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Abstract
In this paper, a new general approach is presented to fit a fuzzy regressionmodel when the response variable and the parameters
of model are as fuzzy numbers. In this approach, for estimating the parameters of fuzzy regression model, a new definition
of objective function is introduced based on the different loss functions and under the averages of differences between the
α-cuts of errors. The application of the proposed approach is studied using a simulated data set and some real data sets in the
presence of different types of outliers.

Keywords Goodness of fit · Loss function · Outlier data · Robust fuzzy regression

1 Introduction

The fuzzy regression analysis is based on some regression
models between a response variable and some explana-
tory variables when some quantities are as imprecise. Also,
among the observed data, we may encounter with some out-
liers. In such situations, we need to introduce a regression
model which supports these limitations. An approach for
solving these limitations is using of the robust fuzzy regres-
sion models.

In the following, we review some works on robust fuzzy
regressionmodels.Arefi (2020) studied a robust fuzzy regres-
sion based on a generalized quantile loss function under the
fuzzy outputs and fuzzy parameters. Chang and Lee (1994)
presented fuzzy least absolute deviations regression based on
the ranking of fuzzy numbers.An approach tofit a robust least
squares fuzzy regression based on a kernel function is inves-
tigated by Khammar et al. (2020). Oussalah and De Schutter
(2002) proposed a fuzzy regression model with the combina-
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tion of least trimmed squares (LTS) and least median squares
(LMS). They studied the performance of the proposed model
when the data are contaminated by outliers. Sanli and Apay-
din (2004) investigated a robust estimation procedure for
fuzzy linear regression model with fuzzy input–output data
based on the leastmedian squaresmethod. A robust approach
to model a fuzzy linear regression based on M-estimators is
studied by Shon (2005). Choi and Buckley (2008) utilized
the least absolute deviations (LAD) method for estimating
the parameters of a fuzzy regression model and investigated
the performance of the proposed model under the fuzzy out-
lier data. D’Urso et al. (2011) andD’Urso andMassari (2013)
proposed a robust fuzzy linear regression model with crisp
inputs and fuzzy outputs based on the least median squares-
weighted least squares (LMS-WLS) estimation procedure.
Some approaches to fit the fuzzy regression models based
the least absolutes method are investigated by Chachi and
Taheri (2016), Taheri and Kelkinnama (2012), and Zeng
et al. (2016). Based on the least trimmed squares estimation,
Chachi andRoozbeh (2017) proposed a estimation procedure
for determining the coefficients of a fuzzy regression model
with crisp input–fuzzy output data. A weighted least-squares
fuzzy regression model under crisp input–fuzzy output data
and fuzzy coefficients is provided byChachi (2019). For con-
sidering some other approaches of fuzzy regression models,
see Chen and Hsueh (2007, 2009), Nasrabadi and Hashemi
(2008), Hao and Chiang (2008), Kula et al. (2012), Mosleh
et al. (2010), Arefi and Taheri (2015), Lopez et al. (2016),
Hesamian and Akbari (2019), and Rapaic et al. (2019).
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This paper is organized as follows: In Sect. 2, some pre-
liminary concepts about fuzzy sets and fuzzy numbers are
provided. In Sect. 3, a new general approach based on the
different loss functions is investigated to fit the fuzzy regres-
sion models when the response variable and the parameters
of models are as fuzzy numbers. In this section, we present
some indices of goodness of fit to evaluate the proposed fuzzy
regression models. Also, the cross-validation method is pro-
vided to examine the predictive ability of the proposed fuzzy
regression models. Some numerical examples to assess the
effectiveness of the proposedmethod are presented in Sect. 4.
Finally, in Sect. 5, some concluding remarks are provided.

2 Preliminary concepts

In this section, we recall some notations and preliminary
concepts on fuzzy sets (see Zimmermann 2001).

Let � be an universal set. A fuzzy set Ñ of � is defined
by the membership function Ñ : � → [0, 1]. The α-cut of
Ñ is as Ñ [α] = {x ∈ R : Ñ (x) ≥ α} for 0 < α ≤ 1.

Definition 1 A fuzzy set Ñ on � is called a fuzzy number, if

(i) ˜N (x) = 1 for some x ∈ �,

(ii) ˜N [α] is a closed bounded interval for 0 < α ≤ 1.

Definition 2 Let Ñ be a fuzzy number, then a LR fuzzy num-
ber is defined by the following membership function

Ñ (x) =
{

L
(m−x

l

)

x ≤ m,

R
( x−m

r

)

x > m,

where l, r ≥ 0 and L(.) and R(.) are the strictly decreasing
functions as L, R : R+ → [0, 1]. It is denoted by Ñ =
(m, l, r)LR .

Remark 1 In a LR fuzzy number Ñ , if L(x) = R(x), then
Ñ is called the LL fuzzy number and is denoted as Ñ =
(m, l, r)LL . For L(x) = R(x) = 1 − x for all x ∈ [0, 1], Ñ
is called a triangular fuzzy number and is denoted by Ñ =
(m, l, r)T . Also, for l = r , Ñ is a symmetric triangular fuzzy
number as Ñ = (m, l)T .

Proposition 1 Assume that Ã = (ma, la, ra)LR and B̃ =
(mb, lb, rb)LR are two LR fuzzy numbers and λ ∈ R − {0}.
Some of the arithmetic operations based on extension prin-
ciple (Zimmermann 2001) are given as follows

λ ⊗ Ã =
{

(λma, λla, λra)LR λ > 0,
(λma,−λra,−λla)RL λ < 0,

Ã ⊕ B̃ = (ma + mb, la + lb, ra + rb)LR .

