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Abstract
Feature selection, which plays an important role in high-dimensional data analysis, is drawing increasing attention recently.

Finding the most relevant and important features for classifications are one of the most important tasks of data mining and

machine learning, since all of the datasets have irrelevant features that affect accuracy rate and slow down the classifier.

Feature selection is an optimization process, which improves the accuracy rate of data classification and reduces the

number of selected features. Applying too many features both requires a large memory capacity and leads to a slow

execution speed. Feature selection algorithms are often responsible to decide which features should be selected to be used

during a classification algorithm. Traditional algorithms seemed to be inefficient due to the complexity of dimensions of

the problem, thus evolutionary algorithms were used to improve the problem solving process. The algorithm proposed in

this paper, chaotic cuckoo optimization algorithm with levy flight, disruption operator and opposition-based learning

(CCOALFDO), is applied to select the optimal feature subspace for classification. It reduces the randomization in selecting

features and avoids getting stuck in local optimum solutions which lead to a more interesting feature subset. Extensive

experiments are conducted on 20 high-dimensional datasets to demonstrate the effectiveness and efficiency of the proposed

method. The results showed the superiority of the proposed method to state-of-the-art methods in terms of classification

accuracy rate. In addition, they prove the ability of the CCOALFDO in selecting the most relevant features for classifi-

cation tasks. Thus, it is a reasonable solution in handling noise and avoiding serious negative impacts on the classification

accuracy rate in real world datasets.

Keywords Feature selection � High-dimensional data � Cuckoo optimization algorithm � Chaotic theory � Levy flight �
Disruption operator � Opposition-based learning

1 Introduction

Feature selection in high dimensional data is a prepro-

cessing step that has been widely used to improve the

performance of learning algorithms in many fields (Mafarja

et al. 2019). This preprocessing technique selects relevant

features, removes other features, decreases the time

required to learn the predictors and finally leads to an easier

interpretation by simplifying the models (Thaher et al.

2020; Yan et al. 2019).

Nowadays, feature selection is an important task in

machine learning, since it can affect the performance of

high-dimensional data classification. There are different

sources of data applicable to solve various problems of

present world. Yet, selecting features from these big and

complex data sources are one of the most challenging

discussions. The real-world data has a continuous form;

therefore, we have to extract useful knowledge from this

data to solve problems. The large quantities of high

dimensional data creates great opportunities and new

challenges in the conventional data mining and knowledge

discovery researches (Kriegel et al. 2009). The most

important challenges in the high-dimensional data analysis
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include limitations in time, memory, and computational

cost (Rao et al. 2019).

The data are comprised of samples with several features.

Thus, selecting some samples or features is advisable to

reduce its volume for better computation (Hamidzadeh

et al. 2015). This reduction can be done through extracting

or selecting features (Huang et al. 2018). However,

selecting a feature would be advantageous, since it sim-

plifies the interpretation of the classification model

(Ramı́rez-Gallego et al. 2017). In other words, the com-

plexity of classifiers decreases through using proper set of

selected features. Furthermore, it causes faster convergence

among optimum results, which leads to an improved per-

formance of classifiers (Li et al. 2017; da Silva et al. 2017).

Many features of problem solving, may be useless or

lack information. Some others even mislead the perfor-

mance of the classifier and affect the accuracy rate due to

the presence of noise. Although failing to remove these

features does not cause any information problems, it raises

the computational cost and increases the response time of

the system. Considering the storage space, it also causes

storing a lot of non-useful information along with useful

data (Ramı́rez-Gallego et al. 2017; Lee and Kim 2016).

Moreover, the specific feature selection method and the

specific problem may be interrelated, so the method would

not be applicable to other problems (Fong et al. 2013).

Mathematical algorithms are not interesting anymore

because they are too complex and time consuming. Instead,

metaheuristic algorithms which can imitate the life of liv-

ing creatures, and their evolution have become more

applicable (Arora and Anand 2019). Metaheuristic methods

can be used to discover optimal global solutions (Nayar

et al. 2019). These types of algorithms solve complex

nonlinear and indeterminate problems more quickly than

classical algorithms (Arora and Anand 2019). Unlike tra-

ditional algorithms, metaheuristic ones did not need to

restart when new data enters or environment changes.

Considering their nature, selecting features using evolu-

tionary algorithms, reduce the consumed time and make

acceptable accuracy rate in classification (Kumar and

Bharti 2019). They can be applied for any problem that can

be formularized, also they can be integrated with other

optimization techniques. The biggest advantage of these

algorithms is that they can solve problems very quickly and

with reasonable accuracy rate, without applying common

mathematical solutions (Mafarja et al. 2019).

There are two concepts in metaheuristic algorithms:

exploration and exploitation. Exploration is a capability for

searching the problem space without any attention to the

results, while exploitation concentrates on results. In order

to reach the best performance in problem solving, these

capabilities should be balanced. Most of the evolutionary

algorithms have issues with getting trapped in local optima

and early convergence, thus several studies have been done

on these issues (Arora and Anand 2019). By applying

stringent conditions and using random numbers in imple-

menting algorithms to increase the convergence rate,

algorithms may be locked into local optimizations, and

their accuracy and efficiency may reduce (Fong et al. 2013;

Fong et al. 2016; Gandomi and Yang 2014).

One of the newest and most powerful evolutionary

optimization methods is cuckoo’s search algorithm, which

is more capable of finding global optimum points. This

algorithm simulates the cuckoo bird’s behavior in nesting

and laying to solve optimization problems (Gandomi et al.

2013). The skill of laying eggs like the host bird eggs in

each generation improves evolutionary and prevents host

birds from detecting them. As a result, chickens out of

these eggs grow in the host nest. In this algorithm, cuckoos

look for the best eggplant or globally best solution for

survival (Gandomi et al. 2013; El Aziz and Hassanien

2016).

Similar to other evolutionary algorithms, cuckoo’s

optimization algorithm has an excessive randomness

problem, so this study uses the chaotic theory, levy flight

and disruption operator to limit the random behavior of this

algorithm. These enhancements improve the exploration

phase and feature selection in complex data. By improving

the cuckoo optimization algorithm for feature selecting, a

feature subset with maximum feature elimination and the

highest accuracy rate in classification are obtained.

This paper discusses data preprocessing and its most

important task: selecting the best feature set for next pro-

cessing. The CCOALFDO algorithm is a wrapper-based

feature selection method developed by an integrated

framework that combines chaos theory and cuckoo opti-

mization algorithm as well as levy flight, opposition-based

learning and disruption operator to handle the 20 high-

dimensional datasets in selecting the most relevant fea-

tures. The K-NN classifier (where K = 5) is used to eval-

uate the produced feature subsets. Experimental results on

data sets show the efficiency of the proposed method over

comparative algorithms.

In summary, what you can find in this study includes:

1 Using chaotic theory, levy flight and disruption oper-

ator to reduce the random selection of features and

avoid getting stuck in local optimum.

2 The opposition-based learning prevents the solutions

from accumulating too much in one place and causes a

better search in the problem space

3 The disruption operator searches the opposite points of

solutions, so the answers cover more parts of the

problem space for searching and get better results.

4 Selecting informative features efficiently and reaching

convergence in a reasonable time.
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5 The CCOALFDO method for feature selection problem

is defined as a supervised feature selection method

which maximizes the classification accuracy rate and

minimizes the feature set size.

6 In comparison with the five state-of-the-art evolution-

ary algorithms, the CCOALFDO algorithm ranked first

in the accuracy rate and ranked second in reducing the

number of features.

In Sect. 2, the related literature of feature selection

is reviewed. The proposed method is explained thoroughly

in Sect. 3. Section 4 reports the experimental results and

analyses the performances of different feature selection

algorithms. Finally, Sect. 5 contains conclusions and

future works.

2 Related works

Feature selection is a very important preprocessing and

knowledge discovery tool for data analysis, and it is

applied to many domains. In addition, it is used as an

important technique for high-dimensional data analysis,

since it has shown its promising ability to enhance a variety

of other learning tasks, such as data clustering, document

analysis, image processing and video processing, to name a

few (Huda et al. 2016; Pes et al. 2017; Hossain et al. 2016;

Yadav et al. 2018; Zhang et al. 2019; Luo et al. 2018;

Bannigidad and Gudada 2019).

Feature selection problems, used to face a tradeoff

between the feature set size and the classification quality.

In fact, the size of the subspace of features usually

remained fixed during previous studies. This means that if

we have a dataset with k features, in order to select a

subspace of that with s features, there are k!= k � sð Þ!s!ð Þ
different ways (Nayar et al. 2019; Mafarja et al. 2019).

Selecting s, the size of the subspace of features, is a great

challenge because when s is too big, there may be redun-

dant subset of features and if it is too small, some useful

information will be lost (Bostani and Sheikhan 2017).

Depending on the label information usage in various

datasets, feature selection methods can be classified into

three categories (Solorio-Fernández et al. 2020): super-

vised, semi-supervised and unsupervised.

