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Abstract
Continuous exposure to stress leads to many health problems and substantial economic loss in companies. A lot of attention

has been given to the development of wearable systems for stress monitoring to tackle its long-term effects such as confusion,

high blood pressure, insomnia, depression, headache and inability to take decisions. Accurate detection of stress from

physiological measurements embedded in wearable devices has been the primary goal in the healthcare industry. Advanced

sensor devices with a high sampling rate have been proven to achieve high accuracy in many earlier works. However, there

has been a little attempt to employ consumer-based devices with a low sampling rate, which potentially degrades the

performance of detection systems. In this paper, we propose a set of new features, local maxima and minima (LMM), from

heart rate variability and galvanic skin response sensors along with the voting and similarity-based fusion (VSBF) method, to

improve the detection performance. The proposed feature set and fusion method are first tested on the acquired dataset which

is collected using the wrist-worn devices with a low sampling rate in workplace environments and validated on a publicly

available dataset, driveDB from PhysioNet. The experimental results from both datasets prove that the LMM features can

improve the detection accuracy for different classifiers in general. The proposed VSBF method further boosts the recognition

accuracy by 5.69% and 2.90% in comparison with the AdaBoost, which achieves the highest accuracy as a single classifier on

the acquired, and the DriveDB dataset, respectively. Our analyses show that the stress detection system using the acquired

dataset yields an accuracy of 92.05% and an F1 score of 0.9041. Based on the analyses, a soft real-time system is imple-

mented and validated to prove the applicability of the proposed work for stress detection in a real environment.
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1 Introduction

The use of wearable technologies is increasing at a fast

pace in the field of smart homes, clinical perspectives and

healthcare environments (Patel et al. 2012). The emergence

of the technologies allows us to monitor the mental and

physical health status of an individual across the range of

contexts. Among them, stress is considered to be a major

issue that affects both personal and professional lives (Cox

et al. 2000; World Health Organisation 2013; Mental

Health Foundation 2017). Continuous exposure to stressful

conditions may lead to some mental health problems, such

as anxiety and depression. Therefore, early recognition of

stress conditions not only helps an individual to cope with

the negative mental state but also helps to improve theCommunicated by V. Loia.
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quality of life. From the research point of view, stress

recognition allows the researchers to have an insight into

the trigger points or key activities that stimulate negative

cognition and behavior.

Stress is an inherent response of the human body caused

by external disturbances. These physiological responses

can be recorded using biological sensors, such as HRV,

GSR, pupil dilation, skin temperature and blood volume

pulse (BVP) (Renaud and Blondin 1997; Wikgren et al.

2012). Though the stress at a very small scale may have

some constructive influence on the human body, but in

general its impact is negative which causes a gradual loss

of memory, lack of decision-making ability and reduced

focus (Stawski et al. 2006; Sandi 2013). On the other hand,

large-scale stress can affect the quality of life as well as

may lead to some mental health problems, like impetuous

aging, depression, and anxiety (Dickerson and Kemeny

2004; Rai et al. 2012). Stress recognition systems have

been extensively studied for elder care homes and hospi-

tals, but very little attention has been drawn toward

workplaces. At workspaces, psychosocial stress has an

adverse effect not only on health care but also on the

economy, which makes it one of the major problems for

society. Mental Health Foundation in the UK (Mental

Health Foundation 2017) stated that approximately 12

million adults suffer from stress-related problems. Simi-

larly, a study conducted by the World Health Organization

(2016) reveals that UK enterprises have to bear an amount

of £8.4 million annually due to stress-related illness.

Hence, stress is now globally considered as a significant

problem at office workspaces which include white collar

jobs and blue collar jobs. In this regard, numerous inter-

national organizations are working on a priority basis to

reduce their impact (Cox et al. 2000; World Health

Organisation 2013). Therefore, the design of recognition

systems with pervasive devices that can timely detect the

stress condition is in need, so that its effect can be reduced

or lessened, accordingly.

In workplaces, stress can be caused by many reasons.

Some of the notables include shorter deadlines, high

workload, work-life imbalance and so forth (Sano and

Picard 2013; Saleem et al. 2015). Psychosocial stress

recognition can be performed either by using computer

vision techniques or by employing physiological sensors.

Vision-based methods exploit visual data (photos and

videos) to recognize stress. These methods utilize cameras

to detect and recognize facial expressions using several

different techniques such as image analysis, feature

extraction and depth imaging (Khowaja et al. 2015).

Although the vision-based method has been recognized as

an approach with high accuracy, there are still unavoidable

limitations, like poor lighting conditions or inhomogeneity

issues (Hernández et al. 2014). Other issues related to this

method are the complexity of arrangement, i.e., steady

cameras with fixed angles to determine the point of inter-

est, and the extraction of descriptive features from image or

videos that takes much time for computational processing,

restricting the applicability of such systems for real-time

applications. On the other hand, sensor-based methods

allow us to collect and store multiple sensor data, such as

GSR, HRV and BVP over protracted periods of time

(Habib et al. 2014). As our application is for the human

workspaces, i.e., white collar and blue collar jobs, the

complex set of arrangements of computer vision methods

can be a hindrance, and thus, wearable sensors might be

more suitable for this particular context.

Existing studies mainly took into account the sensor

readings from high-sampling-rate (HSR) devices, such as

Biopac systems (Systems 2017) and FlexComp (Technol-

ogy 2016). These systems can record the data with HSR but

are complex in terms of arrangement and usability. In

recent times, wearable technologies, such as smart pen-

dants, smart glasses (Google glass) and tracking devices

(including PillCam), have experienced an era of drastic

growth (MarketsandMarkets 2016). It has also been pre-

dicted that the consumer market for the pervasive wearable

sensors will continue to grow in healthcare and medical

sectors and will have a market share of over $31.96 billion

by the end of 2025 at a projected compound annual growth

rate of 19.15% with the largest market being North

America and the fastest growing market being Asia Pacific

(Intelligence 2019). A survey report by (Zimmermann) at

CNN Business shows that the sales of smartwatches have

been increased from 5.0 million in 2014 to 79.1 million in

2019. The trending use of smartwatch and wearable devi-

ces in the healthcare industry has also been reported by

various studies and surveys (Hayward 2018; Future 2019;

Insights 2019; Research 2019). Some of the studies have

started focusing on the use of low sampling rate (LSR)

wrist-worn devices for affective computing research to

prove the real-life applicability of such systems (Gjoreski

et al. 2016; Zenonos et al. 2016; Setiawan et al. 2018). The

market growth and research trend suggest that people pri-

oritize to wear the sensors having simplicity and easiness

rather than the complex arrangement, and such simple

devices are commonly LSR. In particular, we use a

smartwatch that provides real-time biological responses

from HRV and GSR sensors. HSR wearable devices allow

researchers to derive complex features from the sensor

measurements with shorter time windows, i.e., 1–10 s,

which subsequently results in high detection accuracy such

as average beat detection (ABD) (Keshan et al. 2015), but

the same features cannot be derived accurately using LSR

wrist-worn devices, leading to intrinsic low detection rates.

In this regard, we propose a new feature set for stress

detection which is designed for achieving a considerable
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level of detection accuracy from LSR wrist-worn devices

using longer time windows (60 s). The proposed feature set

is based on local maxima and minima (LMM) derived from

different probability distributions. LMM features have

binary characteristics that allow us to further use our pro-

posed decision-level method, i.e., voting and similarity-

based fusion (VSBF) to improve the detection accuracy. It

has been proven by existing studies that the combination of

multiple classifiers tends to improve the performance of

classification systems (Khowaja et al. 2017, 2018a; Kho-

waja and Lee 2020); therefore, we assume that proposing a

new decision-level fusion method with LMM features

might help in improving the detection accuracy. The main

motivation of our proposed work using wrist-worn devices

is to make the stress detection system applicable to real-life

environments. Our method needs to process the data from

longer time windows continuously; therefore, it is hard to

implement the system with real-time characteristics due to

the strict time constraints, i.e., deadlines, and processing

overhead. However, the soft real-time systems can com-

promise over the deadlines for optimizing specific appli-

cation criteria (Laplante 2004). In this regard, we

implement a soft real-time system for stress detection to

prove the applicability of our proposed work in real-time

environments.

We perform two kinds of analyses which cover (1)

validating the performance of our method in terms of

accuracy using the dataset acquired from LSR wrist-worn

devices and (2) showing the strength of the LMM features

and VSBF method using a publicly available dataset. For

the former analysis, we collect the data using the interna-

tional affective picture system (IAPS) (Lang et al. 1999)

which is widely used for inducing stress. The latter analysis

shows the effectiveness of our method using a dataset,

‘‘driveDB’’ from PhysioNet (Healey 2000), by comparing

the obtained results with existing works. Our experimental

analyses reveal that the LMM features and fusion method

can improve the accuracy of both datasets. In summary, the

contributions of this study are as follows:

• A set of new features are introduced to improve the

accuracy of stress detection and evaluated on the

acquired and publicly available datasets.

• We introduce the consideration of longer time windows

for LSR devices to improve the performance of the

detection system.

• A new decision-level fusion method is proposed based

on the voting and similarity measure from binary

features.

• In-depth analyses for stress detection are carried out

using different classification algorithms.

• A soft real-time system for stress detection is imple-

mented to prove the applicability of the detection

system in real-world environments.

The paper is structured as follows: Sect. 2 describes the

related work. Section 3 explains the methodology for our

stress detection system. Section 4 presents the quantitative

analyses for validating LMM features and the VSBF

method on the acquired and the driveDB dataset. Section 5

elaborates on the details regarding the soft real-time

implementation of our system. Section 6 presents a dis-

cussion with quantitative analyses, merits and limitations

of our work with future directions. Finally, Sect. 7 con-

cludes our work.

2 Related works

Stress detection systems have emerged greatly as less

comfortable sensors in a constrained environment were

changed to more comfortable sensors in the less con-

strained environment. Healey and Picard (2005) were the

pioneers in detecting stress using physiological sensors by

using intrusive wires and electrodes to acquire the data.