3 Methodology

In this section, we introduce a new approach in fuzzy regres-
sion theory based on the concept of α-cuts for the crisp inputs
and the fuzzy output when the parameters of model are as
fuzzy quantities.

3.1 Fuzzy regressionmodel

In the following, we introduce fuzzy regression model under
crisp input–fuzzyoutput variables.Our aim is tofit an optimal
fuzzy linear regression model to this data set. Suppose that
the fuzzy linear regression model based on crisp input–fuzzy
output variables and the fuzzy parameters is given as follows

Ỹi = β̃0 ⊕ (β̃1 ⊗ xi1) ⊕ (β̃2 ⊗ xi2) ⊕ · · · ⊕ (β̃p ⊗ xip),

where, β̃ j = (β j , γ j )LL , j = 0, . . . , p, and ˜Yi = (yi , si )LL ,
i = 1, . . . , n. The estimated fuzzy response variables are
obtained as follows:

ˆ̃Yi = β̃0 ⊕ (β̃1 ⊗ xi1) ⊕ (β̃1 ⊗ xi2) ⊕ · · · ⊕ (β̃p ⊗ xip)

=
( p

∑

j=0

β j xi j ,
p

∑

j=0

γ j xi j

)

LL
, i = 1, . . . , n, (1)

where xi0 = 1, i = 1, . . . , n.

3.2 Objective function

In the following, we first introduce some differences between
the α-cuts of fuzzy numbers, and then the objective functions
of fuzzy regression models are provided based on loss func-
tion on these differences as follows.

Definition 1 Let Ã and B̃ be two fuzzy numbers with α-cuts
Ã[α] = [ ÃL [α], ÃR[α]] and B̃[α] = [B̃L [α], B̃ R[α]]. The
averages of differences between the lower and upper α-cuts
of Ã and B̃ are defined as

DL( Ã, B̃) =
∫ 1

0
( ÃL [α] − B̃L [α])dα,

DR( Ã, B̃) =
∫ 1

0
( ÃR[α] − B̃ R[α])dα.

Remark 2 Let Ã, B̃ and C̃ be three fuzzy numbers. Then,
DL(., .) and DR(., .) in Definition 1 satisfy the following
properties:

(i) DL( Ã, Ã) = 0 and DR( Ã, Ã) = 0,
(ii) DL( Ã, B̃)=−DL(B̃, Ã) and

DR( Ã, B̃)=−DR(B̃, Ã),
(iii) DL( Ã, B̃)+DL(B̃, C̃) = DL( Ã, C̃) and DR( Ã, B̃)+

DR(B̃, C̃) = DR( Ã, C̃).
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Remark 3 In a special case, if Ã = (ma, la, ra)LR and B̃ =
(mb, lb, rb)LR are two LR fuzzy numbers, then

DL( Ã, B̃) = (ma − mb) − λ(la − lb),

DR( Ã, B̃) = (ma − mb) + ρ(ra − rb),

where λ = ∫ 1
0 L−1(α)dα and ρ = ∫ 1

0 R−1(α)dα. Further-
more, if Ã = (ma, la, ra)T and B̃ = (mb, lb, rb)T are two
triangular fuzzy numbers, then

DL( Ã, B̃) = (ma − mb) − 1

2
(la − lb),

DR( Ã, B̃) = (ma − mb) + 1

2
(ra − rb),

Remark 4 If the LR fuzzy numbers Ã = (ma, la, ra)LR and
B̃ = (mb, lb, rb)LR are reduced to the crisp numbers (i.e.
la = ra = lb = rb = 0), then DL( Ã, B̃) = DR( Ã, B̃) =
ma − mb.

Definition 3 Suppose that Ỹi and
ˆ̃Y i are the observed fuzzy

response variable and the estimated fuzzy response variable,
respectively. The objective function based on Definition 1 is
defined as

O = 1

2

n
∑

i=1

[

ψ(DL(Ỹi ,
ˆ̃Yi )) + ψ((DR(Ỹi ,

ˆ̃Yi ))
]

, (2)

where ψ(.) is a loss function.

In the objective function O , the relation 1
2

(

ψ(DL(Ỹi ,
ˆ̃Yi ))

+ ψ((DR(Ỹi ,
ˆ̃Yi ))

)

can be considered as the loss value

of error between Ỹi and ˆ̃Yi . Note that based on the dif-
ferent loss functions ψ(.), we can obtain the different
fuzzy regression models. Some loss functions are listed as
follows:

(1) Squared error loss function : ψ1(e) = e2,

(2) Absolute error loss function : ψ2(e) = |e|,
(3) Quantile loss function (Koenker 2005) :

ψ3
τ (e) = |e||τ − I (e < 0)|, 0 < τ ≤ 1,

(4) Huber loss function (Huber 1981) :
ψ4
c (e) =

{ 1
2e

2, |e| ≤ c,
c|e| − 1

2c
2, |e| > c

, c > 0.

Remark 5 In the loss function ψ3
τ , τ is the quantile level and

for τ = 0.5, ψ3
τ is reduced to the loss function ψ2. Also, in

the loss function ψ4
c , based on some of indices of goodness

of fit, we choose the value of c in interval [0, 2] (Huber 1981
says that the good value of c is in interval [1, 2]. So, it is
taken as c = 1.5).