The supervised learning methods use the label infor-

mation of data to guide the process of dimensionality

reduction. According to some criteria, these methods

measure the importance and relevance of the features by

utilizing the labeled data to train the feature selection

models (Zare et al. 2019; Zhong 2020; Ang et al. 2015).

Since unlabeled data consists of samples and features

without any information about the natural grouping of data,

unsupervised methods are suitable for selecting features

without attention to the labels in dataset (Solorio-Fernán-

dez et al. 2020).

While the second method, a semi-supervised feature

selection, integrates a small amount of labeled data into

unlabeled data, the third method lacks this additional

information (Ang et al. 2015; Song et al. 2016; Xu et al.

2018; Yang et al. 2018).

Feature selection algorithms are divided into three

groups based on the computational time: filters, wrappers

and hybrid or embedded (Ramı́rez-Gallego et al. 2017;

Fong et al. 2013).

In filter algorithms, the learner model doesn’t have any

bias and features and patterns are independent, so there is

no need to evolve the patterns as the features become

evolved. Also, the structure of this algorithms have simple

and clear criteria for feature evaluation (Li et al. 2017).

Although the results of wrapper based algorithms using

machine learning techniques are more reliable, and their

computational cost is so high that they need to use a special

method to reduce it (Kumar and Bharti 2019). Comparing

with a filter algorithm, a wrapper-based feature selection

has a more complex structure and higher accuracy rate,

since it works in conjunction (Ramı́rez-Gallego et al. 2017;

Fong et al. 2013; Peng and Fan 2017). To be flexible in

solving problems, hybrid algorithms combine two types of

algorithms including filter and wrapper ones which enables

them to provide a more favorable result (Thaher et al.

2020).

Features are divided into four groups: irrelevant fea-

tures, redundant features, weakly relevant but non-redun-

dant features and strongly relevant features (Li et al. 2017).

In order to reach an optimal feature set, we need algorithms

that can choose some strongly relevant and non-redundant

features.

Some redundant features may have significant statistical

relations with other features. In other words, an irrelevant

feature may be highly relevant when combined with other

features. That is why feature set in some studies with

computed minimal redundancy and maximum relevance

(mRMR), is determined based on mutual dissimilarity with

other features (Ding and Peng 2005; Masud 2010).

In past decades, researchers introduced a lot of evolu-

tionary algorithms, such as PSO algorithm (Fong et al.

2016; Mistry et al. 2017; Dara et al. 2017; Qi et al. 2017),

ACO algorithm (Shunmugapriya and Kanmani 2017;

Sivagaminathan and Ramakrishnan 2007; Sweetlin et al.

2017; Harde and Sahare 2016), bee colony algorithm (da

Silva et al. 2017; Shunmugapriya and Kanmani 2017), bat

algorithm (Jayabarathi et al. 2018; Cheng et al. 2016),the

frog leaping algorithm (Hu et al. 2016; Dai Y 2015) and the

krill herd optimization algorithm (Rodrigues D 2014;

Wang et al. 2019).
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Recently, meta-heuristic algorithms like ant colony

optimization (ACO) (Beltramo et al. 2019), simulated

annealing (SA) (Yan et al. 2019), and Henry gas solubility

optimization (HGSO) (Neggaz et al. 2020), have become

more popular due to their good performance in solving

feature selection problems. Fong, for example, used

a metaheuristic algorithm as a particle search to select

features. This method is suitable for high-correlation fea-

ture spaces and it can be applied with other classification

methods as a fitness function (Fong et al. 2013).

Another metaheuristic algorithm is called crow search

algorithm (CSA), which purposes a v-shaped binary CSA.

However, like other evolutionary algorithms, it suffers

from low convergence rate and entrapments in local optima

(De Souza 2018). Anter introduced a hybrid crow search

algorithm in selecting feature set with combination of

chaos function and fuzzy c-means objective function as a

cost function (Anter and Ali 2020).

Thaher purposed an algorithm to select a suitable feature

set based on a hunting process performed by hawks and

rabbits and called it HHO. This algorithm is a greedy

search with improvement of levy flight in continuous space

which transfers to binary space (Thaher et al. 2020).

Huang proposed a distributed PSO-SVM approach,

which includes the binary PSO for feature selection and

standard PSO for parameter optimization of SVM (Huang

and Dun 2008). Also, a genetic algorithm (GA) was pro-

posed to reduce the number of features which try to opti-

mize the feature subset without degrading the classification

accuracy (Himabindu et al. 2019).

The whale optimization algorithm (WOA) is also a

recent algorithm used in feature selection problems which

was not successful in reducing features (Hussien et al.

2019). Mafarja used eight different shapes of movement to

improve the WOA; the results showed that most of

V-shaped transfer functions had better performance in

minimize the feature number and less information loss

against S-shaped transfer functions (Mafarja et al. 2019).

Multi-strategy ensemble algorithm tried to enhance the

processes of feature selection problems with tune gray wolf

optimization (GWO) parameters (Hussien et al. 2019).

Anter applied the GWO algorithm only in medical datasets

(Anter et al. 2019).

Another study expecting more improvement in accuracy

rate, combined GA selection with SA to avoid getting into

the local optima called GA–SA algorithm (Yan et al.

2019).

The previously mentioned studies were not successful in

making a balance between the classification accuracy rate

and the feature reduction rate. This paper introduces a new

wrapper feature selection method, in which the irrelevant

features are discarded by using cuckoo optimization algo-

rithm (COA) with the chaotic theory, levy flight and

disruption operator. So, the aim of this paper is to provide a

method which is able to improve classification accuracy

rate and optimum reduction of the number of features

simultaneously.

3 Background

In this section, cuckoo optimization algorithm is described

in Sect. 3.1, the definition of chaotic function is given in

Sect. 3.2, levy flight algorithm is described in Sect. 3.3, the

definition of opposition-based learning is given in Sect. 3.4

and finally in Sect. 3.5, disruption operator is briefly

reviewed.

3.1 Cuckoo optimization algorithm

Choosing an optimal subspace of the dataset is critical to

speed up and grade the classification especially for high

volume data. In this study, the cuckoo’s algorithm which

was introduced by Yang in 2009 (Gandomi et al. 2013) is

used for selecting features. Cuckoos are interesting birds

that have a spatial strategy for aggressive reproduction. In

fact, they put their eggs in the nests of other birds called

hosts. The cuckoo eggs will not have any chance to grow

up if the host birds find them in their nest and throw them

out. However, if the host birds do not find the cuckoo’s

egg, it will be the cuckoo’s chicken, which grows faster

than host’s chickens and throws them out of the nest. Thus,

finding the best place with similar eggs for egg laying, is

essential for cuckoo’s generation to survive.

Cuckoo search algorithm rules include:

• Number of nests (habitats) are fixed.

• A cuckoo lays a number between 5 and 10 eggs each

time and then choose a nest.

• Best nests will be used in the next generation.

• For Nvar dimensional problem an array with 1 row and

Nvar column are used.

A position of habitat or nest in space is like below:

Habitat ¼ x1; x2; . . .; xNvar½ � ð1Þ

Habitats which are more suitable for egg laying are

desirable; therefore, a fitness function is applied to first

evaluate every habitat then describe the profit function as

follow:

fitness ¼ fp habitatð Þ ¼ fp x1; x2; . . .; xxNvarð Þ ð2Þ

The space needs to be limited in the optimization

algorithm, then varhi is applied for upper bound and varlow
for lower bound. Every cuckoo has an egg laying radius

(ELR) which is determined by the proportion between the

number of eggs of this cuckoo and the total number of eggs
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in bound. a is tuning the maximum value of ELR. ELR is

formulated in Eq 3:

ELR ¼ a� Number of current cuckoo’s eggs

Total number of eggs
� varhi � varlowð Þ ð3Þ

In this algorithm, the first place for egg laying is selected

randomly, but the next generations use the best solutions

definitely.

3.2 Chaotic function

Chaos is a deterministic dynamic function that is sensitive

to its initial conditions and parameters. The nature of chaos

is apparently random and unpredictable; however, it also

possesses an element of regularity (Alatas et al. 2009).

Chaos is a nonlinear function which can change the

algorithm behavior. Chaotic maps represent a pseudo-ran-

dom deterministic process, that is non-converging boun-

ded (dos Santos and Mariani 2008).

It can solve the early convergence in evolutionary

algorithms by avoiding local minimums. There are a lot of

chaotic maps. Ten one-dimensional maps that can be used

as initial position pattern in cuckoo optimization algo-

rithms are introduced in Table 1 (Sayed et al. 2019; Saremi

et al. 2014; Hamidzadeh and Namaei 2018; Hamidzadeh

et al. 2017):

3.3 Levy flight

A levy flight random walk is suggested as a permutation to

perform a local search (Emary and Zawbaa 2018). Levy

flight process represents the optimum random search pat-

tern and is frequently detected in nature (Viswanathan et al.

