, each solution sol
can be simultaneously compared with other solutions (The
outer for loop in lines 4 − 15 is implemented in a parallel
manner). Also, a particular solution sol is compared with
other solutions sol ′ in a parallel manner (the inner for loop
in lines 6 − 10 is also implemented in a parallel manner).
This scenario is shown in Fig. 2b. In this figure, all the N
solutions in the top array are simultaneously compared with
other solutions in the bottomarray.Also, each of the solutions
in the top array is compared with all the solutions in the
bottom array, simultaneously.

After comparing sol with all the other solutions simulta-
neously, we check whether sol is dominated by any of the
solutions or not (line 11 − 14). For this purpose, the dom-
inance relation of sol with respect to all the other solutions
is stored in an array ‘isDom[ ]’. Let the size of ‘isDom[ ]’
be N which stores whether a particular solution sol is domi-
nated by other solutions sol ′ ∈ P. A True value in this array

Algorithm 3 Naive Approach: Parallel Version-2
Input: P: Population of size N where each solution is associated with

M objectives
Output: Ranked solutions
1: rank ← 1
2: repeat
3: isDominated[1, 2, . . . , |P|] ← False// Initialize an array of size

|P| to store whether a solution is dominated by any other solution
in P or not
/* PARALLEL SECTION STARTS */

4: for each solution sol ∈ P do // Each solution sol is
simultaneously compared with other solutions

5: isDom[1, 2, . . . , |P|] ← False // Initialize an array of size |P|
to store whether sol is dominated by sol ′ ∈ P or not
/* PARALLEL SECTION STARTS */

6: for each solution sol ′ ∈ P do // sol is compared with all the
solutions simultaneously

7: if sol is dominated by sol ′ then
8: isDom[sol ′] ← True
9: end if
10: end for

/* PARALLEL SECTION ENDS */
/* PARALLEL SECTION STARTS */

11: Identify whether sol is dominated by any other solution or not
considering isDom[ ] // It can be done in O(log N ) time in
parallel manner if the size of isDom[ ] is N

12: if sol is dominated by sol ′ then
13: isDominated[sol] ← True
14: end if

/* PARALLEL SECTION ENDS */
15: end for

/* PARALLEL SECTION ENDS */
/* Check for each solution in P whether it is not dominated by

any other solution */
16: for each solution sol ∈ P : isDominated[sol] = False do
17: solrank ← rank // Assign rank to sol
18: P ← P \ {sol} // Remove sol from P as it has been ranked
19: end for
20: rank ← rank + 1 // Increase the value of rank
21: until P becomes empty

indicates that sol is dominated by sol ′ and False indicates
that it is not dominated.
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Fig. 3 Simultaneously check
whether a solution sol is
dominated by at least one of the
solutions or not in O(log N )

time considering N solutions

To know whether sol is dominated by any other solu-
tion or not, the array ‘isDom[ ]’ is processed in a parallel
manner at log N levels. At each level, an ‘OR’ operation is
performed between two consecutive array cells. At the lth

level, N/2l ‘OR’ operations are performed. We are consider-
ing ‘OR’ operations because a solution cannot be ranked even
if it is dominated by at least one of the solutions and ‘OR’
gives True if any of its inputs is True. The time complexity
of processing the ‘isDom[ ]’ array in a parallel manner is
O(log N ) as the ‘OR’ operation is performed at log N levels
and at each level all the ‘OR’ operations are performed simul-
taneously. At the last level, if True is obtained, it means that
sol is dominated by at least one of the solutions.

Now, we discuss the processing of the ‘isDom[ ]’ array
in a parallel manner using an example.

Example 2 Let P = {sol1, sol2, . . . , sol8} be a population
of eight solutions. So, the size of the ‘isDom[ ]’ array will
also be eight. Let solution sol3 be checked to see whether
it is dominated by other solutions in P or not. The array
‘isDom[ ]’ stores whether sol3 is dominated by the solutions
of P or not. Figure 3 shows the ‘isDom[ ]’ array. As the size
of this array is eight, it is processed at 3(= log 8) levels. At
the last level, we are getting True, so sol3 is dominated by
at least one of the solutions of population P.