With the emergence of sophisticated devices, these wires

and electrodes are replaced with more comfortable sensors,

such as a smartwatch or smart pendants which can acquire

physiological data quite effectively. Since 2005, a lot of

focus was given to detect stress using signal processing and

machine learning techniques with a complex arrangement

of sensors.

Most of the studies use sensors, such as GSR (Healey

and Picard 2005; Sano and Picard 2013), electrocardiogram

(ECG) (Healey and Picard 2005; Sierra et al. 2011;

Muaremi et al. 2014), BVP (Handouzi et al. 2014), respi-

ration (RESP) (Healey and Picard 2005; Muaremi et al.

2014; Hovsepian et al. 2015), electromyogram (EMG)

(Healey and Picard 2005; Wijsman et al. 2013) and heart

rate (HR) (Sierra et al. 2011). Work illustrated in (Setz

et al. 2010) uses Montreal imaging stress task (MIST)

(Dedovic et al. 2005) to induce the stress state on partici-

pants and use GSR measurements to classify stress and

normal state. The study reported a cross-validation accu-

racy of 82.8%. Similarly, in Salahuddin et al. (2007), the

Stroop test (Stroop 1935) was used to tempt the emotion

and an ECG sensor was employed for recording the stress

state. The study mentioned above only documented the

details for short-term HRV features from the ECG sensor,

and the classifiers were not employed to discriminate

between stress and normal states. The work in Zhai and

Barreto (2006) integrated GSR, BVP, skin temperature and

pupil diameter measurements to detect stress using the

Stroop test as an induction method. The results reported
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90.1% classification accuracy; however, it is difficult to

embed the proposed set of measurements in a wearable

sensor due to the pupil diameter.

Some of the existing constrained environments on which

the stress recognition system has been applied are a car

(while driving the car) (Healey and Picard 2005), a labo-

ratory (Sierra et al. 2011), a call center (Hernandez et al.

2011), virtual environments (Crescentini et al. 2016) and a

bed (while sleeping) (Muaremi et al. 2014). Our intended

environment for the detection system is the workplace.

(Hovsepian et al. 2015) proposed a continuous stress

assessment method using RESP (a chest-belt) and ECG

sensor data for stress recognition and suggested the use of

smartwatches to detect the stress. The affective and mental

health monitor (AMMON) (Cheng et al. 2011) used mobile

phones and speech analysis libraries to detect the stress and

mental health state. However, the libraries only work on

speech and are tested using an emotion corpus (Steidl

2009). ‘‘StressSense’’ (Lu et al. 2012) also acquires a

human voice to recognize stress in real-life conversational

situations. ‘‘MoodSense’’ (LiKamWa et al. 2011) uses Web

browsing, mobile applications, phone call, e-mail, SMS

and location data to infer the mood of a user. MoodSense

was available only for iOS systems and utilizes ‘‘LiveLab’’

library (Shepard et al. 2011), but the library does not work

well with default iOS factory settings. Moreover, these

applications do not consider biosensor data. We employed

the IAPS dataset for visual elicitation of stress for our

subjects. Some of the studies have proved that pictures

showing mutilations, blood and injuries can evoke stress

emotion (Bradley et al. 1993, 2001; Palomba and Stegagno

1993; Palomba et al. 2000; Herbert et al. 2010). Thus,

unpleasant pictures, such as scenes showing mutilated

people and animals, injuries, and faces covered with blood,

were chosen from the IAPS dataset.

HRV is considered to be one of the most widely used

physiological sensors for stress detection (Taelman et al.

2009). Mariani et al. (2012) characterized the phases of

bipolar patients using the HRV embedded sensorized

t-shirt. Kim et al. (2008) presented a classification method

to distinguish between low and high stress with an accu-

racy of 66.1%. Valenza et al. (2012) and Melillo et al.

(2011) used HRV features for recognizing stress conditions

using visual elicitation and situation, i.e., examination for

students to induce stress. Lawanont et al. (2019) used

activity trackers including the heart rate data to develop the

stress recognition system based on Internet of Things (IoT)

architecture. Montesinos et al. (2019) used wearable

devices such as shimmer and Empatica E4 to recognize

stress from users. They aimed to detect episodes of acute

stress at early stages to recommend a befitting remedy.

Similarly, GSR is also used as one of the physiological

traits that can be employed for stress recognition (Boucsein

2012). Hernandez et al. (2011) used GSR features in the

call center environment to classify stress and non-stress

conditions. Setz et al. (2010) used the cognitive load to

measure the stress from GSR sensors, and they achieved

slightly higher than 80% detection accuracy. Arnrich et al.

(2010) also used GSR sensors along with the seating

pressure to measure the stress and were able to achieve

over 70% accuracy. Mokhayeri et al. (2011) used multi-

modal physiological signals, i.e., ECG, photoplethysmo-

gram (PPG) and pupil diameter to classify relax and stress

states. Han et al. (2017) used ECG and RSP signals to

classify work-related stress and achieved 94% accuracy for

the binary classification. Egilmez et al. (2017) employed

multiple body and wrist-worn sensors to predict stress.

They reported the prediction accuracy of 59.1% for

intended stress using four wrist-worn and chest-mounted

sensors.

Some of the highly related works with our proposed

system that use wearable sensors are compared in Table 1

with reference to the sensors, induction method, sampling

rate, and accuracy. This comparison will help in providing

an insight into the contribution of the proposed work in

contrast with the existing works. The studies Han et al.

(2017) and Jebelli et al. (2019) support our assumption that

the use of complex wearable sensors and high sampling

rate yields better detection accuracies, i.e., 94.0% and

87.0%. On the other hand, employing pervasive wearable

sensors (Kim et al. 2008) and low sampling rate (Egilmez

et al. 2017) only, the performance decreases to 66.1% and

59.1%, respectively. Some researchers try to leverage the

sensor fusion technique, i.e., using the fusion of LSR and

HSR devices, to improve the stress detection performance

(Healey and Picard 2005; Montesinos et al. 2019). In this

paper, we categorize the LSR devices having the range of

sampling rate between 5 and 25 Hz and HSR devices

having the sampling rate above 25 Hz. One of the possible

reasons for lower accuracy using LSR devices might be the

feature engineering techniques. Most of these features were

designed to record the variability using HSR devices with

250–1000 Hz (Rani et al. 2006; Jonghwa Kim and Andre

2008; van den Broek et al. 2009; Wen et al. 2014), whereas

the LSR devices acquire the data at low sampling rates

which makes it difficult to achieve such accuracy. Another

reason is the use of longer time windows; existing studies

use shorter time windows and collect the data for 1 min

(Egilmez et al. 2017) to predict the stress condition. In this

study, we intend to use the longer time windows (60 s) and

collect the data for 3 min to detect the stress condition.

Many of the existing works in Table 1 use single inde-

pendent classifiers for detecting stress except for some

which employ multiple soft computing techniques, but they

do not combine the results from multiple classifiers. Var-

ious studies have shown that by combining the results from
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single independent classifiers results in better detection

rates (Deng et al. 2012; Khowaja et al. 2017). In this

regard, the main contributions of our work are to introduce

a new feature set that can cope with the variability of LSR

devices, considering the data from longer time windows

and a new decision-level fusion method to combine the

results from multiple classifiers.

3 Proposed stress detection system

This section presents our process flow for stress detection,

as illustrated in Fig. 1. It includes training/testing data

acquisition, data preprocessing, feature extraction from

longer time windows, evaluation and selection of classifi-

cation models in the training stage, and use of the classi-

fication model in the testing stage. Furthermore, we

propose a decision-level fusion method, VSBF, for com-

bining results from two classifier models to improve the

accuracy of the detection system. Each of these building

blocks is explained in the later subsections.

3.1 Data acquisition

There are several methods to induce the stress emotion for

a subject, and one of the popular approaches for emotion

elicitation is to use an IAPS database. This database pro-

vides survey readings for valence and arousal using 1–9-

point scales. Depending on Russell’s model of emotion

(Russell and Pratt 1980), distress is mapped as high arousal

and negative valence as shown in Fig. 2. The distress term

here is referred to as a severe or protracted stress condition.

An android application was developed to record HRV and

GSR measurements from the wearable sensors. The

Table 1 Comparison of the existing works

Study Sensorsa Induction methodb Sampling ratec Resultsd

Setz et al. (2010) EDA MIST 16 Hz 82.8%

Zhai and Barreto

(2006)

GSR, BVP, PD, and ST Paced Stroop test NP 90.1%

Kim et al. (2008) HRV Self-reporting NP 66.1%

Valenza et al. (2012) ECG IAPS 250 Hz NP

Arnrich et al. (2010) GSR, Acc and pressure MIST 25 Hz 73.75%

Mokhayeri et al.

(2011)

PD, ECG and PPG Stroop test NP 78.5%

Healey and Picard

(2005)

ECG, EMG, RSP and

GSR

Self-reporting ECG (496 Hz), GSR and RSP (31 Hz) and EMG

(15.5 Hz)

97.0%

Muaremi et al. (2014) ECG, RSP, Acc, BVP,

GSR and ST

PSS (Self-reporting) ECG (250 Hz), RSP (25 Hz), Acc (100 Hz), BVP

(64 Hz), GSR (4 Hz) and ST (2 Hz)

73%

Sandulescu et al.

(2015)

EDA and PPG TSST 1000 Hz 83.08%

Zhai et al. (2005) BVP, GSR and PD Stroop test BVP and GSR (360 Hz) and PD (60 Hz) 80.0%

Choi and Gutierrez-

Osuna (2009)

HRV Stroop test 500 Hz 83.0%

Wijsman et al. (2011) ECG, RSP, GSR and

EMG

PSS and puzzles ECG and RSP (250 Hz), GSR (100 Hz) and EMG

(1000 Hz)

79.26%

Han et al. (2017) ECG and RSP MIST 250 Hz 94.0%

Egilmez et al. (2017) HRV and GSR (event-

based)

Intended stress/self-

reported stress

5 Hz 59.2%/

78.8%

Lawanont et al.

