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Abstract
We tackle the problem of separating two finite sets of samples by means of a spherical surface, focusing on the case where
the center of the sphere is fixed. Such approach reduces to the minimization of a convex and nonsmooth function of just
one variable (the radius), revealing very effective in terms of computational time. In particular, we analyze the case where
the center of the sphere is selected far from both the two sets, embedding the grossone idea and obtaining a kind of linear
separation. Some numerical results are presented on classical binary data sets drawn from the literature.

Keywords Spherical separation · Classification · Grossone

1 Introduction

Classification problems in mathematical programming con-
cern separation of sample sets by means of an appropriate
surface. This field, entered by many researchers in optimiza-
tion community in the last years, is a part of the more general
machine learning area, aimed at providing automated sys-
tems able to learn from human experiences.

Inmachine learning, classification can be addressed on the
basis of different paradigms (Astorino et al. 2008). The most
common one is the supervised approach, where the samples
in each set are equipped with the class label heavily exploited
in the learning phase. A well-established supervised tech-
nique is the support vector machine (SVM) (Cristianini and
Shawe-Taylor 2000; Vapnik 1995), which revealed a power-
ful classification tool in many applicative areas. A widely
adopted alternative is called unsupervised, since no class
label is known in advance; the aim is to cluster the data
on the basis of their similarities (Celebi 2015). In the mid-
dle, we find the semisupervised techniques (Chapelle et al.
2006), which are a compromise between the supervised and
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the unsupervised approaches; in such case, the learning task
is characterized by the exploitation of the overall informa-
tion coming from both labeled and unlabeled samples. Some
useful references are Chapelle and Zien (2005) and Astorino
and Fuduli (2007), the latter being a semisupervised version
of the SVM technique.

A more recent classification framework is constituted by
the multiple instance learning (MIL) (Herrera et al. 2016),
which can be interpreted as a kind of weak supervised
approach; it consists in categorizing bags of samples, being
available only the class label of the bags instead of the class
label of each sample inside them. A seminal SVM-type MIL
paper is Andrews et al. (2003), while some recent articles
are Astorino et al. (2018, 2019a, b, 2020), Avolio and Fuduli
(2020), Gaudioso et al. (2020), and Plastria et al. (2014).

In this work, we present an extension of the supervised
binary classification approach reported in Astorino and Gau-
dioso (2009) and based on the spherical separation of two
finite sets of samples (points in IRn), say

A = {a1, . . . , am}, with ai ∈ IRn, i = 1, . . . ,m

and

B = {b1, . . . , bk}, with bl ∈ IRn, l = 1, . . . , k.

As initially proposed in Tax and Duin (1999) and also
in Astorino and Gaudioso (2009), the objective is to find a
minimal volume sphere separating the two sets A and B,
i.e., a sphere enclosing all points of A and no points of B.
In particular, while in Tax and Duin (1999) the optimization
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problem to be solved is characterized by n+1 unknowns, the
center of the sphere in IRn and the radius in IR, inAstorino and
Gaudioso (2009) the center is prefixed; consequently, in such
case, the problem becomes univariate since it reduces to just
the computation of one variable, the radius. For this problem,
the authors have designed a computationally fast algorithm
which, despite the drastic introduced simplification, provides
reasonably good separation results, as long as the center is
judiciously chosen. Possible choices for the center are, for
example, the barycenter of one of the two sets,A or B, or the
barycenter of the set A ∪ B when there is no information on
the geometry of the data.

In this paper, we use the same approach as in Astorino
and Gaudioso (2009), computing the optimal radius of the
separation sphere when the center is prefixed. The novelty
of our proposal consists in selecting the center infinitely far
from the two sets, exploiting the new numeral system based
on the grossone theory (Sergeyev 2017).

Spherical separation falls into the class of the nonlinear
separation surfaces (Astorino et al. 2008, 2016), differently,
for example, from the well-known SVM technique (Cristian-
ini and Shawe-Taylor 2000; Vapnik 1995), where a classifier
is constructed by generating a hyperplane far away from the
points of the two sets. Also the SVM approach allows to
obtain general nonlinear classifiers by adopting kernel trans-
formations. In this case, the basic idea is to map the data
into a higher-dimensional space (the feature space) and to
separate the two transformed sets by means of one hyper-
plane, that corresponds to a nonlinear surface in the original
input space. The main advantage of spherical separation is
that once the center of the sphere is heuristically fixed in
advance, the optimal radius can be found quite effectively
by means of a simple sorting algorithm such as in Astorino
and Gaudioso (2009) and Astorino et al. (2012b). No anal-
ogous simplification strategy is apparently available if one
adopts the SVM approach. Moreover, another advantage is
to work directly in the input space. In fact, to keep, when-
ever possible, the data in the original space seems appealing
in order to stay close to the real-life modeled processes. Of
course, kernel methods are characterized by high flexibility,
even if sometimes they provide results which are hard to be
interpreted in the original input space, differently from the
nonlinear classifiers acting directly in such space (see, e.g.,
Astorino et al. (2014b, c)).

