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Abstract
To deal with classification problems, support vector machines (SVMs) are utilized in a wide variety of applications as effective
and powerful supervised learning paradigm. However, the efficacy and outcomes of an SVM-based classification model is
influenced by the proper selection of SVM parameters in addition to the nature of the datasets. Therefore, the purpose of
this work is to enrich the efficacy of the SVMs based on simultaneous optimization of the parameters and feature weighting
of these models. In this paper, an improved evolutionary variant of competitive swarm optimizer (CSO) is proposed to
evolve the parameters of SVMs and optimize the weights of features. Simulations and experiments are performed based on
various datasets from UCI repository to investigate the effectiveness of the proposed hybrid CSO-based SVM model versus
genetic algorithm, particle swarm optimizer and the classical grid-based search. Results and analysis reveal that the proposed
crossover-based mechanism inside CSO has improved the classification capabilities of the hybrid CSO-SVM technique.

Keywords Feature weighting · Support vector machines · Competitive swarm optimizer · Medical dataset

1 Introduction

The properties of a dataset and the parameter values of a
certain classifier are two factors that highly influence the
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classifier’s accuracy (Li et al. 2015; Huang and Wang 2006).
In complex and high-dimensional datasets that are non-
separable, kernel functions can be used to restructure the
data in order to map it easily in higher dimensional spaces
(Phan et al. 2017). However, there is no kernel function that
is appropriate for all datasets, and identifying which kernel
to be used with each dataset is a complex and time consum-
ing process. Moreover, mapping the data into a new higher
dimensional space increases the complexity of time and space
resources (Zhang et al. 2010).

Therefore, many researchers tried to investigate working
with datasets properties (e.g., number of features) rather than
mapping themwith higher dimensional spaces (Li et al. 2015;
Al-Zoubi et al. 2019). Feature Selection (FS) and Feature
Weighting (FW) are two of the most efficient approaches
that have been used to tackle this problem. On one hand,
FS methods focus on eliminating some irreverent and redun-
dant features that may mislead the learning algorithms and,
therefore, decrease their performance (e.g., accuracy). On the
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other hand, FWmethods tend to assign a rank (or aweight) for
each feature based on its correlation with the class label, i.e.,
the highly correlated features will get a high weight (Tahir
et al. 2007).

Support Victor Machine (SVM) is one of the most popu-
lar supervised machine learning techniques, which has been
successfully applied to various classification problems such
as text categorization, hand-written character recognition,
image classification, and fault diagnosis (Shin et al. 2005;
Yuan and Chu 2007; Guo et al. 2008; Wu et al. 2010; Sun
et al. 2019; Tanveer 2015; Xu et al. 2013). Like other classi-
fiers, the performance of SVM classifier is highly dependent
on its parameter values and settings [e.g., penalty parameter
C and the kernel function’s parameters such as the gamma
(γ ) (Lin et al. 2008; Huang and Dun 2008)], in addition
to the properties of the dataset being classified (e.g., what
features to be used). Many researchers in the literature con-
centrated on optimizing the SVM parameters using different
algorithms, while others used to select the most informative
features in order to improve the performance of the SVM
classifier. However, a few works that combines both prob-
lems are available. The Grid search is one of the common
algorithms that have been used to set theC and γ parameters
when using radial basis functions (RBF) kernel. However,
using this method became impractical in terms of time com-
plexity (Hsu et al. 2003; LaValle et al. 2004), and no attention
is paid to which features to be used in the learning process.

Recently, many metaheuristic algorithms were employed
to tune the SVM parameters and/or select the input subset
of features. Some examples of those optimization meth-
ods are: Genetic Algorithm (GA) (Huang and Wang 2006),
Whale Optimization Algorithm (WOA) (Ala’M et al. 2018)
Multiverse optimization (MVO) (Sadiq et al. 2019), Simu-
lated Annealing (SA) (Boardman and Trappenberg 2006),
Salp Swarm Algorithm (Ala’M et al. 2020), and Particle
Swarm Optimization (PSO) (Huang and Dun 2008). The
Competitive Swarm Optimization (CSO) (Cheng and Jin
2015) is a recent optimization algorithm that was fundamen-
tally inspired by the PSO with some modifications, where
neither local best nor global best positions were used in CSO.
In CSO, a competition mechanism is maintained between
the particles of the swarm, where a pairwise competition is
performed between the particles. The loser learns from the
winner instead of learning from the pbest and gbest as in
the original PSO. The CSO recorded competitive results in
solving many optimizing problems especially the large-scale
problems.