From the relation (2), the objective functions based on the
above loss functions are provided as follows:

(1) Oψ1 = 1

2

n
∑

i=1

(

(DL(Ỹi ,
ˆ̃Yi ))2 + (DR(Ỹi ,

ˆ̃Yi ))2
)

.

(2) Oψ2 = 1

2

n
∑

i=1

(

|DL(Ỹi ,
ˆ̃Yi )| + |DR(Ỹi ,

ˆ̃Yi )|
)

.

(3) Oψ3
τ
= 1

2

n
∑

i=1

[

(

|DL(Ỹi ,
ˆ̃Yi )|×|τ − I (DL(Ỹi ,

ˆ̃Yi )<0)|
)

+
(

|DR(Ỹi ,
ˆ̃Yi )| × |τ − I (DR(Ỹi ,

ˆ̃Yi ) < 0)|
)

]

.

(4) Oψ4
c

= 1

2

n
∑

i=1

[

(

(DL(Ỹi ,
ˆ̃Yi ))2/2 − (

(DL(Ỹi ,
ˆ̃Yi ))2/2

− c|DL(Ỹi ,
ˆ̃Yi )| + c2/2

)

I (|DL(Ỹi ,
ˆ̃Yi )| > c)

)

+
(

(DR(Ỹi ,
ˆ̃Yi ))2/2 − (

(DR(Ỹi ,
ˆ̃Yi ))2/2

− c|DR(Ỹi ,
ˆ̃Yi )|+c2/2

)

I (|DR(Ỹi ,
ˆ̃Yi )| > c)

)

]

.

By minimizing these objective functions under the param-
eters of model, we can obtain the optimal fuzzy regression
models.

3.3 Estimation of model parameters

Based on the above objective functions, we can calculate the
estimations of parameters of models as follows (assume that
xi j ≥ 0).

(A) Squared error loss function: Based on relation (1), the
objective function Oψ1 is rewritten as

Oψ1 = 1

2

n
∑

i=1

⎡

⎢

⎣

⎡

⎣

⎛

⎝yi −
p

∑

j=0

β j xi j

⎞

⎠−λ

⎛

⎝si −
p

∑

j=0

γ j xi j

⎞

⎠

⎤

⎦

2

+
⎡

⎣

⎛

⎝yi −
p

∑

j=0

β j xi j

⎞

⎠ + λ

⎛

⎝si −
p

∑

j=0

γ j xi j

⎞

⎠

⎤

⎦

2
⎤

⎥

⎦

= (Y − Xβ)′ (Y − Xβ) + λ2 (S − Xγ )′ (S − Xγ ) .

where

X =

⎡

⎢

⎢

⎢

⎣

1 x11 . . . x1p
1 x21 . . . x2p
...

...
...

...

1 xn1 . . . xnp

⎤

⎥

⎥

⎥

⎦

, Y =

⎡

⎢

⎢

⎢

⎣

y1
y2
...

yn

⎤

⎥

⎥

⎥

⎦

, S =

⎡

⎢

⎢

⎢

⎣

s1
s2
...

sn

⎤

⎥

⎥

⎥

⎦

,
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β =

⎡

⎢

⎢

⎢

⎣

β0

β1
...

βp

⎤

⎥

⎥

⎥

⎦

, γ =

⎡

⎢

⎢

⎢

⎣

γ0
γ1
...

γp

⎤

⎥

⎥

⎥

⎦

.

By differentiating of Oψ1 with respect to β j and γ j , the esti-
mations of parameters are obtained as follows:

β̂ = (X
′
X)−1X

′
Y,

γ̂ = (X
′
X)−1X

′
S.

Remark 6 If we encounter with some negative spreads, we
can again run the fuzzy regression model with considering
such parameters as crisp (i.e. the related spreads are zero).
Thus, the centers are obtained as before, but the spreads are
calculated as follows

γ̂ ∗ = (X∗′
X∗)−1X∗′

S,

where X∗ is like X in which the columns corresponding to
crisp parameters are removed.

(B) Absolute error loss function and quantile loss func-
tion: For minimizing the objective functions Oψ2 and Oψ3 ,
we can translate it into the linear programming problems

as follows. Assume that DL(Ỹi ,
ˆ̃Yi ) = dL+

i − dL−
i and

DR(Ỹi ,
ˆ̃Yi ) = dR+

i −dR−
i with dL+

i = max(DL(Ỹi ,
ˆ̃Yi ), 0),

dL−
i = −min(DL(Ỹi ,

ˆ̃Yi ), 0), dR+
i = max(DR(Ỹi ,

ˆ̃Yi ), 0),
and dR−

i = −min(DR(Ỹi ,
ˆ̃Yi ), 0), then the objective func-

tions are presented as

Oψ2 = 1

2

n
∑

i=1

[

|DL(Ỹi ,
ˆ̃Yi )| + |DR(Ỹi ,

ˆ̃Yi )|
]

= 1

2

n
∑

i=1

[

(dL+
i + dL−

i ) + (dR+
i + dR−

i )
]

,

Oψ3
τ

= 1

2

n
∑

i=1

[

(

|DL(Ỹi ,
ˆ̃Yi )| × |τ − I (DL(Ỹi ,

ˆ̃Yi ) < 0)|
)

+
(

|DR(Ỹi ,
ˆ̃Yi )| × |τ − I (DR(Ỹi ,

ˆ̃Yi ) < 0)|
)

]

= 1

2

n
∑

i=1

[

τ(dL+
i + dR+

i ) + (1 − τ)(dL−
i + dR−

i )
]

.