The paper is organized in the following way. In the next
section, we recall the main concepts related to linear and
spherical separabilities; in fact, the linear separation surface
(i.e., a hyperplane) can be interpreted as a sphere charac-
terized by an infinitely far center and, consequently, by an
infinite length radius. In Sect. 3, we summarize the main
concepts of the grossone algebra, and in Sect. 4, we describe
our approach, equippedwith somenumerical results obtained

on a set of benchmark test problems drawn for the literature.
Finally, some conclusions are reported in the last section.

Throughout the paper, we use the following notation. We
indicate by ‖ · ‖ the Euclidean norm, and given a set X , we
denote by conv(X ) the convex hull of X .

2 Linear and spherical separation

A seminal paper on linear separation appeared in 1965 by
Mangasarian (1965), while the first approach for pattern clas-
sification based on a minimum volume sphere dates back to
1999 by Tax and Duin (1999).

2.1 Linear separability

Two sets A and B are linearly separable if and only if there
exists a hyperplane

H(w, γ ) = {x ∈ IRn | wT x = γ }, with w ∈ IRn and γ ∈ IR,

such that

wT ai ≤ γ − 1 i = 1, ...,m

and

wT bl ≥ γ + 1 l = 1, ..., k.

A characterization of linear separability is given by the
following condition:

conv(A) ∩ conv(B) = ∅,

which is well depicted in Fig. 1, where the two cases
of linearly separable and inseparable sets are considered,
respectively.

In linear separability, a relevant role is played by the
SVM technique (Cristianini and Shawe-Taylor 2000; Vap-
nik 1995),which provides a classifier characterized by a good
generalization capability, i.e., the ability to correctly classify
a new sample point. This approach consists in constructing
a separation hyperplane far away from the points of both the
two sets A and B, by minimizing the following error func-
tion:

min
w,γ

1

2
‖w‖2 + C

m∑

i=1

max{0, aTi w − γ + 1}

+C
k∑

l=1

max{0,−bTl w + γ + 1},

where theminimization of first term corresponds to themaxi-
mization of themargin (i.e., the distance between two parallel
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Fig. 1 Linear separability: (a)
separable sets; (b) inseparable
sets A

B
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Fig. 2 Spherical separability:
(a) separable sets; (b), (c)
inseparable sets
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hyperplanes supporting the sets), while the last two terms
represent the misclassification errors in correspondence to
the two point sets A and B, respectively. The parameter C
is a positive constant giving the trade-off between these two
objectives.

2.2 Spherical separability

In the spherical separation case, the pursued idea is to find a
sphere

S(x0, R) = {x ∈ IRn | ‖x − x0‖2 = R2},

with center x0 ∈ IRn and radius R, enclosing all points of A
and no points of B. More formally, the two setsA and B are
spherically separated by S(x0, R) if and only if

‖ai − x0‖2 ≤ R2 i = 1, ...,m

and

‖bl − x0‖2 ≥ R2 l = 1, ..., k.

We observe that in this case, the role played by the two sets is
not symmetric; in fact, a necessary (but not sufficient) condi-
tion for the existence of a separation sphere is the following
(Fig. 2):

conv(A) ∩ B = ∅.

Based on the above spherical separability definition, the
classification error associated with any sphere S(x0, R) is

m∑

i=1

max{0, ‖ai − x0‖2 − R2} +
k∑

l=1

max{0, R2 − ‖bl − x0‖2}.

To take into account the generalization capability, in
Astorino and Gaudioso (2009) the authors proposed to con-
struct a minimal volume separation sphere by solving the
following problem:

min
x0,z

z + C
m∑

i=1

max{0, ‖ai − x0‖2 − z}

+C
k∑

l=1

max{0, z − ‖bl − x0‖2}, (1)

with z
	= R2 ≥ 0 and C > 0 being the parameter tuning the

trade-off between the minimization of the volume and the
minimization of the classification error.

