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Abstract
Boolean functions have a fundamental role in neural networks and machine learning. Enumerating these functions and
significant subclasses is a highly complex problem. Therefore, it is of interest to study subclasses that escape this limitation
and can be enumerated by means of sequences depending on the number of variables. In this article, we obtain seven new
formulas corresponding to enumerations of some subclasses of Boolean functions. The versatility of these functions does the
problem interesting to several different fields as game theory, hypergraphs, reliability, cryptography or logic gates.

Keywords Boolean functions · 2-Monotonic Boolean functions · Simple games · Complete games · Enumeration of Boolean
functions · Dedekind’s problem

1 Introduction

Since its origins, mathematics has been interested in classi-
fying and listing the set of solutions to a given problem. As
quoted in Hardy (1999) ‘to enumerate a set of objects sat-
isfying some set of properties means to explicitly produce
a listing of all such objects.’ Enumerating special types of
Boolean functions or simple games is useful for the design
of circuits and real-world voting systems that fulfill some
desirable properties. This paper concerns enumerations of
these structures.

A Boolean function has as input n Boolean variables (that
is, values that can be either false or true) and produces as
output another Boolean variable. It is monotonic if, for every
combination of inputs, switching one of the inputs from false
to true can only cause the output to switch from false to
true and not from true to false. More precisely, a monotonic
Boolean function of n variables (or, for short, a function) is
a mapping f : {0, 1}n → {0, 1} such that: x ≤ y implies
f (x) ≤ f (y). The Dedekind’s problem is given by the
sequence M(n) and is the number of monotonic Boolean
functions of n variables, or the number of antichains of
subsets of an n-set, or the number of elements in a free dis-

Communicated by Marcello Sanguineti.

B Josep Freixas
josep.freixas@upc.edu

1 Universitat Politècnica de Catalunya, Av. Bases de Manresa,
61-73, 08242 Manresa, Spain

tributive lattice on n generators, or the number of Sperner
families. Recall that an antichain of sets (also known as a
Sperner family) is a family of sets, none ofwhich is contained
in any other set. The values of the sequence M(n) for the first
eight integers are known: 2, 3, 6, 20, 168, 7581, 7,828,354,
2,414,682,040,998, 56,130,437,228,687,557,907,788 (see
sequence A000372 in the On-Line Encyclopedia of Integer
Sequences, Sloane 1964).

The (inequivalent) Dedekind’s number S(n) is the num-
ber of different monotonic Boolean functions on n variables
that do not differ in the name of the variables. If two Boolean
functions are only differentiated in the labels, they are said
to be equivalent. Thus, S(n) counts the number of inequiv-
alent monotonic Boolean functions of n or fewer variables.
The values of this sequence for the first eight integers are
also known: 2, 3, 5, 10, 30, 210, 163,53, 490,013,148 (see
sequence A003182 in the On-Line Encyclopedia of Integer
Sequences, Sloane 1964). This paper concerns enumerations
of subclasses of inequivalent monotonic Boolean functions.

Two subclasses that excel within inequivalent monotonic
Boolean functions are: the threshold functions and the 2-
monotonic (or regular) functions, a superclass of threshold
functions. A function f is called 2-monotonic or regular if
it satisfies the following condition at every x : if i < j, xi =
1, x j = 0 and f (x) = 0, then f (x + e j − ei ) = 0, where
ek denotes the k-th unit vector of appropriate dimension. 2-
monotonicity and related concepts have been studied under
various names in such areas of appliedmathematics as thresh-
old logic (Hu 1965; Muroga 1971), game theory (Carreras
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and Freixas 1996; Einy 1985; Taylor and Zwicker 1999) or
graph and hypergraph theory (Chvátal and Hammer 1977;
Reiterman et al. 1985). The interest in 2-monotonic functions
usually stems from their close relationship with threshold
functions, aBoolean function f (x) is called threshold if there
exist n+ 1 integers w1 ≥ w2 ≥ · · · ≥ wn ≥ 0 (weights) and
q > 0 (quota or threshold) such that: f (x) = 1 if and only if
n∑

i=1
wi · xi ≥ q.

The number of threshold functions and 2-monotonic func-
tions are known up to n = 9 variables, see, respectively,
Freixas et al. (2012) and Kurz (2012), Kurz and Tautenhahn
(2013). Identification of 2-monotonic Boolean functions can
be done in polynomial time (Boros et al. 1991, 1997), and
computational studies of separation algorithms for clique
inequalities can serve for determining threshold functions
(Marzi et al. 2019).

Recent research in capacitive threshold logic, strongly
studied in the sixties, see, e.g., Hu (1965), has revived inter-
est in this area, and it has reintroduced some of the problems
that have yet to be solved. One of the main issues of thresh-
old logic is the application of neural networks to the problem
of realizing Boolean functions (that is, to decide if a given
Boolean function is threshold). The linear separability prob-
lem has been dealt with, among others, in Freixas et al.
(2017), Freixas and Molinero (2009), Picton (1991), Roy-
chowdhury et al. (1994), Siu et al. (1995), Taylor andZwicker
(1992), Taylor and Zwicker (1999). Neural networks are usu-
ally designed to have the ability to learn and generalize.
Neural networks have been used with computers during as
early as the 1950s. Through the years, many different neu-
ral network architectures have been presented. One of the
pioneering contributions was the perceptron, which is the
simplest form of a neural network used for the classification
of linearly separable patterns (patterns that are located on
the opposite sides of a hyperplane). Basically, it consists of
a single neuron with adjustable weights and a threshold, that
is, a threshold function. The algorithm used to adjust the free
parameters of this network emerged as a Rosenblatt learning
procedure for hismodel of the brain, the perceptron. The con-
vergence proof of such algorithm is known as the perceptron
convergence theorem.

Another criterion for choosing significant subclasses of
inequivalent monotonic Boolean functions consists in con-
sidering the number of types of equivalent variables. Two
variables that play the same role in the function are consid-
ered equivalent, and then the set of variables decomposes into
equivalence classes. Functions with a moderate number of
equivalence classes are very useful in applications. Inequiv-
alent functions with two equivalence classes are called
bipartite. Similarly, tripartite and quadripartite inequivalent
Boolean functions are considered. Quite curiously, bipar-
tite 2-monotonic Boolean functions are enumerated for all

n and follow a variant of a Fibonacci sequence (see Freixas
et al. 2012 and Eq. (1) in this paper) and therefore grow
exponentially on the number of variablesn. Bipartite inequiv-
alent Boolean functions were enumerated recently in Freixas
and Samaniego (2020) after obtaining the enumeration of
bipartite functions non-being 2-monotonic. The purpose of
this paper is to enumerate some tripartite and quadripartite
inequivalent Boolean functions with dominant and/or domi-
nated variables.