In this paper, an improved CSO is proposed to perform
two main tasks simultaneously, which are the optimization
of SVM parameters, and optimizing the weights of the input
features. The new mechanism in CSO assists the algorithm
in establishing a more stable balance between exploratory
and exploitative tendencies by integrating a crossover mech-

anism into its procedure. Moreover, most of the previous
works that combined metaheuristics with SVM and per-
formed feature selection where the input features were either
included or excluded. In this paper, the proposed approach
automatically quantifies the weights of the input features and
consequently gives an insight on the relative importance of
these features. Therefore, it can provide a great aid for subject
matter experts and decision makers in their domains. There-
fore, it is expected that the proposed model is best suited
for small to medium dimensional datasets. For verification,
different experiments are conducted using popular medical
datasets with different complexities. The proposed approach
is compared with well-regarded algorithms in the literature
that were commonly used in combination with SVM. The
experimental simulations reveal that the superiority of the
proposed CSO and its efficient performance compared to
other methods.

The rest of this paper is organized as follows: In Sect. 3,
preliminaries including SVM and CSO basics are discussed.
The proposed approach is discussed in Sect. 4. In Sect. 5, the
details of the experiments conducted in this paper are also dis-
cussed, followed with a deep analysis of the obtained results.
Finally, the conclusion and future directions are drawn in
Sect. 6.

2 Related works

Metaheuristic algorithms are known very well in the lit-
erature as high-level procedures designed to handle many
complex problems that require searching, generating and
selecting. In the literature, the application of metaheuristic
algorithms in combination with SVMcan be categorized into
three main types.

The first type comprises the works designed to improve
and optimize the hyper-parameters of the SVM, which are
cost and gamma. The SVM usually suffers to reach the opti-
mal solution due to the high range of the two parameters.
Therefore, several works applied metaheuristic algorithms
to solve this problem. For example, Friedrichs and Igel
(2005) proposed an evolutionary approach to select and tune
the SVM parameters, they applied the covariance matrix
adaptation evolution strategy (CMA-ES) for this purpose.
Additionally, they showed that their approach achieved better
results than the standard grid search. Xiaofang and Yao-
nan (2008) utilized the chaos optimization algorithm to
search for the optimal parameter values of the SVM. They
argue that the chaos algorithm has an effective ability to
reach the global optimal and eventually improve search effi-
ciency and accuracy. The work in Lorena and De Carvalho
(2008) investigated how improving and optimizing the SVM
parameters can be enhanced for multiclass problems by
applying GA. Another recent work Tharwat and Hassanien
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(2019) employed Bat Optimization Algorithm (BA) along-
side other metaheuristic algorithms to determine the best
hyper-parameters and, thus, increasing the performance of
the classification process. BA achieved competitive results
when compared with other algorithms such as GA and PSO.
Furthermore, many other works covered this area of research
on tuning the SVM parameters (Guo et al. 2008; Zhang et al.
2010; Bao et al. 2013; Tharwat and Hassanien 2018). How-
ever, optimizing only the hyper-parameters is not effective in
all problems, particularly in high-dimensional data.

This is when the second type comes, where this approach
combines the optimized hyper-parameters with the feature
selection simultaneously. Due to the emergence of high-
dimensional data in recent years, the feature selectionmethod
has become required and important for such data (Zhao et al.
2014; Zhang et al. 2020). Simultaneously applying meta-
heuristic algorithms for the two tasks shows magnificent
results as demonstrated in the literature. Faris et al. (2018)
proposed an automatic approach to optimize the hyper-
parameters as well as applying feature selection process to
achieve the optimal result from the SVM. The authors used
the Multi-Verse Optimizer (MVO) to achieve this; the MVO
designed as a tuner to improve the main parameters of SVM
and finding the best subset of features. Aljarah et al. (2018)
also presented similar work by applying the recent algorithm
Grasshopper Optimization Algorithm (GOA). The proposed
approach was compared against seven well-known algo-
rithms on 18 high- and low-dimensional benchmark datasets.
The results show that their approach outperforms all seven
algorithms in most of the datasets. In another research, a
simultaneously feature subset selection and optimization of
SVM parameters were applied to solve the multi-objective
optimization problems by using the multi-objective Genetic
AlgorithmNSGA-II (Bouraoui et al. 2018). Similarly, several
works were implemented using different metaheuristic algo-
rithms including, Chaotic Ant Lion Optimization (CALO)
(Tharwat and Hassanien 2018), PSO (Lin et al. 2008; Tu
et al. 2007; Liu et al. 2011; Huang andDun 2008), GAHuang
and Wang (2006); Zhao et al. (2011); Reif et al. (2012), Ant
ColonyOptimization (ACO) (Huang 2009) andGravitational
Search Algorithm (GSA) (Li et al. 2015).

Similar to the other previous approaches, the final type
consists of optimizing the hyper-parameters, however, dif-
fers in the way it deals with the features; as it performs
feature weighting instead of selecting a subset of them. The
weighting process operates by multiplying the value of every
instance of all the features, then order them by their values.
This method is considered more efficacious than the feature
selection process in a number of cases and problems where
the features are very sensitive. Thus, removing these kinds
of features may negatively affect the classification perfor-
mance. Phan et al. proposed aGA-SVMmodel that optimizes
the hyper-parameters of SVM and weights the features to

solve classification problems efficiently (Phan et al. 2017).
The authors run their approach on several real-world datasets
and compared them with the grid search and other standard
searchmethods. Thework introduced a good technique using
the GA. To the best of our knowledge, Phan et al. was the ear-
liest in this category. And since their work, there is no major
advancements in this direction. Therefore, we conduct this
research in order to boost the performance of SVM and show
the capabilities of swarm intelligent algorithms in making a
significant advancement in this line of research.