Hence, the linear programming problems are given as fol-
lows:

min Oψ2 = 1

2

n
∑

i=1

[

dL+
i + dL−

i + dR+
i + dR−

i

]

s.t.

dL+
i − dL−

i = DL(Ỹi ,
ˆ̃Yi ) = (yi −

∑p

j=0
β j xi j )

− λ(si −
∑p

j=0
γ j xi j ),

dR+
i − dR−

i = DR(Ỹi ,
ˆ̃Yi ) = (yi −

∑p

j=0
β j xi j )

+ λ(si −
∑p

j=0
γ j xi j ),

dL+
i ≥0, dL−

i ≥0, dR+
i ≥0, dR−

i ≥0, i=1, 2, . . . , n,

β j ∈ R, γ j ≥ 0, j = 0, . . . , p.

and

min Oψ3
τ
= 1

2

n
∑

i=1

[

τ(dL+
i +dR+

i ) + (1 − τ)(dL−
i +dR−

i )
]

s.t.

dL+
i − dL−

i = DL(Ỹi ,
ˆ̃Yi ) = (yi −

∑p

j=0
β j xi j )

− λ(si −
∑p

j=0
γ j xi j ),

dR+
i − dR−

i = DR(Ỹi ,
ˆ̃Yi ) = (yi −

∑p

j=0
β j xi j )

+ λ(si −
∑p

j=0
γ j xi j ),

dL+
i ≥0, dL−

i ≥0, dR+
i ≥0, dR−

i ≥0, i=1, 2, . . . , n,

β j ∈ R, γ j ≥ 0, j = 0, . . . , p.

Remark 7 Note that for solving the above linear program-
ming problems, we can use “LINGO” software (Schrage
2006) or “Mathematica” software (Wolfram 2015).

(C)Huber loss function: It is simple to verify that the Huber
loss function can be equivalently rewritten as

ψ4
c (e) = 1

2

[

e2 − (e − c)2+ − (−e − c)2+
]

.

Hence, the objective functions Oψ4
c
based on matrix forms

are obtained as follows

Oψ4
c
= 1

4

[

(

Y − Xβ − λ(S − Xγ )
)′(

Y−Xβ − λ(S − Xγ )
)

− (

Y − Xβ − λ(S − Xγ ) − cL
)′
+

(

Y − Xβ − λ(S − Xγ ) − cL
)

+
− (

Xβ − Y − λ(Xγ − S) − cL
)′
+

(

Xβ − Y − λ(Xγ − S) − cL
)

+
+ (

Y − Xβ + λ(S − Xγ )
)′(

Y − Xβ + λ(S − Xγ )
)

− (

Y − Xβ + λ(S − Xγ ) − cL
)′
+

(

Y − Xβ + λ(S − Xγ ) − cL
)

+
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Table 1 Data set in Example 1 No. CEC (Cmol(+)/kg) SAND (%) OM (%) No. CEC (Cmol(+)/kg) SAND (%) OM (%)
yi xi1 xi2 yi xi1 xi2

1 16.50 35.00 0.88 13 24.40 31.00 3.52

2 18.60 37.00 1.13 14 21.80 31.00 2.33

3 19.30 27.00 1.31 15 23.80 17.00 1.71

4 20.30 29.00 1.98 16 20.80 14.00 1.14

5 17.30 38.00 1.02 17 17.50 19.00 0.99

6 20.40 32.00 1.29 18 17.80 28.00 1.14

7 19.30 29.00 1.52 19 20.20 26.00 1.46

8 21.90 18.00 1.33 20 20.00 32.00 1.81

9 15.90 40.00 1.71 21 22.80 10.00 1.38

10 18.30 28.00 2.00 22 19.10 38.00 0.84

11 22.60 13.00 1.68 23 12.10 49.00 1.48

12 23.70 19.00 2.15 24 12.80 42.00 1.08

− (

Xβ − Y + λ(Xγ − S) − cL
)′
+

(

Xβ − Y + λ(Xγ − S) − cL
)

+

]

, (3)

where L = (1, 1, . . . , 1)′. By differentiating (3) with respect
to the vectors β and γ , we have

∂Oψ4
c

∂β
= −X

′
Y + X

′
Xβ

+ 1

2
X

′ [H1(β, γ ) + H2(β, γ )] = 0,

∂Oψ4
c

∂γ
= −λ2X

′
S + λ2X

′
Xγ

− 1

2
λX

′ [H1(β, γ ) − H2(β, γ )] = 0,

where

H1(β, γ ) = (Y − Xβ − λ(S − Xγ ) − cL)+
− (Xβ − Y − λ(Xγ − S) − cL)+,

H2(β, γ ) = (Y − Xβ + λ(S − Xγ ) − cL)+
− (Xβ − Y + λ(Xγ − S) − cL)+.

Now, the estimations of parameters are obtained by the fol-
lowing simple iterative algorithm:

βm+1=(X
′
X)−1X

′[
Y − 1

2

(

H1(β
m, γm)+H2(β

m, γm)
)]

,

γm+1=(X
′
X)−1X

′[
S+ 1

2λ

(

H1(β
m, γm)−H2(β

m, γm)
)]

,

m = 0, 1, . . . .