Boolean functions are very versatile structures that arise
in many contexts and lend themselves to more diverse inter-
pretations. Monotonic Boolean functions are equivalent to
monotonic hypergraphs that can also be thought as simple
games, coherent structures (see, e.g., Ramamurthy 1990),
logic gates or reliability systems (see, e.g., Kuo and Zhu
2012, and Freixas and Puente 2002 where basic analogies
between reliability and game theory were listed), access
structure in a secret sharing (see, e.g., Gvozdeva et al. 2013;
Simmons 1990; Stinson 1992; Tassa 2007), etc. Each of
these fields has developed different theories motivated by
their discipline challenges, so that a fruitful cooperation has
taken place allowing for a great development in this area of
research.

Simple games are at the core of voting systems, in them
a single alternative, such as a bill or an amendment, is pitted
against the status quo, and voters can vote for or against the
bill. Due to its importance, naturalness and significance of
its applications (see, e.g., Cheung and Ng 2014; Felsenthal
and Machover 1998; Freixas 2004; Kilgour 1983; Kurz and
Napel 2016; Le Breton et al. 2012; Leech 2002; Taylor and
Pacelli 2008; Taylor and Zwicker 1993; von Neumann and
Morgenstern 1944, we have adopted in this paper the lan-
guage of simple games. We also point out that a simple game
can be seen as a particular case of a cooperative game, see,
e.g., Peters (2015), whenever the image set of the character-
istic function v : 2N → R is binary, usually described by
{0, 1}, in which the value 0 is interpreted as a losing result
and the value 1 as a winning result, so that any coalition S
with v(S) = 0 is losing and any coalition with v(S) = 1 is
winning. Nevertheless, the theory of simple games has been
mostly developed independently of cooperative games since
the outputs ‘losing’ and ‘winning’ are qualitative rather than
quantitative as occurs for cooperative games.

We consider that this paper is relevant for the readers
of Soft Computing because the most relevant problem in
Boolean functions is the separability problem that consists
in determining whether a given function is threshold. As 2-
monotonicity is a necessary, but not sufficient condition for
the function to be threshold, it is of great interest to enumer-
ate all 2-monotonic functions and then check one-by-one
which of them are threshold since this checking can be done
in polynomial time, cf. Crama (1987). Nevertheless, it is a
very complex problem listing 2-monotonic functions. Devel-
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opments of techniques in soft computing may be helpful in
future developments.

The paper is organized as follows. Section 2 sets out the
main terminology and notions that will be used in the arti-
cle. Section 3 collects the known results on enumerations
for bipartite, tripartite and quadripartite simple games. Sec-
tions 4, 5 and 6 are devoted to find new enumerations of
tripartite simple gameswith either vetoes or nulls. Sections 7,
8 and 9 are devoted to find new enumerations of quadripartite
simple gameswith vetoes and nulls. Section 10 concludes the
paper by summarizing the main findings and indicating some
open problems to encourage future research.

2 Background on simple games

Definition 1 A simple game is a pair (N ,W ) in which N =
{1, 2, . . . , n} and W is a collection of subsets of N that sat-
isfies: N ∈ W , ∅ /∈ W and, the monotonicity property, if
S ∈ W and S ⊆ T ⊆ N then T ∈ W .

A (monotonic) simple game corresponds to a (monotonic)
Boolean function in the field of Boolean algebra.

The set N is called the grand coalition. Members of N
are called players or voters, and subsets of N are called
coalitions, the coalitions that belong to W are called win-
ning coalitions, the subfamily ofminimal winning coalitions
is Wm = {S ∈ W : ∀T ⊂ S ⇒ T /∈ W }. The minimal win-
ning coalitions form an antichain of subsets that allows to
generate the simple game. By |S|, we mean the cardinality of
a coalition S and use |S| = s whenever there is no confusion.

Definition 2 Two simple games (N ,W ) and (N ′,W ′) are
isomorphic if there exists a one-to-one correspondence f :
N → N ′ such that S ∈ W if and only if f (S) ∈ W ′; f is
called and isomorphism of simple games.

Two isomorphic simple games only differ in the labels, so
from now on we will only consider simple games up to iso-
morphisms. (Monotonic) simple games up to isomorphisms
correspond to inequivalent (monotonic) Boolean functions.
Twodistinguished types of voters frequently appear in simple
games.

Definition 3 Avoter i has vetowhenever i ∈ S for all S ∈ W .
A voter i is null whenever i /∈ S for all S ∈ Wm .

In any democratic voting system represented by a simple
game, the veto players (if any) are the most powerful ones in
the system. Oppositely, null voters (if any) do not exert any
influence in the game. In Boolean algebra, the null voters
correspond to irrelevant variables and the veto players to
essential variables.

One common idea of the most voting systems used in
practice is the concept of influence, i.e., that a particular vot-
ing system may give one voter more influence than another.

The so-called desirability relation, precisely stated in Def-
inition 4, on the set of voters is a way to make influence
precise. Isbell already used it in Isbell (1958).

Definition 4 Let (N ,W )be a simple game. Player i isat least
as desirable as j (i � j , in short) in (N ,W ) if: S ∪ { j} ∈
W ⇒ S ∪ {i} ∈ W , for all S ⊆ N \ {i, j}. Players i and
j are equally desirable (i ≈ j , in short) in (N ,W ) if: i � j
and j � i . Player i is strictly more desirable than player j
(i � j , in short) in (N ,W ) if: i � j and i ≈/ j .

Note that the desirability relation is a preordering, a reflex-
ive and transitive relation, on the set of players N and that
each subset Ni ⊆ N formed by equally desirable players is
an equivalence class. We refer to Ni as an equally desirable
class. We also speak of the number of classes or types, t , of
voters meaning the number of equivalence classes. This is
a fundamental parameter in our study. The veto players (if
any) form the strongest equivalence class, N1, whereas null
players (if any) form the weakest equivalence class, Nt .

Definition 5 A simple game (N ,W ) is complete or linear if
the desirability relation is a complete preordering.

Complete simple games correspond to 2-monotonic
Boolean functions in Boolean algebra. Let t be the num-
ber of types of a complete game, we can always assume
N1 > N2 > · · · > Nt understanding that Nk > Nk+1 if and
only if i � j for all i ∈ Nk and j ∈ Nk+1.

Definition 6 Let (N ,W ) be a simple game with t equally
desirable classes. If t = 2 the game is calledbipartite, if t = 3
it is called tripartite and if t = 4 it is called quadripartite.