3 Preliminaries

3.1 Support vector machine

Support VectorMachines (SVM) is a well-established super-
vised machine learning technique designed for the first time
by Vapnik (1999) to handle and find solutions for classi-
fication and regression scenarios, based on examining the
given datasets and exploring definite hidden/visible patterns.
SVM has shown its high capabilities in dealing with non-
linear classification problems. SVM method distributes the
training data in other dimensional feature space, and then, it
performs linear separation on the data for detecting possible
classes (Wang andChen 2020). SVMperforms the separation
step based on generating a hyper-plane, which is considered
to optimize the observed margin among the nearest points
of various classes, which are called support vectors (Shen
et al. 2016). SVM tries to find the fittest hyper-plane as it is
demonstrated in Fig. 1. However, this step has an inertia to
over-fitting problem, which can lead to the misclassification
of the new samples of datasets. To deal with this problem,
this step is managed by using a penalty parameter cost (C)
that increases the accuracy of classification and prediction.

The formula used in common SVM can be equipped
with kernel functions to deal with the nonlinear separation
problem, including polynomial kernel and the Radial Basis
Function (RBF). RBF is the most popular kernel function
utilized within SVM, which uses a Gamma (γ ) parameter.

The most applied technique for searching and finding the
parameters of SVM-based classifiers is grid search. Manag-
ing the misclassification error and obtaining the values of
C and γ are simultaneously important to reach to high per-
formance and avoid over-fitting drawback when using SVM
with RBF kernels (Hsu et al. 2003). However, because grid
search technique performs local search process, it has the ten-
dency to be stagnated to local optima (LO) intervals. In this
method, if we set small searching intervals, we will obtain
poor results and if we set large intervals, it will bring more
computational time for the operating system (LaValle et al.
2004; Hsu and Lin 2002). Additionally, this algorithm cannot
be used for Feature Selection (FS).
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Fig. 1 Support vectors and optimal hyperplane in support vector
machines

3.2 Competitive swarm optimization

CSO is known as a successful variant of PSO technique
(Cheng and Jin 2015). The well-known PSO cannot show
an excellent performance when dealing with high-dimension
problems, as reports and observations confirmed, because of
many local best positions we may face in these cases (Yang
and Pedersen 1997). When PSO cannot manage a fine bal-
ance between exploration and exploitation, the problem of
premature convergence can happen, which is a frequently
observed drawback in metaheuristic approaches including
PSO (Chen et al. 2013). To cope with immature convergence
trends and tendency to stagnation drawbacks, many variants
of PSOwere introduced in recent years (Cheng and Jin 2015).
However, the majority of these variants still may face the
stagnation dilemma, because the global best search particle
(gbest) has a significant impact on the efficacy of PSO. In
CSO, it was intended to decrease the impact of gbest in order
to alleviate the problems of convergence.

The structural and conceptual difference of CSO with
PSO has two points. First, in PSO technique, exploration and
exploitation mechanisms are motivated by gbest and the per-
sonal best particle pbest, whereas in CSO, there is no pbest
and gbest within the optimization steps, and the exploratory
and exploitative behaviors are observed based on the pair-
wise competition of particles. In this way, any particle has a
chance to be a leader. Second, in CSO, there is no history, and
when the particles lose the competition, they try to learn only
from the winner particles in the ongoing set of solutions. In
CSO, the set of search particles at iteration t P(t) is obtained

Fig. 2 CSO competition and learning process

based on:

P(t) = {X1(t), . . . , Xm(t)} (1)

Xi (t) = {xi1, . . . , xid(t)} (2)

where X shows a d-dimensional particle X ∈ Rd and m is
population size. In CSO, we need to randomly divide the ini-
tial set of particles into two groups with size of m/2. A base
particle (one particle from the first group) is considered to
compete with the paired one in the other group. The winner
is the particle with better fitness, and we directly transfer it
into the next step to be used in P(t+1), while the other one is
the looser and should learn from winner, that is to update its
velocity and position vectors with regard to those for winner,
to be inserted to the next iteration. By this manner,m/2 com-
petitions are performed to update half of the population. Fifty
percent of particles are the winners; hence, they are inserted
directly to the next level, and the rest of them are treated as
looser particles, which will be passed after updating of their
status, as shown in Fig. 2.