(2019)

Activity tracking sensors

and heart rate

PSS and GSE NP 78.95%

Jebelli et al. (2019) EEG sensor Self-reporting 256 Hz 87.0%

Montesinos et al.

(2019)

ECG, RSP, Acc, ST,

BVP and EDA

EMDB ECG, RSP and Acc (512 Hz), BVP (64 Hz) and EDA

and ST (4 Hz)

84.13%

aElectrodermal activity (EDA), galvanic skin response (GSR), blood volume pulse (BVP), pupil diameter (PD), skin temperature (ST), heart rate

variability (HRV), electrocardiogram (ECG), accelerometer (Acc), photoplethysmography (PPG), electromyogram (EMG), electroencephalo-

gram (EEG) and respiration (RSP)
bMontreal imaging stress task (MIST), international affective picture system (IAPS), perceived stress scale (PSS), general self-efficacy scale,

emotional movie database (EMDB) and tier social stress test (TSST)
c, dHz and NP which are defined as Hertz and Not provided, respectively
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measurements from these sensors were recorded as two-

column readings and stored in .csv files for each subject

and state. The data from each subject were labeled based

on the ratings of IAPS images, accordingly. The collected

data are then divided into two sets, i.e., training and testing

data having 70% and 30% of the share, respectively.

3.2 Data preprocessing

The main task of this step includes the normalization of

GSR values. As the values of GSR for each subject are of

variable range, they should be normalized in the range

between 0 and 1 for each subject before combining the

data. For normalizing the values of GSR measurements, we

used the min–max normalization as shown in Eq. (1),

where x refers to the immediate sample value, and min and

max refer to the minimum and maximum values of GSR

measurements for each subject, respectively. Once the

values are normalized, the samples from all the subjects are

combined for feature extraction.

normalizedvalues ¼
x�min

max�min
ð1Þ

3.3 Feature extraction

The main objective of feature extraction is to transform the

measurements into meaningful representation. We used the

commonly derived features for stress recognition proposed

in the related studies (Pan and Tompkins 1985). As we

employ LSR devices in our study, we need to extend the

time windows so that the extracted features can capture the

variations between stress and normal states. Using shorter

time windows for LSR devices while increasing the num-

ber of feature instances has not helped in improving the

detection performance (see Table 1). A total of 85 features

are extracted from each 60-s time window, and the pre-

diction is made at every 180 s which contains a sequence

of data values from HRV and GSR sensors. The features

are extracted in a sliding fashion from each 60 s time

window with 1 s of overlapping. Our features are catego-

rized into two classes: 65 existing features which have been

widely used in existing works and 20 LMM features that

are engineered to be suited for processing data from LSR

devices. The existing feature space includes 45 features

from time-domain, 18 features from frequency-domain and

Fig. 1 Process flow of our stress detection system

Fig. 2 Stress and normal state mapped onto the two-dimensional

space of valence and arousal (Russell and Pratt 1980)
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2 nonlinear features that are considered to be appropriate

for our framework.

3.3.1 Existing features

3.3.1.1 Time-domain features Time-domain features are

often classified into two groups, i.e., statistical and geo-

metrical features. The statistical features are comprised of

general and specific ones for HRV and GSR sensors. The

former includes mean, first difference of the mean values,

second difference of the mean values, standard deviation,

first difference of the standard deviation values, second

difference of the standard deviation values, median,

covariance, interquartile range, 25th percentile, 75th per-

centile, skewness, kurtosis, root mean square value and

minimum and maximum values. These features are gen-

erally derived from both the sensors, whereas the latter

category of features includes some specific features of

HRV, such as standard deviation of RR intervals (SDNN),

percentage of all RR intervals which have more than 50 ms

of difference (pNN50), and root mean square of successive

difference (RMSSD). In addition, two variants of SDNN

were computed, namely the standard deviation of the

averages of RR intervals (SDANN) and the standard

deviation of the ith RR interval (SDNNi). Features dedi-

cated to GSR include mean, standard deviation, minimum,

maximum and median values of amplitudes and frequency

responses of filtered window signals passed through fourth-

order elliptic low-pass filter at 4 Hz. The most commonly

derived features based on geometric characteristics of the

HRV are based on the histogram of RR intervals. The first

feature is the triangular interpolation of RR interval his-

togram (TINN), and the other is the ratio of a total number

of RR intervals to the magnitude of the histogram of all RR

intervals using the bin size of 1/128 s, which is known as a

triangular index (TI) of HRV (Niskanen et al. 2004).

3.3.1.2 Frequency-domain features Similar to the time-

domain features, frequency-domain features consist of

general and specific features for both sensors. General

features in this category include the number of peaks, the

magnitude of the first five components, spectral peak fea-

tures and spectral power features. HRV features specific to

this category were computed using the Lomb periodogram

method (Ruf 1999). Parameters are based on three fre-

quency bands, i.e., high frequency (HF) 0.15–0.4 Hz, low

frequency (LF) 0.04–0.15 Hz and very low frequency

(VLF) 0.0–0.04 Hz. From the absolute values of these

frequencies, the measures of spectral power and percentage

of the sum of absolute values of high and low frequencies

were computed. Subsequently, from the normalized value

of the frequencies, the relative value of each power com-

ponent, i.e., from HF, LF and its difference with VLF was

recorded, respectively. The ratio of LF/HF was also

recorded as it is considered to be a well-known indicator of

sympathovagal balance. High values of this ratio indicate

the transition toward the dominance of sympathetic activ-

ity, whereas low values refer to the dominance of

parasympathetic activity (Cinaz et al. 2013). A specific

feature to GSR for this category includes only the signal

power of the skin conductance (SCP).

3.3.1.3 Nonlinear features This category includes only

specific features related to HRV as suggested in (Tulppo

et al. 1996). The features are derived from the Poincare

plot, which is referred to as the scatter plot of RR values of

index n in the horizontal axis and RR values of index n ? 1

in the vertical axis. The features which are computed from

Poincare plots are SD1 and SD2, representing the standard

deviation of long-term HRV as a major axis and that of

short-term HRV as a minor axis, respectively.

3.3.2 Local maxima and minima (LMM) features

The proposed approach is based on the two-step transfor-

mation of the values. The first step transforms the raw HRV

and GSR values to different probability distributions, such

as geometric means (fgeo), Gaussian distribution (fGauss),

harmonic means (fharmm), extreme value distribution (fevd)

and central moments of fourth order (fcm). The probability

distributions used in this study were chosen empirically

based on their performance on stress detection. However,

the secondary reasons for choosing the said probability

distributions are stated below. The reasons stated are

strictly assumed for stress detection data.

• The geometric means might provide information

regarding accruing stress levels over the period of time

based on its characteristics (McNichol 2018).

• The Gaussian distribution is the most commonly used

probability density function in the field of data science

(Team 2017; Crooks 2019).

• The harmonic mean is a stacking of the division/mul-

tiplication layer over the geometric mean to deal with

the varying periods of stress within the dataset (McNi-

chol 2018).

• The extreme value distribution provides the likelihood

of the occurrence of extreme values from the observed

data within the detection period (Benstock and Cegla

2017).

• The fourth-order central moments provide the informa-

tion regarding the occurrence of outliers from the

observed data within the detection period (Imdadullah

2012; Chaudhary 2017).
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The second step computes the local maxima and minima

from the transformed values within a specified window. Let

M, N, and K be the total number of samples acquired from

HRV and GSR measurements, the number of sliding win-

dows and the sliding window size, respectively. The raw

data stream, X ¼ X1; . . .;XMð Þ, is first transformed into the

probability distribution, S ¼ S1; . . .; SMð Þ, using Spd;i ¼
fpd Xið Þ 1� i�Mð Þ where fpd �ð Þ represents the transforma-

tion function based on various probability distributions. We

evaluated several probability distributions, and the ones

yielding good results in terms of accuracy were included in

our study. The computation of each transformation is

expressed in Eqs. (2)–(6):

Sgeo;i ¼ fgeo Xið Þ ¼
Yi

m¼1

Xm

 !1
i

; for i ¼ 1; . . .;M ð2Þ

SGauss;i ¼ fGauss Xið Þ ¼ 1

rM
ffiffiffiffiffiffi
2p

p e

� Xi�lMð Þ2
2r2

M ; for i ¼ 1; . . .;M

ð3Þ

Sharmm;i ¼ fharmm Xið Þ ¼ i
Pi

m¼1
1
Xm

; for i ¼ 1; . . .;M ð4Þ

Sevd;i ¼ fevd Xið Þ ¼ 1

rM
e
Xi�lM
rM e�e

Xi�lM
rM ; for i ¼ 1; . . .;M

ð5Þ

Scm;i ¼ fcm Xið Þ ¼ 1

i

Xi

m¼1

Xm � lMð Þ4; for i ¼ 1; . . .;M

ð6Þ

In the above expressions, lM and rM represent the mean

and standard deviation of the whole data stream S for the

probability distribution, respectively. For the transformed

data stream Spd ¼ Spd;1; Spd;2; . . .; Spd;M
� �

; in a specific

probability distribution pd, we can get N = M - K ?1

sliding windows since the sliding interval is set to one

second. For the nth sliding window having window size K,

Swinpd;n ¼ Spd;n; Spd;nþ1; . . .; Spd;nþK�1

� �
, local maxima and

minima, Lmaxpd;n and Lminpd;n are defined as below:

Definition 1 Local maxima Local maxima (Lmax) of the

nth sliding window,

Swinpd;n ¼ Spd;n; Spd;nþ1; . . .; Spd;nþK�1

� �
, denoted by

Lmaxpd;n is defined in Eq. (7)

Lmax
pd;n

¼ 1 if Spd;n avgpd;n ^ avgpd;n

D E
Spd;nþK�1

0 otherwise

(
;

for n ¼ 1; 2; . . .;N

ð7Þ

Definition 2 Local minima Local minima (Lmin) of the

nth sliding window, Swinpd;n ¼ Spd;n; Spd;nþ1; . . .;
�

Spd;nþK�1Þ, denoted by Lminpd;n is defined in Eq. (8)

Lmin
pd;n

¼ 1 if Spd;n [ avgpd;n ^ avgpd;n\Spd;nþK�1

0 otherwise

�
;

for n ¼ 1; 2; . . .;N

ð8Þ

where avgpd;n is defined by Eq. (9)

avgpd;n ¼
PK�2

k¼1 Spd;nþk

K � 2
ð9Þ

Accordingly, we get two feature vectors, Lmaxpd ¼
Lmaxpd;1; . . .; Lmaxpd;N
� �

and

Lminpd ¼ Lminpd;1; . . .; Lminpd;N
� �

, for each probability

distribution. The feature extraction process deals with four

categories of features, i.e., time-domain, frequency-do-

main, nonlinear, and LMM. The feature values for the first

three categories which are all existing features are com-

puted from the raw measurements of HRV and GSR sen-

sors, whereas LMM are computed from the transformed

probability distribution values.