Some works devoted to spherical separation are Astorino
andGaudioso (2009), Astorino et al. (2010, 2012a, b, 2014a,
2017), and Le Thi et al. (2013). In particular, the approach
we propose in this paper is based on the fixed-center algo-
rithm introduced in Astorino and Gaudioso (2009), where
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Fig. 3 Linear separability versus spherical separability

the center x0 of the sphere is assumed to be fixed (e.g., equal
to the barycenter of A). Indicating by p the cardinality of
the biggest set between A and B, it is easy to see that when-
ever x0 is fixed, problem (1) reduces to a univariate, convex,
nonsmooth optimization problem, and it is rewritable as a
structured linear program, whose dual can be solved in time
O(p log p). In fact, the optimal value of the variable z (the
square of the radius) is computable by simply comparing the
distances, preliminarily sorted, between the center x0 and
each point in the two sets. For further technical details on
such approach, we refer the reader directly to Astorino and
Gaudioso (2009).

2.3 Spherical separation versus linear separation

From the mathematical point of view, both the approaches
(linear and spherical separations) are characterized by the
same number of parameters to be computed; in fact, a sep-
aration hyperplane is identified by the bias and the normal,
while a sphere is computed by determining the center and the
radius. In this perspective, a hyperplane can be viewed as a
particular sphere where the center is infinitely far (Fig. 3).

A possible choice of the center x0 is to take a point far
from both the sets A and B, i.e.,

x0 = xA0 + M
(
xA0 − xB0

)
, (2)

where

xA0
	= 1

m

m∑

i=1

ai and xB0
	= 1

k

k∑

l=1

bl

are the barycenters of A and B, respectively, while M is a
sufficiently large positive parameter, commonly named “big
M”.

Formula (2) corresponds to computing x0 from xA0 along
the direction xA0 − xB0 with stepsize equal to M (Fig. 4).

Notice that in general, the “big M” constant is not easy to
be managed from the numerical point of view, since indeed it
is not evident how to quantify the minimum threshold value

such that M could be considered sufficiently big; as a con-
sequence, in the practical cases, the necessity to test many
trial values arises. A possible way to overcome this numeri-
cal difficulty is to obtain an infinitely far center by exploiting
the new grossone theory and just setting M equal to 1©. The
symbol 1© denotes the new numeral, called grossone, which
is the object of the next section. Differently from Astorino
and Gaudioso (2009), where various values of M in formula
(2) have been tested in order to obtain a good classification
performance, a remarkable advantage in using the grossone
resides in avoiding the necessity to repeat several tests with
larger and larger values of M .

3 Generality on the grossone algebra

Grossone, denoted by the symbol 1©, has been introduced as
a basic element of a new numeral system thanks to which
it is possible to express not only finite but also infinite and
infinitesimal quantities and to execute numerical computa-
tions with all of them, in a unique framework with finite
quantities. An explicative recent survey is Sergeyev (2017).

We remark that this new computational methodology is
not related to the nonstandard analysis (Sergeyev 2019), and
it is noncontradictory as studied in depth in Lolli (2015),
Margenstern (2011), Montagna et al. (2015). Moreover, a
new supercomputer based on grossone was conceived; it is
called Infinity Computer and is patented in several countries
(Sergeyev 2010a).

In the literature, there are a lot of applications of grossone
in various fields: in optimization (Cococcioni et al. 2020; De
Cosmis and De Leone 2012; De Leone 2018; De Leone et al.
2020, 2018; Gaudioso et al. 2018; Sergeyev et al. 2018), in
numerical differentiation (Sergeyev 2011), in ordinary dif-
ferential equations (Iavernaro et al. 2020) and in many other
theoretical and computational research areas such as infinite
series (Caldarola 2018; Sergeyev 2009, 2017, 2018; Zhigl-
javsky 2012).On the other hand, to the best of our knowledge,
it seems that there is still no paper involving the grossone the-
ory in classification problems.

Grossone is an infinite unit, defined as the number of
the elements in the set N of the natural numbers. The new
numeral 1© is introduced by describing its properties postu-
lated in the infinite unit axiom:

1. Infinity: Any finite natural number n is less than 1©.

2. Identity: 0 · 1© = 1© · 0 = 0, 1© − 1© = 0,
1©
1© =

1, 1©0 = 1, 1 1© = 1, 0 1© = 0.
3. Divisibility: For any finite natural number n, the sets

Nk,n = {k, k + n, k + 2n, k + 3n, . . .}, 1 ≤ k ≤ n,

n⋃

k=1

Nk,n = N
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Fig. 4 Spherical separability
with a far center

A B

xA0 xB0x0

have a number of elements indicated by
1©
n
.

