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Abstract
Thebacktracking search algorithm (BSA) as a novel intelligent optimizer belongs to population-based evolutionary algorithms.
In this paper, a multi-objective learning backtracking search algorithm (MOLBSA) is proposed to solve the environmen-
tal/economic dispatch (EED) problem. In this algorithm, we design two novel learning strategies: a leader-choosing strategy,
which takes a sparse solution from an external archive as leader; a leader-guiding strategy, which updates individuals with
the guidance of leader. These two learning strategies have outstanding performance in improving the uniformity and diversity
of obtained Pareto front. The extreme solutions, compromise solution and three metrics obtained by MOLBSA are further
compared with those of well-known multi-objective optimization algorithms in IEEE 30-bus 6-unit test system and 10-
unit test system. Simulation results demonstrate the capability of MOLBSA in generating well-distributed and high-quality
approximation of true Pareto front for the EED problem.

Keywords Backtracking search algorithm · Environmental/economic dispatch · Multi-objective optimization

1 Introduction

The backtracking search algorithm (BSA) (Civicioglu 2013),
a population-based evolutionary algorithm (EA), was first
proposed by Civicioglu in 2013 as a novel approach to
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solve nonlinear, non-differentiable and multi-modal numer-
ical optimization problems. Compared with some similar
evolutionary algorithms, BSA has only one single control
parameter (mixrate). More particularly, BSA possesses a
memory called old population to provide search direction
for themutation,which stores a population randomly selected
from the current generation or a previous generation.Over the
past few years, there have been some successful applications
of BSA in various fields (Wang et al. 2019; Pare et al. 2018;
Mohd Zain et al. 2018; Hannan et al. 2018; Abdolrasol et al.
2018). It is widely used in engineering fields, such as power
system (Modiri-Delshad and Rahim 2014; Ali 2015; Modiri-
Delshad et al. 2016; Pal et al. 2016; Modiri-Delshad et al.
2016; Dubey et al. 2016; Bhattacharjee et al. 2015; Modiri-
Delshad and Rahim 2016; Kılıç 2015; Ayan and Kılıç 2016;
Chaib et al. 2016; Ishak et al. 2014; El-Fergany 2015a, b;
Khamis et al. 2015a, b; Gupta et al. 2015; El-Fergany 2016;
Khamis and Tai 2017; Khamis et al. 2015; Shahriar et al.
2015; Shafiullah et al. 2015; Niamul Islam et al. 2016; Islam
et al. 2017; Shafiullah et al. 2017;DeSouza et al. 2016;Najibi
et al. 2016), control engineering (Ali et al. 2015, 2016), dig-
ital image processing (Eskandari and Toygar 2015; Atasever
et al. 2014), antenna array (Guney et al. 2014; Guney and
Durmus 2015, 2016) and machine layout and measurement
(Vitayasak et al. 2016).
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As a young intelligence optimization algorithm, BSA has
been widely researched and applied in power system since it
was proposed in 2013. At present, we can find the references
on the application of BSA in power system no less than 30.
The number of these references is the largest number of BSA
publications in the engineering field. These literatures can be
classified as Table 1. The following three conclusions can be
given from the table.

• Only one literature (Ali 2015) proposes the improved
BSA to solve power system problem and the remaining
ones adopt the basic BSA.

• Only one literature (Modiri-Delshad and Rahim 2016)
presents the multi-objective BSA with non-dominated
approach to handle multi-objective problems and the
remaining ones use the basic BSA with weighted sum
method.

• The ED problem and the EED problem developed on the
ED problem are the research hotspot of BSA application
in power system.

Many researchers have been interested in solving the bi-
objective EED problem. Initially, some researchers adopt
conventional optimization methods (Talaq et al. 1994; Farag
et al. 1995). However, these conventional optimizationmeth-
ods can not achieve ideal results in the complex bi-objective
EED problem. Therefore, with the rise of meta-heuristics,
using meta-heuristics to solve the bi-objective EED prob-
lem has become a research hotspot (Zhang et al. 2012;
Jubril et al. 2014; Bhattacharjee et al. 2014). The reported
methods in the literatures of BSA application to handle the
EED problem can be separated into two groups. The first
method is weighting aggregation. Bhattacharjee et al. (2015)
used the linear combination of two different objectives as
a weighted sum to transform the bi-objective EED problem
into a single-objective problem. The second method is multi-
objective BSA. Modiri-Delshad and Rahim (2016) used
multi-objective BSA to handle the both objectives (fuel cost
and NOx emission) in the EED problem simultaneously, and
an elitist external archive is adopted to store non-dominated
solutions. The first method is easy to be implemented, while
its common defect is that it needs to run many times to obtain
the trade-off non-dominated solution set by varying different
weights. The second method can not find the solutions with
a uniform distribution.

There are many other natural heuristics applied to EED
problem except BSA, and nature-inspired algorithm is the
most successful and suitable method. Qu et al. (2017) have
reviewed the application of multi-objective evolutionary
algorithms (MOEAs) in solving bi-objective EED prob-
lem, mainly including GA-based approaches, PSO-based
approaches, DE-based approaches and some hybrid algo-
rithms. Although the classical EED problem has a lot of

publications, the research of MOEAs on EED problem is
still in its infancy. Moreover, there are few studies on the
improvement of multi-objective BSA. The existing research
does not provide a unified comprehensive evaluation of the
accuracy, stability and time efficiency of algorithm.

In this paper, an enhanced multi-objective learning back-
tracking search algorithm (MOLBSA) is proposed to solve
the bi-objective EED problem. This algorithm use the infor-
mation of the solution selected in elitist external archive to
enhance the diversity and uniformity of obtainedPareto front.
The primary contributions of MOLBSA are that it uses two
different strategies:

• Leader-choosing strategy The solutions with the maxi-
mumdistance between non-dominated solutions are used
in the course of searching to enhance the uniformity per-
formance of approximate solutions.

• Leader-guiding strategy Some individuals are replaced
by the leaders’ neighbors, while others are updated by
learning from leader.

The remainder of this paper is organized as follows: Sec-
tion 2 formulates the mathematical model of EED problem.
Section 3 briefly reviews the basic BSA. Section 4 presents
MOLBSA. Section 5 describes the search behavior of two
strategies. Section 6 describes how to implement MOLBSA
in the EED problem. Section 7 provides the comparison
of several existing optimization methods. Finally, Section 8
gives the concluding remarks.

2 Mathematical model of the EED problem

As a nonlinear bi-objective optimization problem,EEDprob-
lem is the simultaneous minimization of the fuel cost and
emission while satisfying a real power balance equality
constraint and several boundary constraints. The objective
functions and constraints are described as follows. The
parameter setting and function meaning of the EED prob-
lem are introduced in more detail in Saadat (1979).