Figure 3 illustrates the overall process for generating

LMM features in our work. Each of the raw measurements

and the transformed values is divided into a sequence of

sliding and overlapping windows. One discrete feature

value from each window is obtained using existing feature

computation. Similarly, one binary value for each of

Lmax and Lmin is obtained from each window of the

transformed values. As we have the transformed values

from five probability distributions and two sensor modali-

ties, a total of 20 LMM feature values were derived. We

combine 65 discrete values obtained from existing feature

computations and 20 binary values from LMM to make a

complete feature space. The combined feature space yields

the size of Nx85, suggesting that the features will be

extracted for N windows. The illustration of extracting

LMM features from the Gaussian distribution is given as an

example.

3.4 Classification

In order to obtain the detection accuracy and reliability of

the system for real environments, it is necessary to choose

the classifier which shows the best performance according

to the varying parameters of classification algorithms. This

will prove the worthiness of the stress detection model for

the implementation of the soft real-time system. In this

regard, this stage will derive the best classifier which can
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distinguish two physiological states, i.e., stress and normal.

The classification algorithms which are analyzed and

compared for the system are support vector machines

(SVM) (Drucker et al. 2002), decision trees (DT) (Naka-

suka and Koishi 1995), logistic regression (LR) (Le Calve

and Savoy 2000), random forest (RF) (Pal 2005) and

ensemble boosting methods (EB) (Rooney et al. 2014).

Each of the classification algorithms used in this study is

briefly explained below.

SVM It is categorized as a large margin classifier as it

finds the best hyperplane which separates two classes. The

best hyperplane for SVM is the one having the maximal

width of the plane between data points of the two classes.

Support vectors are the points that are closest to the

hyperplane separating the two classes. The linear hyper-

plane of SVM can be determined by Eq. (10)

f xð Þ ¼ hw � xi þ b ð10Þ

The variables w and x refer to the observed data point

and normal vector, respectively. The sign ‘‘hi’’ represents
the inner product of the two and b is the bias term. A linear

hyperplane is defined by b and w, in such a way that it

maximizes the margin between the samples.

DT It uses a top-down greedy approach to divide the

input data space using trees. It uses the numerical process

to split the data points iteratively, tests it using a cost

function, and selects the best split which has the lowest

cost. The sum of squared errors is often used as the cost

function for all training samples as shown in Eq. (11)

y0 ¼
X

y� predicted valueð Þ2 ð11Þ

Fig. 3 Extraction of LMM and combining feature space
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Variable y is the label from the training set and pre-

dicted value is the output from splits. Gini cost is used for

finding the purity of the leaf nodes. The value of 0.5–0

characterizes the transition from worst to pure class rep-

resentation. The computation for the Gini index is shown in

Eq. (12)

G ¼ 1�
XR

r¼1

p2r ð12Þ

where R refers to the number of classes and pr is the ratio

of instances classified as class r to the total number of

instances.

LR This is conceptually similar to the linear regression,

but it is used for dichotomous classification rather than the

prediction. The goal of LR is to find the best fit model for a

set of independent variables. LR estimates the probabilities

using a cost function to choose the response levels. The

cost function of LR is defined in Eq. (13)

J hð Þ ¼ 1

Z

XZ

i¼1

Cost hh xið Þ; yið Þ ð13Þ

The variables Z, yi and xi are the number of samples,

labels and input samples, respectively. The hypothesis

function hh xið Þ is the sigmoid function and is shown in

Eq. (14), T refers to the transpose of weight matrix h.

hh xð Þ ¼ 1

1þ e�hT x
ð14Þ

RF This method constructs a number of trees for training

using the input data. It selects the mode class from the

outputs generated by individual trees. The main goal of RF

is to reduce the variance from deep decision trees as they

tend to overfit the data. To classify a given instance, RF

generates multiple decision trees and chooses the output or

label having the most votes. The generation of multiple

trees is based on independent and identically distributed

random vectors. The margin for RF is computed as shown

in Eq. (15)

margin X; yð Þ ¼ avkI hk Xð Þ ¼ yð Þ �max
j 6¼y

avkI hk Xð Þ ¼ jð Þ:

ð15Þ

where I(�) is an indicator function, hk Xð Þ is the hypothesis

function, y is the label, and j is the mismatched label,

respectively. The margin is computed iteratively until the

average votes for one class exceed the average votes of

another class. The average votes are represented by avk.

AdaBoost Ensemble boosting is a method of combining

weak classifiers using a set of prediction rules and assigns

weights to them so that their prediction error gets

decreased. Adaptive boosting (AdaBoost) (Freund and

Schapire 1997) does the same. It tweaks the weak learners

which have misclassified the instances so that their error

rate gets smaller, at least than a random guess, i.e., 0.5, for

binary classification. The computation for AdaBoost can be

given in Eq. (16)

f xð Þ ¼
XR

r¼1

arhr xð Þ ð16Þ

where hr xð Þ is the weak learner, ar is the assigned weight,

and R represents the number of classifiers. The main aim of

the algorithm is to reduce the sum of training errors by

taking into account the previous boosted classifier’s train-

ing error as shown in Eq. (17)

Er ¼
X

i

E fr�1 xið Þ þ arh xið Þ½ � ð17Þ

where Er is the resulting error of r-stage classifier and

E fr�1 xið Þ½ � is the error of the current training set on the

sample.

GentleBoost Gentle AdaBoost (GentleBoost) (Friedman

et al. 2000) is a variant of AdaBoost and works in a very

similar way. The problem of AdaBoost is that it is very

susceptible to noise. GentleBoost overcomes this problem

by using a different cost function from AdaBoost. The

remaining structure of the classification is the same as that

of AdaBoost. The cost function is shown in Eq. (18)

f xð Þ ¼
XN

1

dtn yn � ht xnð Þð Þ2 ð18Þ

where dtn are the observation weights at every step t and

ht xnð Þ are the hypotheses function from the regression

model fitted to the target labels yn.

As it is mentioned in the former subsection that we used

180 s data with a sliding window of 60 s and an overlap-

ping window of 1 s for stress state detection, we obtain the

resultant feature space of 121 9 85 from 121 = (180 -

60 ? 1) windows. Each window with 60 samples is clas-

sified independently into stress or normal state. The prob-

abilities of both states, P(0) and P(1), from the

classification results are computed as

P 0ð Þ ¼ Number of windows classified as stress
121

and

P 1ð Þ ¼ Number of windows classified as normal
121

. The state

having a higher probability will be considered as the final

decision.

3.5 Voting and similarity-based fusion (VSBF)

To further improve the classification accuracy of our stress

detection system, we combine the results from two clas-

sifiers using a decision-level fusion method which elabo-

rates the characteristics of voting and similarity measures.

Figure 4 shows the complete process of our VSBF method.

Let N and N0 be the number of training and test set samples,
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respectively. The test feature set is first classified using two

individual classifiers and the average probability of each

state is computed, accordingly. The ‘‘Classifier 1’’ and

‘‘Classifier 2’’ as shown in Fig. 4 are the classifiers with

best recognition accuracies which will be determined when

performing analysis on the acquired dataset. We assume

that using classifiers with the best accuracies but with

different characteristics can help improve the stress

detection performance. Random N0 samples based on LMM

features from the training feature set having N samples for

both states are extracted. Similarly, only LMM features

from the test feature set are extracted to evaluate the

similarity between them. The similarity values between the

test feature set and the training feature set for stress and

normal states are computed, respectively. The output label

will be derived using the proposed VSBF function. As

LMM are binary features, we employed the Jaccard simi-

larity measure (Jaccard 1901) for VSBF. Though there are

many other similarity measures for binary features (Choi

2008), the Jaccard similarity measure is widely used among

all others (Choi et al. 2010). The computation for Jaccard

similarity is given in Eq. (19)

Simjaccard ¼
a

aþ bþ c
ð19Þ

The definition of the variables in Eq. (19) is expressed

in a 2 9 2 contingency table by Operational Taxonomic

Units (OTU) (Dunn and Everitt 2004). The contingency

table is shown in Table 2. The binary features in this

table are represented by i and j, respectively. Variable a

represents the positive match suggesting that both values

for i and j are 1. Variables b and c refer to the ‘‘ith mis-

match’’ and ‘‘jth mismatch’’ represented by �i and �j,
respectively. Variable d is the number of attributes having

negative mismatched suggesting that both values for i and

j are 0. The sum of all the matches and mismatches for all

windows is represented by N.

The classification probabilities from both classifiers can

be obtained using the probability expressions mentioned in

the previous subsection. Considering two probability val-

ues for each state from both classifiers, we get the average

probabilities, Pavg 0ð Þ ¼ Pclassifier1 0ð ÞþPclassifier2 0ð Þ
2

for stress state

and Pavg 1ð Þ ¼ Pclassifier1 1ð ÞþPclassifier2 1ð Þ
2

for the normal state. The

VSBF for drawing the final classification result is defined

as follows.