2008). This distribution has infinite mean and infinite

variance and also has a simple power law formula. S is the

step length in levy flight algorithm. The parameters u and m
are given by the normal distributions in Eq. 6. The vari-

ance, r, is calculated as Eq. 7 with 1 B b B 2 and C Zð Þ is
the gamma function (Yang and Deb 2009; Syberfeldt

2014).

L Sð Þ� Sj j�1�b
0\b� 2; S ! 1 ð4Þ

S ¼ u

vj j
1
b

ð5Þ

u�Nð0; r2uÞ ; m�Nð0; r2vÞ ð6Þ

ru ¼
C 1þ bð Þ � sin pb=2ð Þ

C 1þ bð Þ=2½ � � b � 2 b�1ð Þ=2

� �1=b
; rv ¼ 1 ð7Þ

3.4 Opposition-based learning

Opposition-based learning (OBL) is a useful way to better

explore problem space. This algorithm can help increase

efficiency by searching for the solution and its opposite at

the same time. Although this strategy raises the algorithm’s

computational load, but it helps a lot to achieve faster

convergence (Oliva and Abd Elaziz 2020; Tizhoosh 2005;

Aladeemy et al. 2020).

The OBL strategy in D-dimensional space is as Eq. 8.

�xj ¼ uj þ lj � xj j ¼ 1; 2 ; . . .;D ð8Þ

In Eq. 8 the x is the habitat in search space and �x is the

opposite sides of the habitat which are generated within the

interval [u, l]. Clearly, for each dimension the opposite

number should be calculated which is represented by j.

Finally, �x represents the opposite habitat states in D

dimension.

3.5 Disruption operator

Disruption operator (Dop) is implemented as a solution to

enhance the population diversity. This phenomenon was

inspired from the astrophysics. Harwit belives:

When a set of gravitationally bound particles (with

total mass m) is very close to a massive object (with

mass M), then the set becomes a torn apart. Similar to

this, when a solid body that held together through

gravitational forces, approaches a much more mas-

sive object.

This operator is used because CCOALFDO algorithm

searches better in the problem space and maintains the

balance between exploration and exploitation processes.

Dop is formulated in Eq. 9:

Dop ¼
Disi;j � d �2; 2ð Þ ifDisi;best 	 1

1þ Disi;best � d
�10�4

2
;
10�4

2

� �
otherwise

8<
: :

ð9Þ

In Eq. 9 the Disi;j represents the Euclidean distance

between the ith solution and its nearest neighborhood jth

solution, and Disi;best is the Euclidean distance between the

ith solution and the best solution. Also, the d a; bð Þ is a

random number which is generated within the interval [a,

b] (Neggaz et al. 2020).
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4 Proposed chaotic cuckoo optimization
algorithm with levy flight and disruption
operator for feature selection

In this section, the proposed wrapper-based chaotic cuckoo

optimization algorithm with levy flight and disruption

operator (CCOALFDO) is introduced as a feature selection

method. In the basic cuckoo optimization algorithm, the

cuckoos move in the search space to modify their positions

to any point in the space which is called the continuous

space. Regarding the nature of the feature selection issues,

the solutions are limited to the binary space [0,1] values.

With Npop cuckoos, one can make a Npop 9 Nvar matrix.

In the usual algorithm, at the first place of egg laying,

cuckoos randomly select some habitats that are built in the

algorithm, chaotic function speeds up the convergence of

the algorithm.

Searching for the optimal solution in a chaotic way

among the local minima using ergodicity, regularity and

semi-stochastic properties, leaded to a high probable global

optimal solution. In Table 1, chaos variables which are

generated by Guass/mouse map in the CCOALFDO algo-

rithm are described. However, chaos variables are now

assumed to be generated via an arbitrary one-dimensional

map which enables them to either modify in the range of

(0.1) or we scale them in this range.

The initial value for Gauss/mouse chaotic function is a

random number then the sequence values are calculated by

Eq. 10:

x0 ¼ rand

xiþ1 ¼
1 xi ¼ 0

1

mod xi; 1ð Þ otherwise

8<
:

ð10Þ

In order to find habitat in the next generation, cuckoos

should search around to find the best.

Though there are many different evolutionary variants in

the literature, cuckoo optimization algorithm problems of

premature convergence and generating inefficient results

are still persisting. Levy flights method is used to solve

these problems and enable the CCOALFDO algorithm to

generate more efficient results. Also, the disruption oper-

Table 1 Chaotic maps

NO Name Chaotic map Range

1 Chebyshev (Wang et al. 2001) xiþ1 ¼ cosði cos�1ðxiÞÞ (- 1,1)

2 Circle (Li-Jiang and Tian-Lun 2002) xi ¼ mod xi þ b� a

2p

� �
sin 2pxkð Þ; 1

� �
;

a ¼ 0:5 and b ¼ 0:2

(0,1)

3 Gauss/mouse (Jothiprakash and Arunkumar 2013)

xiþ1 ¼
1 xi ¼ 0
1

mod xi; 1ð Þ otherwise

8<
:

(0,1)

4 Iterative (Zhenyu 2006) xiþ1 ¼ sin ap
xi

� �
; a ¼ 0:7 (- 1,1)

5 Logistic (Zhenyu 2006) xiþ1 ¼ axi 1� xið Þ, a = 4 (0,1)

6 Piecewise (Saremi et al. 2014) xi
p

0� xi\p

xi � p

0:5� p
p� xi\0:5

1� p� xi
0:5� p

0:5� xi\1� p

1� xi
p

1� p� xi\1

8>>>>>>>>><
>>>>>>>>>:

; p ¼ 0:4

(0,1)

7 Sine (Wang et al. 2014) xiþ1 ¼ a
4
sin pxið Þ; a ¼ 4 (0,1)

8 Singer (Simon 2008) xiþ1 ¼ l 7:86xi � 23:31x2i þ 28:75x3i � 13:302875x4i
� �

l ¼ 1:07
,

(0,1)

9 Sinusoidal (Du et al. 2009) xiþ1 ¼ ax2i sinðpxiÞ; a ¼ 2:3 (0,1)

10 Tent (Bhattacharya and Chattopadhyay 2010)

xiþ1 ¼
xi
0:7

xi\0:7

10

3
1� xið Þxi 	 0:7

8><
>:

(0,1)
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ator observed population diversity of habitats. Using this

method, it is ensured that COA, which is unable to perform

global search well, would do it more effectively and would

not be trapped in local minima. Thus, random walks drawn

from levy stable distribution are used in the proposed

method to define steps. Then, the step size is calculated by

Eq. 11. Here, the factor 0.01 is the typical length scale to

avoid exaggerating the size of the step and make the

solutions jump out of the design domain.

Step size ¼ 0:01� S ð11Þ

In Eq. 12 the global random search done by the concept

of levy flights is presented in which x
tð Þ
i is the current state

of the cuckoo i in its last search for finding a habitat after t

iterations. Levy flight is applied to generate a new state

x
tþ1ð Þ
i of x

tð Þ
i . By levy flight, the new state of the habitat x

tð Þ
i

is calculated by Eq. 12 and ELR is described in Eq. 3.

x
tþ1ð Þ
i ¼ x

tð Þ
i þ ELR� levy sð Þ ð12Þ

For all habitat the OBL strategy in D-dimensional space

should be calculated as Eq. 8: This doubles the number of

habitats. The disruption operator should be applied to each

habitat and their opposites. As mentioned earlier, Dop is

calculated by Eq. 9. It is necessary to be sure that all the

answers are not too close together and make the balance

between exploration and exploitation processes. The

inclusion of OBL and DO permits to increase the diversity

of the habitats.

Since the continuous space of features ought to be

transformed to the corresponding binary space, a new

position of the habitat is used in the next formula in which

yj,t?1 refers to the cuckoo with j index after t iteration:

yj;tþ1 ¼ f xð Þ ¼ 1 if w xj;tþ1
� �� �

	 rand

0 otherwise

�
ð13Þ

w xj;tþ1ð Þ is calculated by Eq. 14.

w að Þ ¼ 1

1þ e10 a�0:5ð Þ ð14Þ

To solve the feature selection problems, the continuous

space (free position) must be transformed to their corre-

sponding binary solutions.

For example, if the value of a bit equals to 1, its cor-

responding feature is selected in the feature subset, while 0

indicates nothing (Fig. 1). It means that the second and

fourth features are selected for the feature subset.Fitness

function described as Eq. 15:

fitnesst ¼ max 1� bð Þ � ACCþ b� 1� m

n

� �� �
ð15Þ

in Eq. 16, n is the total number of features, m is the

selected feature subset length, and b is a parameter corre-

sponding to create a balance between the classification

accuracy and feature reduction which can be in 0; 1½ �. It is
illustrated in the experiments that b=0.2. The ACC

parameter is the classification accuracy rate made by

calling a rapid classifier such as KNN to evaluate the fea-

ture sets and generate the accuracy value based on Eucli-

dean distance measure. The K parameter equals 5. ACC is

described as Eq. 16:

ACC ¼ correct classificationrate with K Neighbors

Classifier N neighbors ¼ 5ð Þ
ð16Þ

During every iteration, fitness values are assigned to

cuckoo’s habitat in the search space. These positions are

evaluated on each iteration, and the best position is selec-

ted as the best solution.