2.1 Objective functions

2.1.1 Fuel cost minimization

Considering the valve point loading effects, the total fuel cost
fc(Pu)($/h) of D generators can be represented by adding a
sine component to a quadratic function. The expression of
the fc(Pu) can be as Eq. (1):
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fc(Pu) =
D∑

j=1

(a j + b j Pu j + c j P
2
u j )

+|d j × sin(ei (P
min
u j − Puj ))| (1)

where j=1,2,. . .,D. The vector Pu=(Pu1,Pu2,. . .,PuD) is
the output power of generators. Puj is the output power of
the j th generator. a j , b j , c j , d j and e j are the cost function
coefficients for the j th generator. Pmin

u j is theminimumoutput
power of the j th generator.

2.1.2 Pollution emission minimization

The pollution emission objective function can be expressed
as the sum of all kinds of the pollutant emission. But in
this study, we only consider the emission of nitrogen oxides
NOx caused by the generators. The total pollution emission
fc(Pu)(ton/h) of the NOx is expressed as the sum of some
quadratic and exponential functions, as shown in Eq. (2).

fe(Pu) =
D∑

j=1

((α j + β j Pu j + γ j P
2
u j )10

−2 + ζ j e
λ j Pu j ) (2)

where α j , β j , γ j , ζ j and λ j are the NOx emission function
coefficients for the j th generator.

2.2 Constraints

2.2.1 Generation capacity constraints

To ensure the stable operation of the power system, the actual
output power of each generator should be limited by the upper
and lower limits. The formula is as follows.

Pmin
u j ≤ Puj ≤ Pmax

u j , j = 1, 2, · · · , D. (3)

where Pmin
u j and Pmax

u j are the minimum and maximum limits
of the j th generator, respectively.

2.2.2 Real Power balance constraint

The total real power generation must be the sum of the trans-
mission power loss PL and the total power demand PD,
namely,

D∑

j=1

Puj = PL + PD (4)

Where PL is calculated by Kron’s loss formula (Saadat
1979). The calculation formula of PL is as follows.

PL =
D∑

j=1

D∑

k=1

Puj B jk Pu j +
D∑

j=1

B0 j Pu j + B00 (5)

where B, B0 and B00 are the transmission network power
loss coefficients.

2.3 Problem statement

The EED problem is composed of some constraint functions
and two nonlinear objective functions which need to be min-
imized simultaneously. It is mathematically formulated as

min ( fc(Pu), fe(Pu))

st .

{
h(Pu) = 0
g(Pu) ≤ 0

(6)

3 Backtracking search algorithm

BSA is a novel population-based EA and is designed for
solving numerical optimization problems. It mainly consists
of five parts: initialization, selection-I, mutation, crossover
and selection-II. Its unique feature is that it uses two popula-
tions i.e., current and historical populations. As a memory of
BSA, the historical population is randomly selected from the
previous generation to calculate the search-direction matrix.
BSA uses two random crossover operations to ensure that
each generation will produce new trial individuals and retain
certain information from the previous generation. The five
parts of BSA are described below.

3.1 Initialization

The beginning of BSA is to generate new individuals ran-
domly within a specified range to form a population P and a
historical population old P . The mode of population genera-
tion is shown in Eq. (7).

{
Pi, j ∼ U (Pmin

j , Pmax
j )

old Pi, j ∼ U (Pmin
j , Pmax

j )
(7)

where i = 1, 2, . . . , N and j = 1, 2, . . . , D , N and D
are the population size and the dimension of the population,
respectively. Pi, j and old Pi, j are the j th element of the i th
individual in the population P and the historical population
old P , respectively.U is a random uniform distribution. Pmin

j
and Pmax

j are the minimum and maximum limits of the j th
dimension of individual, respectively.
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3.2 Selection-I

This stage is the beginning of each iteration, which is to
update and disorder the historical population old P according
to Eq. (8):

old P =
{
old P if r1 < 0.5
P otherwise

(8)

where r1 is a random number from 0 to 1. After assigning
the old P , a key operation is to shuffle the old P randomly.

3.3 Mutation

Unlike other EA, the BSA uses the difference of population
P and historical population old P for its mutation operators.
The generation of the initial trial population Mut is shown
in Eq. (9).

Mut = P + F · (old P − P), F = 3 · randn (9)

where F denotes the control factor to control the amplitude of
the search direction, randn is a random number which obeys
the standard normal distribution. As shown in Eq. (9), BSA
generates the trial population Mut by using the experience
of previous generations.

3.4 Crossover

In this process, one or more population dimensions need to
be selected. Then, the same dimension elements of individual
in P and individual in Mut are exchanged to generate new
individual. A matrix Map with the size N ∗ D composed of
zero and one is adopted to record this operation. The Map
is represented in Eq. (10).

{
Mapi,u(1:�D·rand(0,1)·mixrate�) = 0 if r2 < 0.5
Mapi,randi(D) = 0 otherwise

(10)

where u = permuting([1, 2, · · · , D]), permuting(·) is a
random shuffling function, mixrate = 1, randi(D) gen-
erates a uniformly distributed random integer in [1, D], �·�
rounds the elements to the nearest integers toward infinity,
r2 is a random number from 0 to 1.

The generation of the final trial population T is calculated
by in Eq. (11):

Ti, j =
{
Pi, j ifMapi, j = 1
Vi, j otherwise

(11)

If some dimensions of individuals in T exceed the feasi-
ble region, they are randomly generated within the allowed
range.

Eq. (9) in the mutation and Eq. (11) in the crossover are
built together in the following formula.

T = P + Map · 3 · randn · (old P − P) (12)

3.5 Selection-II

In BSA, this process is to select the individuals with high
fitness from the P and T to enter the next generation. The
selection mechanism is greedy selection. When the fitness of
Ti is better than that of Pi , Ti is used to replace Pi . Otherwise
Pi is retained. The selection strategy formula is shown in Eq.
(13):

Pnew
i =

{
Ti if f i tness(Ti ) < f i tness(Pi )
Pi otherwise

(13)

The best individual of the population is also updated in this
process.

4 Multi-objective learning backtracking
search algorithm(MOLBSA)

BSA has the characteristics of simple principle and good
optimization ability, and has been successfully applied to
various single-objective optimization problems. Moreover,
BSA’s ability to learn from population is weak during
the evolution process, which leads to slow convergence
speed. One reason is that BSA uses historical information
to update all individuals, but doesn’t make good use of the
best information in current population. Hence, an extended
BSA,multi-objective learning backtracking search algorithm
(MOLBSA), is designed to solve multi-objective optimiza-
tion problem. It selects leaders to guide individual updating
according to the maximum distance of Pareto optimal solu-
tion. MOLBSA’s operation strategy will be given in detail
below.