Definition 3 Voting and Similarity-based function (VSBF)

Voting and similarity-based function (VSBF) for stress

state (0) and normal state (1), denoted by

VSBF Pavg; Simjaccard

� �
; is defined in Eq. (20):

VSBF Pavg; Simjaccard

� �

¼
0 if Pavg 0ð Þ � Simjaccard 0ð Þ[Pavg 1ð Þ � Simjaccard 1ð Þ
1 otherwise

�

ð20Þ

The performance of the classification algorithm is

evaluated in terms of accuracy and F1 scores. Evaluation

Fig. 4 Our proposed decision-level fusion method: VSBF
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parameters of both terms can be derived from prediction

results. The computation for evaluation parameters is

shown in Eq. (21)–(24):

Accuracy ¼ TPþ TN

Pþ N
ð21Þ

Precision ¼ TP

TPþ FP
ð22Þ

Recall ¼ TP

TPþ FN
ð23Þ

F1 score ¼
2 � Precision � Recall
Precisionþ Recall

: ð24Þ

In the above computations, true positive (TP) refers to

the positively predicted outcomes which actually belong to

a positive class. True negative (TN) is the negatively pre-

dicted outcome that belongs to a negative class, while false

positives (FP) and false negatives (FN) refer to the posi-

tively predicted outcome belonging to a negative class and

the negatively predicted outcome belonging to a positive

class, respectively.

4 Experiments and results

This section presents the experimental analyses to prove

the effectiveness of the proposed method that uses LMM

features and the VSBF method for stress detection. The

experiments are carried out using two kinds of datasets.

The first analysis is performed to evaluate the proposed

feature set and our decision-level fusion method using the

acquired dataset which is collected from LSR wrist-worn

devices for workplace environments. The second analysis

is done to evaluate the performance of the proposed

method using the driveDB dataset which is a publicly

available dataset and is suitable for comparison with

existing studies.

4.1 Evaluation of LMM features and VSBF
method using the acquired dataset

In general, groups of working can be classified into two:

white collar and blue collar. Those two categorizations are

commonly reflecting the type of occupations. White collar

is typically related to the workers who work behind a desk

in a service industry. Researcher in a laboratory, clerk, and

managerial-task-related person are some of the examples.

Meanwhile, blue collar refers to the workers who engage in

physical task such as construction workers, manufacturing

or factory worker. The two different classes of participants

(i.e., factory workers and graduate students) could be the

samples to represent the work categorization. In this

regard, a total of 14 healthy participants, 9 males and 5

females having ages 20–38 were considered for the data

recording. Seven of the participants were graduate stu-

dents, while 1 participant was a professor and 6 participants

were factory workers. The reason for considering the

samples from both the graduate students and the factory

workers for designing the stress recognition system for

human workspaces is threefold. Firstly, it is well estab-

lished that the graduate students perceive higher stress

levels and are quite vulnerable to such conditions in

comparison with others (Johnson et al. 2008; Bhui et al.

2016; Levecque et al. 2017; Pain 2018). Secondly, as

suggested in Johnson et al. (2008), Romer (2011), Bhui

et al. (2016, 2019), the reasons for stress induction such as

effort-reward imbalance, low salaries, excessive work-

loads, unclear performance expectations, low decision lat-

itude, unfair treatment, lack of support, and unrealistic

demands, are common for both factory workers and the

graduate students. Thirdly, the survey from European

Agency for Safety and Health at Work (Occupational

Safety and Health) along with others has shown that the

most problematic stress can be noticed in the people

working in Education, Business Services, Financial Sector,

Construction, and Telecommunication sectors (Conditions

2006; Milczarek et al. 2009; Romer 2011). Moreover, the

people work in the above-mentioned sectors exhibit the

common stressors which are workload, self-defeating

beliefs and fear of conflict along with the stress indicators

including burnout, absenteeism, insomnia, cardiovascular

diseases and frequent interpersonal conflicts (SERV 2004;

Conditions 2006; Billehoj 2007; Milczarek et al. 2009;

Romer 2011; Thorsteinsson et al. 2014).

The intention of this study was clearly notified to the

participants, informed consent was obtained, and the par-

ticipants were asked to sign the research confidential

agreement accordingly. The participants were allowed to

stop the video during the emotion elicitation process if they

feel the video content is highly intense or offensive.

However, none of the participants left the video in

between. A smartwatch was employed for acquiring the

physiological measurements from HRV and GSR sensors,

and a smartphone was used for the data collection using the

self-designed android mobile application. The detailed

process of data acquisition is illustrated in Fig. 5. IAPS is

used as the video elicitation method for inducing stress

Table 2 OTUs expression of similarity measure for binary features

(Dunn and Everitt 2004)

1 (Presence) 0 (Absence) Sum

1 (Presence) a ¼ i � j b ¼ �i � j a ? b

0 (Absence) c ¼ i � �j d ¼ �i � �j c ? d

Sum a ? c b ? d N = a ? b?c ? d
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emotion. Many previous studies have used this database as

an effective method for inducing the stress situation which

is mapped as negative valence and high arousal on Rus-

sell’s model of emotion. The subjects were asked to wear

the smartwatch having HRV and GSR sensors. The data

recording was started after 2–3 min so that the smartwatch

gets synchronized with the user’s skin and our android

application. Depending on the smartwatch, it takes a while

for the GSR values to be consistent, i.e., between 100 and

1200 kohm range. The data collection procedure started

with a non-stressed (normal) video (compilation of IAPS

images) followed by a black screen along with the 5-min

break and simple IQ/math questions. The black screen and

IQ/math questions are a part of the data collection protocol

to normalize the emotion which has been followed by

many existing studies (Valenza et al. 2012; Liu and

Sourina 2014; Han et al. 2017; Khowaja et al. 2018b). The

data recording for both states started after 10 s from the

start of the video.

All participants were allowed to answer within 15 s, and

subsequently, they were again asked to watch the stress

state video starting with the black screen. The challenge of

using the employed wearable device is the limitation of the

sampling rate as it only provides 1 Hz for HRV. The

characteristics of the video clip used for stress state elici-

tation are shown in Table 3.

We used various classification models for predicting

stress and normal states. Six machine learning algorithms

have been used to perform the analysis such as SVM, DT,

LR, RF and EB (AdaBoost and GentleBoost). For more

reliable investigation, we performed the analysis five times

with varying testing and training sets. Apart from varying

parameters for the classification algorithms, we also

applied the feature selection method, i.e., principal com-

ponent analysis (PCA) (Subasi and Ismail Gursoy 2010). If

the feature space compels the classification algorithm to

overfit the data, then the feature selection method can help

to reduce the variance. The PCA method is used for all the

classification algorithms accordingly. The analyses shown

in Tables 4, 5, 6 and 7 provide the average accuracies

along with the parameters used for specific algorithms. It

should be noted that we performed the analysis with vari-

ous parameters of a specific learning algorithm; however,

we only provide the results which achieved the best aver-

age accuracy from five trials with a specified set of

parameters. Table 4 shows the results using DT. The

constraints employed for this algorithm are split criterion,

tree depth and the surrogating decision of splits. Standard

Fig. 5 Proposed data acquisition protocol

Table 3 Characteristics of stress state elicitation video clip

Characteristics Description

Subjects 14

Clips Stress and Normal

Duration of clips 4 min 25 s (Stress)

4 min 15 s (Normal)

The rate of change of pictures 5 s per picture

Number of pictures 53 images (Stress)

51 images (Normal)
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classification and regression tree (CART) (Brezigar-Mas-

ten and Masten 2012) was employed for training the model.

The split criterion is used to avoid overfitting. The methods

used for it include the Gini index and maximum deviance

reduction (also referred to as cross-entropy). The surro-

gating decision of splits measures the association between

predictors for splitting rules. Table 5 shows the analysis

results using LR and SVM, where there were no varying

parameters used in the case of LR and it is also a kind of

linear classifier. Therefore, the results of LR are merged

with SVM. The constraints of SVM are defined as:

(a) Kernel function: to compute the inner product of the

transformed predictors using this function.

(b) Kernel scale: to refer to the spread of the function

which applies the appropriate kernel norm to com-

pute the inner product of transformed predictors.

(c) Misclassification cost: to be used for penalizing the

prior probabilities and to be incorporated in the form

of a matrix.

(d) Outlier fraction: to assume a specific set of a portion

of the training data as outliers.

Tables 6 and 7 show the analysis results using RF and

EB, respectively. The common constraints for both meth-

ods are the maximum number of splits and the number of

learners. The former controls the depth of the tree while the

latter refers to the number of weak learners to be trained

using ensemble methods. An additional constraint in the

ensemble method is the learning rate which is commonly

interchanged with the term step size. It determines the

amount of newly acquired information to be overridden to

the old information.

The qualitative results for the accuracy of these models

are shown in Fig. 6. The experiment for each classifier was

repeated 5 times with varying test set. The visualization is

important to analyze the effect of parameters not only for

achieving high accuracy but also for maintaining the con-

sistency. DT achieves lower accuracy and fails to maintain

consistency in obtaining the same results. Meanwhile, RF

achieves relatively higher accuracy than SVM but does not

exhibit consistent performance. SVMs, on the other hand,

reveals a good consistency in obtaining the same perfor-

mance but achieves lower accuracy than EB methods.