3.4 Goodness of fit of themodel

In order to evaluate the proposed fuzzy regressionmodels,we
introduce some indices of goodness of fit. Also, using cross-
validation method, the performance and predictive ability of
proposed regression models are evaluated (see Geisser 1993;
Wasserman 2006)

3.4.1 Goodness of fit

Definition 4 (Pappis and Karacapilidis 1993) Suppose that

Ỹi and
ˆ̃Yi are the observed fuzzy response variable and the

estimated fuzzy response variable, respectively. The mean of
similarity measures (MSM) is defined as

MSM = 1

n

n
∑

i=1

SPK (
ˆ̃Yi , Ỹi ),

where SPK (
ˆ̃Yi , Ỹi ) = Card( ˆ̃Yi∩Ỹi )

Card( ˆ̃Yi∪Ỹi )
and Card( Ã) denotes the

cardinal number of Ã as Card( Ã) = ∫

R Ã(x)dx .

Definition 5 (Chen and Dang 2008) Suppose that Ỹi and
ˆ̃Yi

are the observed fuzzy response variable and the estimated
fuzzy response variable, respectively. The index for goodness
of fit of regression model is defined as

Ḡ1 = 1

n

n
∑

i=1

SCD(
ˆ̃Yi , Ỹi ),

where SCD(
ˆ̃Yi , Ỹi ) = 1

1+E(
ˆ̃Yi ,Ỹi )

and E(
ˆ̃Yi , Ỹi )

=
∫

S
Ỹi

∪S ˆ̃Yi
| ˆ̃Yi (y)−Ỹi (y)|dy

∫

S
Ỹi

Ỹi (y)dy
. Also, ˆ̃Yi (y) and Ỹi (y) are the mem-
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Table 2 Comparison study between different models in Example 1

Method w Constant Fuzzy linear regression model Ḡ1 Ḡ2 MSM

SLF 0.05 ˆ̃YSLF = (21.977, 0.760)T ⊕ ((−0.222x1) ⊕ ((2.473, 0.139)T ⊗ x2) 0.340 0.496 0.284

0.1 ˆ̃YSLF = (21.977, 1.520)T ⊕ ((−0.222x1) ⊕ ((2.473, 0.278)T ⊗ x2) 0.464 0.546 0.435

0.2 ˆ̃YSLF = (21.977, 3.039)T ⊕ ((−0.222x1) ⊕ ((2.473, 0.556)T ⊗ x2) 0.599 0.545 0.606

ALF 0.05 ˆ̃YALF = (21.208, 0.786)T ⊕ ((−0.201x1) ⊕ ((2.675, 0.123)T ⊗ x2) 0.403 0.576 0.334

0.1 ˆ̃YALF = (21.318, 1.628)T ⊕ ((−0.205x1) ⊕ ((2.678, 0.231)T ⊗ x2) 0.490 0.571 0.466

0.2 ˆ̃YALF = (21.560, 3.260)T ⊕ ((−0.210x1) ⊕ ((2.700, 0.460)T ⊗ x2) 0.609 0.557 0.618

HLF 0.05 c = 0.5 ˆ̃YHFL = (21.144, 0.821)T ⊕ ((−0.202x1) ⊕ ((2.727, 0.119)T ⊗ x2) 0.390 0.573 0.331

c = 1.5 ˆ̃YHFL = (21.758, 0.825)T ⊕ ((−0.221x1) ⊕ ((2.622, 0.126)T ⊗ x2) 0.358 0.551 0.294

c = 2 ˆ̃YHFL = (21.869, 0.819)T ⊕ ((−0.223x1) ⊕ ((2.573, 0.125)T ⊗ x2) 0.355 0.547 0.278

0.1 c = 0.5 ˆ̃YHFL = (21.156, 1.641)T ⊕ ((−0.202x1) ⊕ ((2.725, 0.241)T ⊗ x2) 0.486 0.569 0.467

c = 1.5 ˆ̃YHFL = (21.743, 1.650)T ⊕ ((−0.220x1) ⊕ ((2.622, 0.251)T ⊗ x2) 0.465 0.552 0.447

c = 2 ˆ̃YHFL = (21.869, 1.638)T ⊕ ((−0.223x1) ⊕ ((2.573, 0.249)T ⊗ x2) 0.459 0.546 0.439

0.2 c = 0.5 ˆ̃YHFL = (21.185, 3.285)T ⊕ ((−0.203x1) ⊕ ((2.719, 0.482)T ⊗ x2) 0.613 0.562 0.623

c = 1.5 ˆ̃YHFL = (21.670, 3.292)T ⊕ ((−0.218x1) ⊕ ((2.621, 0.503)T ⊗ x2) 0.601 0.548 0.615

c = 2 ˆ̃YHFL = (21.846, 3.240)T ⊕ ((−0.222x1) ⊕ ((2.565, 0.512)T ⊗ x2) 0.544 0.597 0.610

QLF 0.05 τ = 0.25 ˆ̃YQFL = (20.664, 0.954)T ⊕ ((−0.271x1) ⊕ ((3.450, 0.076)T ⊗ x2) 0.347 0.517 0.257

τ = 0.5 ˆ̃YQFL = (21.208, 0.786)T ⊕ ((−0.201x1) ⊕ ((2.675, 0.123)T ⊗ x2) 0.403 0.576 0.334

τ = 0.75 ˆ̃YQFL = (22.164, 1.095)T ⊕ ((−0.180x1) + 2.239x2 0.360 0.532 0.284

0.1 τ = 0.25 ˆ̃YQFL = (20.446, 1.415)T ⊕ ((−0.266x1) ⊕ ((3.464, 0.291)T ⊗ x2) 0.420 0.504 0.367

τ = 0.5 ˆ̃YQFL = (21.318, 1.628)T ⊕ ((−0.205x1) ⊕ ((2.678, 0.231)T ⊗ x2) 0.490 0.571 0.469