4.1 Leader-choosing strategy

A multi-objective optimization problem has two or more
conflicting objective functions. However, it is difficult for
the basic BSA to solve conflicting multi-objective problem.
Because the convergence speed of basic BSA is slow, a
leader-choosing strategy is designed, which selects a leader
Xg from the external archive to guide individual mutation. In
this strategy, a newconcept ofmaximumdistance is designed.
The maximum distance is used to measure the sparsity of
each solution in the external archive, so that the sparse solu-
tion can be chosen as a leader according to the sparsity. The
mdt of t th non-dominated solution (Art ) in Ar is calculated
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Fig. 1 Maximum distance of MOLBSA

as follows.

mdt = max(udt , ldt ) t = 1, . . . , Nt (14)

where Nt is non-dominated solutions number in Ar . The
formulas for calculating the distance of Art from the upper
point Art−1 to the lower point Art+1 are shown in Eq. (15)
and (16), respectively.

udt =
M∑

m=1

∣∣∣∣
fm(Art ) − fm(Art−1)

f max
m − f min

m

∣∣∣∣ (15)

ldt =
M∑

m=1

∣∣∣∣
fm(Art ) − fm(Art+1)

f max
m − f min

m

∣∣∣∣ (16)

where M indicates the objective functions number. fm(Art )
is the mth objective function value of the t th non-dominated
solution Art . f min

m and f max
m are the minimum andmaximum

values of the t th objective function, respectively.
In Fig. 1, the solid points represent the non-dominated

solutions in Ar .mdt is the relativemaximumof the length and
width sums of its two adjacent rectangles. The two extreme
points of Ar have only one adjacent point, so the md of two
extreme points is the distance between the point and the only
adjacent point. Fig. 1 shows that the md1 of the extremum
point Ar1 is the relative value of side-length sumof thematrix
composed of Ar1 and Ar2.

MOLBSA selects leaders from Ar by using a roulette
wheel selection. In Algorithm 1, the leader-choosing strat-
egy is described in detail in pseudocode.

In the line 4 of Algorithm 1, the calculation formula of
Pt is given. Pt is the selection probability of the t th solution
in Ar . In Roulette_wheel_selection, the input and output
are an array of probabilities p1, p2, · · · , pNt and an index
indexi , respectively.

Algorithm 1 Leader_choosing
Input: Ar
Output: Xg % Xg: leader solution
1: Nt = |Ar | % Nt : non-dominated solutions number in Ar
2: for t = 1 to Nt do
3: calculate mdt
4: pt = mdt

Nt∑
t=1

mdt

% pt is the probability that Art is selected as a

leader
5: for i = 1 to N do
6: % Use roulette wheel selection to select a Arindex according to

the probabilities p1, p2, · · · , pNt
7: indexi = Roulette_wheel_selection(p1, p2, · · · , pNt )

8: Xgi = Arindexi

4.2 Leader-guiding strategy

As is well known, some evolutionary algorithms have shown
that learning from the best individual is an effective method
for improving the convergence speed of EA. However, only
the historical information is used to generate a new indi-
vidual in the basic BSA. To enhance the learning ability of
MOLBSA, leaders’ guidance is designed in the process of
updating population. The new learningmethod ofMOLBSA,
leader-guiding strategy, contains two parts i.e., a wise ran-
dom walk strategy based on non-dominated solution and a
guidance strategy using the leaders and the old P to gen-
erate search direction. First, each individual is replaced by
its corresponding leader’s neighbor. Second, each individual
learns knowledge from the historical population (old P) and
the corresponding leader (Xg). The two parts have the same
probability to be selected in the following updating equa-
tion. The formula for the generation of trial individual Ti is
as Eq. 17.

Ti =

⎧
⎪⎪⎨

⎪⎪⎩

Xgi + rand · (Arindexi+lindex − Xgi ), i f r3 < 0.5|r3 ∼ U (0, 1)

Pi + Mapi · (rand · (old Pi − Pi )

+rand · (Xgi − Pi )), otherwise

(17)

where i = 1, 2, · · · , N . lindex is the sparse direction of
index th solution of the archive.

Eq. 18 gives the design formula of the sparse distance lt
for t th solution in Ar . lt is recorded by comparing udt and
ldt . If ldt is greater than udt , then lt = 1.Otherwise, lt = −1.

lt =
{
1, ldt > udt
−1, ldt ≤ udt

, t = 1, 2, · · · , Nt (18)

Figure 2 shows the sparse directions of Ar1, ArA and ArB .
In this figure, ldA is greater than udA for ArA, so lA = 1. For
the ArB , udB is greater than ldB , hence lB = −1. For the
first extreme point Ar1, its neighbor has only Ar2, so l1 = 1.
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Fig. 2 Sparse direction of MOLBSA

On the one hand, the strategy makes the population P
move around Xg, thus generates a new population T , which
can make the Pareto front more uniform. In Fig. 2, the red
arrow indicates the direction of the non-dominated solution.
ArA will move to its neighbor ArA+1 because there is a big
gap between them.

On the other, the strategy brings the population P nearer
to the population old P and the current archive Ar .

4.3 Update andmaintenance of archive

Different from the single objective algorithms, the multi-
objective algorithms need to output a non-dominated solution
set at the end after cycle termination. It is essential to main-
tain the quantity and quality of non-dominated solutions in
search process. Since Goldberg (1989) put forward a selec-
tion strategy with non-dominated sorting in niched pareto
genetic algorithm (NSGA) in 1989. Srinivas and Deb (1994)
described and used the non-dominated sorting. In 1999, Zit-
zler and Thiele (1999) introduced formally strength pareto
evolutionary algorithm (SPEA)with elitist reservationmech-
anism. Deb et al. (2002) designed a fast non-dominated
sorting, which is more efficient non-dominated sorting tech-
nique.

This paper uses an external archive with a specific volume
to save non-dominated solutions in each iteration. Initially,
the non-dominated solutions are stored into this empty exter-
nal archive. There are three rules when a trial vector X
compares with the current external archive Ar as follows.

(i) if ∃a, a ∈ Ar , a ≺ X , then X is rejected into Ar ;
(ii) if ∃a, a ∈ Ar , X ≺ a, then Ar = Ar/a ∧ Ar =

Ar ∪ X ;
(iii) if ∀a, a ∈ Ar , X ⊀ a ∧ a ⊀ X , then Ar = Ar ∪ X

When the non-dominated solutions number in the exter-
nal archive reaches its own capacity, the crowding distance
designed by Deb et al. (2002) in NSGA-II is used to remove
redundant members with small crowding distance, so as to
ensure that the solutions number in the external archive will
not exceed the capacity. In NSGA-II, the crowding distance
of the external archive is calculated only once in each iter-
ation, which may lead to the sparsity of the congested area
on the Pareto front after one iteration. Therefore, a cyclic
crowding sorting technique (Luo et al. 2010) is generated to
enhance the uniformity of Pareto front. The cyclic crowded
sorting algorithm is illustrated as the following Algorithm
2.