In particular, this axiom states that for any given finite integer
n, the infinite number 1©

n is integer being larger than any
finite number. In addition to the standard axioms of the real
numbers, it allows to maintain all the basic properties such
as commutative or associative.

A general way to express infinite and infinitesimal num-
bers on a computer is provided in Sergeyev (2003, 2010b,
2015, 2017) by using a numeral positional system with the
infinite base 1©. A number Q in this new numeral system can
be represented by groups of powers of 1©:

Q = qph 1©ph + ... + qp1 1©p1 + qp0 1©p0

+qp−1 1©p−1 + ... + qp−r 1©p−r , (3)

where

– h and r are integer numbers (∈ N);
– the exponents pi (i = −r , ...,−1, 0, 1, ..., h), called
gross-powers, can be in turn numbers of the same type
as Q and they are sorted in the decreasing order

ph > ph−1 > . . . > p1 > p0 > p−1 > . . . > p−(r−1) > p−r ,

with p0 = 0;
– qpi �= 0 (i = −r , ...,−1, 0, 1, ..., h), called gross-digits,

are finite, positive or negative numbers.

Some explicative examples of number representations in this
numeral system are the following.

– Finite numbers are represented by numerals with the
highest gross-power equal to zero, e.g.,−7.3 = −7.3 1©0.

– Infinitesimal numbers are represented by numerals hav-
ing negative finite or infinite gross-powers. The simplest
infinitesimal is 1©−1 = 1

1© for which 1©−1 · 1© = 1. Note
that all infinitesimals are not equal to zero. In particular,
1©−1 > 0 because it is a result of division of two positive
numbers.

– Infinite numbers have at least one positive finite or infinite
gross-power. For instance, the number 23.65 1©41.72 1© +
45.13 1©30.6 − 12.27 1©−22.1 is infinite; it consists of two
infinite parts and one infinitesimal part.

We conclude remarking that, by using the grossone
numeral system, it is easy to manage all types of compu-
tations, since it is allowed to assign infinite and infinitesimal
values to quantities.

4 Computational experiments

We have tested the fixed-center spherical separation algo-
rithm described in Astorino and Gaudioso (2009) for solving
problem (1), by choosing the center of the sphere as follows:

x0 = xA0 + 1©
(
xA0 − xB0

)
,
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Table 1 Data sets

Data set Dimension Points

Cancer 9 699

Diagnostic 30 569

Heart 13 297

Pima 9 769

Ionosphere 34 351

Sonar 60 208

Mushrooms 22 8124

Prognosis 32 110

Tic Tac Toe 9 958

Votes 16 435

Galaxy 14 4192

g50c 50 550

g10n 10 550

i.e., by setting M = 1© in formula (2).
The code, named FC 1© (fixed center—infinitely far), has

been implemented inMATLAB (version R2017b), and it has
been run on a Windows 10 system, characterized by a 2.21
GHz processor and 16 GB of RAM. It has been tested on 13
data sets drawn from the literature and listed in Table 1.
The first ten test problems are taken from the UCI machine
learning repository (Murphy and Aha 1992), a collection of
databases, domain theories, and data generators that are used
by the machine learning community. Galaxy is the data set
used in galaxy discrimination with neural networks (Ode-
wahn et al. 1992), while a detailed description of g50c and
g10n is reported in Chapelle and Zien (2005).

Formanaging the grossone arithmetic operations, we have
used the MATLAB environment of the new Simulink-based
solution of the Infinity Computer (Falcone et al. 2020), where
an arithmetic C++ library is integrated within a MATLAB
environment. In particular, given the two gross-numbers x
and y, from such library we have used the following C++
subroutines:

– TestGrossMatrix(x,y,’-’), returning the dif-
ference between x and y;

– TestGrossMatrix(x,y,’+’), returning the sum
of x and y;

– TestGrossMatrix(x,y,’*’), returning the prod-
uct of x and y;

– GROSS_cmp(x,y), returning 1 if x > y, -1 if x < y
and 0 if x = y.

Using the MATLAB notation, we have expressed any vector
g of n gross-number elements (that in the sequel, for the sake

of simplicity, we call gross-vector) as a couple(G,fg), with

G = [g1;g2; ...;gn] and fg = [fg1 fg2...fgn],

where gj, j = 1, . . . , n, is an array of dimension s × 2
representing a gross-number Q, with s = h + r + 1 (see
formula (3)). For each row of gj, the first element contains a
gross-digit, while the second one contains the corresponding
gross-power. Since s depends on r and h, which can be dif-
ferent for each arraygj of the same gross-vector g, the scalar
fgj, j = 1, . . . , n, is necessary to provide the position in G
of the last component of gj.