GentleBoost exhibits better consistency, and AdaBoost

achieves the highest accuracy as shown in Fig. 6. To apply

our VSBF method, we need to choose the effective com-

bination of the classifiers. The selection of classifiers was

made on the basis of combining performance (higher

accuracy) and consistency (maintaining the same level of

Table 4 Analysis using DT
DT model Split criterion Tree depth Surrogate PCA Accuracy

DT1 Deviance 100 Off Off 77.84

DT2 GINI index 100 Off On 74.28

DT3 Deviance 100 Off On 76.54

Table 5 Analysis by using LR

and SVM
Method Kernel Kernel scale Cost Prior Outlier fraction PCA Accuracy

LR – – – – 0 – 75.57

SVM1 Gaussian 1 – Empirical 0 On 77.73

SVM2 Gaussian 0.5 – Empirical 0 On 78.17

SVM3 Gaussian 27 [0 3; 1 0] Uniform 0.05 Off 78.98

Table 6 Analysis using RF models

RF model Max split # of learners PCA Accuracy

RF1 20 30 On 79.55

RF2 20 50 On 76.73

RF3 20 100 On 75.64

Table 7 Analysis using EB

models
EB method Max splits # of learners Learning rate PCA Accuracy

AdaBoost1 12 30 0.1 Off 86.36

AdaBoost2 12 30 0.01 Off 86.09

GentleBoost1 20 30 0.1 Off 82.93

GentleBoost2 12 30 0.1 Off 84.66
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accuracy). As a result, AdaBoost and GentleBoost are

qualified for the combination schema, but they both belong

to the ensemble-based classification method. Intuitively,

selecting the classifiers having the same characteristics

might not improve the detection rates as their classification

result will be mostly similar for individual samples. In this

regard, we chose AdaBoost and SVM for the combination.

The classification results from both the classifiers will be

used for VSBF, our decision-level fusion method.

Table 8 shows the accuracy and F1 scores (Becker et al.

2017) of each classification model with and without LMM

features. The results show that by using LMM features, the

detection accuracy is improved by at least 6.7% (LR) and

up to 14.74% (SVM). It is evident from the analysis that

LMM features have a positive impact on classifying the

stress and normal states and are capable of capturing the

variations even with LSR devices. SVM shows better

performance in terms of F1 scores compared to the RF

model, which also supports our decision for selecting the

classifier combination. Table 8 also presents the accuracy

and F1 score of our VSBF method. The results can only be

computed using LMM features as the VSBF method

computes the similarity from binary features and the

existing features do not have the binary characteristics. The

results reveal that our proposed fusion method can improve

the detection accuracy by 5.69% and 15.23% accuracy

compared to the AdaBoost1, the best performer, with and

without LMM features, respectively. These statistics prove

that the proposed system has the ability to effectively

detect the stress condition from LSR wrist-worn devices.

Figure 7 shows the receiver operating characteristics

(ROC) curves for different classification models and our

VSBF method. The curves demonstrate the relationship

between false positive and true positive rates. Based on the

analysis, an ensemble method, AdaBoost, proves to be the

best model for detecting stress state in terms of accuracy

and F1 score since it has the least distant curve from the

reference point (0, 1). Meanwhile, GentleBoost proves to

Fig. 6 Visualization of accuracies using different classification models
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be the second-best classifier and has a better result com-

pared to DT, SVM and RF. Our decision-level VSBF

method outperforms all the independent classifiers by

achieving the least distant curve from the reference point.

4.2 Evaluation of LMM features using
the driveDB dataset

The second analysis is performed for validating the effec-

tiveness of the proposed method using the publicly avail-

able dataset, driveDB. There are three main reasons for

choosing this dataset for validation. First, a lot of existing

studies have used this dataset for stress recognition. Sec-

ondly, it offers the raw readings from the same set of

sensors, we used in our proposed stress detection system.

Third, some of the features used for this dataset are also

used in our proposed detection system. We have conducted

a leave-one-subject-out (LOSO) analysis on the driveDB

dataset which is compliant with the existing studies, sug-

gesting that 13 subject’s data will be used for training and 1

subject’s data will be used for the testing purpose. By doing

so, the performance of our LMM features can be validated

in terms of adaptability to new subjects. The original

dataset consists of multimodal physiological data from

ECG, RESP, HR, EMG and two GSR (placed on foot and

palm of the left hand) sensors. Since our study mainly

focuses on HRV and GSR sensors, we performed analyses

using ECG and GSR (placed on the palm of the left hand)

sensor measurements. The measurements from both sensor

modalities are acquired with a sampling rate of 496 Hz and

31 Hz, respectively; thus, the sensors are categorized as

HSR devices. An ECG sensor from the driveDB is used

because the signals from this sensor can be used to derive

HRV measurements. As the constrained environment of

this dataset is different from our application, we need to

perform the data preprocessing which is explained as

below with the characteristics of the dataset.

The driving tasks comprise six sections: start of the

driving (rest condition), driving through city before tran-

siting to highway (city condition), driving through highway

between first two tolls (highway condition), driving

through highway between next two tolls (highway

Table 8 Comparison of models

with and without new features
Classification model With new features Without new features

Accuracy (%) F1 score Accuracy F1 score

DT1 77.84 0.7194 70.86% 0.6232

LR 75.57 0.6861 68.87% 0.6043

SVM3 78.98 0.7448 64.24% 0.5630

RF1 79.55 0.7429 69.89% 0.6015

AdaBoost1 86.36 0.8378 76.82% 0.7050

GentleBoost2 84.66 0.8163 75.50% 0.6906

VSBF 92.05 0.9041 – –

Fig. 7 ROC curves a without and b with using new features
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condition), driving through city after the drive on highway

(city condition) and end of driving (rest condition). Based

on the traffic and road conditions, the total duration of the

drive varied from 50 to 90 min. The rest periods were

considered to be the baseline for the overall driving pro-

cess. The available dataset is from 17 subjects, but we

consider only 14 subjects in our study as the data record for

one subject is incomplete and the data records for two

subjects cannot be analyzed due to the unavailability of

markers for the driving condition. The driveDB dataset

only contains the data from physiological measures without

the corresponding labels. However, from the literature

(Healey and Picard 2005), it could be validated that the

drive-through city, highway and resting periods yield high,

medium and low levels of stress, respectively. Well-de-

fined data samples were taken from each driving test, and

the data were evenly distributed among the three driving

conditions. Resting period segments were captured from

the last 5 min, while high-stress segments were taken when

the driver entered into the city and the signals showed high

variations as compared to the resting state. Medium stress

segments were taken when the subjects were driving on the

highway between two tolls. The data of subject 1 from

ECG and GSR sensor measurements annotated with the

driving tasks are shown in Fig. 8. The recordings were

divided into 100 s of sliding windows with 10 s of over-

lapping windows as proposed in (Healey and Picard 2005).

In order to perform a fair comparison with the existing

methods, we used the same set of features that have been

proposed in the previous studies (Chen et al. 2017a).

A total of 53 features were included for the analysis of

this dataset. Sixteen and 17 features out of those were

extracted from GSR and ECG, respectively, using the

existing method as proposed in Chen et al. (2017a).

Additionally, 10 features for each sensor measurement are

extracted using our proposed feature set. For reading the

data and extracting the existing features from the driveDB

dataset, we used the WFDB Toolbox for MATLAB (Silva

and Moody 2014).

The performance of classification models for the dri-

veDB dataset is assessed in terms of accuracy and ROC

curves. The data represent three driving conditions, i.e.,

rest, highway, and city, yielding low, medium and high

stress levels, respectively. These driving conditions were

divided into three cases for performing the binary classi-

fication which includes rest condition versus others, high-

way condition versus others and city condition versus

others, respectively. The results from the three cases are

displayed in terms of accuracy in Table 9.

The same combination of classifiers from the previous

experimental analysis was chosen for the VSBF method.

Since none of the features from the existing feature set had

binary characteristics, the performance of the VSBF

method on the existing feature set was not recorded. The

classification model with the highest accuracy was Ada-

Boost, achieving 96.02%, 95.27% and 95.46% for indi-

vidual cases and 95.58% on average, respectively. The

proposed VSBF method achieves the best results with

98.86%, 98.11%, and 98.48% for individual cases and

98.48% on average, respectively. Figure 9 shows the ROC

curves for rest versus other, highway versus other and city

versus other conditions without and with the LMM fea-

tures. It can be noticed that the LMM features contribute to

better performance in detecting stress. Ensemble boosting

methods (AdaBoost and GentleBoost) perform better than

other classification algorithms, and the VSBF method

achieves the lowest distant curve from the reference point.

The analysis conducted on the driveDB dataset proves

the effectiveness of the proposed LMM features as they

increase the accuracy at a maximum of 4.7% (LR) and on

average by 3.49%. Table 9 also shows that the VSBF

method increases the average accuracy by 2.9% and 7.01%

compared to the AB, the best performer, with and without

LMM features, respectively. The results from the LMM

features and the VSBF method indicate an increasing trend

in terms of detection accuracy and also prove its applica-

bility to HSR devices achieving higher detection accuracy.

5 Implementation of soft real-time stress
detection system

According to the analysis on stress detection, we imple-

mented a soft real-time detection system which was

designed to be compatible with the usage in real-life

workplace environments in term of less intrusive and per-

vasive device choice (i.e., Microsoft Band 2 and Android-

based smartphone). The conceptual diagram of our system

is depicted in Fig. 10. The HRV and GSR sensors are

equipped with Microsoft Band 2. It also provides a stan-

dard development kit (SDK) to transmit HRV and GSR

data to a smartphone through Bluetooth low energy 4.0

protocol.

Microsoft Band 2 records HRV and GSR data in dif-

ferent sampling rates (i.e., 1 Hz for HRV and 5 Hz for

GSR). Therefore, prior to transferring them to the server,

their sampling rates need to be matched. In this regard, we

down-sample the data from GSR to 1 Hz by averaging the

corresponding values. Synchronized HRV and GSR data

are then transferred to the server by the smartphone

through a hypertext transfer protocol (HTTP) connection.

The transmission rate is 180 rows per min. The passed data

are then stored in a queue-structured dataset buffer with

180 slots. Each slot holds a one-row vector of HRV and

GSR data. This buffer is updated continuously as new data

arrive (i.e., the new data are appended to the queue, while
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the oldest ones are removed). In parallel, using the data, the

server performs stress evaluation tasks by performing

feature extraction and followed by classification.