Algorithm 2 Cyclic_crowding_sorting
Input: Ar , Na % Ar : external archive, Na: maximum capacity of
Ar
Output: newAr % The number of solutions of newAr is equal to
the maximum capacity of Ar
1: Nt = |Ar | % Nt : non-dominated solutions number in Ar
2: while Nt > Na do % Check whether the number of solutions in

AR exceeds
3: for t = 1 to Nt do % Initialize the crowding distances
4: Art .distance = 0 % Art is the t th non-dominated solution

in Ar
5: for m = 1 to M do % M : objective functions number
6: Ar := sort(Ar ,m) % Sort Ar according to mth objective

function value
7: Ar1.distance = I n f ; ArNt .distance = I n f % Set the

crowding distances of extreme points to infinity
8: for t = 2 to Nt − 1 do
9: Art .distance = Art+1.distance−Art−1.distance

ArNt .distance−Ar1.distance
+

Art .distance
10: k = min_Ar .distance % k: the sequence number of solution

with minimum crowding distance
11: Ark = [ ] % Remove Ark from Ar
12: Nt = Nt − 1 % Update Nt

13: newAr = Ar

InAlgorithm2, we first check to see if the number of solu-
tions in Ar has exceeded the maximum capacity (Na) of Ar .
If it exceeds, the crowding distance of each solution is calcu-
lated. The formula of crowding distance is presented in the
line 9 of Algorithm 2, and the crowding degree of extremum
solutions are set as infinite. It is necessary to find out index of
the solution with the minimum crowding distance and elimi-
nate the solution in Ar . Again, we check whether the number
of residual solutions in Ar exceeds the maximum capacity
of Na. If it exceeds, the algorithm enters the loop again,
otherwise, the algorithm stops the loop. Finally, we get an
external archive Ar whose number of solutions is equal to
the maximum capacity Na.
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4.4 Algorithm procedures

Algorithm 3 shows the pseudocode for MOLBSA. In Algo-
rithm 3, the two novel learning strategies are shown on
lines 14, 16 and 23, respectively, and are shown in bold and
underline. The update and maintenance of Ar in lines 20-32.
Figure 3 is a flowchart of the algorithm.

Algorithm 3 Multi-objective learning backtracking search
algorithm

Input: input parameters N , D, Na, Tmax ,mixrate, Pmin
1:D , Pmax

1:D %
Tmax : maximum number of iterations
Output: Op
1: //Initialization
2: for i = 1 to N do
3: for j = 1 to D do
4: Pi, j ∼ U (Pmin

j , Pmax
j ), old Pi, j ∼ U (Pmin

j , Pmax
j ) %

Initialize P and old P
5: f i tnessP = Obj Fun(P) % Evaluate the fitness of P
6: Ar ← Non_dominated(P) %Find the non-dominated solutions

of P into Ar
7: while t t ≤ Tmax do
8: //selection-I
9: if rand < 0.5 then old P := P % rand: generate a random

number from [0, 1]
10: old P := permuting(old P) % permuting: disrupt the order

of individuals in oldP
11: Map1:N ,1:D = ones(N , D) % Generate an N-by-D matrix of

ones
12: //Mutation
13: for i = 1 to N do
14: Xgi = Leader_choosing(Ar) % Find leader Xg of each

individual
15: if rand < 0.5 then
16: Ti = Xgi + rand · (Arindexi+lindex − Xgi ) % Directed

search Xgi neighbor to update Pi
17: else
18: //Crossover
19: if rand < 0.5 then % Cross matrix (Map) generating
20: Mapi,u(1:�D·rand(0,1)·mixrate�) = 0
21: else
22: Mapi,randi(D) = 0

23: Ti=Pi+Mapi · (rand · (old Pi−Pi )+rand · (Xgi−Pi ))

24: //Selection-II
25: f i tnessT = Obj Fun(T ) % Calculate the fitness value
26: for i = 1 to N do
27: if Ti ≺ Pi then
28: Pi = Ti
29: f i tnessPi = f i tnessTi
30: Ar ← Non_dominated(P

⋃
Ar) % Update the external

archive Ar
31: if |Ar | > Na then
32: Ar = Cyclic_crowding_sorting(Ar) % Maintain the

archive
33: t t = t t + 1
34: Op ← Ar

5 Analysis of the search behavior of MOLBSA

As mentioned earlier, the proposed algorithmMOLBSA has
two core strategies. The first strategy (strategy1) is the leader-
choosing strategy. It calculates the sparsity of non-dominated
solutions by Eq. (14), and chooses the sparse non-dominated
solution as the leader to serve for the second strategy. The
second strategy (strategy2), leader-guiding strategy, operates
through Eq. (17)which randomly selects one of twomutation
operators to mutate individuals. The first operator is to make
the Pareto front more uniform. The second operator is to
preserve the global search ability of the population.

In order to illustrate the search behavior of MOLBSA and
the effectiveness of its two strategies, three algorithms are
designed and compared as follows.

(i) multi-objective BSA (origin MOBSA for short).
(ii) Origin MOBSA + strategy2: being build by adding

the leader-guiding strategy to origin MOBSA
(iii) Origin MOBSA+strategy1+strategy2(MOLBSA):

being formulated by adding the leader-choosing strat-
egy and the leader-guiding strategy to originMOBSA.

In this little test, three algorithms are applied to a simple bi-
objective problem, which is shown in the following Eq. (19).
The parameters including N = 50,D = 2,Na = 30,Tmax =
40 are provided.

⎧
⎨

⎩

min f1 = 4x21 + 4x22
min f2 = (x1 − 5)2 + 4(x2 − 5)2

st . 0 < x1 < 5, 0 < x2 < 3
(19)

Figure 4 shows the Pareto front obtained by the three algo-
rithms. The following two results can be obtained from the
figure:

(i) From Fig. 4, the Pareto front obtained by the origin
MOBSA + strategy2 has better uniformity than origin
MOBSA. This illustrates that the strategy2 (leader-
guiding strategy) enhances the uniformity of Pareto
front. The Pareto front obtained by the originMOBSA
+ strategy1 + strategy2 has slightly better uniformity
than that of the origin MOBSA + strategy2. This is
because the strategy1 (the leader-choosing strategy)
plays a significant role in the origin MOBSA + strat-
egy1 + strategy2. The strategy1 selects the sparse
solution of external archive as the leader. Under the
action of the strategy2, more solutions are generated
near the sparse solution, thus the distribution of the
obtained Pareto front is more uniform.

(ii) In the figure, the extreme points of the origin MOBSA
+ strategy2 (represented by two green diamonds)
has slightly better coverage than those of the origin
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Fig. 3 The flowchart of
MOLBSA
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Fig. 4 Comparisons of adding strategies in MOBSA

MOBSArepresented by twoblue squares. The extreme
points obtained by the origin MOBSA + strategy1 +
strategy2 (represented by two red circles) has slightly
better coverage than those of the origin MOBSA +
strategy2. Therefore, it can be concluded that the
leader-choosing strategy and leader-guiding strategy
can improve the diversity of Pareto front.