Figure 2 shows the framework of CCOALFDO algo-

rithm for problem optimization. In general, the proposed

algorithm depends on improving the behaviors of the

cuckoo optimization algorithm by using the chaotic algo-

rithm, levy flight, opposition-based learning and disruption

operator. Clearly, each of these operators have their own

tasks. The aim of using the chaotic algorithm is to improve

the start position in the first step. The updating mechanism

was used in the levy flight operation, since the cuckoos

have the largest effect on the convergence of solutions

leading to the global solution. Also, opposition-based

learning is an intelligent solution for searching the opposite

side of space and enhancing the exploration power.

Whereas the disruption operator is used to enhance the

Fig. 1 Example of selected features in each sample
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diversification of the whole population, which leads to

improving the exploration ability of the CCOALFDO and

convergence of the optimal solution. At the end, calling a

rapid classifier such as KNN was done to evaluate the

candidate solution and generate the fitness value based on

the reduced dataset.

In CCOALFDO algorithm, two criteria were selected to

terminate the algorithm:

1 maximum iteration (or generation) number

2 no significant improvement in accuracy rate in the

latest 20 iterations
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The pseudo-code of CCOALFDO is shown in Algorithm

1. The algorithm starts by generating a random population

of solutions with chaotic formula, then the iteration starts.

The basic task in each iteration is determination of the best

solution, and the coefficients in the next step. In the fol-

lowing phase, the solutions in the population are updated

using levy flight and also the opposite position of each nest

is calculated as new nests. It then applies Dop formula for

all of the habitats and their opposites to make more suit-

able positions for them. This process is repeated until

reaching a satisfying stopping constraint. Finally, the

algorithm returns to the best solution.

The computational complexity of the proposed algo-

rithm depends on several cases, including the cuckoo

optimization algorithm (COA), the chaotic map (CM), the

levy flight (LF) and disrupt operator (DO). Therefore, the

complexity of the CCOALFDO algorithm is calculated by

Eq. 17.

hðCCOALFDOÞ ¼ Ksh COAð Þ þ N � h CMð Þ
þ N � ksð Þh LFð Þ þ h DOð Þ ð17Þ

where h COAð Þ is calculated by Eq. 18.

h COAð Þ ¼ h t Dim� N þ C � N þ NlogNð Þð Þ ð18Þ

and h CMð Þ is calculated by Eq. 19.

h CMð Þ ¼ h t � Nð Þ ð19Þ

and h LFð Þ is described as Eq. 20.

h LFð Þ ¼ h tðDim� N þ C � Nð Þ ð20Þ

And finally, h DOð Þ is calculated by Eq. 21.

h DOð Þ ¼ h t � Nð Þ ð21Þ

In Eq. 17 to 21, t represents the number of iterations,

Dim is the number of the features. N represents the number

of feature subsets and also, Ks represents the number of

habitats which updated in every iteration of the

CCOALFDO algorithm, and C is the cost of objective

function.

Fig. 2 The framework of the proposed CCOALFDO method
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5 Experimental result

In this section, we perform the experiments on various

high-dimensional datasets to compare the proposed

CCOALFDO method with five other feature selection

methods. At first, in Sect. 5.1 applied datasets are intro-

duced concisely. Then, in Sect. 5.2, the experimental set-

ups and parameters are discussed. Finally, in Sect. 5.3 the

performance of the proposed method against other relevant

methods is evaluated.

5.1 Datasets

The results presented in the experiments are based on the

15 real-world datasets from UCI machine learning reposi-

tory (Lichman 2013), and the 5 medical datasets were used

(Statnikov et al. 2005) that are listed in Table 2 and cover

different sizes and dimensions. In Table 2, the number of

data samples, features and classes for each dataset are

given. In all datasets, the missing value is replaced with the

median of that feature.

5.2 Experimental setup and parameters setup

The experiment was conducted on the Intel core i3 com-

puting platform with 4 GB RAM, 2.13 GHz frequency.

The programming environment is MATLAB R2014a in the

Windows 10 operating system.

To compare the CCOALFDO algorithm, we used some

other evolutionary algorithms such as whale optimization

algorithm (WOA) (Mafarja and Mirjalili 2018), gray wolf

optimizer (GOW) (Emary et al. 2016), particle swarm

optimization (PSO) (Eberchart and Kennedy 1995), crow

search algorithm (CSA) (Sayed et al. 2019) and cuckoo

optimization algorithm (Rajabioun 2011). Table 3 shows

the parameter setting of the algorithms used for comparing.

In order to train and validate K - onefolds are used,

while the last fold is used for testing in the k-fold cross-

validation. The proposed method’s performance should be

confirmed by applying the fivefold cross validation to

generate the five equal portions in the dataset.

The role of the training part involves training the applied

classifier through optimization at the final evaluation, while

the validation part assesses the performance of the classi-

fier during the training time and the testing part evaluates

features given the trained classifier which are picked up

eventually. Based on fivefold cross validation, 80% of

training partition is used for training, while 20% is used for

the fitness function validation.

5.3 Result interpretation

In this section, we report and analyze the experimental

results of the proposed CCOALFDO method and the

compared feature selection methods. To provide a fair

comparison, each method is conducting 10 solutions, and

its average percentages are reported in comparison with

other methods. All experiments use the same parameters

for initialization and evolution. To execute CCOALFDO

algorithm, the population size equals 50 and also the iter-

ation number equals 100. It is noteworthy to mention that

all the experiments were repeated for 30 independent times

to obtain meaningful results.

Using the KNN algorithm for classification and dividing

the correct sample classification to the overall number of

samples, the accuracy rate of the algorithm (ACC) is found.

In KNN algorithm, the K parameter equals 5. The optimum

result would be the one with maximum accuracy rate and

minimum number of features.

Table 4 presents the results of the proposed algorithm in

each dataset. SF shows selected features in percent, and

ACC is the accuracy rate in percent that reached to

threefold cross-validation.

According to Table 4 the Gauss/mouse map obtains

similar or even higher accuracy rates on all datasets in

comparison with 10 other maps. However, it obtains

insignificant lower accuracy rate in D3, D5, D7, D8,

D13and D19 datasets. Also, the results are graphically

shown in Fig. 3. As shown in Fig. 3, the red bar is usually

higher than the other colors.

The Gauss/mouse map results of CCOALFDO are not

much higher than other maps; therefore, it is used to

compare CCOALFDO algorithm with other five algorithms

in each dataset. Figure 4 depicted the convergence of the

proposed method with Gauss/mouse map. As it is seen in

Fig. 4, larger datasets such as D2, D6, D12 and D19 needs

more than 100 iteration numbers to increase the accuracy

rate, and if this number of iterations increases, they may

perform better at the correct rate. The smallest datasets

such as D7, D9, D10 and etc., are also the same. More

iterations are not needed as 50 iterations become fixed.

Table 5 presents the accuracy and selected feature rate

results. Because of the limitation of random behavior of

cuckoos, the proposed algorithm caused faster convergence

in most datasets.

According to Table 6, considering the average scores in

the datasets, the CCOALFDO algorithm eventually shows

the best performance in accuracy rate. The results are

graphically shown in Fig. 5. Comparing the accuracy rate

of different algorithms, the proposed algorithm shows

greater accuracy than other algorithms in most datasets. In

terms of ACC, the proposed CCOALFDO method achieves
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Table 2 Experimental datasets (Lichman 2013; Statnikov et al. 2005)

No. Dataset Number of data samples Number of features Number of classes

1 Internet Advertisements (AD) 3279 1585 2

2 Dexter 300 20,000 2

3 Gisette 13,500 5000 2

4 DrivFace 606 6400 4

5 CNAE-9 1080 857 9

6 Gene expression cancer RNA-Seq 801 20,531 5

7 Madelon 2000 449 151

8 Arcene 900 10,000 2

9 Secom 1567 589 612

10 Semeion 1593 265 2

11 Daily and Sports Activities 9120 5625 19

12 DOROTHEA 1950 100000 2

13 P53 Mutants 16772 5409 2

14 ISOLET 7797 617 26

15 MICROMASS 931 1300 20

16 Brain_Tumor1 90 5920 5

17 DLBCL 77 5469 2

18 Leukemia1 72 5327 3

19 Prostate_Tumor 102 10509 2

20 SRBCT 83 2308 4

Table 3 State- of-the-art

metaheuristic algorithm

parameter settings

Algorithm Parameter Value

WOA (Mafarja and Mirjalili 2018) A 2

A2 - 1

B 1

The number of iterations 30

GOW (Emary et al. 2016) A 2

The number of iterations 30

Population size 30

PSO (Eberchart and Kennedy 1995) An inertial weight 1

A inertia weight damping ratio 0.9

population size 50

Personal learning coefficient 1.5

Global learning coefficient 2.0

The number of iterations 30

CSA (Sayed et al. 2019) Population size 50

The number of iterations 30

AP 0.1

Fl 2

COA (Rajabioun 2011) Population size 30

The number of iterations 50

Pa (discovery rate) 0.25

CCOALFDO (the proposed method) Population size 50

The number of iterations 100

ELR 0.25
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Table 4 Experiment chaotic maps on different datasets