τ = 0.75 ˆ̃YQFL = (22.195, 2.141)T ⊕ ((−0.185x1) ⊕ ((2.286, 0.017)T ⊗ x2) 0.452 0.534 0.432

0.2 τ = 0.25 ˆ̃YQFL = (20.443, 3.488)T ⊕ ((−0.252x1) ⊕ ((3.341, 0.396)T ⊗ x2) 0.545 0.497 0.552

τ = 0.5 ˆ̃YQFL = (21.560, 3.260)T ⊕ ((−0.210x1) ⊕ ((2.700, 0.460)T ⊗ x2) 0.609 0.557 0.618

τ = 0.75 ˆ̃YQFL = (22.100, 4.173)T ⊕ ((−0.175x1) ⊕ ((2.225, 0.136)T ⊗ x2) 0.574 0.523 0.588

AR 0.05 τ = 0.25 ˆ̃YAR = (22.633, 0.150)T ⊕ ((−0.185x1) ⊕ ((2.134, 0.304)T ⊗ x2) 0.351 0.503 0.191

τ = 0.5 ˆ̃YAR = (21.078, 0.150)T ⊕ ((−0.195x1) ⊕ ((2.661, 0.304)T ⊗ x2) 0.380 0.560 0.255

τ = 0.75 ˆ̃YAR = (22.178, 0.150)T ⊕ ((−0.176x1) ⊕ ((2.185, 0.304)T ⊗ x2) 0.510 0.451 0.426

0.1 τ = 0.25 ˆ̃YAR = (20.673, 0.318)T ⊕ ((−0.273x1) ⊕ ((3.461, 0.603)T ⊗ x2) 0.418 0.487 0.306

τ = 0.5 ˆ̃YAR = (21.156, 0.318)T ⊕ ((−0.200x1) ⊕ ((2.688, 0.603)T ⊗ x2) 0.446 0.535 0.355

τ = 0.75 ˆ̃YAR = (22.158, 0.318)T ⊕ ((−0.176x1) ⊕ ((2.185, 0.603)T ⊗ x2) 0.428 0.505 0.323

0.2 τ = 0.25 ˆ̃YAR = (20.655, 0.635)T ⊕ ((−0.270x1) ⊕ ((3.439, 1.206)T ⊗ x2) 0.524 0.462 0.446

τ = 0.5 ˆ̃YAR = (22.944, 0.635)T ⊕ ((−0.230x1) ⊕ ((2.724, 1.206)T ⊗ x2) 0.486 0.424 0.400

τ = 0.75 ˆ̃YAR = (22.633, 0.635)T ⊕ ((−0.185x1) ⊕ ((2.134, 1.206)T ⊗ x2) 0.510 0.451 0.426
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Table 3 Values of response
variable, corresponding
predictions by cross-validation
method, and indices of goodness
of fit of Mohammadi and
Taheri’s data set in Example 1

No. Ỹi
ˆ̃Y (−i)
i No. Ỹi

ˆ̃Y (−i)
i Indices

1 (16.50, 3.30)T (15.98, 3.53)T 13 (24.40, 4.88)T (24.33, 4.96)T
2 (18.60, 3.72)T (18.04, 4.11)T 14 (21.80, 4.36)T (21.61, 4.35)T
3 (19.30, 3.86)T (19.17, 3.70)T 15 (23.80, 4.76)T (23.16, 3.81)T MSM=0.776

4 (20.30, 4.06)T (20.21, 4.28)T 16 (20.80, 4.16)T (20.44, 3.79)T
5 (17.30, 3.46)T (16.37, 3.72)T 17 (17.50, 3.50)T (18.99, 3.51)T

6 (20.40, 4.08)T (19.70, 4.19)T 18 (17.80, 3.56)T (17.05, 3.30)T Ḡ1=0.734

7 (19.30, 3.86)T (19.44, 4.22)T 19 (20.20, 4.04)T (20.21, 3.79)T
8 (21.90, 4.38)T (22.00, 4.44)T 20 (20.00, 4.00)T (20.06, 4.70)T

9 (15.90, 3.18)T (15.90, 3.11)T 21 (22.80, 4.56)T (22.96, 3.66)T Ḡ2=0.700

10 (18.30, 3.66)T (19.51, 3.81)T 22 (19.10, 3.82)T (17.67, 3.26)T
11 (22.60, 4.52)T (22.93, 4.40)T 23 (12.10, 2.42)T (12.54, 2.98)T
12 (23.70, 4.74)T (23.06, 4.45)T 24 (12.80, 2.56)T (13.60, 3.15)T

Table 4 Data set in Example 2 No. Ỹi xi

1 (22.50, 7.50)T 1

2 (28.75, 8.75)T 2

3 (25.00, 10.00)T 3

4 (42.50, 17.50)T 4

5 (40.00, 15.00)T 5

6 (52.50, 12.50)T 6

7 (75.00, 20.00)T 7

8 (85.00, 15.00)T 8

bership functions of ˆ̃Yi and Ỹi with the supports S ˆ̃Yi and SỸi ,

respectively.

Definition 6 Suppose that Ỹi and
ˆ̃Yi are the observed fuzzy

response variable and the estimated fuzzy response variable,
respectively. Based on the objective function Oψ2 , the index
of goodness of fit of the model is defined as

Ḡ2 = 1

n

n
∑

i=1

SO(
ˆ̃Yi , Ỹi ),

where SO(
ˆ̃Yi , Ỹi ) = 1

1+O
ψ2 (

ˆ̃Yi ,Ỹi )
.