The stress evaluation is done periodically in every

180 s. We implemented the same set of classification

algorithms using the Waikato Environment for Knowledge

Analysis (Weka) framework (Hall et al. 2009), and all the

APIs are implemented using the Java Server Page tech-

nology. After classification, the result is stored on the

server. On the client side, the android application fetches

Fig. 8 Annotated sensor measurements for subject 1

Table 9 Stress detection accuracy from the driveDB dataset

Classification

model

With LMM features Without LMM features

Rest versus all (%) Highway versus all (%) City versus all (%) Rest versus all Highway versus all City versus all

DT 90.34 86.74 88.64 88.32% 85.15% 86.90%

LR 85.23 85.42 86.36 80.73% 79.31% 82.88%

SVM 92.05 93.46 93.18 91.10% 89.17% 89.29%

RF 92.61 92.42 92.42 90.02% 88.32% 89.23%

AB 96.02 95.27 95.46 91.08% 91.84% 91.50%

GB 94.89 94.51 94.70 91.27% 90.25% 90.53%

VSBF 98.86 98.11 98.48 – – –

LMM local maxima and minima, DT decision trees, LR logistic regression, SVM support vector machines, RF random forest, AB AdaBoost, GB
GentleBoost, VSBF voting and similarity-based fusion
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Fig. 9 ROC curves for a rest-to-others without LMM features. b Rest-to-others with LMM features. c Highway-to-others without LMM features.

d Highway-to-others with LMM features. e City-to-others without LMM features and f City-to-others with LMM features
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the classification result in the server and displays it on the

screen for users, while on the server side, a web page also

displays the classification result for administrators or

stakeholders as shown in Fig. 11. Following the notifica-

tion of the web application, the administrators can report

and arrange an emergency response in time for the affected

individual. In addition, the web application provides a

stress log in a bar chart as shown in Fig. 12. The web

application depicts the results of our stress detection sys-

tem for a whole day. Hence, it provides details at which

time the person feels the most stressed. The results from

the log can provide helpful insights and can be used in

applications such as recommender systems and human

behavior analyses. The x-axis indicates time scales in a

day, while the y-axis indicates an amount of time in min-

utes a user feels stressed.

The web application also displays additional informa-

tion which might be useful for stakeholders, such as loca-

tion, skin temperature, outdoor temperature and weather

condition. For the stress recognition system, the classifi-

cation interval might be in minutes since human emotional

changes will not frequently occur in seconds. Time delay

should be considered in the data transmitting process

between sensors on the mobile phone.

Delay is one of the important indicators to measure

network transmission capability and real-time system per-

formance. (Chen 2012) identified several factors that affect

delay in wireless sensor networks, such as packet size,

physical environment and communication environment. To

evaluate the system performance, we consider two types of

delay: processing delay and transmission delay. The former

is the delay associated with the time of execution on to the

decision, whereas the latter is the time to send event details

to the server. According to the test on an LTE network, the

transmission delay for the sensor data is approximately

1.150 s.

Meanwhile, the processing delay to determine the stress

state is almost instant, which is 1.8 ms. By summing up

interval time (180 s) and transmission/processing delays,

the system will roughly complete every classification task

in 181.168 s, which means 1.168 s late compared to the

ideal interval. Our soft real-time system is based on the

assumption that there will be no catastrophic failure even

though the system fails to meet the deadlines. Missing the

deadlines will only cause slightly degraded performance

and the stakeholders can still make interventions to the

stressed workers. Moreover, the use of Internet connection

for data transmission from a smartphone to a server cannot

guarantee that the packet delivery will be exactly on-time

since the transmission time will heavily depend on the

Internet provider quality.

Battery consumption analysis is an important aspect

when dealing with soft real-time systems. In our previous

study (Khowaja et al. 2018b), we conducted the battery

analysis for mainly two services, i.e., fall detection and

stress detection, while using the same devices. The users

were allowed to use the smartphones in their usual way

provided that they do not play 3D games or watch high

definition videos during this experiment. The percentage of

battery usage was recorded for every minute, accordingly.

Fig. 10 Conceptual diagram of the real-time stress detection

Fig. 11 Android (left) and web application (right) showing stress detection results
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It was revealed that the stress detection service utilizes very

less amount of energy in comparison with the fall detection

service, i.e., after 180 min of using stress detection service

the smartphone only consumed less than 10% of the bat-

tery. Considering the prior findings, it can be assumed that

the stress detection service qualifies for the real-world

applicability based on low energy consumption.

Another important aspect of a soft real-time system is

memory consumption. A snapshot from the android studio

profiler in the ‘‘memory’’ section is shown in Fig. 13. It

captures the dynamic of the occupied memory over several

seconds. The snapshot was taken after all application ser-

vices were running in the background, i.e., the peak of

memory usage of the application. In total, the application

takes only 17.9 MB space allocated, including the space

for Java virtual machine, native code, graphics-related

resource, stack, the application code and other OS-specific

components. It is relatively efficient considering the

capability of smartphones, nowadays. Note that our appli-

cation only takes 6.3 MB out of the total allocated space.

There are no obvious ups and downs in the memory usage

graph, as the processes (data transmission and HTTP

requests) take a very small portion of memory that they are

barely observable. Besides, the app only stores temporary

data with constant size (i.e., the buffer size), while the

processing occurs in the server. Thus, there is no apparent

dynamic memory allocation at run-time. Apart from

memory profiler, we can also see network profiler. How-

ever, it is out of our concern since we target the users in

South Korea with relatively fast Internet connection.

Moreover, the application constantly sends and receives

approximately around 5 KB of data for every 180-s inter-

val, which is trivial.

6 Discussion

6.1 Comparative analysis of the driveDB dataset

This subsection presents a quantitative analysis of the

LMM features and the VSBF method. Table 10 provides a

brief comparison for our proposed method and the existing

works which were evaluated using the same dataset, dri-

veDB, in terms of sensors used, methods adapted and

accuracy. Healey and Picard (2005) and Chen et al. (2017a)

achieved high accuracy by using all sensors in their study.

Keshan et al. (2015) performed better on the driveDB

dataset while using only ECG sensors. Their high accuracy

is based on the average beat difference features extracted

from QRS complexes with HSR devices. As our intended

environment is a workplace that uses LSR devices for data

acquisition, we cannot extract such complex features,

accurately. However, the experimental analysis shows that

the LMM features can improve the detection accuracy up

to 95.58% for the driveDB dataset. Wang et al. (2013)

achieved high accuracy using the combination of feature

selection, i.e., PCA and kernel-based class separability

(KBCS), and classifiers, i.e., linear discriminant analysis

(LDA) and K-nearest neighbor (KNN). We proposed the

VSBF method which can further improve the accuracy of

the detection system. The analysis results show that by

combining LMM features and the VSBF method, we can

achieve the highest accuracy (98.48%) compared to the

Fig. 12 Stress log chart displayed in the web application
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existing works. Although we proposed the method to

improve the accuracy using LSR devices the analysis

shows that it can also be used to improve the detection

accuracy for HSR devices. It is also noticed that we have

used two sensor measurements only in our study while

outperforming the other existing works which take into

account all the complex sensor measurements.

6.2 Merits of the proposed system

The objective of this study is to design an automatic stress

detection system based on LSR wrist-worn devices for

workplace environments. The main contributions of our

work can be summarized as follows:

(1) Applicability in workplace environments Unlike the

existing studies which use electrodes and complex

wearable sensors for data acquisition in a controlled

environment, it is a challenging and rewarding task

to detect the stress using simple LSR sensors in real-

life environments. The proposed stress detection

system is designed to monitor the individual’s mental

status in real-world workplace environments, which

makes detection results more practically applicable

for use in human workspaces. However, the exper-

iments performed in real-life workplaces may come

across a few limitations such as continuous data

acquisition and reliable detection. Taking consider-

ation of these limitations, we used a wrist-worn

device that is simple to wear and can acquire streams

of data continuously.

(2) High detection performance We propose an efficient

feature extraction from longer time windows and

fusion methods to achieve high detection

Fig. 13 Memory usage from android studio profiler

Table 10 Comparison with existing stress detection methods using the driveDB dataset

Authors Sensors Method Accuracy (%)

Deng et al. (2012) ECG, EMG, 2 GSR, RESP PCA ? LDA ? DT ? SVM ? NB ? KNN ? EF 78.46

Singh and Bin (2013) ECG, EMG, 2 GSR, RESP NN ? EF 88.75

Healey and Picard (2005) ECG, EMG, 2 GSR, RESP LDA ? EF 97.4

Wang et al. (2013) ECG KBCS ? LDA ? PCA ? KNN ? EF 97.78

Zhang et al. (2010) ECG, EMG, 2 GSR, RESP SLBN ? EF 90.53

Costin et al. (2012) ECG MV ? MDC ? EF 89.36

Keshan et al. (2015) ECG RT ? ABD ? EF 97.92

Ergin et al. (2011) EMG CVA ? SSD ? EF 69.24

Vanitha and Suresh (2013) ECG SOM ? Hybrid SVM ? HS ? EF 91.0

Munla et al. (2015) ECG STFT ? SVM ? EF 83.0

Chen et al. (2017a) ECG, RESP, 2 GSR SBL ? PCA ? SVM ? ELM ? EF *95.0

Proposed method ECG, GSR LMM ? VSBF ? EF 98.48

ECG electrocardiogram, GSR galvanic skin response, EMG electromyogram, RESP respiration, PCA principal component analysis, LDA linear

discriminant analysis, DT decision tree, SVM support vector machines, NB Naı̈ve Bayes, KNN K-nearest neighbor, EF existing features, NN
neural networks, KBCS kernel-based class separability, SLBN structurally learned Bayesian network, MV morphological variability, MDC
minimum distance classifier, RT random trees, ABD average beat difference, CVA common vector approach, SSD sub-space discriminant, SOM
self-organizing maps, HS hierarchical structure, STFT short-term Fourier transform, SBL sparse Bayesian learning, ELM extreme learning

machine, LMM local maxima and minima, VSBF voting and similarity-based fusion
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performance. First, the LMM and VSBF method has

been tested using the acquired dataset generated by

LSR wrist-worn devices and then using the driveDB

dataset which is acquired by HSR devices. Experi-

mental analyses reveal that our proposed method not

only achieves better detection accuracy on the

dataset acquired by LSR devices but can also help

in improving the accuracy of HSR devices.