Each particle has vectors for position and velocity. In i-th
pairwise race in the t-th iteration, the position and veloc-
ity vectors of winner and loser particles are denoted by
Xw,i (t), Xl,i (t), Vw,i (t), Vl,i (t), respectively, while we have
i = 1, 2, . . . ,m/2. After i-th race, the loser is updated based
on:

Vl,i (t + 1) = R1(i, t)Vl,i (t) + R2(i, t)(Xw,i (t) − Xl,i (t))

+ϕR3(i, t)(X̄i (t) − Xl,i (t)) (3)

Xl,i (t + 1) = Xl,i (t) + Vl,i (t + 1) (4)

where R1(i, t), R2(i, t), R3(i, t) ∈ [0, 1]d denote random
vectors, X̄i (t) represents the average locations of the some
particles, where, we can calculate the average of locations for
ongoing swarm or using predefined neighboring particles. ϕ
is the single tunable factor of CSO to manage the impact of
X̄i (t). The pseudocode of CSO is represented in Algorithm
1.
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Algorithm 1 Pseudocode of CSO
1: Inputs: Number of iterations L , population size m
2: output: The best particle and its fitness value
3: Initialize P(0) in a random manner
4: while t < L do
5: Obtain the fitness (F) of particles P(t)
6: U = P(t) � Set of particles that still have not considered in race
7: P(t + 1) = φ

8: while U �= φ do
9: Select two random particles X1(t), X2(t) from U
10: if F(X1(t)) < F(X2(t)) then
11: Xw(t) = X1(t); Xl(t) = X2(t);
12: else
13: Xw(t) = X2(t); Xl(t) = X1(t);
14: P(t + 1) = P(t + 1) ∪ Xw(t)
15: Update Xl (t) using Eqs. (3) and (4) to get Xl (t + 1)
16: P(t + 1) = P(t + 1) ∪ Xl (t + 1)
17: U = U − (X1(t) ∪ X2(t))
18: t = t + 1

4 Proposed approach

In this section, we first describe the modified version of CSO
(CCSO) which introduces a crossover operator embedded
in it. Then, we describe, in detail, the proposed CCSO-SVM
classification model which deploys CCSO for optimizing the
parameters of SVM and to perform feature weighting simul-
taneously.

4.1 CSOwith crossover (CCSO)

To enhance the efficacy of CSO, we utilize a crossover pro-
cedure to combine the particles, as described in Eq. 5.

Xl(t) = Crossover(Xl(t), Xbest) (5)

where Crossover() is a new process that executes the
crossover-based process on loser particles, Xl(t) is the loser
particle of the t th iteration, and Xbest is the particle with the
best fitness out of all iterations.

After a pairwise competition is conducted between win-
ner and loser particles where the loser particles are updated
according to the winners, the crossover mechanism takes its
place. Loser particles are utilized in the crossover opera-
tion between them and the best particle found so far. This
technique guarantees further exploration and enhancements
on the loser particles by making similar random chances of
either selecting a number of positions from the best parti-
cle or keeping current positions, according to the following
equation:

Xi
l =

{
Xi
best rand(i) = 1

Xi
l rand(i) = 0

(6)

Fig. 3 The used crossover scheme

where Xi
l is the i th position in the loser particle, X

i
best is the

i th position in the best particle, and rand(i) is the corre-
sponding random element.

Algorithm 2 Pseudocode of Crossover() function
1: Inputs: dimension dim, maximum iteration L , current iteration t ,

loser particle Xl (t), best solution Xbest
2: output: a new particle
3: Define rand = rand(1,dim);
4: if rand >= (t/L) then
5: rand=1;
6: else
7: rand=0;
8: for i = 1, i < size(Xl(t)), i++ do
9: if (rand(i) == 1) then
10: Xi

l (t) = Xi
best

An illustration of this operation is demonstrated in Fig. 3.
As shown in Fig. 3, we see that this operator exchanges the

values between two particles. By this rule, we can experience
sudden fluctuations in the loser particle. This operator tries
to generate an intermediate particle within the feature space
to assist CSO in exploring the feature weights.

Algorithm 3 explains the new steps for CSO after embed-
ding the crossover technique. As the algorithm shows, the
fitness of the updated particle Xl_cross is compared against
the fitness of both Xbest and Xl , and the particle with the best
fitness is moved to the next iteration.

4.2 CCSO-SVM classificationmodel

Before applying the CCSO algorithm for performing the
tasks of optimizing SVM parameters and optimizing the
weights of the input features, the representation of the solu-
tion (also known as particle or individual), and the selection
of the fitness function should be resolved. In the follow-
ing, we discuss each of these important design issues then
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Algorithm 3 Pseudocode of CCSO
1: Inputs: Number of iterations L , population size m
2: output: The best particle and its fitness value
3: Initialize P(0) in a random manner
4: Initialize Xbest = 1e200
5: while t < L do
6: Obtain the fitness (F) of particles P(t)
7: U = P(t) � Set of particles that still have not considered in race
8: P(t + 1) = φ