In this paper, we are concerned with tripartite simple
games having either voters with right to veto (vetoes, for
short) or null voters (nulls, for short) and with quadripartite
simple games having vetoes and nulls. As we shall see in
Proposition 1, all the enumerations of this paper can be done
assuming the presence of veto players in the game. Thus, for
the tripartite case we will have: N1 > N2 > N3 if the game
is complete and N1 > Ni for i = 2, 3 if the game is not
complete because N1 is formed by vetoes. For quadripartite
games with vetoes (voters in N1) and nulls (voters in N4) we
will have N1 > N2 > N3 > N4 if the game is complete and
N1 > Ni for i = 2, 3, 4 and Ni > N4 for i = 2, 3 if the
game is not complete, but neither N2 > N3 nor N3 > N2 are
met.

Example 1 Let N be a Parliament formed by the president
and two chambers, for example, the House and the Senate.
To pass a proposal, it is required the approval of the president
and the approval of an absolute majority of the members in
each chamber.Assume the sizes of the chambers are 9 and 15,
thus, |N | = 25.Then, the approval is achieved if the president
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votes in favor, at least 5 members of the House vote in favor
and at least 8 members of the Senate vote in favor of the
proposal submitted at hand. Let N1 = {1}, N2 = {2, . . . , 10}
and N3 = {11, . . . , 25}, where 1 represents the president, the
elements in N2 are those in the House, and the elements in
N3 are those in the Senate. Formally,

Wm = {S ⊆ N : 1 ∈ S, |S ∩ N2| = 5, and |S ∩ N3| = 8}.

Note that the president has veto because 1 ∈ S for all S ∈ W
and 1 � i for all i ∈ N \ {1}, but neither i � j nor j � i
for all i ∈ N2 and j ∈ N3. Thus, the game is a tripartite
non-complete game with a veto player.

A simple game can be presented in a more convenient
way. Given the equivalence classes of the simple game
N1, . . . , Nt such that Ni+1 > Ni does not hold for every
i = 1, . . . , t − 1, the vector n = (n1, n2, . . . , nt ) repre-
sents the grand coalition and any vector s = (s1, s2, . . . , st )
with 0 ≤ si ≤ ni represents the set of coalitions {S :
|S ∩ Ni | = si , for all i = 1, . . . , t} identified with s. Coali-
tions represented by the model s are either all winning or
all are not. Thus, we write either s ∈ W or s /∈ W , where
W = {s ∈ �(n) : S ∈ W } and �(n) is the set of models
of coalitions, i.e., {m ∈ (N ∪ {0})t : 0 ≤ m ≤ n}. The
elements in s ∈ W , which are minimal componentwise, rep-
resent minimal winning coalitions and write s ∈ Wm for
them, where Wm = {s ∈ �(n) : S ∈ Wm}.

Let m ∈ �(n) and p ∈ �(n). By m ≤ p we mean
mi ≤ pi for all i = 1, . . . , t , and by m < p we mean
m ≤ p and m �= p. By 0 we mean the t-dimensional vector
formed by zeros. The next conditions meet the requirements
of monotonic simple games:

(i) n ∈ W ,
(ii) 0 /∈ W , and
(iii) m ≤ p with m ∈ W implies p ∈ W .

See Carreras and Freixas (1996) for further details on
this presentation of simple games. If we know that Ni >

Ni+1, then the next condition is also fulfilled:
(iv) Let m = (m1, . . . ,mi−1,mi ,mi+1, . . . ,mt ) ∈ W with

mi < ni and mi+1 > 0, then (m1, . . . ,mi−1,mi +
1,mi+1 − 1, . . . ,mt ) ∈ W .

Note that condition (iv) captures the idea that if a player
is replaced in a winning coalition by another player being
more desirable than her, then the new coalition becomes also
winning. Observe that in this argument the condition Ni >

Ni+1 is essential.
Another fundamental parameter in our study for each

game is r , the number of representatives of minimal win-

ning coalitions of the simple game, that is the cardinality of
Wm .

The following nomenclature is used in the rest of the paper.
Each description depends on either (n, r) or simply n. By
(n, r) we refer to n voters and r representatives of minimal
winning coalitions.

Thus, byBCG(n, r)wemean the class of all bipartite com-
plete games with n voters and r representatives of minimal
winning coalitions, up to isomorphisms, and by BCG(n, r)
its cardinality. By BCG(n), we mean the class of all bipartite
complete games with n voters, up to isomorphisms, and by
BCG(n) its cardinality. The rest of notations in Table 1 are
analogous.

Example 2 (Example 1 revisited) As noticed, the game
belongs to TNCGV for n = 25 and r = 1 since the game has
25 players and there is only one representative of minimal
winning coalitions, which is (1, 5, 8). The winning represen-
tatives are the vectors in the set:

{ (1, h, s) ∈ �(1, 9, 15) : 5 ≤ h ≤ 9 and 8 ≤ s ≤ 15 }.

Note that there are
(1
1

) · (95
) · (158

) = 810810 minimal winning
coalitions with representative (1, 5, 8). This simple example
illustrates the convenience of using the succinct representa-
tion of the game by the vector n and the set Wm instead of
the standard presentation given by the set of voters N and the
set of minimal winning coalitions Wm .

It obviously holds the following property:

Proposition 1 For all n and r we have:

a. TCGV (n, r) = TCGN (n, r)
b. T NCGV (n, r) = T NCGN (n, r)

Proof Let (N ,W ) ∈ TCGV(n, r) and without null voters,
let (N ,W ′) be obtained from (N ,W ) defined as

S ∈ W ′ if and only if S ∪ N1 ∈ W

so that the vetoes in N1 for (N ,W ) have been converted
into nulls in (N ,W ′). The ‘if and only if’ clause guarantees
the one-to-one correspondence. The reasoning done does not
depend on n or r . The second part is mutatis mutandis the
same.

Corollary 1 For all n and r, we have:

a. T SGV (n, r) = T SGN (n, r),
b. TCGV (n) = TCGN (n),
c. T NCGV (n) = T NCGN (n), and
d. T SGV (n) = T SGN (n).
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Table 1 The classes of games
we deal with in this paper

Nomenclature Description

BCG Bipartite complete games

BNCG Bipartite non-complete games with n voters and r minimal winning
representatives

BSG Bipartite complete games with n voters and r minimal winning representatives

TCGV Tripartite complete games with vetoes

TNCGV Tripartite non-complete games with vetoes

TSGV Tripartite simple games with vetoes

TCGN Tripartite complete games with nulls

TNCGN Tripartite non-complete games with nulls

TSGN Tripartite simple games with nulls

QCGVN Quatripartite complete games with vetoes and nulls

QNCGVN Quatripartite non-complete games with vetoes and nulls

QSGVN Quatripartite simple games with vetoes and nulls

Hence, byProposition 1 andCorollary 1, the enumerations
for tripartite games with vetoes for either complete or non-
complete games coincide with the respective enumerations
for tripartite gameswith nulls for complete and non-complete
games.