(3) Implementation of a stress detection system We

implement a soft real-time stress detection system

using the proposed method with LSR wrist-worn

devices. The system was designed to prove the

applicability of our method in real-life workplace

environments using simple wearable and pervasive

devices. Our stress detection system employs wrist-

worn devices that overcome the limitations of

mobility and complexity and uses a smartphone as

a middleware for data transmission which is avail-

able and accessible to any factory worker. It was

found that our system can return the recognition

results within 1.168 s including feature extraction,

classification and result fusion, which makes it

possible to implement in real-life environments.

The time computation is recorded by repeating and

averaging the recognition results for ten times. Our

current implementation only discusses the online

solution for soft real-time stress detection; however,

in the case of missing Internet connection, the system

can still be used by moving the trained classifier

(lightweight classification models) to the smartphone

to perform the stress detection locally as proposed in

various studies (Kwapisz et al. 2011; Uddin et al.

2016; Chen et al. 2017b; Ahmad et al. 2019).

6.3 Limitations and future work

Some of the limitations of our study are stated below:

• Limitation regarding the amount of data that is

collected for our stress detection system. The data

acquisition technique needs to be improved to a certain

level to collect continuous data in working hours by

taking full advantage of wrist-worn devices.

• The accuracy achieved on the acquired dataset is not as

high as the detection accuracy achieved on the driveDB

dataset. One of the possible reasons for not achieving

such high accuracy is data acquisition using a low

sampling rate. This limitation has been addressed by

many researchers using pervasive wearable devices

(Kim and Andre 2008; Setz et al. 2010; Egilmez et al.

2017); however, with the proposed set of features we

have achieved higher detection accuracy compared to

the early reported works.

• The analysis for stress recognition in the wild is missing

in this study. The reason for not including such analysis

is that this paper covers many aspects such as the

feature engineering, VSBF fusion method, and a soft

real-time stress detection system. The inclusion of

analysis in the wild requires efforts with respect to the

data collection, consent from the users, and implemen-

tation of more sophisticated machine learning methods

such as 1D-CNNs or LSTMs. We assume that stress

recognition in the wild can provide continuity to our

work and can be considered as one of the potential

future directions.

The stress detection system can be further integrated

with diverse physical activities to analyze their relationship

with stress conditions. It can give more insights into the

subjective measure as the activity and behavior patterns of

each subject will be different for prior and post-stress

events. As the literature suggests that stress is a concept

that is highly subjective, the subject-dependent analysis can

be carried out by categorizing the characteristics of the

subjects to make personalized models for stress detection.

7 Conclusions

In this study, we proposed a new feature set LMM from

longer time windows (60 s), and a decision-level fusion

method VSBF, to improve the accuracy of stress detection

from LSR wrist-worn devices. The LMM features are first

applied to the dataset acquired from LSR wrist-worn

devices in compliance with the workplace environment.

We chose the wrist-worn device having HRV and GSR

sensors for the data acquisition so that the study might

deviate toward realization as people do not prefer to wear

complex sensor arrangements in real-life or at workspaces.

We have also conducted an in-depth analysis using dif-

ferent classification algorithms for the VSBF method which

combines the output of two classifiers and performs a

similarity measure to draw the final result. Both of these

methods were employed in our soft real-time system. For

the acquired dataset, the result was incomparable with

other approaches since the publicly available datasets are

acquired using HSR wearable devices. For validating our

proposed method, we tested the LMM features and VSBF

method on the driveDB dataset which is widely used for

stress detection. Experimental results showed that our

method can improve the detection accuracy up to 15.23%

for the acquired dataset and 7.01% for the driveDB dataset,

respectively. Our analysis proved that the proposed feature

set and fusion method can help considerably in improving

the detection accuracy of the system. The performance of

the proposed feature set and fusion method was compared
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with the existing ones which used the same dataset. It

revealed that the proposed method is capable of detecting

stress with better accuracy by only employing ECG and

GSR sensors only.

Although the classification accuracies are not very high

on the acquired dataset, they are quite promising by

keeping in view that the stress was detected using LSR

wrist-worn devices. Besides the stress detection used for

evaluation purposes, our soft real-time system has the

potential for giving insights into an individual’s behavior

toward stress conditions. Our system can summarize the

log of stress events on an hourly basis, providing details

regarding the time of the day at which the person feels most

stressed. These results can help to provide suggestions or

recommendations to transit the stress state into a normal

state. In addition, the battery and memory consumption

analyses showed the efficiency of our soft real-time stress

recognition system. In the future work, more analyses such

as device energy consumption can be incorporated as the

basis for further optimizing the system.

Acknowledgements This research was supported by the Basic Sci-

ence Research Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education

(2018R1D1A1B07049113) and (2018R1D1A1B07047241).

Funding Dr. Seok-Lyong Lee is the recipient of the grant funded by

the National Research Foundation of Korea (NRF) of the Ministry of

Education (2018R1D1A1B07049113), and Dr. Bernardo Nugroho

Yahya is the recipient of the grant funded by the National Research

Foundation of Korea (NRF) of the Ministry of Education

(2018R1D1A1B07047241).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Ethical approval All the procedures performed in this study involving

human participants were in accordance with the ethical standards of

the institutional and/or national research committee, following the

British Psychological Society (BPS) ethical guidelines and policy for

the use of electronic surveys/e-ethics from School Ethics Process,

University of Nottingham.

Informed consent Informed consent was obtained from all the indi-

vidual participants included in the study.

References

(2016) WHO | World Health Organization. In: WHO. http://www.

who.int/en/. Accessed 2 Mar 2017

(2019) Coping with stress at work. In: Am. Psychol. Assoc. https://

www.apa.org/helpcenter/work-stress. Accessed 1 Apr 2020

Ahmad M, Khan AM, Mazzara M, et al (2019) Extended sammon

projection and wavelet kernel extreme learning machine for gait-

based legitimate user identification. In: Proceedings of the 34th

ACM/SIGAPP symposium on applied computing—SAC’19.

ACM Press, New York, New York, USA, pp 1216–1219

Arnrich B, Setz C, La Marca R et al (2010) What does your chair

know about your stress level? IEEE Trans Inf Technol Biomed

14:207–214. https://doi.org/10.1109/TITB.2009.2035498

Becker K, Moreira VP, dos Santos AGL (2017) Multilingual emotion

classification using supervised learning: comparative experi-

ments. Inf Process Manag 53:684–704. https://doi.org/10.1016/j.

ipm.2016.12.008

Benstock D, Cegla F (2017) Extreme value analysis (EVA) of

inspection data and its uncertainties. NDT E Int 87:68–77.

https://doi.org/10.1016/j.ndteint.2017.01.008

Bhui K, Dinos S, Galant-Miecznikowska M et al (2016) Perceptions

of work stress causes and effective interventions in employees

working in public, private and non-governmental organisations:

a qualitative study. BJPsych Bull 40:318–325. https://doi.org/10.

1192/pb.bp.115.050823

Billehoj H (2007) Report on the ETUCE survey on teachers’ work-

related stress

Boucsein W (2012) Electrodermal activity. Springer, Boston

Bradley MM, Greenwald MK, Hamm AO (1993) Affective picture

system. Struct Emot 25:48–65

Bradley MM, Codispoti M, Cuthbert BN, Lang PJ (2001) Emotion

and motivation I: defensive and appetitive reactions in picture

processing. Emotion 1:276–298. https://doi.org/10.1037/1528-

3542.1.3.276

Brezigar-Masten A, Masten I (2012) CART-based selection of

bankruptcy predictors for the logit model. Expert Syst Appl

39:10153–10159. https://doi.org/10.1016/j.eswa.2012.02.125

Chaudhary KM (2017) ML | raw and central moments. In: Geeks-

forGeeks. https://www.geeksforgeeks.org/ml-raw-and-central-

moments/. Accessed 6 Jan 2020

Chen H (2012) End-to-end delay analysis and measurements in

wireless sensor networks. Mid Sweden University, Sundsvall

Chen L, Zhao Y, Ye P et al (2017a) Detecting driving stress in

physiological signals based on multimodal feature analysis and

kernel classifiers. Expert Syst Appl 85:279–291. https://doi.org/

10.1016/j.eswa.2017.01.040

Chen Z, Zhu Q, Soh YC, Zhang L (2017b) Robust human activity

recognition using smartphone sensors via CT-PCA and online

SVM. IEEE Trans Ind Inform 13:3070–3080. https://doi.org/10.

1109/TII.2017.2712746

Cheng K-H, Fisher D, Canny J, Hartmann B (2011) How’s my mood

and stress? An efficient speech analysis library for unobtrusive

monitoring on mobile phones. In: Proceedings of 6th interna-

tional conference on body area networks, pp 71–77

Choi SS (2008) Correlation analysis of binary similarity measures and

dissimilarity measures. Dr Diss Pace Univ

Choi J, Gutierrez-Osuna R (2009) Using heart rate monitors to detect

mental stress. In: Sixth international workshop on wearable and

implantable body sensor networks. IEEE, pp 219–223

Choi S-S, Cha S-H, Tappert CC (2010) A survey of binary similarity

and distance measures. J Syst Cybern Inform 8:43–48

Cinaz B, Arnrich B, La Marca R, Tröster G (2013) Monitoring of
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TulppoMP,Mäkikallio TH, Takala TE et al (1996) Quantitative beat-to-

beat analysis of heart rate dynamics during exercise. Am J Physiol

271:H244–H252. https://doi.org/10.1016/0735-1097(94)90177-5

Uddin MT, Billah MM, Hossain MF (2016) Random forests based

recognition of human activities and postural transitions on

smartphone. In: 5th international conference on informatics,

electronics and vision (ICIEV). IEEE, pp 250–255
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