6 Implementation of MOLBSA

In subsection 2.2, we have introduced the constraint of EED
problem, which contains one power balance equality con-
straint. Therefore, a constraint handlingmechanism is needed
to move infeasible solutions to feasible regions. In addi-
tion, a fuzzy theory to select a best compromise solution has
been frequently adopted to simulate the preference of deci-
sion maker. In this final subsection, the parameter setting of
MOLBSA is introduced.
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6.1 Constraint handling

In this section, a constraint handling strategy is introduced
to solve the power balance equality constraint in the EED
problem. To guarantee all solutions can satisfy the equality
constraint, scholars adopt a rejecting strategy to handle the
power balance equality constraint in the EEDproblem (Wang
and Singh 2007, 2008; Cai et al. 2009). But this method is
time-consuming to deal with equality constraint.

In MOLBSA, a straightforward constraint handling
approach is provided to deal with the power balance equal-
ity constraint. Algorithm 4 gives the detailed operation of
Constrint_Handling. In Algorithm 4, we set σ = 1e − 12.

Algorithm 4 Constraint_handling
Input: Pi , Pmin, Pmax

Output: Pi

1: e1 = PL + PD −
D∑
j=1

Pi % Calculate error between PL + PD

and the sum of Pi
2: while |e1| > σ do
3: k = randi(1, D) % Select a random integer in [1, D]
4: Pi,k = Pi,k ·(PD+ PL

D∑
j=1

Pi

) %Adjust Xi to satisfy the constraint

5: if Pi,k > Pmax
k or Pi,k < Pmin

k then
6: Pi,k = Pmin

k + rand · (Pmax
k − Pmin

k )

7: e1 = PL + PD −
D∑
j=1

Pi % Calculate the error again

6.2 Select of compromise solution

After getting Pareto optimal solutions, one solution called
compromise solution is selected to satisfy the different goals.
The difficulties of trade-off decision is summarized that the
different objectives function values are measured in different
physical units. Moreover, there are no specific compromise
rules between different objectives. In the published litera-
tures (Modiri-Delshad and Rahim 2016; Sivasubramani and
Swarup 2011; Wu et al. 2010), a fuzzy-based approach
(Sakawa et al. 1987) is usually adopted to simulate pref-
erence of a decision maker.

This work calculates the satisfactory degrees of Pareto
optimal solutions by using a simple linear membership func-
tion. The objective functions of different physical units are
scaled by 0-1 metric. The satisfactory degree μt, j of Art for
f j is herein defined as

μt,m =

⎧
⎪⎨

⎪⎩

1, fm(Art ) ≤ f min
m

f max
m − fm (Art )
f max
m − f min

m
, f min

m ≤ fm(Art ) ≤ f max
m

0, fm(Art ) ≥ f max
m

(20)

Fig. 5 The fuzzy-based membership function

where t = 1, 2, · · · , Nt , m = 1, 2, · · · , M , Nt and M are
the number of solutions in Ar and the number of objective
functions, respectively. The M of the bi-objective EED prob-
lem is 2. fm(Art ) is the mth objective function of the t th
solution in Ar .μt,m = 1 indicates complete satisfaction, and
μt,m = 0 expresses dissatisfaction. The normalizedmember-
ship function is defined as follows. The fuzzy membership
function is described in Fig.5.

μk =

M∑
m=1

μk,m

Nt∑
t=1

M∑
m=1

μt,m

(21)

The non-dominated solution with maximumμk is consid-
ered as a compromise solution which represents the decision
makers’ decision.

6.3 Parameter setting

The proposed MOLBSA is simulated on IEEE 30-bus 6-unit
system with the total power demand 2.834 p.u and 10-unit
system with the total power demand 2000 MW. Tables 2 and
3 provide the data of fuel cost and NOx emission coefficients
referenced in Basu (2011). The transmission power loss for-
mula coefficients of 6-unit system and 10-unit system are
exhibited in Tables 4 and 5.

The parameters for all simulation runs are set as follows.
Both the maximum capacity of Ar (Na) and the population
size (N) and are set to 50. The number of fitness function
evaluations is restricted to 10000 for all experiments as ter-
minating condition. All algorithms are run independently for
30 times. To demonstrate the optimization effectiveness of
MOLBSA, the simulations are carried out for two different
cases as follows.

• Case1: not consider the transmission power losses in
power balance constraint.
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Table 2 Fuel cost and NOx
emission coefficients in 6-unit
system

Unit Pmin Pmax a b c α β γ ζ λ

u1 0.05 0.5 10 200 100 4.091 −5.554 6.490 2.0e−4 2.857

u2 0.05 0.6 10 150 120 2.543 −6.047 5.638 5.0e−4 3.333

u3 0.05 1.0 20 180 40 4.258 −5.094 4.586 1.0e−6 8.000

u4 0.05 1.2 10 100 60 5.326 −3.550 3.380 2.0e−3 2.000

u5 0.05 1.0 20 180 40 4.258 −5.094 4.586 1.0e−6 8.000

u6 0.05 0.6 10 150 100 6.131 −5.555 5.151 1.0e−5 6.667

Table 3 Fuel cost and NOx emission coefficients in 10-unit system

Unit Pmin Pmax a b c d e α β γ ζ λ

u1 10 55 1000.403 40.5407 0.12951 33 0.0174 360.0012 − 3.9864 0.04702 0.25475 0.01234

u2 20 80 950.606 39.5804 0.10908 25 0.0178 350.0056 − 3.9524 0.04652 0.25475 0.01234

u3 47 120 900.705 36.5104 0.12511 32 0.0162 330.0056 − 3.9023 0.04652 0.25163 0.01215

u4 20 130 800.705 39.5104 0.12111 30 0.0168 330.0056 − 3.9023 0.04652 0.25163 0.01215

u5 50 160 756.799 38.5390 0.15247 30 0.0148 13.8593 0.3277 0.00420 0.24970 0.01200

u6 70 240 451.325 46.1592 0.10587 20 0.0163 13.8593 0.3277 0.00420 0.24970 0.01200

u7 60 300 1243.531 38.3055 0.03546 20 0.0152 40.2669 − 0.5455 0.00680 0.24800 0.01290

u8 70 340 1049.998 40.3965 0.02803 30 0.0128 40.2669 − 0.5455 0.00680 0.24990 0.01203

u9 135 470 1658.569 36.3278 0.02111 60 0.0136 42.8955 − 0.5112 0.00460 0.25470 0.01234

u10 150 470 1356.659 38.2704 0.01799 40 0.0141 42.8955 − 0.5112 0.00460 0.25470 0.01234