After comparing each solution with respect to all the oth-
ers, we check for the solutions which are dominated by at
least one of the solutions. This process is implemented in
a parallel manner (lines 11 − 14). The solutions which are
not dominated by any other solution are assigned rank one.
This complete process is repeated until all the solutions are
ranked.
The time complexity in the worst case is given by Eq. (7).

T∞worst =
∑N

i=1

[
M + �log(N − i + 1)
] + (N − i + 1)

= MN + N log N − (N − 1) + 1

2
N (N + 1) = O(MN + N 2)

(7)

The time complexity in the best case is given by Eq. (8).

T∞best =
∑1

i=1

[
M + �log(N − i + 1)
] + (N − i + 1)

= (M + log N ) + N = O(M + N ) (8)

In this parallel version, an array of population size
‘isDominated[ ]’ is needed to store which solution is dom-
inated by any other solution in the population. Along with
this, for each solution sol, an array ‘isDom[ ]’ of the size
equal to the size of population is also created. The space
required to store the ‘isDominated[ ]’ array is O(N ). The
space required to store ‘isDom[ ]’ array is also O(N ),
and this array ‘isDom[ ]’ is created for each of the solu-
tions. Thus, the overall space required to store ‘isDom[ ]’ is
O(N 2). Thus, the space complexity of this parallel version
is O(N 2).

In this parallel version, each solution sol is simultaneously
compared with other solutions. Also, a particular solution
sol is compared with other solutions simultaneously. Once a
solution sol has been compared with other solutions simul-
taneously (line 6 − 10), we check whether sol is dominated
by any other solutions to whom it has been simultaneously
compared (line 11 − 14). The number of processors require
to compare a solution with all the solutions simultaneously
is N . The maximum number of processors required to check
whether a solution is dominated by any other solution or not
in a parallel manner is N/2. Thus, the maximum number of
processors required by this approach is N 2.

Here, if the dominance relationship between different
solutions can be obtained initially as described in Sect. 4.2,
then the time complexity in the worst case is given by
Eq. (9) and the time complexity in the best case is given
by Eq. (10).

T∞worst = logM +
∑N

i=1

[
1 + �log(N − i + 1)
] + (N − i + 1)

= logM + N + N log N − (N − 1) + 1

2
N (N + 1)

= O(logM + N 2) (9)
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T∞best = logM +
∑1

i=1

[
1 + �log(N − i + 1)
] + (N − i + 1)

= logM + (log N + N ) = O(logM + N ) (10)

If the dominance relationship between different solutions
can be obtained initially and stored in amatrix as described in
Sect. 4.2, then the space required for obtaining the dominance
matrix isO(MN 2). Thus, the overall space complexity of this
parallel version, when the dominance relationship between
different solutions can be obtained beforehand, isO(MN 2).

The maximum number of processors required by this
approach is N 2 without considering dominance matrix. The
maximum number of processors required to obtain the dom-
inance matrix in a parallel manner is 2MN 2. Thus, the
maximumnumber of processors required by parallel version-
2, when the dominance relation between the solution is
obtained in constant time considering dominance matrix, is
2MN 2.

4.5 Parallel version-3

The parallel version-3 of the naive approach is described in
Algorithm 4. In this case, each solution sol can be simulta-
neously compared with other solutions (the outer for loop in
lines 5 − 16 is implemented in a parallel manner). Also, a
particular solution sol is compared with other solutions sol ′
in a parallel manner (the inner for loop in lines 7− 11 is also
implemented in a parallel manner). This scenario is shown
in Fig. 2b.

In the previous versions of the naive approach, the solu-
tions which are ranked are removed from the population.
However, in this version, the ranked solutions are not
removed from the population but instead, they are marked
so that they are not ranked again. After comparing solutions
with each other, we have to check whether a solution sol
is dominated by another solution sol ′ or not. This can be
done in a parallel manner by processing an array of size N
in O(log N ) time as discussed in Parallel Version-2.