Remark 8 The indices MSM , Ḡ1 and Ḡ2 are on the interval
[0, 1]. The optimal model is themodel withmaximum values
of MSM , Ḡ1 or Ḡ2.

3.4.2 Cross-validation

The cross-validation method is a well-known method for
evaluating the performance and predictive ability of regres-
sion models. For doing this purpose, we divide the data set

Table 5 Different outliers in Example 2

Outlier’s types Data No. The value of outliers

Centers of Ỹ 2 Ỹ = (140.00, 8.75)T

6 Ỹ = (120.00, 12.50)T

Spreads of Ỹ 4 Ỹ = (42.50, 35.00)T

7 Ỹ = (75.00, 1.00)T

Centers and spreads of Ỹ 5 Ỹ = (140.00, 45.00)T

7 Ỹ = (120.00, 40.00)T

with size n into two sets. The first set contains the training
data of size n − 1, which we can use to develop the regres-
sion model, and the second set is the testing data of size
k = 1, which is used to evaluate the predictive ability of the
presented regression model.

In this method, we consider n steps. In each step, the
i th observation is first deleted from the data set for i =
1, 2, . . . , n, and then, the fuzzy regression model is obtained
based on the remaining observations (training data set). In
final, the value of the i th response variable is predicted
based on the proposed fuzzy regressionmodel and is denoted

as ˆ̃Y (−i)
i . To evaluate the performance of fuzzy regression

model, we calculate the indices of goodness of fit MSM , Ḡ1

and Ḡ2 between Ỹi and
ˆ̃Y (−i)
i .

4 Numerical examples

In this section, we present some numerical and simulation
examples to illustrate our proposed approach.

Example 1 One of the classical problems in soil science is
themeasurement of physical, chemical, and/or biological soil
properties. The problem results from the difficulty, time, and
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Fig. 1 Comparison between fuzzy regression models based on the different loss functions and outliers in Example 2

cost of direct measurements. Mohammadi and Taheri (2004)
provided a data set that it includes some soil properties such
as the cation exchange capacity (CEC), the sand content per-
centage (SAND), and the organic matter content (OM) (see
Table 1). Now, we wish to model a relationship between
CEC (as the response variable) and SAND and OM (as the
explanatory variables) by the regression model:

Ỹi = β̃0 ⊕ (β̃1 ⊗ xi1) ⊕ (β̃2 ⊗ xi2), i = 1, . . . , 24,

where β̃ j = (β j , γ j )T , j = 0, 1, 2. But due to some impre-
ciseness in related experimental environment, the response
variable Ỹi is reported as a symmetric triangular fuzzy num-
ber (yi , si )T , in which the spreads are proportional to centers.
Here, we consider the sensitivity analysis of model by fuzzi-
fying for different values of spreads as si = wyi with
w = 0.05, 0.10, 0.20. Note that Arefi (2020) recently pre-
sented a quantile fuzzy linear regression model on this data
set. Since Arefi’s approach (AR) provided a optimal fuzzy
regression model on this data set, we compare our work with
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this approach (the results are listed in Table 2). Results show
that our proposed models based on the quantile loss function
with τ = 0.5 and Huber loss function with c = 0.5 have bet-
ter performance than the fuzzy model given by Arefi (2020)
(for each w = 0.05, 0.1, 0.2).

Now, to evaluate the performance and predictive ability
of optimal regression model based on the quantile loss func-
tion with τ = 0.5, we apply the cross-validation method on
data set in Table 1 (with si = 0.2yi ). The results are given
in Table 3. Based on the values of goodness-of-fit indices
(see Table 3), we can suggest the proposed fuzzy regression
model has a suitable performance for predicting the response
variables.

Example 2 Consider the data set in Table 4 (Tanaka and Lee
1998). To study the effect of outliers on the our proposed
models, we have listed some of different types of outliers in
Table 5. Assume that the original fuzzy regression model is
as

Ỹi = β̃0⊕(β̃1⊗xi1)⊕(β̃2⊗x2i1)⊕(β̃3⊗x3i1), i = 1, . . . , 8.

Table 6 lists the optimal fitted fuzzy regression models in
the presence of outlier data. In original model, the models
proposed based on the absolute error loss function and quan-
tile loss functions (at τ = 0.75) have better performance
than other models. In the presence of outlier data, the fitted
fuzzy regression model based on the quantile loss function
at τ = 0.75 is robust because the obtained fuzzy regression
models based on the quantile loss function at τ = 0.75 are
approximately similar in all cases (see Fig. 1).

Now, we apply the cross-validation method on data set in
Table 4 based on the optimal fuzzy regression model with
the quantile loss function at τ = 0.75. The results are given
in Table 7. The values of goodness-of-fit indices show that
the predictive ability of the proposed regression model is
suitable.

Example 3 (Tanaka et al. 1982) Consider the data set inTable
8. In this data set, the observations of independent variable
are crisp and the observations of dependent variable are pre-
sented as the symmetric triangular fuzzy numbers. This data
set has been considered by many numbers of researchers.
Here, we compare our approach with some other approaches
introduced by Diamond (1988) (DM), Chen and Hsueh
(2007) (CH2), Chen and Hsueh (2009) (CH1), Mosleh et al.
(2010) (ME), Taheri and Kelkinnama (2012) (T K ), Roldan
et al. (2012) (RE), Zeng et al. (2016) (ZE), and Lopez et al.
(2016) (HE). Results are given in Table 9. By using the
indices of goodness of fit, we can suggest the following cases:

• In between the fuzzy linear regression models based on
the least squared errors, the models (SLF), (DM), and
(CH1) have the approximately similar results.