9: while U �= φ do
10: Select two random particles X1(t), X2(t) from U
11: if F(X1(t)) < F(X2(t)) then
12: Xw(t) = X1(t); Xl(t) = X2(t);
13: else
14: Xw(t) = X2(t); Xl(t) = X1(t);
15: P(t + 1) = P(t + 1) ∪ Xw(t)
16: Update Xl (t) using Eqs. (3) and (4) to get Xl (t + 1)
17: Xl_cross(t) = Crossover(Xl(t),Xbest); � Call

Algorithm 2
18: if F(Xl(t)) < F(Xbest ) then
19: Xbest = Xl (t);
20: if F(Xl_cross(t)) < F(Xbest ) then
21: Xbest = Xl_cross(t);
22: Xl (t + 1) = Xbest ;
23: P(t + 1) = P(t + 1) ∪ Xl (t + 1);
24: U = U − (X1(t) ∪ X2(t));
25: t = t + 1

we describe the overall system architecture of the proposed
model.

4.2.1 Solution representation

As a search algorithm designed for solving sophisticated
problems, CCSO is simultaneously utilized in two parts. The
first part comprises searching for the bestC and γ parameters
for SVM classifier, and the second part includes weighting
the features (see Fig. 5). Therefore, the number of elements
generated by CCSO covers both parameters in addition to
D number of features for every dataset, all combined in
one-dimensional vector of D + 2 real numbers originally
generated in the interval [0,1].

The first two elements in the vector are correspondent to
C and γ parameters. The search spaces for these parameters
are different from the original scale and, therefore, they are
scaled to the intervals [0,35000] for C and [0,32] for γ . This
transformation is performed using Min-max normalization
as given in Eq.7.

B = A − minA
maxA −minA

(max
B

−min
B

) + min
B

(7)

The remaining elements that correspond to the features
will be at the same original scale to be used for weighting.
In the weighting process, each element in the vector is mul-
tiplied by the value of its matching feature for every instance
4. For example, if we have a simple dataset of 3 instances,
then the values of the first feature of the 3 instances will be
multiplied by the value of the first element of the solution
generated by the CCSO. The same is applied for the rest of
dataset as shown in Fig. 4. The overall solution structure and
its presentation is illustrated in Fig. 5.

Fig. 4 A simple example to illustrate the representation of the weighting mechanism in the solution of the proposed model
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Fig. 5 Structure of the solution
in the proposed CCSO-SVM
model

Fig. 6 The proposed
CCSO-based process
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Table 1 List of used datasets # Dataset # Features # Instances # Classes Class ratio

1 Blood 4 748 2 0.31

2 Colon cancer 2000 62 2 0.50

3 Diabetes 8 768 2 0.54

4 Haberman 3 306 2 0.32

5 Heart 13 270 2 0.80

6 Libras 90 360 15 1.00

7 Liver 6 345 2 0.73

8 Parkinsons 22 195 2 0.33

9 Spectf 44 267 2 0.26

10 WDBC 30 569 2 0.59

4.2.2 Fitness evaluation

The assessment of each individual in every iteration is per-
formed by using the fitness function to provide the feedback
for CSO and CCSO. The fitness function that is chosen for
evaluation is the classification accuracy of the SVM classi-
fier, which is calculated according to the following equation:

fitness(I ti ) = 1

K

K∑
k=1

1

N

N∑
j=1

δ(c(x j ), y j ) (8)

where c(x j ) is the accuracy of the j th instance of the testing
set, y j is the label of the actual class for the j th instance, δ
denotes the relation between c(x j ) and y j , i.e., if c(x j ) = y j ,
then δ = 1, otherwise δ = 0. The number of instances in the
testing set is denoted by N , and K is number of folds.

4.2.3 System architecture

The processes that are carried out to fulfill our proposed
approach start with splitting every dataset into training and
testing sets. The splitting criterion depends on the number
of separate experiments. In other words, for k experiments,
the dataset is split into k parts, k − (1/k) parts are used for
training, and the remaining 1/k part is used for testing. This
guarantees maximum diversity of both training and testing
sets to produce the best possible model.

Thenext step includes involving theCSOand the proposed
CCSOalgorithms. In this step, CCSO starts its iterationswith
a randomly generated vector of real numbers, which is then
used for setting C , γ and the weights of the features. Then,
the SVM classifier starts training using the weighted training
set. During the training process, an inner cross-validation is
used in order to produce a more robust model.

After finishing the training process, SVMclassifier returns
the accuracy as the fitness value to the CCSO algorithm. The
previous processes are repeated for the same training set until

Table 2 The detailed settings of the utilized system

Name Settings

Hardware

CPU Intel Core (TM) i5-6400 processor

Frequency 2.70GHz

RAM 8GB

Hard drive 500GB

Software

Operating system Windows 7 (64-bit)

Language MATLAB R2016a

Table 3 The detail of runs

Item Settings

Splitting criteria Tenolds

Population size 30

Iterations 50

Table 4 The parameter settings

Algorithm Parameter Value

GA Single point crossover 1

Mutation 0.01

Roulette wheel selection

PSO Topology fully connected

Inertia factor 0.3

c1 1

c2 1

CSO Phi 0.2

CCSO Phi 0.2

Crossover 1

the termination criterion for CCSO is met which, in our case,
is the maximum number of iterations.
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Table 5 Different population × iteration