D1 D2 D3 D4 D5

Chaotic maps SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%)

1 Chebyshev 47.62 78.39 25.62 87.52 43.05 72.18 24.32 81.32 42.85 86.65

2 Circle 43.32 86.95 26.03 90.70 31.82 93.65 29.85 81.65 31.42 84.25

3 Gauss/mouse 44.60 89.22 27.51 91.66 33.53 91.76 27.62 82.31 33.33 85.62

4 Iterative 48.92 85.44 30.26 88.03 31.65 93.85 20.65 80.92 31.25 86.45

5 Logistic 49.72 80.63 27.14 86.06 38.77 90.99 22.74 79.35 38.57 81.62

6 Piecewise 46.72 83.65 24.62 87.37 41.62 91.88 23.25 79.49 41.42 83.32

7 Sine 47.29 80.36 23.93 85.90 27.74 90.02 28.77 81.32 27.14 85.84

8 Singer 39.62 73.73 33.55 84.69 43.05 89.19 24.26 80.74 42.85 85.77

9 Sinusoidal 38.80 72.35 26.09 78.83 31.34 89.49 29.73 81.82 31.14 82.62

10 Tent 45.63 89.00 27.42 87.01 37.54 92.93 22.00 80.31 37.14 83.25

D6 D7 D8 D9 D10

Chaotic maps SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%)

1 Chebyshev 22.35 87.36 53.65 86.65 24.62 91.62 29.52 55.69 45.31 88.96

2 Circle 24.62 90.63 55.54 89.28 27.44 93.15 25.63 57.25 40.62 94.20

3 Gauss/mouse 26.12 93.67 56.98 87.75 21.22 91.26 30.62 65.94 47.62 95.34

4 Iterative 24.65 89.92 55.17 86.90 32.75 88.77 33.21 59.62 42.36 87.62

5 Logistic 25.62 88.99 56.73 85.32 32.10 87.92 28.05 59.73 35.94 86.25

6 Piecewise 23.37 89.35 54.65 84.72 27.95 89.11 35.52 58.15 42.62 87.11

7 Sine 25.91 88.60 56.52 87.98 23.27 90.23 37.15 59.63 36.15 85.62

8 Singer 26.66 90.25 57.38 85.56 24.36 85.60 29.23 62.75 43.32 80.61

9 Sinusoidal 24.25 85.22 57.42 83.65 26.25 93.62 27.64 60.19 42.21 79.45

10 Tent 25.25 92.92 56.21 89.00 29.31 92.88 31.29 63.95 35.52 85.78

D11 D12 D13 D14 D15

Chaotic maps SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%)

1 Chebyshev 24.62 83.62 23.62 87.52 35.92 78.35 26.63 81.93 34.62

78.87

2 Circle 25.95 88.66 25.93 89.08 34.84 77.34 25.74 85.17 47.63

77.36

3 Gauss/mouse 28.18 90.72 24.35 90.36 33.34 79.03 27.27 82.25 36.12

83.67

4 Iterative 27.62 87.43 24.15 90.11 27.00 72.62 29.61 82.07 35.62

77.23

5 Logistic 21.21 85.85 24.95 90.13 37.62 74.01 25.63 80.88 39.34

75.61

6 Piecewise 20.95 84.01 27.11 86.25 34.30 75.87 29.21 79.93 38.62

76.42

7 Sine 24.62 87.31 26.53 85.35 41.99 78.63 28.68 80.22 38.14

77.33

8 Singer 19.77 86.25 25.39 89.90 37.35 78.58 28.27 80.75 42.62

75.51

9 Sinusoidal 22.34 84.42 24.91 88.81 26.16 77.95 19.50 81.93 39.01

73.94

10 Tent 19.91 85.60 27.69 89.09 27.62 79.21 17.99 82.13 40.67

78.61

D16 D17 D18 D19 D20

Chaotic maps SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%)
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the best performance on the D2, D3, D4, D5, D6, D8, D11,

D12, D13, D15, D16, D17, D18, D19, D20 datasets. Other

datasets could not have the best accuracy rate which might

happen due to the large number of classes. Figures 5 shows

the boxplots of classification accuracy rate for the

CCOALFDO, which is compared with 5 other evolutionary

algorithms including WOA, GOW, PSO, CSA and COA

that have been implemented and tested on twenty datasets

in the same environment.

The Wilcoxon statistical test is also used to find about

the proposed method more precisely. It is a non-parametric

statistical test implemented to determine statistical signif-

icance between algorithms (Statnikov et al. 2005). The

Wilcoxon test is conducted at 5% significance level to

verify whether there is a statistical difference between

obtained results of accuracy rate. In other words, if

p value\ 0. 05, then it indicates the proposed approach

has a significant difference.

Table 4 (continued)

D16 D17 D18 D19 D20

Chaotic maps SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%)

1 Chebyshev 31.72 82.31 25.85 84.83 27.22 74.11 26.14 82.22 45.73

79.51

2 Circle 22.62 87.26 23.65 86.02 26.39 76.66 25.74 84.71 42.36

79.23

3 Gauss/mouse 24.32 90.22 23.92 88.58 27.25 85.85 27.27 84.66 26.95

84.25

4 Iterative 26.28 83.11 24.62 87.21 25.68 80.11 29.15 83.71 35.29

82.74

5 Logistic 25.64 83.73 23.17 88.00 31.26 81.75 25.63 81.52 39.98

79.65

6 Piecewise 25.76 82.20 26.94 85.25 25.58 78.59 29.37 82.74 36.51

89.56

7 Sine 29.33 83.65 24.32 85.91 33.65 79.98 28.68 79.19 37.49

78.99

8 Singer 26.26 79.93 25.28 87.33 25.27 78.12 28.46 80.83 28.34

83.12

9 Sinusoidal 28.11 78.24 26.58 87.25 24.23 77.00 29.56 81.25 33.94

81.68

10 Tent 29.79 85.03 25.95 88.07 34.67 75.36 37.92 82.64 41.11

81.62

Bold fonts are best results

Fig. 3 Comparison of the classification accuracy rate of 10 chaotic maps in 20 datasets
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According to a normative analysis on Wilcoxon test

results, the outcome of the proposed method is meaning-

fully distinguishable from others. Considering accuracy,

the CCOALFDO method performs significantly better than

the competing methods.

Table 7 compares the results of the CCOALFDO with

WOA, GOW, PSO, CSA and COA where bold values

represent p-value[ = 0.05. According to the results, the

proposed algorithm showed more significant improvements

comparing to other methods.

The comparison between CCOALFDO accuracy rate

and five other evolutionary algorithms are presented in

Fig. 5 and 6. These boxplots are created to report the

accuracy rates of 30 independent runs for CCOALFDO and

five others evolutionary algorithms. The boxplots prove the

superiority of the proposed algorithm over other mentioned

algorithms. It creates more compact boxes with a higher

median than all other algorithms.

As Table 8 and Fig. 7 represent, CCOALFDO placed as

the second-best method considering the number of features.

On the D2, D6, D12, D15, D17, D19, D20 datasets, it

obtained significantly better SF rank, while obtaining the

best ACC rank in Table 6. The results show that the pro-

posed method acts better in feature reduction in larger

datasets. To evaluate the quality of each algorithm, stan-

dard division is also measured. The CCOALFDO achieved

the smallest standard division value in most of datasets

which proves the robustness of the algorithm and fixes it as

the most stable method in terms of quality of feature

selection.

Considering the p-values in Table 9, the proposed

CCOALFDO outperforms others in most of the cases,

significantly. The Wilcoxon test measure shows the supe-

riority of the proposed method over WOA, PSO, CSA,

COA algorithm. The results also denote that the GOW

algorithm got higher p-values than others and achieved

better rank comparing with CCOALFDO algorithm, how-

ever; its accuracy rate was lower.

According to Tables 6 and 8, the superiority of the

proposed method over others in term of classification

accuracy rate and feature reduction rate is clear. In all 20

real-world datasets, the CCOALFDO algorithm achieved

the best rank in accuracy rate. There are some reasons

which create this advantage. The first one is using the

chaotic function to enhance the first positions of the

cuckoos that leaded to maintaining the population and

improved the search ability by levy flight for finding the

best solution. Second, applying the DO operator which

avoided getting trapped in local optima. And finally, using

OBL improved the ability of exploration which guaranteed

the diversity of the population. As a result, the performance

of convergence improved, the chance of trapping in local

minima decreased and the competence of the selected

features was guaranteed.