At last, we check the solutions which are not dominated
by any other solutions and are also not ranked, in a parallel
manner (lines 17− 20). After assigning rank to the solutions
which are not dominated by any other non-ranked solutions,
we check whether all the solutions have been ranked or not.
This can also be checked in O(log N ) time if performed in
parallel. This whole process is repeated until all the solutions
are ranked.

Now, we discuss the process of knowing whether all the
solutions are ranked or not in a parallel manner using an
example.

Example 3 Let P = {sol1, sol2, . . . , sol8} be a population of
eight solutions. Consider five solutions {sol1, sol4, sol5, sol6
, sol8} which are ranked. In version-1 and version-2, after
obtaining the set of solutions belonging to a particular front,

Algorithm 4 Naive Approach: Version-3
Input: P: Population of size N where each solution is associated with

M objectives
Output: Ranked solutions
1: rank ← 1

/* Initialize an array of size |P| to store whether a solution has been
ranked or not */

2: isRanked[1, 2, . . . , |P|] ← False
3: repeat

/* Initialize an array of size |P| to store whether a solution is
dominated by any other solution in P or not */

4: isDominated[1, 2, . . . , |P|] ← False
/* PARALLEL SECTION STARTS */

5: for each solution sol ∈ P : isRanked[sol] = False do // Each
solution sol is simult- aneously compared with other solutions

6: isDom[1, 2, . . . , |P|] ← False // Initialize an array of size |P|
to store whether sol is dominated by sol ′ ∈ P or not
/* PARALLEL SECTION STARTS */

7: for each solution sol ′∈P : isRanked[sol ′]=False do // sol is
compared with all the solutions simultaneously which are not
ranked

8: if sol is dominated by sol ′ then
9: isDom[sol ′] ← True
10: end if
11: end for

/* PARALLEL SECTION ENDS */
/* PARALLEL SECTION STARTS */

12: Identify whether sol is dominated by any other solution or not
considering isDom[ ] // It can be done in O(log N ) time in
parallel manner if the size of isDom[ ] is N

13: if sol is dominated by sol ′ then
14: isDominated[sol] ← True
15: end if

/* PARALLEL SECTION ENDS */
16: end for

/* PARALLEL SECTION ENDS */
/* PARALLEL SECTION STARTS */
/* Check for each solution in P whether it is not dominated by

any other solution */
17: for each solution sol ∈ P : isDominated[sol] = False and

isRanked[sol] = False do
18: solrank ← rank // Assign rank to sol
19: isRanked[sol] ← True //Marked the solution sol as ranked
20: end for

/* PARALLEL SECTION ENDS */
21: rank ← rank + 1 // Increase the value of rank
22: until All the solutions are ranked // It can be checked in

O(log N ) time in parallel

these solutions are removed from the population. However,
in version-3 the solutions are not deleted and to know which
solutions are ranked or not, an array of size equal to the
population size is considered. The array corresponding to
eight solutions is shown in Fig. 4.

When a solution is ranked, the corresponding cell in the
array is marked as True which signifies that the solution is
ranked.After obtaining the solutions belonging to a particular
front, we have to check whether all the solutions have been
ranked or not. For this purpose, the array is processed in a
parallel manner. As the length of the array is N (equal to
the population size), so the array is processed at log N levels
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Fig. 4 Simultaneously check
whether N solutions are ranked
or not in O(log N ) time
considering N solutions

where at each level, an ‘AND’ operation is performed in
consecutive array cells. At the last level, if True is obtained,
then all the solutions are ranked; otherwise, all the solutions
are not ranked. In Fig. 4, as there are eight solutions, so the
parallel operation is performed at three different levels. At
the last level, False is obtained after an ‘AND’ operation
which means that all the solutions are not ranked.

The time complexity in theworst case is given by Eq. (11).

T∞worst =
N∑

i=1

[
M + �log N + 1
] + �log N


= MN + N + 2N�log N
 = O(MN + N log N )

(11)

The time complexity in the best case is given by Eq. (12).