Dataset 10 × 30 30 × 50 50 × 100

Haberman 71.5054 74.8602 72.5376

Heart 84.4444 85.5556 84.0741

Bold indicate the best results

Table 6 Different Phi parameters of the CCSO

Dataset 0.2 0.4 0.6 0.8

Haberman 74.8602 72.2043 73.2151 72.9355

Heart 85.5556 81.8519 82.2222 82.9630

Bold indicate the best results

When the maximum number of iterations is reached, the
best individual produced by CCSO is used for testing using
the testing set. Finally, all previous steps are repeated for k
times and the average values are considered. Figure6 depicts
all the previous processes.

5 Experiments and results

In this section, all results and experiments are reported, in
detail, to show the performance of different algorithms in
dealing with different datasets, in addition of a brief descrip-
tion regarding the importance of feature weighting.

5.1 Experimental setup and parameters tuning

In this work, in order to have a fair comparison, all tests are
experienced based on the same conditions. We also used a
personal computerwith the specifications reported inTable 2.
To investigate the performance of the proposed CCSO-SVM,
ten well-known datasets are utilized from the UCI repository

Table 8 P values of CCSO versus other metaheuristic methods and
grid search

Dataset CSO-SVM GA-SVM PSO-SVM Grid-SVM

Blood 7.13E−01 8.07E−01 2.70E−01 9.80E−03

Colon cancer 2.88E−04 2.50E−03 9.53E−05 1.93E−11

Diabetes 1.99E−02 9.03E−01 3.91E-−01 3.90E−01

Haberman 9.03E−01 3.56E−09 2.29E−06 5.37E−04

Heart 1.05E−01 8.30E−03 3.24E−02 3.71E−05

Libras 1.04E−04 1.17E−05 3.36E−02 4.59E−24

Liver 1.76E−01 1.93E−02 2.06E−04 3.60E−04

Parkinsons 5.90E−01 1.50E−03 1.12E−05 1.24E−17

Spectf 3.35E−04 3.63E−05 8.47E−02 1.10E−03

WDBC 6.07E−01 3.09E−01 5.20E−03 1.31E−01

(Lichman 2013). Table 1 shows the details of the selected
datasets. It is noteworthy to mention that, the class ratio is
calculated by dividing the number of instances of the minor
class by the number of the major instances.

Details of tests and runs are shown in Table 3. The param-
eter settings of the CCSO, CSO, GA, and PSO are shown in
Table 4. To set the population size and number of iterations,
different combination of these two parameters are conducted
for CCSO which are 10×30, 30×50, and 50×100, respec-
tively. Two datasets are selected for these initial experiments
as they show high sensitivity during building the models
in terms of accuracy results. As shown in Table 5, 30 for
population size and 50 iterations produce the best accuracy.
Furthermore, different values for Phi are tested as well. Table
6 shows that the best results for CSSO are obtained when Phi
is 0.2.

Table 7 Comparison of CCSO and CSO with other metaheuristic methods and grid search in terms of accuracy rates

Dataset CCSO-SVM CSO-SVM GA-SVM PSO-SVM Grid-SVM
Acc Std Acc Std Acc Std Acc Std Acc Std

Blood 78.4721 5.3339 79.2775 3.1610 78.3441 5.0909 78.3459 6.0153 76.5964 5.0248

Colon cancer 85.4762 16.5510 84.0476 6.8319 82.3810 11.7824 80.4762 10.7539 64.5238 24.9578

Diabetes 76.9498 5.9196 77.6179 4.9922 76.6866 4.7283 76.9498 4.3139 76.2867 6.1448

Haberman 74.8602 10.0251 73.5484 9.3122 70.2473 8.8573 71.8925 5.8420 72.2473 6.9439

Heart 85.5556 6.1605 84.0741 7.4177 83.3333 5.8561 83.7037 7.0273 81.4815 5.2378

Libras 89.7222 1.8749 88.8889 6.1419 86.9444 5.2460 86.6667 7.7247 78.6111 9.6270

Liver 71.3277 6.8961 71.3277 9.9362 74.2353 7.7316 68.4034 5.5008 68.1345 7.8961

Parkinsons 95.9211 4.0432 94.8947 5.8781 92.3158 7.7161 93.8421 4.6237 86.1579 8.2616

Spectf 82.3789 5.3805 79.4160 4.3047 78.6752 5.7696 80.1994 10.4448 79.4302 6.5003

WDBC 97.8916 1.6114 97.7162 2.1951 97.0081 3.1078 97.3653 1.4889 97.3653 2.2255

Bold indicate the best results
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(a) (b) (c)

(d) (e) (f)

(j)

(h)(g) (i)