3 Known enumerations for simple games
with less than 5 equivalence classes

If only anonymous or symmetric (i.e., any pair of voters are
equally desirable) voters are considered for simple games
with n voters, we have t = 1 andUSG(n) = UCG(n) = n;
here,USG(n) denotes the number of unipartite simple games
and UCG(n) the number of unipartite complete games.

The number of bipartite complete games with n voters,
BCG(n), was enumerated in Freixas et al. (2012) and later
on in Kurz and Tautenhahn (2013), giving a proof based on
generating functions:

BCG(n) = F(n + 6) − (n2 + 4n + 8), (1)

where F(n) are the Fibonacci numbers which constitute
a well-known sequence of integer numbers defined by the
following recurrence relation: F(0) = 0, F(1) = 1, and
F(n) = F(n − 1) + F(n − 2) for all n > 1 from which the
formula

F(n) = 1√
5

[(
1 + √

5

2

)n

−
(
1 − √

5

2

)n]

, n ≥ 0

is deduced.
The number of tripartite complete games with vetoes and

n voters, TCGV(n) (and the number of tripartite complete
games with nulls and n voters, TCGN(n)), was enumerated

in Freixas and Kurz (2013):

TCGV(n) = TCGN(n) = F(n + 7)

−1

2
(n3 + 2n2 + 13n + 26), (2)

whenever n ≥ 4.
The number of quadripartite complete games with vetoes

and nulls with n voters, QCGVN(n), was also enumerated in
Freixas and Kurz (2013):

QCGVN(n) = CGVN(n, 4) = F(n + 8)

−1

6
(n4 − 2n3 + 26n2 + 47n + 132) (3)

whenever n ≥ 5.
Note that BCG(n), TCGV(n), and QCGVN(n) belong to

�
((

1+√
5

2

)n)
, which means that the limits:

lim
n→∞

BCG(n)

((1 + √
5)/2)

n , lim
n→∞

TCGV(n)

((1 + √
5)/2)

n ,

lim
n→∞

QCGVN(n)

((1 + √
5)/2)

n (4)

are real numbers. This is because the sequences in the
numerators are functions of n which are the sums of two
exponentials with different basis and a polynomial. As n
tends to infinity, onemay disregard the exponential termwith
lower basis in absolute value and the polynomial. In particu-
lar, the three respective limits in (4) are the positive numbers:
9 + 4

√
5, (1/2)(29 + 13

√
5), and (1/2)(47 + 21

√
5).

The sequence BCG(n) appears in Sloane (1964) with
code A163250, but also in A053808, which suggests another
equivalent way to interpret the numbers in the first column
of Table 3.
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Table 2 The positive numbers of bipartite non-complete games
BNCG(n, r), up to isomorphisms, for n < 14

n ↓ / r → 1 2 3 4 5 6

4 1 1

5 2 4

6 6 18 3

7 10 45 16

8 19 107 72 6

9 28 206 210 39

10 44 381 543 190 10

11 60 634 1190 633 76

12 85 1025 2425 1817 406 15

13 110 1556 4528 4480 1522 130

The combinations of n and r that give rise to non-complete
games are determined by the following result in Freixas and
Samaniego (2020), which will be used from Sects. 4 to 9.
The following trivial lemma provides an upper bound for r
as a function of n.

Lemma 1 BNCG(n, r) �= 0 if and only if n > 3 and

r ≤
⌊n

2

⌋
.

From Lemma 1, the following result was immediately
deduced.

Corollary 2

BNCG(n) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if n ≤ 3

�n/2�∑

r=1
BNCG(n, r) if n > 3

The number of bipartite non-complete games with n
voters, BNCG(n), was recently studied in Freixas and
Samaniego (2020). A parameterization for these games
allows to generate all games of this type for small values
of n and r . Table 2 shows the positive numbers BNCG(n, r)
for all pairs (n, r)with n < 14. The first column indicates the
number of players, n, and the first row the number of repre-
sentatives of minimal winning coalitions, r . The numbers in
Table 2 together with those for complete games in (1) allow
to determine the number of bipartite simple games BSG(n)

for small values of n, see Table 3.

3.1 Related work on bipartite simple games for
r = 1 and r beingmaximal

We summarize here the closed-form expressions of bipartite
games that will be useful to generate enumerations of tripar-
tite and quadripartite games from Sects. 4 to 9. We consider
the extreme cases for r , either minimal (r = 1) or maximal.

Table 3 The numbers of bipartite non-complete BNCG(n), bipartite
complete BCG(n), and bipartite simple games BSG(n), up to isomor-
phisms, for n < 14

n BCG(n) BNCG(n) BSG(n)

1 0 0 0

2 1 0 1

3 5 0 5

4 15 2 17

5 36 6 42

6 76 27 103

7 148 71 219

8 273 204 477

9 485 483 968

10 839 1168 2007

11 1424 2593 4017

12 2384 5773 8157

13 3952 12,326 16,278

Formulas for r = 1:

Proposition 2 The number of bipartite complete games with
one representative of minimal winning coalitions is:

BCG(n, r = 1) = (n − 1)2

Proof As the game is bipartite and complete (we assume
w.l.o.g. that N1 > N2), r = 1 implies that the game has
vetoes or nulls. Otherwise, if (a, b) was the unique repre-
sentative of minimal winning coalitions it would be: a < n1
(a = n1 means that the n1 voters in N1 are vetoes) and b > 0
(b = 0 means that the n2 voters in N2 are nulls). Then,
(a + 1, b − 1) would be another representative of minimal
winning coalitions. As neither (a, b) ≥ (a + 1, b − 1) nor
(a + 1, b− 1) ≥ (a, b) we have a contradiction with r = 1.

For each (n1, n2) with n1 + n2 = n (ni ≥ 1, for i = 1, 2)
there are n−1 gameswith a unique representative ofminimal
winning coalitions:

– 1 game with vetoes and nulls, which is (n1, 0),
– n2 −1 games with vetoes but not nulls, which are (n1, b)
with 1 ≤ b ≤ n2 − 1,

– n1 − 1 games with nulls but not vetoes, which are (a, 0)
with 1 ≤ a ≤ n1 − 1.