T∞best =
∑1

i=1

[
M + �log N
 + 1

] + �log N

= M + 1 + 2�log N
 = O(M + log N ) (12)

In this parallel version, an array ‘isRanked[ ]’ of size N
is created to store which solution has been ranked. The space
required to store this array isO(N ). The analysis of the space
complexity remains the same as the parallel version-2. Thus,
the space complexity of this parallel version is O(N 2).

In this parallel version, each solution sol is simultaneously
compared with other solutions. Also, a particular solution
sol is compared with other solutions simultaneously. Once a
solution sol has been compared with other solutions simul-
taneously (line 7 − 11), we check whether sol is dominated
by any other solutions to whom it has been simultaneously
compared (line 12 − 15). The number of processors require
to compare a solution with all the solutions simultaneously
is N . The maximum number of processors required to check
whether a solution is dominated by any other solution or not
in a parallel manner is N/2. After this, for each solution sol

which is not dominated by any other solution and has been
already ranked is assigned a rank. This operation can be car-
ried out in parallel using maximum N processors. Thus, the
maximum number of processors required by this approach is
N 2.

Here, if the dominance relationship between different
solutions can be obtained initially as described in Sect. 4.2,
then the time complexity in theworst case is given byEq. (13)
and the time complexity in the best case is given by Eq. (14).

T∞worst = logM +
∑N

i=1

[
1 + �log N
 + 1

] + �log N

= logM + 2N + 2N�log N
 = O(logM + N log N ) (13)

T∞best = logM +
∑1

i=1

[
1 + �log N
 + 1

] + �log N

= logM + 2 + 2�log N
 = O(logM + log N ) (14)

If the dominance relationship between different solutions
can be obtained initially and stored in amatrix as described in
Sect. 4.2, then the space required for obtaining the dominance
matrix isO(MN 2). Thus, the overall space complexity of this
parallel version, when the dominance relationship between
different solutions can be obtained beforehand, isO(MN 2).

The maximum number of processors required by this
approach is N 2 without considering dominance matrix. The
maximum number of processors required to obtain the dom-
inance matrix in a parallel manner is 2MN 2. Thus, the max-
imum number of processors required by parallel version-3,
when the dominance relation between the solution is obtained
in constant time considering dominance matrix, is 2MN 2.

The worst case time complexity of the naive approach is
O(MN 3), and the best case time complexity is O(MN 2).
The time complexity of the parallel version of the non-
dominated sorting was proved to beO(M+N ) by Smutnicki
et al. (2014). The worst and the best case time complexities
of the parallel version-1 and parallel version-2 of the naive
approach are O(logM + N 2) and O(logM + N ), respec-
tively. The best case time complexity is better than the time
complexity as reported in Smutnicki et al. (2014). However,
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the worst case time complexity is not. The worst and best
case time complexities of the parallel version-3 of the naive
approach are O(logM + N log N ) and O(logM + log N ),
respectively. The best case time complexity of the parallel
version-3 isO(logM + log N ) which is better than the time
complexity as reported in Smutnicki et al. (2014). However,
the worst case time complexity of the parallel version-3 is
O(logM + N log N ) which is not good as compared to
the time complexity reported in Smutnicki et al. (2014).
However, as discussed in Sect. 1, as the number of fronts
decreases, the naive approach performs near to its best case.
So as the evolutionary algorithm proceeds, the parallel naive
approach can be advantageous because the number of non-
dominated fronts start reducing.

5 Conclusions & future work

In this paper, we have explored the scope of parallelism in
the naive approach. We have identified parallelism in the
naive approach in three different ways. The worst case time
complexity of the parallel version is O(logM + N log N ),
and the best case time complexity isO(logM + log N ). The
best case occurs when all the solutions are in a single front.
As the evolutionary algorithm proceeds, the number of fronts
decreases and the approach performs either in the best case
or near to its best case. As part of our future work, we would
like to find the scope of parallelism in other approaches as
well. It would also be interesting to see the actual speedup
when different parallel methods of the naive approach are
implemented.
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