Fig. 7 Convergence curves of CCSO, CSO, GA, and PSO techniques

5.2 Comparison with other well-regarded
metaheuristic-based SVM

Table 7 compares the accuracy results of the proposed CCSO
against CSO and other peers. As per results in Table 7,
it is observed that the proposed CCSO outperforms other

competitors in terms of accuracy rates on Colon cancer,
Haberman, Heart, Libras, Parkinsons, spectf, and WDBC
datasets (70% of datasets). Compared to Grid-SVM, we see
that all swarm-based optimizers show a better performance in
terms of average (Acc) and (Std) results. TheCSO reveals the
best results on Blood and Diabetes cases, while GA obtains
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Fig. 8 BoxPlot results for CCSO, CSO, GA and PSO

the highest rate on Liver case. The CCSO shows the highest
accuracy results for a large dataset like Colon cancer and it
improves the results of CSO, GA, PSO, and Grid search up
to, 1.428%, 3.095%, 5%, and 20.952%, respectively. Based
on overall ranks, we can see that the CCSO is ranked one,
followed by CSO, GA, PSO, and Grid-search methods. The
main reason is that the CCSO has an improved capability
in balancing the exploratory and exploitative trends when
dealing with more complex feature spaces. The integrated
crossover scheme has assistedCCSO to show amore efficient
performance in terms of local optima escaping behaviors
compared to other peers.

The nonparametric statistical test Wilcoxons rank sum is
conducted to test the significance of the obtain results of
CCSO against the other metaheuristic algorithms. In this
work, the test is performed at 5% significance level. Table
8 shows the statistical test results in terms of p values. Note
that the p values that are less than 0.05 which indicate a
significance difference are underlined. As per the obtained
p values, we see the differences are significant for most of
the cases. That is CCSO significantly outperforms GA in 6
datasets, and it outperformPSO, and grid search in 7 datasets.

The convergence curves of CCSO aremonitored and com-
pared with CSO, PSO, and GA in Fig. 7. As per curves, first,
we see the curves of CSO-based approach are superior to
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Fig. 9 Features weights
obtained by CCSO method for
blood and colon cancer datasets

(b)

(a)

PSO and GA in most of the datasets. In addition, we see
the curves of CCSO and CSO are very competitive for some
datasets such as Colon Cancer, Diabetes, Heart, and WDBC
cases. For some of them such as Haberman and Heart, GA
and PSO also show a competitive efficacy in convergence
trends. We observe that CCSO has a better capacity to avoid
local optima stagnation drawbacks; hence we see it outper-
forms basic CSO in dealing with Blood, Haberman, Heart,
andLiver datasets.However, the basicCSOalso is rankedone
on two cases: Parkinsons and Spectf cases. In overall, we see
theCCSOcan show improved convergence leanings due to its
higher exploration capacities in initial steps and its enriched
capabilities in performing a smoother transition from diver-
sification to intensification in the last steps. The crossover

between the loser particles and the leaders has enhanced the
quality of the swarm in a gradual manner (Figs. 7, 8).

In order to further exhibit the distribution of the accuracy
rates of CCSO-SVMversus the other optimized SVMs and to
study the stability of the algorithms, we show the boxplots of
the obtained results in Fig. 9. The boxplot results also con-
firm the satisfactory efficacy of the proposed CCSO-SVM
as it shows very competitive stability compared to the other
algorithms in most of cases as it has relatively smaller boxes.

The resulted features’ weights calculated by CCSO
method are shown in Figs. 9, 10, 11, 12 and 13. Note that
in case there are more than 10 input features in the dataset,
only the ten features that have the highest weights are shown
for clarity reason. The weighting method is a meaningful
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Fig. 10 Features weights
obtained by CCSO method for
diabetes and Haberman datasets

(a)

(b)

way to check the most influencing features for every dataset.
As it can be seen in the figures, the proposed CCSO-SVM
automatically identifies the weights of the input features for
each dataset.

For example, as shown in theHeart dataset figure (Fig. 11),
the features have been weighted via CCSO algorithm and
arranged by their importance of detecting the status of the
heart patient, whether the disease is present or absent. The
Age feature, for instance, is the least important among all
features, this indicates according to the developedmodel that
the age has less effect for such disease, unlike another feature
such as Sexwhich appears to bemore important for the detec-
tion process of the heart disease. In addition, the maximum
heart rate achieved feature, which is the maximum number

of times the heart should beat perminute, shows that the heart
rate is essential for the detection process, where the normal
adult human heart rate should be between 60 and 100bpm
while resting according to The American Heart Association.