Hence, each decomposition (n1, n2) allows for n − 1 games
with r = 1. As the number of decompositions (n1, n2) is
n − 1, we conclude that there exist (n − 1)2 bipartite games
with r = 1.

123



On the enumeration of Boolean functions with distinguished variables 12633

Proposition 3 The number of bipartite non-complete games
with one representative of minimal winning coalitions is:

BNCG(n, r = 1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(n − 2)(n2 − 4n + 6)

12
, if n is even

(n − 1)(n − 2)(n − 3)

12
, if n is odd

Proof Let r = 1 and n = n1 + n2. We claim that:

a. there are (n1 −1)(n2 −1) bipartite non-complete games
with r = 1 for each vector decomposition (n1, n2) such
that n1 > n2,

b. there are n(n − 2)/8 bipartite non-complete games with
r = 1 for each vector decomposition (n1, n2) such that
n1 = n2.

This is because the game is not complete andwhenever (a, b)
is the unique representative of minimal winning coalitions it
holds that the game has neither vetoes nor nulls (see proof of
Proposition 2) so that 0 < a < n1 and 0 < b < n2. The non-
completeness of the game implies that neither (a + 1, b− 1)
nor (a−1, b+1) arewinning representatives. Fromall thiswe
deduce that there (n1 − 1)(n2 − 1) bipartite non-complete
games with r = 1 for each vector decomposition (n1, n2)
with n1 > n2, condition required to avoid duplicities of the
game. For the particular case, n1 = n2 we need to subtract
from (n1−1)(n2−1) = (n−2)2/4 those models (a, b)with
a < b (to avoid duplicities). Thus,we obtain n(n−2)/8when
n is even and n1 = n2 = n/2.

By summing up the number of games for each feasible
decomposition (n1, n2) for n, we obtain the expression in
BNCG(n, r = 1).

It is very interesting to note that the sequence
BNCG(n, r = 1) is described in www.oeis.org as A005993,
which was also was obtained when enumerating some other
problems of different motivation than ours. Observe, there-
fore, that some enumerating apparently different problems
are equivalent to the enumeration BNCG(n, r = 1).

Corollary 3 The number of bipartite simple games with one
representative of minimal winning coalitions is:

BSG(n, r = 1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(n − 2)(n2 − 4n + 6)

12
+ (n − 1)2, if n is even

(n − 1)(n − 2)(n − 3)

12
+ (n − 1)2, if n is odd

The next three results for r being maximal for bipartite com-
plete games are proved in Freixas and Samaniego (2020), so
we only state them here.

Lemma 2 For n > 1, BCG(n, r) = 0 if r > � n
2 �.

Proposition 4 Let n > 1. The number of bipartite complete

gameswith amaximal number ofminimalwinning pairs
⌈n

2

⌉

is:

BCG
(
n, r =

⌈n

2

⌉)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

8
(n2 + 14n − 24), if n is even

1

2
(n − 1), if n is odd

Theorem 1 The number of bipartite non-complete simple
games, for n ≥ 4, with a maximal number of minimal win-
ning representatives � n

2 �, is:

BNCG
(
n, r =

⌊n

2

⌋)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

8
n(n − 2), if n is even

1

16
(n3 + n2 − 25n + 39), if n is odd

Note that the polynomials for n even have degree 2, while
the polynomials for n odd have degree 3. This different
behavior for n even and n odd also occurs in this paper when
we deal with the case of a maximal number of minimal win-
ning representatives, r . The intuition follows from the fact
that r is closer to n for n even, than for n odd. This more
demanding condition when n is even for r maximal limits
the number of games with respect to the odd case for n.
Observe, for example, that BNCG(4, 2) = 1 and this game
is n = (2, 2) and (2, 0), (0, 2) as representatives of minimal
winning coalitions, i.e., the bipartite non-complete games
defined asWm = {{1, 2}, {3, 4}}. BNCG(5, 2) = 4 and these
games are represented by n = (3, 2) and the respective rep-
resentatives of minimal winning coalitions:

a. (3, 0), (1, 2),
b. (3, 0), (1, 1),
c. (3, 0), (0, 2),
d. (2, 0), (0, 2).

which, respectively, correspond to the bipartite non-complete
games:

a. Wm = {{1, 2, 3}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5}},
b. Wm = {{1, 2, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 4},

{3, 5}},
c. Wm = {{1, 2, 3}, {4, 5}},
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d. Wm = {{1, 2}, {1, 3}, {2, 3}, {4, 5}}.

Corollary 4, deduced fromProposition 4 andTheorem1, pro-
vides the number of bipartite simple games as a function of n
for the maximal number of minimal winning representatives.

Corollary 4

BSG
(
n, r =

⌈n

2

⌉)
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

4
(n2 + 6n − 12), if n even

1

2
(n − 1), if n odd

4 Enumerations of tripartite simple games
with vetoes or nulls

Aspointedout, inCorollary1,TNCGV(n, r) = TNCGN(n, r).
Thus, in the rest of this section we only refer to one of them,
TNCGV(n, r).

Lemma 3 Let n be the number of players and r be the number
of representatives of minimal winning coalitions, then we
have

T NCGV (n, r) =
n−1∑

i=4

BNCG(i, r)

Proof If a bipartite game has either vetoes or nulls then it is a
complete game. Thus, all bipartite non-complete games have
neither vetoes nor nulls.

From each non-complete bipartite game with m players
(m < n) we can add n−m vetoes (or nulls) to get a tripartite
non-complete game with n players and vetoes (or nulls) and
this is how all non-complete tripartite games with vetoes are

generated. Hence, TNCGV(n, r) =
n−1∑

i=4
BNCG(i, r).

From Lemmas 1 and 3, we can determine the pairs (n, r),
which lead to TNCGV(n, r) being different of zero.

Corollary 5 T NCGV (n, r) �= 0 if and only if n > 4 and

r ≤
⌊
n − 1

2

⌋

.

The number of tripartite non-complete games with vetoes
as a function of n can be writtenmore precisely by only using
those BNCG(n, r) which are not equal to zero.