Table 10 lists the average CPU time measured in sec-

onds for per run, taken by the original feature set and the

selected feature set. In all cases, the CCOALFDO

Fig. 4 Convergence curve for CCOALFDO with Gauss/mouse map on 20 datasets

2924 M. kelidari, J. Hamidzadeh

123



algorithm deletes the redundant and noisy features, so the

classifier can provide enhanced time performance, while

keeping better classification performance.

Table 11 indicates the average CPU time measured in

seconds for per run, taken by the CCOALFDO algorithm

and five others evolutionary algorithm. This measure

indicates the speed of the algorithms in selecting features

from a given dataset. In this measure, the GOW is the

fastest algorithm, while the proposed algorithm ranks

fourth. Because of more searching steps in the

CCOALFDO algorithm, it takes more time for computa-

tions but it is still reasonable in this case because of its high

accuracy rate and good feature selection rate. Although the

CCOALFDO algorithm needs more enhancement in the

time complexity issue, it can be fixed by applying the

opposition-based learning and disruption operator for only

a small part of the cuckoo’s or based on a specific condi-

tion. Figure 8 represents these results graphically.

6 Conclusion and future works

Feature selection is an ever evolving frontier in data mining

and machine learning. The more the machine learning

develops, the broader the scopes of feature selection

research are. In this study, a new algorithm is presented for

feature selection according to the cuckoo optimization

algorithm. The proposed CCOALFDO algorithm utilizes

the optimization feature selection which transferred the

random variables to chaotic behavior. Moreover, the levy

flight is used to handle uncertainty and update cuckoo’s

steps in high-dimensional space. In addition, the opposi-

tion-based learning technique and the disruption operator

are used to improve the exploration ability and ensure the

diversity of the population to speed up the convergence

rate. The evaluation of the proposed method was done

through applying 20 datasets. Finally, the results were

compared with WOA, GOW, PSO, CSA, COA algorithms.

The results revealed that the presented method was able to

utilize the information structure of a large number of fea-

tures and enhance the accuracy rate of the classification

tasks accordingly. By controlling the random behavior of

Table 5 Accuracy and selected feature rate comparing result

No WOA (Mafarja and

Mirjalili 2018)

GOW (Emary et al.

2016; Mirjalili

et al. 2014)

PSO

(Eberchart and

Kennedy 1995)

CSA (Sayed et al.

2019)

COA (Rajabioun

2011)

CCOALFDO

Dataset ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%) ACC (%) SF (%)

1 D1 89.74 48.03 88.24 43.08 86.05 46.55 87.01 48.9 88.45 46.32 89.22 44.60

2 D2 83.28 36.91 87.52 27.73 82.30 30.27 87.39 32.85 82.69 34.95 91.66 27.51

3 D3 85.33 40.29 85.97 38.67 83.69 37.52 87.88 33.06 82.55 37.91 91.76 33.53

4 D4 74.77 30.62 78.03 27.30 74.85 32.07 75.80 30.76 80.29 35.38 82.31 27.62

5 D5 81.50 39.61 83.38 34.04 82.78 42.62 77.31 32.14 80.43 43.62 85.62 33.33

6 D6 89.12 35.94 78.76 26.89 88.31 30.95 77.04 31.82 86.25 32.84 93.67 26.12

7 D7 90.24 52.78 89.50 58.31 90.52 55.62 86.43 52.61 88.95 58.51 87.75 56.98

8 D8 82.25 28.27 89.93 20.27 88.21 24.91 85.60 23.95 83.79 25.25 91.26 21.22

9 D9 67.22 33.02 67.71 24.95 69.13 31.11 66.06 29.21 64.65 32.96 65.94 30.62

10 D10 90.61 50.07 96.79 47.63 95.42 49.2 94.45 50.35 88.71 47.07 95.34 47.62

11 D11 85.87 39.61 88.68 26.52 88.69 32.91 84.36 35.82 89.13 30.52 90.72 28.18

12 D12 76.31 28.79 89.21 25.01 85.29 28.35 86.32 29.48 87.75 30.91 90.36 24.35

13 D13 69.06 36.25 76.71 32.99 76.41 35.76 71.19 33.8 71.76 35.89 79.03 33.34

14 D14 81.76 28.71 76.06 25.87 82.41 30.2 82.38 29.97 84.25 26.47 82.25 27.27

15 D15 80.71 40.65 76.22 36.23 81.16 40.57 82.12 39.64 78.17 42.64 83.67 36.12

16 D16 83.02 26.52 85.32 24.01 83.85 29.64 81.11 27.62 87.15 27.87 90.22 24.32

17 D17 79.13 28.31 77.95 24.42 76.18 26.95 76.38 29.78 78.91 28.56 88.58 23.92

18 D18 76.72 28.67 77.35 27.00 82.43 29.63 78.72 31.88 81.08 33.74 85.85 27.25

19 D19 73.31 35.56 73.62 28.91 74.13 30.63 81.45 31.70 77.35 33.49 84.66 27.27

20 D20 75.36 32.77 74.59 27.13 83.25 34.72 78.09 29.11 74.83 31.94 84.25 26.95
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Table 6 Accuracy rate and standard deviation comparing result

No ACC(%)

dataset

WOA (Mafarja

and Mirjalili

2018)

GOW (Emary et al.

2016; Mirjalili et al.

2014)

PSO

(Eberchart and

Kennedy 1995)

CSA Sayed et al.

2019)

COA (Rajabioun

2011)

CCOALFDO

1 D1 89.74 – 0.02 (1) 88.24 ± 0.08 (4) 86.05 ± 0.14 (6) 87.01 ± 0.13 (5) 88.45 ± 0.13 (3) 89.22 ± 0.06 (2)

2 D2 83.28 ± 0.06 (4) 87.52 ± 0.03 (2) 82.30 ± 0.10 (6) 87.39 ± 0.03 (3) 82.69 ± 0.03 (5) 91.66 – 0.02 (1)

3 D3 85.33 ± 0.09 (4) 85.97 ± 0.08 (3) 83.69 ± 0.13 (5) 87.88 ± 0.07 (2) 82.55 ± 0.12 (6) 91.76 – 0.06 (1)

4 D4 74.77 ± 0.13 (6) 78.03 ± 0.06 (3) 74.85 ± 0.07 (5) 75.80 ± 0.09 (4) 80.29 ± 0.02 (2) 82.31 – 0.11 (1)

5 D5 81.50 ± 0.16 (4) 83.38 ± 0.02 (2) 82.78 ± 0.03 (3) 77.31 ± 0.09 (6) 80.43 ± 1.03 (5) 85.62 – 0.02 (1)

6 D6 89.12 ± 0.01 (2) 78.76 ± 0.03 (5) 88.31 ± 0.08 (3) 77.04 ± 0.05 (6) 86.25 ± 0.08 (4) 93.67 – 0.00 (1)

7 D7 90.24 ± 0.01 (2) 89.50 ± 0.05 (3) 90.52 – 0.15 (1) 86.43 ± 0.16 (5) 88.95 ± 0.15 (4) 87.75 ± 0.13 (6)

8 D8 82.25 ± 0.07 (6) 89.93 ± 0.09 (2) 88.21 ± 0.02 (3) 85.60 ± 0.07 (4) 83.79 ± 0.09 (5) 91.26 – 0.02 (1)

9 D9 67.22 ± 0.12 (3) 67.71 ± 0.13 (2) 69.13 – 0.03 (1) 66.06 ± 0.15 (4) 64.65 ± 0.21 (6) 65.94 ± 0.05 (5)

10 D10 90.61 ± 0.15 (5) 96.79 – 0.02 (1) 95.42 ± 0.10 (2) 94.45 ± 0.07 (4) 88.71 ± 0.10 (6) 95.34 ± 0.08 (3)

11 D11 85.87 ± 0.04 (5) 88.68 ± 0.15 (4) 88.69 ± 0.11 (3) 84.36 ± 0.10 (6) 89.13 ± 0.22 (2) 90.72 – 0.03 (1)

12 D12 76.31 ± 0.02 (6) 89.21 ± 0.08 (2) 85.29 ± 0.03 (5) 86.32 ± 0.06 (3) 87.75 ± 0.07 (4) 90.36 – 0.04 (1)

13 D13 69.06 ± 0.06 (6) 76.71 ± 0.05 (2) 76.41 ± 0.05 (3) 71.19 ± 0.19 (5) 71.76 ± 0.18 (4) 79.03 – 0.02 (1)

14 D14 81.76 ± 0.16 (5) 76.06 ± 0.10 (6) 82.41 ± 0.03 (2) 82.38 ± 0.16 (4) 84.25 – 0.02 (1) 82.25 ± 0.16 (3)

15 D15 80.71 ± 0.08 (4) 76.22 ± 0.16 (6) 81.16 ± 1.00 (3) 82.12 ± 0.17 (2) 78.17 ± 0.12 (5) 83.67 – 0.11 (1)

16 D16 83.02 ± 0.17 (5) 85.32 ± 0.12 (3) 83.85 ± 0.15 (4) 81.11 ± 0.16 (6) 87.15 ± 0.18 (2) 90.22 – 0.16 (1)

17 D17 79.13 ± 0.03 (2) 77.95 ± 0.09 (4) 76.18 ± 0.02 (6) 76.38 ± 0.02 (5) 78.91 ± 0.05 (3) 88.58 – 0.00 (1)

18 D18 76.72 ± 0.03 (6) 77.35 ± 0.09 (5) 82.43 ± 0.15 (2) 78.72 ± 0.16 (4) 81.08 ± 0.08 (3) 85.85 – 0.01 (1)

19 D19 73.31 ± 0.02 (6) 73.62 ± 0.11 (5) 74.13 ± 0.08 (4) 81.45 ± 0.02 (2) 77.35 ± 0.09 (3) 84.66 – 0.07 (1)

20 D20 75.36 ± 0.07 (4) 74.59 ± 0.03 (6) 83.25 ± 0.11 (2) 78.09 ± 0.02 (3) 74.83 ± 0.06 (5) 84.25 – 0.05 (1)

Average

rank

4.30 (6) 3.50 (3) 3.45 (2) 4.15 (5) 3.90 (4) 1.70 (1)