In this work, we select the medical field as an applica-
tion to form an essential guide for concerned parties in that
field. Such guidance can also be implemented to seek the pat-
tern and hidden information of the selected features, such as
the most and least important feature. This method will help
in preventing the use of useless and time-consuming fea-
tures and counting on the important ones. In addition, these
weights could help decisionmakers to have better knowledge
about the key factors in identifying a specific disease.
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Fig. 11 Features weights
obtained by CCSO method for
heart and Libras datasets

(a)

(b)

5.3 Comparison with other classification algorithms

In this experiment, we compare the performance of the pro-
posed CCSO-SVM with well-regarded classification algo-
rithms that are widely used in the literature. These classifiers
include: decision trees algorithm C4.5, k-nearest neighbor
(k-NN), Naïve Bayes (NB), Multi-layer Perceptron (MLP)
neural network. For C4.5, we used its Java implementation
in Weka which is known as (J48). For k-NN, k was set to
1 which gave the best performance. In MLP, the number of
hidden neurons was set according to the popular rule which
determines this number as the average of input features and
number of outputs. Table 9 tabulates the results of all these
classifiers. It can be clearly seen that CCSO-SVM obtained
the best results in majority of the datasets (7 out 10 datasets).
While MLP obtained the best results in two cases, which are

Liver and Spectf datasets. Finally, k-NN achieved the best
results in one case only, which is Parkinsons, with a slightly
better result than CCSO-SVM.

5.4 Comparison with other methods in the literature

Table 10 shows the results of the CCSO-SVM and other
proposed approaches in the literature, namely, CSO-ELM&
CSO-RELM (Eshtay et al. 2018), TMGWO2 (Abdel-Basset
et al. 2020), GCACO (Moradi and Rostami 2015), and UPFS
(Dadaneh et al. 2016). It can be seen that the CCSO-SVM
outperforms all the other approaches in five datasets and
achieved competitive results with the rest of the datasets.
Therefore, the results of this section proved the superiority
of the proposed method.
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Fig. 12 Features weights
obtained by CCSO method for
Liver and Parkinsons datasets

(a)

(b)

As anymetaheuristic algorithm, the complexity of the pro-
posed wrapper method highly depends on the complexity of
the fitness function. In our case, this can be expressed by the
complexity of the SVM with RBF kernel which is O(nsvd)

where nsv denotes the number of support vectors and d rep-
resents the number of input dimensions.

6 Conclusion and future directions

In this work, we proposed an improved CSO-based hybrid
SVM model that enhances the accuracy results of SVM
based on the exploration and exploitation mechanisms of a
crossover-based CSO technique. The developed system and
model are utilized to optimize the parameters of SVM in

addition to feature weights in dealing with several classifica-
tion cases. The proposed hybrid CCSO-based SVM model
was compared with CSO, GA, PSO and Grid search methods
in terms of accuracy results and convergence behaviors. The
statistical results on ten datasets from UCI show that the pro-
posed approach can obtain satisfactory results and the best
parameters and attribute weights.

For futureworks, the developedCCSO-based SVMmodel
can be utilized to deal with different applications in medi-
cal diagnosis and geoscience areas, such as remote sensing
datasets. In addition, a multi-objective version of the pro-
posed CCSO can be utilized to deal with different objective
functions, simultaneously. Parallel computing is another
direction that is worth investigating in order to speed up the
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Fig. 13 Features weights
obtained by CCSO method for
Spectf and WDBC datasets

(a)

(b)

Table 9 Comparison of CCSO-SVM with standard classification models

Dataset CCSO-SVM J48 k-NN NB MLP Grid-SVM

Blood 78.4721 76.2032 73.6631 73.3957 77.1390 76.5964

Colon cancer 85.4762 82.2581 77.4194 53.2258 72.5806 64.5238

Diabetes 76.9498 73.8281 70.1823 76.3021 75.3906 76.2867

Haberman 74.8602 73.5294 73.2026 74.8366 65.6863 72.2473

Heart 85.5556 80.9524 76.8707 83.6735 85.0340 81.4815

Libras 89.7222 69.7222 62.7778 62.7778 79.4444 78.6111

Liver 71.3277 68.6957 62.8986 55.3623 71.5942 68.1345

Parkinsons 95.9211 80.5128 96.4103 69.2308 90.7692 86.1579

Spectf 82.3789 85.3868 83.3811 70.7736 90.5444 79.4302

WDBC 97.8916 62.7417 71.7047 43.4095 71.7047 97.3653

Bold indicate the best results
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Table 10 Comparison of CCSO-SVM with other methods in the literature

Data CCSO-SVM CSO-ELM CSO-RELM TMGWO2 GCACO UPFS

Blood 78.4721 0.7967 0.7833 – – –

Colon Cancer 85.4762 – – – 0.8142

Diabetes 76.9498 0.7715 0.7247 – – –

Haberman 74.8602 0.7302 0.7295 – – –

Heart 85.5556 0.8612 0.8402 0.8407 – 0.8389

Libras 89.7222 – – – – –

Liver 71.3277 0.7322 0.6910 – – –

Parkinsons 95.9211 0.9060 0.8891 0.8684 – 0.9023

Spectf 82.3789 0.7824 0.7861 0.7615 – –

WDBC 97.8916 0.9613 0.9502 0.9482 0.9414 0.9641

− The results of this dataset are not available
Bold indicate the best results

optimization process when the algorithm is applied on large
datasets.
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