Corollary 6

T NCGV (n) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if n ≤ 4

n−1∑

i=4

�i/2�∑

r=1
BNCG(i, r) if n > 4

Table 4 The positive numbers of tripartite non-complete games with
vetoes (or nulls) TNCGV(n, r), up to isomorphisms, for n < 15

n ↓ / r → 1 2 3 4 5 6

5 1 1

6 3 5

7 9 23 3

8 19 68 19

9 38 175 91 6

10 66 381 301 45

11 110 762 844 235 10

12 170 1396 2034 868 86

13 255 2421 4459 2685 492 15

14 365 3977 8987 7165 2014 145

Table 5 The numbers of tripartite games with veto (or null) players:
complete TCGV(n), tripartite non-complete TNCGV(n), and tripartite
simple games TSGV(n), up to isomorphisms, for n < 15

n TCGV(n) TNCGV(n) TSGV(n)

1 0 0 0

2 0 0 0

3 0 0 0

4 1 0 1

5 11 2 13

6 37 8 45

7 98 35 133

8 225 106 331

9 470 310 780

10 919 793 1712

11 1713 1961 3674

12 3082 4554 7636

13 5400 10,327 15,727

14 9274 22,653 31,927

Thus, from Corollary 6 and Table 2 we deduce, in Table 4,
the number of tripartite non-complete games for all feasible
combinations (n, r) whenever n < 15.

Table 4 together with Corollary 6 allows to determine the
number of tripartite simple games with vetoes (or with nulls)
TSGV for small values of n. See Table 5.

5 Enumeration of tripartite simple games
with either nulls or vetoes with a unique
representative of minimal winning
coalitions

The goal of this section is to enumerate the number of tripar-
tite simple games with either nulls or vetoes with a unique
representative of minimal winning coalitions. The proce-
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dure to follow in this and the subsequent sections is, firstly,
determine the number of complete games of this type and,
secondly, determine the number of non-complete games of
this type. By the addition of the two results, we will obtain
the enumeration of tripartite simple games with either vetoes
(or nulls) with a unique representative of minimal winning
coalitions. This is the first goal of the paper, and as far as we
know, a new enumeration.

Proposition 5 The number of tripartite complete games with
vetoes (or nulls) with one representative of minimal winning
coalitions is:

TCGV (n, r = 1) = 1

6
(n3 − 6n2 + 11n − 6) if n ≥ 3

Proof As the game is complete, we have N1 > N2 > N3

and n1 + n2 + n3 = n with ni > 0 for each i = 1, 2, 3. Let
(m1,m2,m3) be the unique minimal winning representative.
As the game has vetoes, it is m1 = n1. As the voters in the
second class are dominated by the desirability relation by the
veto players, it must be m2 < n2, otherwise m2 = n2 and
voters in N2 would also be veto players, a contradiction with
N1 > N2. As the voters in the second class dominate by the
desirability relation the voters in the third class, it must be
m2 > 0 and m3 < n3; otherwise, if m2 = 0 or m3 = n3,
the voters in N3 would be equally desirable to those in N2,
a contradiction with N2 > N3. Then, n1 ≥ 1, n2 ≥ 2, and
n3 ≥ 1.

Hence, given nwe need to count all these complete games.
For (n1, n2, n3), with n1 ≥ 1, n2 ≥ 2, and n3 ≥ 1, we have
n2 − 1 choices for m2 and n − n2 − 1 choices for the pairs
(n1, n3). By using the subindex i instead of n2 − 1, we can
write:

TCGV(n, r = 1) =
n−3∑

i=1

i · (n − i − 2),

which, by induction, is equivalent to

TCGV(n, r = 1) = 1

6
(n3 − 6n2 + 11n − 6)

Proposition 6 The number of tripartite non-complete games
with one representative of minimal winning coalitions is:

T NCGV (n, r = 1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

48
(n4 − 10n3 + 38n2 − 68n + 48), if n is even

1

48
(n4 − 10n3 + 38n2 − 62n + 33), if n is odd

for n ≥ 5 and TNCGV(n,r=1)=0 otherwise.

Proof By Lemma 6, we know the numbers TNCGV(n, r =
1). We have:

TNCGV(n, r = 1) =
n−1∑

i=4

BNCG(i, r = 1)

for n ≥ 5 and TNCGV(n, r = 1) = 0 otherwise. To use the
result on bipartite non-complete games in Proposition 3, we
need to distinguish between the even case and the odd case.
Let n be even. We have:

TNCGV(n, r = 1) =
n
2 −2∑

i=1

BNCG(n − 2i, r = 1)

+BNCG(n − (2i − 1), r = 1)

TNCGV(n, r = 1) = 1

12

n
2 −2∑

i=1

[(n − 2i)(n − 2i − 1)(n − 2i − 2)

+ (n − 2i − 2)((n − 2i)2 − 4(n − 2i) + 6)]
= 1

48
(n4 − 10n3 + 38n2 − 68n + 48)

Let n be odd. We have

TNCGV(n, r = 1) =
(n−3)/2∑

i=1

BNCG(n − (2i − 1), r = 1)

+
(n−5)/2∑

i=1

BNCG(n − 2i, r = 1)

= 1 +
(n−5)/2∑

i=1

[BNCG(n − (2i − 1), r = 1)

+BNCG(n − 2i, r = 1) ]

and by applying the result in Proposition 3 it results:

TNCGV(n, r = 1) = 1 + 1

12

(n−5)/2∑

i=1

[(n − 2i − 1)((n − 2i + 1)2

− 4(n − 2i + 1) + 6)((n − 2i − 1)

(n − 2i − 2)(n − 2i − 3)]
= 1

48
(n4 − 10n3 + 38n2 − 62n + 33).

The addition of the two results obtained in Propositions 5
and 6 allows to enumerate the class of tripartite simple games
with vetoes (or nulls) with a unique minimal winning repre-
sentative.

Corollary 7 The number of tripartite simple games with
vetoes with one representative of minimal winning coalitions
is:

T SGV (n, r = 1)
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=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

48
n · (n3 − 2n2 − 10n + 20), if n is even

1

48
(n4 − 2n3 − 10n2 + 26n − 15), if n is odd

Observe that the two polynomials of degree 4 only differ
in the linear part. Note that the game described in Example 1
is one of the 5346 tripartite non-complete games with vetoes
that are counted in TNCGV(n = 25, r = 1) and one of
the 7370 tripartite simple games with vetoes that there are
counted in T SGV (n = 25, r = 1).

The enumerations obtained in Propositions 5 and 6, and
Corollary 7 are, as far as we know, new and candidates to be
entered in www.oeis.org.

6 Enumeration of tripartite simple games
with either vetoes or nulls with amaximal
number of minimal winning
representatives

The goal of this section is to enumerate the number of tripar-
tite simple games with either vetoes or nulls with a maximal
number of representatives of minimal winning coalitions.
We, firstly, determine the number of complete games of this
type and, secondly, determine the number of non-complete
games of this type. By the addition of the two results, we will
obtain the enumeration of tripartite simple games with either
vetoes (or nulls) with a maximal number of representatives
of minimal winning coalitions. This is the second goal of the
paper, and as far as we know, a new enumeration.