To manage the gross-vectors, we have also implemented
the following new MATLAB subroutines:

– realToGrossone(r), returning agrossone represen-
tation (G,fg) of a real vector r;

– extract(G,fg,i), returning the ith gross-number
in the gross-vector (G, fg);

– normGrossone(G,fg), computing the squared
Euclidean norm of the gross-vector (G,fg);

– scalProdG(G1,fg1,G2,fg2), computing the
scalar product between the twogross-vectors(G1,fg1)
and (G2,fg2);

– BubbleSortGrossone(G,fg,sign), sorting the
gross-vector (G, fg) in the ascending order if sign =
1 and in the descending order if sign = -1.

For each data set, in order to compute the best value of
the parameter C , we have adopted a bilevel cross-validation
strategy (Astorino and Fuduli 2016), by varying of C in the
grid {10−1, 100, 101, 102}; such choice of the grid has been
suggested by the necessity to obtain a nonzero optimal value
of z, which in turn provides the optimal value of the radius R,
as shown in Astorino and Gaudioso (2009) where the authors
have proved the following proposition.

Proposition 1 The following statements hold:

(i) if C < 1/m, then z∗ = 0;
(ii) if C > 1/m, then z∗ > 0,

where z∗ is any optimal solution to problem (1), when x0 is
fixed.

In Table 2, we report the results provided by Algorithm
FC 1© and expressed in terms of average testing correctness.
We compare them with those ones relative to the two follow-
ing fixed-center classical variants, obtained by setting

x0 = xA0 (Algorithm FCA)
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Table 2 Numerical results

Data set FCA FCAB FC 1© SVM0

Cancer 97.00 95.71 97.57 71.86

Diagnostic 83.86 53.33 89.65 92.11

Heart 74.33 55.00 87.33 68.67

Pima 69.35 66.23 61.43 61.82

Ionosphere 51.14 40.75 78.86 69.43

Sonar 59.05 52.86 65.71 75.24

Mushrooms 76.44 64.50 78.19 49.59

Prognosis 56.00 45.00 68.00 53.00

Tic Tac Toe 71.79 70.42 57.79 50.11

Votes 82.79 53.35 86.74 76.51

Galaxy 80.24 51.36 89.19 54.32

g50c 67.62 50.26 90.58 86.56

g10n 53.58 45.02 77.66 90.24

Underlined values are the best results in terms of average testing cor-
rectness

and

x0 = xA0 + xB0 (Algorithm FCAB),

respectively, and with the results obtained by a variant of the
standard linear SVM (Algorithm SVM0), where, in order to
have a fair comparison, we have dropped the margin term by
setting, in the fitcsvm MATLAB subroutine, the penalty
parameter BoxConstraint equal to 106. We recall in fact
that our spherical approach does not involve any margin con-
cept. In Table 2, for each data set, the best result is underlined.

In comparison with FCA and FCAB, the choice of the
infinitely far center appears to be the best one; in fact, Algo-
rithm FC 1© outperforms the other two approaches on all the
data sets except Pima and Tic Tac Toe, where the best per-
formance is got by fixing x0 as the barycenter ofA. We note
also that choosing x0 as the barycenter of all the points is not
a good strategy, since the corresponding results are very poor
on all the test problems, but Cancer and Tic Tac Toe, where
the testing correctnesses appear comparable.

Also with respect to SVM0, Algorithm FC 1© is charac-
terized by a good performance, except on Diagnostic, Sonar
and g10n, while on Pima both the approaches behave almost
the same. These results were expected because, even if taking
the radius infinitely far makes the spherical separability tend
to the linear separability, the two approaches differ substan-
tially. We recall in fact that if two sets are linearly separable,
they are also spherical separable (even taking a very large
radius), but the vice versa is not true.

5 Conclusions

In this paper, we have launched the idea to use the grossone
theory within classification problems. In particular, we have
focused our attention on the possibility to construct a binary
spherical classifier characterized by an infinitely far center.
As shown by the numerical results, adopting the grossone
theory allows to obtain a good performance in terms of aver-
age testing correctness, managing very easily the numerical
computations, which do not require any tuning of the “big
M” parameter.

Future research could consist in extending such approach
to the kernel trick, which is well suitable in the fixed-center
spherical separation, as shown in Astorino and Gaudioso
(2009), and to introduce the margin concept as in Astorino
et al. (2012b).
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