Note that rank of each method is enclosed in the parenthesis and the best results are given in bold

Fig. 5 Accuracy rate classification comparison between the CCOALFDO algorithm and five other evolutionary algorithms
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this algorithm, a better feature set of datasets was selected.

The rate of classification accuracy has improved, since

some redundant features were eliminated. In other words,

the CCOALFDO algorithm aims to find a compromise

between two objectives maximizing the classification

accuracy rate and reducing the number of features. The

classification time was also reduced after decreasing the

number of features and choosing a suitable feature set,

while providing a more accurate classification. Unlike

other evolutionary algorithms, applying levy flight, oppo-

sition-based learning and disrupt operator to the whole

population leads to the solution diversity; however, the

Table 7 p-value of the Wilcoxon rank sum test for the classification accuracy rate based on CCOALFDO and five other evolutionary algorithms

No CCOALFDO vs. WOA (Mafarja and

Mirjalili 2018)

GOW (Emary et al. 2016;

Mirjalili et al. 2014)

PSO (Eberchart and

Kennedy 1995)

CSA (Sayed

et al. 2019)

COA [

(Rajabioun

2011)

1 D1 3.44E - 05 4.07E - 05 5.94E - 05 5.55E - 05 3.41E 2 01

2 D2 1.12E - 04 2.30E - 03 4.92E 2 01 5.62E - 03 1.98E - 08

3 D3 1.34E - 06 2.45E - 08 2.34E - 08 3.3E - 09 1.98E - 09

4 D4 1.72E - 07 1.33E - 08 2.01E - 08 3.40E - 07 1.74E - 09

5 D5 3.12E 2 01 6.01E - 04 1.37E - 03 5.78E - 03 3.55E - 03

6 D6 8.63E - 03 8.98E - 13 9.23E - 12 7.67E - 12 4.74E 2 02

7 D7 5.94E - 06 4.62E - 05 7.64E - 07 5.90E - 6 8.91E - 07

8 D8 1.75E - 03 1.32E - 03 4.95E 2 01 2.68E - 3 3.75E - 05

9 D9 8.61E - 12 7.38E - 10 8.25E - 11 7.16E - 11 7.38E - 11

10 D10 5.62E - 04 4.91E 2 01 3.12E - 03 2.94E - 03 6.51E - 03

11 D11 1.77-E02 2.50E - 04 4.66E - 06 2.57E - 06 5.84E - 07

12 D12 4.75E - 10 5.95E - 10 4.38E - 10 5.73E - 10 6.14E - 10

13 D13 3.92E - 11 2.35E - 07 2.71E - 11 3.94E - 10 3.01E - 11

14 D14 7.67E 2 01 8.32E - 08 5.32E - 09 3.13E 2 02 8.22E - 08

15 D15 2.53E - 07 3.65E - 07 1.36E 2 01 2.64E - 06 1.25E - 08

16 D16 6.48E - 12 7.21E - 12 8.22E - 13 6.32E - 11 6.79E - 12

17 D17 4.62E - 10 4.26E - 08 8.36E - 10 7.41E - 09 7.41E - 10

18 D18 6.52E - 11 8.02E - 09 7.77E - 10 3.94E - 10 6.95E - 10

19 D19 7.26E - 11 8.66E - 11 8.00E - 11 5.62E - 10 7.65E - 11

20 D20 7.17E - 12 8.92E - 10 7.61E - 11 6.32E - 10 8.23E - 11

p-values[=0.5 are in bold

Fig. 6 Boxplots of CCOALFDO compared to 5 other evolutionary algorithms based on accuracy rate classification
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Table 8 Selected features rate comparing results

No SF(%)

dataset

WOA (Mafarja

and Mirjalili

2018)

GOW (Emary et al.

2016; Mirjalili et al.

2014)

PSO

(Eberchart and

Kennedy 1995)

CSA (Sayed

et al. 2019)

COA (Rajabioun

2011)

CCOALFDO

1 D1 48.03 ± 0.68 (5) 43.08 – 0.02 (1) 46.55 ± 0.05 (4) 48.90 ± 0.11 (6) 46.32 ± 0.52 (3) 44.60 ± 0.13 (2)

2 D2 36.91 ± 0.76 (6) 27.73 ± 0.13 (2) 30.27 ± 1.00 (3) 32.85 ± 0.07 (4) 34.95 ± 0.60 (5) 27.51 – 0.02 (1)

3 D3 40.29 ± 0.51 (6) 38.67 ± 0.07 (5) 37.52 ± 0.07 (3) 33.06 – 0.02 (1) 37.91 ± 0.09 (4) 33.53 ± 0.12 (2)

4 D4 30.62 ± 0.30 (3) 27.30 – 0.32 (1) 32.07 ± 0.21 (5) 30.76 ± 0.12 (4) 35.38 ± 0.15 (6) 27.62 ± 0.14 (2)

5 D5 39.61 ± 0.75 (3) 34.04 ± 0.15 (2) 42.62 ± 0.22 (5) 32.14 – 0.01 (1) 43.62 ± 0.18 (6) 33.33 ± 0.27 (4)

6 D6 35.94 ± 0.53 (6) 29.89 ± 0.36 (2) 30.95 ± 0.03 (3) 31.82 ± 0.63 (4) 32.84 ± 0.21 (5) 26.12 – 0.00 (1)

7 D7 52.78 ± 0.40 (2) 58.31 ± 0.34 (5) 55.62 ± 0.74 (3) 52.61 – 0.57 (1) 58.51 ± 0.84 (6) 56.98 ± 0.36 (4)

8 D8 28.27 ± 0.67 (6) 20.27 – 0.23 (1) 24.91 ± 0.09 (4) 23.95 ± 0.03 (3) 25.25 ± 0.51 (5) 21.22 ± 0.01 (2)

9 D9 33.02 ± 0.90 (6) 24.95 – 0.01 (1) 31.11 ± 0.08 (4) 29.21 ± 0.06 (2) 32.96 ± 0.73 (5) 30.62 ± 0.01 (3)

10 D10 50.07 ± 0.61 (5) 47.63 ± 0.07 (3) 49.20 ± 0.14 (4) 50.35 ± 0.27 (6) 47.07 – 0.68 (1) 47.62 ± 0.06 (2)

11 D11 39.61 ± 1.01 (6) 26.52 – 0.74 (1) 32.91 ± 0.18 (4) 35.82 ± 0.34 (5) 30.52 ± 0.03 (3) 28.18 ± 0.21 (2)

12 D12 28.79 ± 0.12 (4) 25.01 ± 0.30 (2) 28.35 ± 0.21 (3) 29.48 ± 0.95 (5) 30.91 ± 0.26 (6) 24.35 – 0.32 (1)

13 D13 36.25 ± 0.67 (6) 32.99 – 0.02 (1) 35.76 ± 0.25 (4) 33.80 ± 0.67 (3) 35.89 ± 0.75 (5) 33.34 ± 0.07 (2)

14 D14 28.71 ± 0.23 (4) 25.87 – 0.00 (1) 30.20 ± 1.03 (6) 29.97 ± 0.32 (5) 26.47 ± 0.01 (2) 27.27 ± 0.14 (3)

15 D15 40.65 ± 0.34 (4) 36.23 ± 0.01 (2) 40.57 ± 0.75 (5) 39.64 ± 0.02 (3) 42.15 ± 0.65 (6) 36.12 – 0.25 (1)

16 D16 26.52 ± 0.96 (3) 24.01 – 0.17 (1) 29.64 ± 0.62 (6) 27.62 ± 0.17 (4) 27.87 ± 0.83 (5) 24.32 ± 0.41 (2)

17 D17 28.31 ± 0.61 (4) 24.42 ± 0.06 (2) 26.95 ± 0.47 (3) 29.78 ± 0.63 (6) 28.56 ± 0.25 (5) 23.92 – 0.00 (1)

18 D18 28.67 ± 0.75 (3) 27.00 – 0.05 (1) 29.63 ± 0.31 (4) 31.88 ± 0.07 (5) 33.74 ± 0.25 (6) 27.25 ± 0.32 (2)

19 D19 35.56 ± 0.42 (6) 28.91 ± 0.01 (2) 30.63 ± 0.54 (3) 31.70 ± 0.36 (4) 33.49 ± 0.15 (5) 27.27 – 0.40 (1)

20 D20 32.77 ± 0.57 (5) 27.13 ± 0.00 (2) 34.72 ± 1.01 (6) 29.11 ± 0.36 (3) 31.94 ± 0.36 (4) 26.95 – 0.17 (1)

Average

rank

4.65 (6) 1.90 (1) 4.10 (4) 3.75 (3) 4.65 (5) 1.95 (2)

p-value 3.82E - 3 5.3E - 2 8.34E - 7 2.65E - 5 6.1E - 3

Wilcoxon

test

4 3 4 4 4

Note the rank of each method is enclosed in the parenthesis and the best results are given in bold