Table 4 Transmission power
loss formula coefficients in
6-unit system

B = 0.1382 − 0.0299 0.0044 − 0.0022 − 0.0010 − 0.0008 B00 = 0.00098573

− 0.0299 0.0487 − 0.0025 0.0004 0.0016 0.0041

0.0044 − 0.0025 0.0182 − 0.0070 − 0.0066 − 0.0066

− 0.0022 0.0004 − 0.0070 0.0137 0.0050 0.0033

− 0.0010 0.0016 − 0.0066 0.0050 0.0109 0.0005

− 0.0008 0.0041 − 0.0066 0.0033 0.0005 0.0244

B0 = − 0.0107 0.0060 − 0.0017 0.0009 0.0002 0.0030

Table 5 Transmission power loss formula coefficients in 10-unit system

B = 4.9e−5 1.4e−5 1.5e−5 1.5e−5 1.6e−5 1.7e−5 1.7e−5 1.8e−5 1.9e−5 2.0e−5

1.4e−5 4.5e−5 1.6e−5 1.6e−5 1.7e−5 1.5e−5 1.5e−5 1.6e−5 1.8e−5 1.8e−5

1.5e−5 1.6e−5 3.9e−5 1.0e−5 1.2e−5 1.2e−5 1.4e−5 1.4e−5 1.6e−5 1.6e−5

1.5e−5 1.6e−5 1.0e−5 4.0e−5 1.4e−5 1.0e−5 1.1e−5 1.2e−5 1.4e−5 1.5e−5

1.6e−5 1.7e−5 1.2e−5 1.4e−5 3.5e−5 1.1e−5 1.3e−5 1.3e−5 1.5e−5 1.6e−5

1.7e−5 1.5e−5 1.2e−5 1.0e−5 1.1e−5 3.6e−5 1.2e−5 1.2e−5 1.4e−5 1.5e−5

1.7e−5 1.5e−5 1.4e−5 1.1e−5 1.3e−5 1.2e−5 3.8e−5 1.6e−5 1.6e−5 1.8e−5

1.8e−5 1.6e−5 1.4e−5 1.2e−5 1.3e−5 1.2e−5 1.6e−5 4.0e−5 1.5e−5 1.6e−5

1.9e−5 1.8e−5 1.6e−5 1.4e−5 1.5e−5 1.4e−5 1.6e−5 1.5e−5 4.2e−5 1.9e−5

2.0e−5 1.8e−5 1.6e−5 1.5e−5 1.6e−5 1.5e−5 1.8e−5 1.6e−5 1.9e−5 4.4e−5

B0 = 0 B00 = 0
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Table 6 Best solutions for fc and fe minimized individually in 6-unit
system for two cases

Case1 Case2

Best fc Best fe Best fc Best fe

u1 0.109504 0.406044 0.121142 0.410922

u2 0.299658 0.458929 0.286268 0.463659

u3 0.524296 0.537951 0.583369 0.544396

u4 1.016239 0.383080 0.992870 0.390390

u5 0.524428 0.537847 0.524124 0.544455

u6 0.359874 0.510149 0.351791 0.515508

fc($/h) 600.1114 638.2602 605.9983 646.2059

fe(ton/h) 0.222156 0.194203 0.220726 0.194179

• Case2: consider the transmission power losses in power
balance constraint.

7 Computational results

Experiments in this paper are designed to estimate the qual-
ity of the Pareto optimal solution obtained by comparing the
simulation results of extreme solutions, compromise solu-
tions, spacing metric(SP), hypervolume (HV ) and c-metric
(C) in all cases for MOLBSA and other algorithms.

7.1 Comparisons of compromise solutions and
extreme solutions in Pareto front

In this part, an experiment is designed to study the perfor-
mance of MOLBSA by comparisons of the extreme points
and compromise solutions obtained by different algorithms.
Firstly, the fuel cost and NOx emissions are independently
optimized as a single-objective function. Table 6 shows the
results of best solution for 6-unit system in two cases. From
this table, when the fuel cost is minimized as a unique
objective function, the optimal values obtained by BSA are
600.1114($/h) and 605.9983($/h) in two cases. When the
NOx emission is only minimized, BSA reaches the optimal
values of 0.194203(ton/h) and 0.194179(ton/h) in Case1 and
Case2, respectively.

Next, we discuss the multi-objective extreme solutions
and compromise solutions obtained by MOLBSA for 6-unit
system—Case1. Tables 7 and 8 compare the extreme points
of Pareto fronts obtained by MOLBSA , MOBSA, multi-
objective stochastic search technique (MOSST) (Das and
Patvardhan 1998), non-dominated sorting genetic algorithm
(NSGA) (Abido 2003a), niched pareto genetic algorithm
(NPGA) (Abido 2003b), strength pareto evolutionary algo-
rithm (SPEA) (Abido 2003c), non-dominated sorting genetic
algorithm-II (NSGA-II) (Ah King et al. 2005),and fuzzy

clustering-based PSO (FCPSO) (Agrawal et al. 2008). The
best results are bold in all tables.

As is revealed in Table 7, the best fuel cost of MOLBSA
equals 600.120251($/h) when using the minimum 10,000
times function evaluation times (FEs), which is superior to
the results of other seven algorithms compared. The error of
equality constraint obtained by MOLBSA is 0. This value is
better than those of MOSST, NSGA and SPEA, which is the
same as those of MOBSA, NPGA, NSGA-II and FCPSO.
In Table 8, the best solution for the emission obtained by
MOLBSA equals 0.194200(ton/h) when only using the min-
imum 10,000 times FEs. Although this value is not the
smallest of the eight algorithms listed in Table 8, it is also idea
with ranking second. The minimum emission value obtained
by MOSST is 0.19418(ton/h), but MOSST’s the error of
equality constraint is not ideal equal to 0.027000. However,
the error of equality constraint by using MOLBSA is 0. In
Tables 7and 8, MOLBSA only use 10,000 times FEs. This
FEs value is the same as those of MOBSA and NSGA-II,
and is smaller than those of other comparative algorithms.
From the discussion, it can be concluded that MOLBSA is
more effective than almost all other seven algorithms.

Table 9 shows the compromise solutions of six algorithms.
Since these compromise solutions have no dominance rela-
tionship, it is difficult to compare them directly. The method
of decision-maker’s average satisfactory degree (ASD) men-
tioned in Zhang et al. (2012) is adopted to estimate the quality
of compromise solutions. The ASD of compromise solution
is calculated by

μ̄com = 1

M

M∑

m=1

μcom
m (22)

In Table 9, the μ̄com value obtained by MOLBSA is
0.757962, which is larger than those of the other five algo-
rithms. This proves that the satisfaction of compromise
solution obtained by MOLBSA is higher than those of other
five algorithms to some extent.

Fig.6 depicts the approximations of the true Pareto front
obtained by MOLBSA and MOBSA. From Fig.6, the distri-
bution of Pareto front obtained byMOLBSA ismore uniform
than that of MOBSA in 6-unit system—Case1.

Tables 10 and 11 show the numerical results of two
extreme points in Pareto front (minimum cost and minimum
emission) for seven algorithms as shown in 6-unit system—
Case2. The numerical results of MOLBSA are compared
with those of well-known MOBSA, NSGA (Abido 2003a),
NPGA (Abido 2003b), SPEA (Abido 2003c), NSGA-II (Ah
King et al. 2005) and FCPSO (Agrawal et al. 2008).