Table 7 Values of response variable, corresponding predictions by
cross-validation method, and indices of goodness of fit on Tanaka and
Lee’s data set in Example 2

No. Ỹi
ˆ̃Y (−i)
i Indices

1 (22.50, 7.50)T (24.25, 6.50)T MSM= 0.540

2 (28.75, 8.75)T (26.19, 9.58)T

3 (25.00, 10.00)T (32.67, 9.64)T Ḡ1= 0.580

4 (42.50, 17.50)T (35.52, 10.92)T

5 (40.00, 15.00)T (40.49, 11.39)T Ḡ2= 0.239

6 (52.50, 12.50)T (54.00, 12.86)T
7 (75.00, 20.00)T (66.71, 15.00)T
8 (85.00, 15.00)T (89.88, 15.13)T

Table 8 Data set in Example 3 No. Ỹi xi

1 (8.00, 1.8)T 1

2 (6.48, 2.2)T 2

3 (9.50, 2.6)T 3

4 (13.50, 2.6)T 4

5 (13.00, 2.4)T 5

• In between the fuzzy linear regression models based on
the least absolute errors, the model (ALF) has better
performance than the models (CH2), (T K ), and (ZE).

• The fuzzy linear regression model based on the quantile
loss function (QLF) at τ = 0.6 provides a model with
better performance than other models considered in this
example.

Example 4 (Simulation study) In this example, we want to
design a data set that empirically assesses the robust perfor-
mance of the proposed fuzzy regression model based on the
quantile loss function. Based on a sample of size n = 100
simulated under a fuzzy regression model, we obtain a data
set (xi , Ỹi ), i = 1, . . . , 100. Also, we add three different per-
centages of simulated outliers as p.out = {0.05, 0.10, 0.20}
in this the data set, and we want to evaluate the proposed
models. Note that we assume that the data set is simulated
based on the following model

Ỹi = (13, 4)T ⊕ ((7, 1)T ⊗ sin(
3.14

24
xi )) ⊕ ((0.33, 0.01)T

⊗xi ) ⊕ εi , i = 1, . . . , n,

where xi and εi are generated from U (−40, 50) and
N (0, 1.5), respectively. The outlier observations are gener-
ated according to two different types: Type I is the outliers in
the centers of Ỹi , and Type II is the outliers in the spreads of
Ỹi . We generate these two types of outliers from the bivari-
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Fig. 2 Fuzzy regression model under original data and based on quan-
tile loss function with τ = 0.5 in Example 4

ate Gaussian distribution N2

([

μx

μy

]

,

[

σ 2
X ρσXσY

ρσXσY σ 2
Y

])

and

uniform distribution, respectively. In Type I, we generate

observations (xi , yi ) from two bivariate Gaussian distribu-

tions N2

([

x̄ + εi
max(yi ) + 1.5sy

]

,

[

20 0
0 5

])

and N2
([

x̄ + εi
min(yi ) − 1.5sy

]

,

[

20 0
0 5

])

, where εi is generated

from U (−20, 40) and sy =
√

1
n

∑100
i=1(yi − y)2. In Type II,

we generate the spreads of triangular fuzzy response obser-
vations (yi , si )T based on U (9, 13). The results of the fitted
fuzzy regression models based on the quantile loss function
with τ = 0.25, 0.5, 0.75 are given in Table 10. Based on the
index of MSM , the model based on the quantile loss func-
tion with τ = 0.5 has the best results. See Figs. 2 and 3 for
the performance of the best fuzzy regression models (using
quantile loss function at τ = 0.5). They show the robustness
performances from our proposed model in original data set
and in the models with the presence of outliers. Also, we
can consider the similar results based on the results given in
Tables 10 and 11. Based on these tables, we have

• The MSM in the original data and the MSM without
outliers (in the models with outliers) are approximately
similar (see Table 10).

Fig. 3 Fuzzy regression models in the presence of outliers and based on quantile loss function with τ = 0.5 in Example 4
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Table 11 Mean values of the
estimated parameters in
Example 4

Outlier’s types Quantile level Means of β̃0 Means of β̃1 Means of β̃2

β0 γ0 β1 γ1 β2 γ2

Centers of Ỹ 0.25 12.030 4.000 6.496 0.999 0.319 0.010

0.50 12.972 3.990 6.106 0.997 0.314 0.010

0.75 13.835 4.032 6.131 0.996 0.324 0.008

Spreads of Ỹ 0.25 11.879 4.543 6.542 0.489 0.325 0.007

0.50 12.907 4.391 6.155 1.066 0.316 0.010

0.75 13.865 4.663 6.089 0.799 0.324 0.022

• The values of the estimated parameters with original
data and the mean values of the estimated parameters
in the presence of outliers are approximately similar (see
Table 11).

5 Conclusion

In this paper, we present a new approach to fit the fuzzy
regression models based on some loss functions when the
response variable and the parameters of model are as fuzzy
numbers. Some of certain merits in this approach are as fol-
lows:

(1) It is a general approach for fitting the fuzzy regression
models based on the different types of loss functions.

(2) A new definition of the objective function is presented
based on loss function and the average of differences
between the α-cuts of errors.

(3) Among the proposed loss functions, the fuzzy regression
models based on the quantile loss function and Huber
loss function are robust under outlier data.

(4) To evaluate the goodness of fit of the proposed fuzzy
regression models, we introduce three indices.
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