We start with the complete simple game case. As for r > 1
there are not bipartite complete games with vetoes, we have:

TCGV(n, r) =
∑

i<n

BCG(i, r)

whenever r > 1. The maximal value for r as a function of n
is achieved for n = � n

2 � because of Lemma 2 and that

TCGV
(
n, r =

⌊n

2

⌋)

=
⎧
⎨

⎩

BCG
(
n − 1,

⌊ n
2

⌋)
if n is even

BCG
(
n − 1,

⌊ n
2

⌋) + BCG
(
n − 2, � n

2 �) if n is odd

From this equality and Proposition 4, we deduce the next
result.

Proposition 7 For n ≥ 4:

TCGV
(
n, r =

⌊n

2

⌋)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2
(n − 2), if n is even

1

8
(n2 + 16n − 49), if n is odd

We consider now non-complete games.

Proposition 8 For n ≥ 5:

T NCGV

(

n, r =
⌊
n − 1

2

⌋)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

16
(n3 − 36n + 80), if n is even

1

8
(n − 1)(n − 3), if n is odd

Proof We apply Theorem 1 and Corollary 6 on bipartite non-
complete, and we distinguish between the odd and even case.
Let n be an odd number, then

TNCGV

(

n, r =
⌊
n − 1

2

⌋)

= BNCG(n − 1, (n − 2)/2) + BNCG(n − 2, (n − 2)/2)

= 1

16
((n − 1)3 + (n − 1)2 − 25(n − 1) + 39)

+ 1

8
(n − 2)(n − 4)

= 1

16
(n3 − 36n + 80).

Let n be an odd number, then

TNCGV

(

n, r =
⌊
n − 1

2

⌋)

= BNCG(n − 1, (n − 1)/2)

= 1

8
(n − 1)(n − 3).

Now the polynomials for n even have degree 3 and the
polynomials for n odd have degree 2 (oppositely to what
occurs for BNCG(n, r = �n/2�)). But observe that for con-
secutive numbers of n, r is closer to n for n odd than for
n even. Thus, the number of non-complete tripartite games
with vetoes increases faster for n even than for n odd.

By using the results obtained in Propositions 7 and 8, we
deduce the sequence for the number of simple games with a
maximal number of minimal winning representatives.

Corollary 8 For n ≥ 4:

T SGV
(
n, r =

⌊n

2

⌋)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2
(n − 2), if n is even

1

4
(n2 + 6n − 23), if n is odd
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Table 6 The positive numbers of quadripartite non-complete games
with veto players and nulls QNCGVN(n, r), up to isomorphisms, for
n < 16

n ↓ / r → 1 2 3 4 5 6

6 1 1

7 4 6

8 13 29 3

9 32 97 22

10 70 272 113 6

11 136 653 414 51

12 246 1415 1258 286 10

13 416 2811 3292 1154 96

14 671 5242 5232 3839 588 15

15 1036 9249 16,738 11,004 2602 160

The enumerations obtained in Propositions 7 and 8 and
in Corollary 8 are, as far as we know, new candidates to be
entered in www.oeis.org.

7 Enumeration of quadripartite simple
games with vetoes and nulls

The next Lemma 4 links non-complete quadripartite simple
games with non-complete bipartite simple games so that we
can easily enumerate these games for small combinations of
n and r .

Lemma 4 Given n > 5 and r ≤ ⌊ n
2

⌋ − 1,

QNCGV N (n, r) =
n−(2r+1)∑

i=1

i · BNCG(n − i − 1, r)

Proof A bipartite non-complete game does not have vetoes
or nulls. On the other hand, any quadripartite non-complete
game with vetoes and nulls of n players and r representa-
tives of minimal winning coalitions can be obtained from a
bipartite non-complete game of r representatives and with j
voters, with j < n − 1. It is only needed to add k vetoes and
j − k nulls to the bipartite game, where 0 < k < j . Thus,
n− j−1 games of this type are obtained from bipartite games
with j voters. Let j = n − i − 1, then it holds

QNCGVN(n, r) =
n−(2r+1)∑

i=1

i · BNCG(n − i − 1, r)

From Lemma 4 and the enumeration of non-complete
bipartite games in Table 2, we can determine the number
of quadripartite non-complete games with vetoes and nulls
in Table 6.

Table 7 The numbers of quadripartite games with vetoes and nulls:
complete games QCGVN(n), non-complete games QNCGVN(n), and
simple games QSGVN(n), up to isomorphisms, for n < 16

n QCGVN(n) QNCGVN(n) QSGVN(n)

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 8 2 10

7 35 10 45

8 113 45 158

9 303 151 454

10 717 461 1178

11 1552 1254 2806

12 3145 3215 6360

13 6062 7769 13,831

14 11,242 15,587 26,829

15 20,230 40,789 61,019

The numbers in Table 6 together with the enumeration
for quadripartite complete games with vetoes and nulls, in
Eq. (3), lead to the enumerationof the number of quadripartite
simple games with vetoes and nullsQSGVN for small values
of n in Table 7.

8 Enumeration of quadripartite simple
games with vetoes and nulls with a unique
representative of minimal winning
coalitions

The goal of this section is to enumerate the number of quadri-
partite simple games with vetoes and nulls with a unique
representative of minimal winning coalitions.

Proposition 9 There are no quadripartite complete games
with vetoes and nulls with a unique minimal winning repre-
sentative.

Proof Assume there exists a complete game of this type.
Then, by completeness it is N1 > N2 > N3 > N4. Let
(m1,m2,m3,m4) be the unique minimal winning represen-
tative. It must verify:

a. m1 = n1, because the strongest players by the desirabil-
ity relation are vetoes.

b. m2 < n2, otherwise the players in N2 would also be
vetoes, a contradiction with N1 > N2.

c. m2 > 0, otherwise the players in N2 and in N3 would
belong to the same equivalence class, a contradiction
with N2 > N3.
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d. m3 < n3, otherwise the players in N3 and in N2 would
belong to the same equivalence class, a contradiction
with N2 > N3.

e. m3 > 0 otherwise the players in N3 would be nulls too,
a contradiction.

f. m4 = 0, because these players are nulls.

But, then (n1,m2 + 1,m3 − 1, 0) would also be a mini-
mal winning representative. Thus, a contradiction with the
assumed condition r = 1.

As a consequence of Proposition 9, we have
QNCGV N (n, r = 1) = QSGV N (n, r = 1). We now
compute these numbers.