From Table 10, MOLBSA gains the minimum fuel cost
equal to 606.00818($/h) with fewer FEs. Not only the min-
imum fuel cost of MOLBSA is lower than those of the
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Table 7 Best solutions for fc in 6-unit system—Case1

MOLBSA MOBSA MOSST (Das
and Patvard-
han 1998)

NSGA
(Abido
2003a)

NPGA
(Abido
2003b)

SPEA (Abido
2003c)

NSGA-II (Ah
King et al.
2005)

FCPSO
(Agrawal
et al. 2008)

u1 0.105975 0.106963 0.112500 0.156700 0.108000 0.106200 0.105900 0.107000

u2 0.296339 0.289092 0.302000 0.287000 0.328400 0.289700 0.317700 0.289700

u3 0.523213 0.543369 0.531100 0.467100 0.538600 0.528900 0.521600 0.525000

u4 1.018500 1.019590 1.020800 1.046700 1.006700 1.002500 1.014600 1.015000

u5 0.534317 0.516086 0.531100 0.503700 0.494900 0.540200 0.515900 0.530000

u6 0.355654 0.358900 0.362500 0.372900 0.357400 0.366400 0.358300 0.367300

fe(ton/h) 0.222578 0.222727 0.222200 0.222820 0.221160 0.221500 0.221880 0.222300

fc($/h) 600.1202 600.1438 605.8890 600.5720 600.2590 600.1500 600.1550 600.1315

| ∑D
j=1 Puj − PD| 0 0 0.202600 1e-04 0 1e-04 0 0

FEs 10,000 10,000 - 100,000 100,000 100,000 10,000 20,000

Table 8 Best solutions for fe in 6-unit system—Case1

MOLBSA MOBSA MOSST (Das
and Patvard-
han 1998)

NSGA
(Abido
2003a)

NPGA
(Abido
2003b)

SPEA (Abido
2003c)

NSGA-II (Ah
King et al.
2005)

FCPSO
(Agrawal
et al. 2008)

u1 0.407923 0.400065 0.409500 0.439400 0.400200 0.411600 0.407400 0.409700

u2 0.459555 0.462015 0.462600 0.451100 0.447400 0.453200 0.457700 0.455000

u3 0.540294 0.547272 0.542600 0.510500 0.516600 0.532900 0.538900 0.536300

u4 0.374542 0.385022 0.388400 0.387100 0.368800 0.383200 0.383700 0.384200

u5 0.537124 0.522121 0.542700 0.555300 0.575100 0.538300 0.535200 0.534800

u6 0.514562 0.517504 0.515200 0.490500 0.525900 0.514800 0.511000 0.514000

fc($/h) 639.1857 638.1144 644.1120 639.2310 639.1820 638.5100 638.2690 638.3577

fe(ton/h) 0.194200 0.194225 0.194180 0.194360 0.194330 0.194200 0.194200 0.194200

| ∑D
j=1 Puj − PD| 0 0 0.027000 1e-04 0 0 1e-04 0

FEs 10,000 10,000 - 100,000 100,000 100,000 10,000 20,000

Table 9 Best compromise solutions in 6-unit system—Case1

u1 u2 u3 u4 u5 u6 fc($/h) fe(ton/h) μ̄com

MOLBSA 0.248627 0.380983 0.553120 0.683372 0.552311 0.441996 616.081773 0.200552 0.757962

MOBSA 0.261512 0.378118 0.565218 0.675094 0.552174 0.428139 616.526846 0.200241 0.777384

NSGA (Abido 2003a) 0.257100 0.377400 0.538100 0.687200 0.540400 0.433700 610.067000 0.200600 0.755100

NPGA (Abido 2003b) 0.269600 0.367300 0.559400 0.649600 0.539600 0.448600 612.127000 0.199410 0.749100

SPEA (Abido 2003c) 0.278500 0.376400 0.530000 0.693100 0.540600 0.415300 610.254000 0.200550 0.752700

FCPSO (Agrawal et al. 2008) 0.319300 0.393400 0.535900 0.592100 0.545700 0.447000 619.998000 0.197150 0.726700

other six algorithms, but also its FEs is the smallest. As is
demonstrated in Table 11, the NOx emissions of MOLBSA
is 0.194196(tons/h). Its value is only 0.0006(tons/h) larger
than that of NSGA-II, but smaller than those of the other five
methods. Therefore, the above results show that MOLBSA
can obtain more extensive Pareto front compared with the
other six algorithms.

7.2 Comparison of solution quality

Three performance evaluation criteria are generally intro-
duced to evaluate the performanceofPareto optimal solutions
obtained by MOEAs (Zitzler 1999).

• Uniformity The distribution of the obtained Pareto front
is as uniform as possible.
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Fig. 6 Pareto fronts obtained by MOLBSA and MOBSA in 6-unit
system—Case1

• Diversity The distribution of the obtained Pareto front is
as wide as possible.

• Convergence The obtained Pareto optimal set is as close
as possible to the true Pareto optimal front.

In order to evaluate the quality of the Pareto optimal
solutions, MOBSA, multi-objective PSO (MOPSO) (Bo and
Yi-Jia 2005) and NSGA-II (Ah King et al. 2005) are selected
to compare with MOLBSA. Table 12 provides the parame-
ter settings (Xu et al. 2018). The four algorithms adopt the
same constraint handling strategy, which has been shown in
Section 6.1.

7.2.1 Comparison of spacing metric value

To evaluate the uniformity of the Pareto front obtained, a
spacing metric (SP) (Schott 1995) is used to measure the
uniformity of Pareto front. The formula of SP is as Eq. (23).

SP =
√√√√ 1

|Ar | − 1

|Ar |∑

t=1

(d − dt )
2
, dt

= min
Ark∈Ar∧Ark �=Art

M∑

m=1

| fm(Art ) − fm(Ark)| (23)

where dt indicates the Euclidean distance of two consecutive
solutions of Pareto optimal set. d is the average of all dt . If
the SP value is very small, it indicates that the distribution
of Pareto front is uniform. The SP value is zero, which rep-
resents that all solutions of the Pareto front are equidistant.

Tables 13 and 14 show the statistical results of the SP
values of the four algorithms on two systems for Case2,
respectively. The statistics are the best, median, worst,
average and standard deviation (Std) of SP values in 30
independent experiments. From Tables 13 and 14, the sta-
tistical results of five statistics obtained by MOLBSA are
smaller than those of the other three algorithms. That is to
say, the Pareto front obtained by MOLBSA is more uniform
than those of the other algorithms on two system for case2.
Moreover, MOLBSA also demonstrates the best robustness
in terms of uniformity.