Fig. 7 Comparison selected feature rates of the CCOALFDO algorithm with five other evolutionary algorithms
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Table 9 p-value of the Wilcoxon rank sum test for the selected features rate based on CCOALFDO and five other evolutionary algorithms

No CCOALFDO

vs.

WOA (Mafarja and

Mirjalili 2018)

GOW (Emary et al. 2016;

Mirjalili et al. 2014)

PSO (Eberchart and

Kennedy 1995)

CSA (Sayed

et al. 2019)

COA

(Rajabioun

2011)

1 D1 1.62E - 07 1.55E 2 02 3.64E - 07 2.54E - 07 3.72E - 03

2 D2 9.44E - 10 8.61E - 09 8.57E - 10 7.72E - 10 9.87E - 10

3 D3 8.42E - 08 8.56E - 08 7.00E - 07 8.63E 2 01 7.14E - 07

4 D4 7.95E - 10 6.37E - 10 7.11E - 11 7.94E - 11 7.73E - 11

5 D5 5.84E - 03 5.67E - 03 6.94E - 03 5.62E - 03 5.88E - 03

6 D6 6.43E - 05 2.63E - 05 2.64E - 05 5.85E - 05 5.61E - 05

7 D7 2.42E 2 02 8.51E - 10 7.96E - 10 2.39E 2 02 3.66E - 10

8 D8 7.34E - 11 3.65E 2 01 8.94E - 11 4.79E 2 02 5.91E - 11

9 D9 8.32E - 10 4.36E 2 02 7.62E - 10 5.74E - 02 7.85E - 10

10 D10 6.94E - 08 5.91E - 08 7.42E - 08 3.94E - 08 3.84E 2 01

11 D11 3.85E - 10 2.27E 2 01 1.64E - 10 6.54E - 10 8.64E - 09

12 D12 4.77E - 08 7.12E - 08 4.55E - 08 5.64E - 08 4.18E - 08

13 D13 7.94E - 08 8.94E - 02 5.28E - 07 1.31E - 08 1.65E - 08

14 D14 9.28E - 09 7.95E 2 01 9.37E - 09 9.29E - 09 2.53E - 05

15 D15 5.96E - 07 4.48E - 06 3.20E - 08 5.93E - 07 6.29E - 08

16 D16 1.97E - 10 6.23E - 10 8.78E - 10 4.52E - 10 5.65E - 10

17 D17 4.95E - 09 3.32E - 09 3.41E - 09 5.11E - 09 7.94E - 09

18 D18 6.97E - 10 6.94E - 10 2.26E - 11 8.95E - 11 7.95E - 10

19 D19 8.46E - 10 7.94E - 10 8.22E - 10 8.23E - 10 3.67E - 11

20 D20 3.94E - 10 5.75E - 09 3.64E - 10 2.72E - 10 9.37E - 09

p-values[=0.5 are in bold

Table 10 Comparing runtime and accuracy rates between selected feature set and original feature set

Result with original feature set Result with selected feature set

NO. Dataset name Feature number Accuracy rate (%) Time Feature number Accuracy rate (%) Time

1 AD 1585 37.98 7.22 390 89.22 1.89

2 D2 20000 31.92 12.56 3502 91.66 3.54

3 D3 5000 39.19 15.32 1677 91.76 3.82

4 D4 6400 27.88 9.67 1128 82.31 2.81

5 D5 857 29.49 8.76 286 85.62 2.54

6 D6 20531 35.15 30.85 5363 93.67 8.85

7 D7 449 23.87 6.15 121 87.75 1.23

8 D8 10000 36.36 17.95 2122 91.26 4.37

9 D9 589 11.68 13.61 121 65.94 3.65

10 D10 265 37.98 8.50 47 95.34 2.32

11 D11 5625 28.28 13.83 1023 90.72 3.63

12 D12 100000 36.77 30.99 24350 90.36 8.75

13 D13 5409 12.97 14.36 722 79.03 4.40

14 D14 617 20.20 7.73 168 82.25 2.37

15 D15 1300 23.84 3.11 470 83.67 0.77

16 D16 5920 27.62 5.72 848 90.22 1.55

17 D17 5469 21.35 15.16 1308 88.58 4.34

18 D18 5327 22.62 26.78 919 85.85 6.28

19 D19 10509 31.05 14.02 2866 84.66 4.48

20 D20 2308 25.61 24.10 622 84.25 7.01
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Table 11 Comparison between CCOALFDO and other metaheuristics based on time (s)

No. Time(s) dataset WOA (Mafarja and

Mirjalili 2018)

GOW (Emary

et al. 2016)

PSO (Eberchart and

Kennedy 1995)

CSA (Sayed

et al. 2019)

COA

(Rajabioun

2011)

CCOALFDO

1 D1 1.97 (5) 2.13 (2) 1.25 (3) 1.15 (1) 2.05 (6) 1.89 (4)

2 D2 5.09 (5) 3.04 (2) 3.25 (3) 5.47 (6) 2.04 (1) 3.54 (4)

3 D3 4.91 (6) 3.86 (4) 3.82 (3) 3.84 (3) 3.61 (1) 4.81 (5)

4 D4 3.99 (6) 3.28 (1) 2.76 (2) 3.62 (5) 2.96 (4) 2.81 (3)

5 D5 0.94 (3) 1.09 (4) 0.62 (2) 2.64 (6) 0.53 (1) 2.54 (5)

6 D6 5.76 (2) 4.37 (1) 8.59 (4) 6.45 (3) 9.34 (6) 8.85 (5)

7 D7 3.44 (4) 2.33 (3) 2.48 (5) 1.91 (2) 3.15 (6) 1.23 (1)

8 D8 3.39 (1) 4.60 (4) 4.28 (2) 5.61 (6) 5.10 (5) 4.37 (3)

9 D9 4.18 (5) 4.12 (3) 4.17 (4) 6.56 (6) 3.48 (1) 3.65 (2)

10 D10 1.41 (4) 0.28 (1) 1.44 (5) 1.29 (3) 0.30 (2) 2.32 (6)

11 D11 3.83 (4) 3.73 (3) 4.27 (6) 4.01 (5) 3.53 (1) 3.63 (2)

12 D12 11.40 (4) 6.20 (1) 10.31 (3) 15.43 (6) 12.20 (5) 8.75 (2)

13 D13 5.99 (6) 4.39 (3) 5.65 (5) 4.33 (2) 4.12 (1) 4.40 (4)

14 D14 1.91 (3) 4.24 (6) 2.00 (4) 1.21 (2) 1.18 (1) 2.37 (5)

15 D15 0.72 (1) 1.84 (4) 1.86 (5) 0.99 (3) 2.77 (6) 0.77 (2)

16 D16 1.94 (3) 4.99 (6) 4.46 (5) 3.32 (4) 1.69 (2) 1.55 (1)

17 D17 4.77 (6) 6.75 (5) 2.26 (1) 3.04 (3) 2.47 (2) 4.34 (4)

18 D18 5.73 (5) 2.68 (2) 3.21 (1) 2.97 (3) 4.41 (4) 6.28 (6)

19 D19 6.39 (6) 3.27 (1) 4.33 (2) 5.83 (5) 4.74 (3) 4.48 (4)

20 D20 2.77 (3) 1.18 (2) 3.98 (5) 3.32 (4) 1.06 (1) 7.01 (6)

Average rank 4.10 (6) 2.90 (1) 3.50 (3) 3.90 (5) 2.95 (2) 3.65 (4)

Fig. 8 comparing time computation rate of the CCOALFDO algorithm with five other evolutionary algorithms
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computational time increases. This is an issue which can be

handled in the future works. They can also focus on

applying other rates, such as precision or G-mean and the

use of CCOALFDO for feature selection issues in online

applications. Moreover, the CCOALFDO can evaluate the

real-world problems to ensure the stability.
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