Proposition 10 The number of quadripartite non-complete
games with vetoes and nulls with one representative of min-
imal winning coalitions is:

QNCGV N (n, r = 1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

240
(n5 − 15n4 + 90n3 − 270n2 + 404n − 240), if n is even

1

240
(n5 − 15n4 + 90n3 − 270n2 + 389n − 195), if n is odd

Proof By using Lemma 4 for r = 1, we have

QNCGVN(n, r = 1) =
n−5∑

i=1

i · BNCG(n − i − 1, r = 1)

We now replace BNCG(n − i − 1, r = 1) for its value by
distinguishing the even from the odd case.
Let n be even. We have:

QNCGVN(n, r = 1)

= 1

12

n/2−2∑

i=1

(2i − 1)(n − 2i − 2)((n − 2i)2

− 4(n − 2i) + 6)

+ 1

12

n/2−3∑

i=1

(2i)(n − 2i − 2)((n − 2i − 3)

(n − 2i − 4).

Let n be odd. We have

QNCGVN(n, r = 1)

= 1

12

(n−1)/2−2∑

i=1

(2i − 1)(n − 2i − 1)(n − 2i − 2)

(n − 2i − 3)

+ 1

12

(n−1)/2−2∑

i=1

(2i)(n − 2i − 3)((n − 2i − 1)2

− 4(n − 2i − 1) + 6).

Expressions that after simplification become

QNCGVN(n, r = 1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

240
(n5 − 15n4 + 90n3 − 270n2 + 404n − 240), if n is even

1

240
(n5 − 15n4 + 90n3 − 270n2 + 389n − 195), if n is odd

Note that these two polynomials of degree 5 just differ in
the linear part.

As there are no quadripartite complete games with vetoes
and nulls for r = 1, according to Proposition 9, the next
consequence trivially follows.

Corollary 9 The number of quadripartite simple games with
vetoes and nulls with one representative of minimal winning
coalitions is:

QSGV N (n, r = 1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

240
(n5 − 15n4 + 90n3 − 270n2 + 404n − 240), if n is even

1

240
(n5 − 15n4 + 90n3 − 270n2 + 389n − 195), if n is odd

The enumeration obtained in Corollary 9 is, as far as we
know, a new and a candidate to be entered in www.oeis.org.

9 Enumeration of quadripartite simple
games with vetoes and nulls with a
maximal number of minimal winning
representatives

We start by computing the number of complete games of
this type. The maximal value for r as a function of n when
computingQCGVN(n, r) is achieved for r = � n−1

2 � because
ofLemma2and that it is necessary to add at least a veto player
and a null player in bipartite complete games with a maximal
r , which implies that

QCGVN

(

n, r =
⌊
n − 1

2

⌋)

=
⎧
⎨

⎩

BCG
(
n − 2,

⌊ n−1
2

⌋) + 2 · BCG(n − 3, � n−1
2 �) if n is even

BCG
(
n − 2,

⌊ n−1
2

⌋)
if n is odd

From this equality and Proposition 4, we deduce the next
result.

Proposition 11 For n ≥ 5:

QCGV N

(

n, r =
⌊
n − 1

2

⌋)
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=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

8
(n2 + 18n − 80), if n is even

1

2
(n − 3), if n is odd

Proposition 12 The number of quadripartite non-complete
games with vetoes and nulls with a maximal number of min-
imal winning representatives is:

QNCGV N (n, r = �n/2� − 1)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

8
(n − 2)(n − 4), if n is even

1

16
(n3 − n2 − 49n + 145), if n ≥ 5 is odd

Proof Let n be an even number. We have:

QNCGVN(n, r = n/2 − 1) = BNCG(n − 2, r = (n − 2)/2)

= 1

8
(n − 2)(n − 4).

Let n be an odd number. We have:

QNCGVN

(

n, r = n − 3

2

)

= 2 · BNCG
(

n − 3,
n − 3

2

)

+ 1 · BNCG
(

n − 2,
n − 3

2

)

= 2

8
(n − 3)(n − 5)

+ 1

16
((n − 2)3 + (n − 2)2 − 25(n − 2) + 39)

= 1

16
(n3 − n2 − 49n + 145).

Note again that for consecutive values of n, r is closer to
n for n even than for n odd, which allows a faster increasing
of the number of games for n odd.

By adding the results in Proposition 11 andProposition 12,
we obtain, in Corollary 10, the number of quadripartite sim-
ple games with vetoes and nulls.

Corollary 10 For n ≥ 5:

QSGV N

(

n, r =
⌊
n − 1

2

⌋)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

4
(n2 + 6n − 36), if n is even

1

2
(n − 3), if n is odd

The enumerations obtained in Proposition 12 and Corol-
lary 10 are, as far as we know, new and candidates to be
entered in www.oeis.org.

10 Conclusion and open problems

This article finds concise closed-form expressions for cer-
tain classes of monotonic Boolean functions or, equivalently,
certain classes of simple games. Specifically, games are enu-
merated, in which the players are grouped into three or four
equivalence classes and contain either very powerful voters
(with the right to veto) or weak voters without the ability to
influence (nulls). The results that are obtained are polyno-
mial.

From a theoretical point of view, the results obtained con-
tribute to enlarging and expanding the known enumerations
of some subclasses of Boolean functions, which constitute a
variant of Dedekind’s problem on the enumeration of mono-
tonic inequivalent Boolean functions or simple games.

From a practical point of view, the results obtained con-
tribute to the design of suitable voting systems that meet
certain conditions desired a priori. For instance, if one wants
to design a tricameral voting system with veto players and
with a given number of representatives, then he/she can gen-
erate all of them through the results of this article and select
the most convenient one. Similarly, the results can be used to
design circuits or reliability systemswith certain restrictions.

Listing monotonic Boolean functions is a tremendously
complex problem, Dedekind already noticed it. Enumerat-
ing subclasses of them is not easy either; for example, the
number of bipartite simple games is already exponential. We
conclude this paper by indicating two open problems that
derive from this paper and that are likely to be studied in the
near future.

We have determined the number of tripartite and quadri-
partite simple gameswith special types of voters. It is an open
and challenging problem to determine the number of tripar-
tite simple games and quadripartite simple games. Given its
complexity, soft computing techniques might be very useful
to achieve this ambitious goal.

The most relevant problem in Boolean functions is to
determine whether a given function is threshold. As 2-
monotonicity is a necessary, but not sufficient condition for
the function to be threshold, it is of great interest to enumerate
classes of 2-monotonic functions and then check one-by-one
which of them are threshold, since this checking can be done
in polynomial time. A direct continuation of this paper would
be to enumerate the number of weighted tripartite simple
games with vetoes (or nulls) and the number of quadripartite
simple games with vetoes and nulls.
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