Table 10 Best solutions for fc in 6-unit system—Case2

u1 u2 u3 u4 u5 u6 fc($/h) fe(ton/h) FEs

MOLBSA 0.125512 0.288003 0.575201 0.995006 0.519317 0.356745 606.0081 0.220542 10,000

MOBSA 0.111114 0.297220 0.601200 0.994180 0.505513 0.350254 606.0568 0.221115 10,000

NSGA (Abido 2003a) 0.116800 0.316500 0.544100 0.944700 0.549800 0.396400 608.2450 0.216640 100,000

NPGA (Abido 2003b) 0.124500 0.279200 0.628400 1.026400 0.469300 0.399300 608.1470 0.223640 100,000

SPEA (Abido 2003c) 0.108600 0.305600 0.581800 0.984600 0.528800 0.358400 607.8070 0.220150 100,000

NSGA-II (Ah King et al. 2005) 0.118200 0.314800 0.591000 0.971000 0.517200 0.354800 607.8010 0.218910 10,000

FCPSO (Agrawal et al. 2008) 0.113000 0.314500 0.582600 0.986000 0.526400 0.345000 607.7862 0.220100 20,000

Table 11 Best solutions for fe in 6-unit system—Case2

u1 u2 u3 u4 u5 u6 fc($/h) fe(ton/h) FEs

MOLBSA 0.403331 0.465857 0.555970 0.396765 0.538258 0.508468 645.015154 0.194196 10,000

MOBSA 0.413816 0.475663 0.560749 0.378567 0.526089 0.514714 647.822343 0.194224 10,000

NSGA (Abido 2003a) 0.411300 0.459100 0.511700 0.372400 0.581000 0.530400 647.251000 0.194320 100,000

NPGA (Abido 2003b) 0.392300 0.470000 0.556500 0.369500 0.559900 0.516300 645.984000 0.194240 100,000

SPEA (Abido 2003c) 0.404300 0.452500 0.552500 0.407900 0.546800 0.500500 642.603000 0.194220 100,000

NSGA-II (Ah King et al. 2005) 0.414100 0.460200 0.542900 0.401100 0.542200 0.504500 644.133000 0.194190 10,000

FCPSO (Agrawal et al. 2008) 0.406300 0.428600 0.551000 0.408400 0.543200 0.497400 642.896400 0.194200 20,000
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Table 12 Parameter settings for 4 algorithms

N Na FEs Other prameters

MOLBSA 50 50 10,000 mixrate = 1

MOBSA 50 50 10,000 mixrate = 1

MOPSO 50 50 10,000 Inertia weight
w = 0.7,learning
coefficient
c1 = 1.4, c2 = 1.4, grids
per dimension number
G = 7

NSGA-II 50 50 10,000 Mutation percentage
pr = 0.7, crossover
percentage pc = 0.7,

Table 13 Statistical results of
the SP in 6-unit system—Case2

Best Median Worst Average Std.

MOLBSA 0.003408 0.00481 0.009428 0.005008 0.001223

MOBSA 0.010203 0.016751 0.050250 0.019943 0.009611

MOPSO 0.015180 0.018031 0.024172 0.018250 0.001839

NSGA-II 0.016372 0.020987 0.024364 0.020640 0.002010

Table 14 Statistical results of
the SP in 10-unit
system—Case2

Best Median Worst Average Std

MOLBSA 0.003775 0.005917 0.008666 0.005825 0.001259

MOBSA 0.009281 0.018864 0.036722 0.019143 0.006577

MOPSO 0.013331 0.018276 0.023795 0.018079 0.002462

NSGA-II 0.018399 0.021314 0.025325 0.021402 0.001657

To visually compare the distribution of the Pareto front
obtained, Figs. 7 and 8 illustrate the Pareto fronts obtained by
MOLBSA,MOBSA,MOPSOandNSGA-II. From these two
figures, it can be inferred that the distribution ofMOLBSA is
more uniform than those of the other three algorithms on two
systems for Case2. Combined with the information of graphs
and tables, it can be concluded that the Pareto front obtained
by MOLBSA is more uniform than those of the other three
algorithms.

7.2.2 Comparison of hypervolume value

Hypervolume (HV ) (Wu et al. 2010) is a hybrid metric
proposed byZitler andThiele,which canmeasure the conver-
gence and diversity of Pareto front. HV denotes the volume
covered by Pareto front in the target domain, Eq. (24) is the
specific calculation formula of HV .

HV =
|Ar |∑

t=1

vt (24)

where vt is the volumeof a hypercube formed by a givenfixed
reference pointwr and the solution Art . HV can be obtained

from the sumof vt , and varieswithwr taking different points.
The larger the HV value, the wider the coverage of obtained
Pareto front is. The same reference point wr is adopted to
calculate HV in the four algorithms.

The statistical results of the HV values for the four dif-
ferent algorithms are compared in Tables 15 and 16. From
Table 15, the five statistics of the proposed MOLBSA reach
the maximum HV values. This implies that the Pareto front
obtained by MOLBSA has better the diversity and conver-
gence than those ofMOBSA,MOPSOandNSGA-II in 6-unit
system. The results in 10-unit system are slightly different
from those in 6-unit system. Table 16 shows that the results of
MOLBSA are not the best at the four statistics (Best, Worst,
Median and Average). However, in terms of standard devi-
ation (Std), the MOLBSA is the best. This shows that the
diversity of MOLBSA is no longer an advantage with the
increase of variables, but MOLBSA has the best robustness
in the HV .

7.2.3 Comparison of c-metric value

C-metric (C) (Zitzler et al. 2000) is adopted to evaluate the
quality of the obtainedPareto front for optimization problems
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Fig. 7 Pareto fronts and compromise solutions obtained by 4 algorithms in 6-unit system—Case2

with unknown true Pareto front in advance, and to represent
the dominance relationship between two Pareto optimal sets.
C formula can be expressed as

C(Ar1, Ar2) = |{x2 ∈ Ar2, ∃x1 ∈ Ar1 : x1 ≺ x2}|
|Ar2| (25)

where Ar1 and Ar2 are two Pareto optimal sets obtained
by two different algorithms, respectively. C(Ar1, Ar2) = 1
represents that Ar2 are dominated by Ar1. That is to say, Ar1
covers Ar2. C(Ar1, Ar2) = 0 means that none solution in
Ar2 is dominated by any solution in Ar1.

Tables 17 and 18 show the comparison results of the C
values calculated from the best Pareto optimal sets of dif-
ferent algorithms. From Table 17, the solutions of MOBSA,
MOPSOandNSGA-II dominate 2%, 2%and 6% solutions of
MOLBSA, respectively.However, the solutions ofMOLBSA
dominate 72%, 68% and 24% of the solutions of MOBSA,
MOPSO and NSGA-II separately. As shown in Table 18, the

solutions of MOBSA, MOPSO and NSGA-II dominate 0%,
24% and 4% solutions of MOLBSA, respectively, and the
solutions of MOLBSA dominate 72%, 18% and 48% of the
solutions of MOBSA, MOPSO and NSGA-II, respectively.
All these data clearly prove the fact that the Pareto front
obtained by MOLBSA is closer to the true Pareto optimal
front than those obtained by MOBSA, MOPSO and NSGA-
II in two system. That is to say, the Pareto front obtained
by MOLBSA has better convergence than those of MOBSA,
MOPSO and NSGA-II.

8 Conclusions

In this paper, a multi-objective learning backtracking search
algorithm (MOLBSA) is successfully presented for solving
the bi-objective EED problem with constrains. To enhance
the quality of the Pareto optimal solutions obtained by
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Fig. 8 Pareto fronts and compromise solutions obtained by the four algorithms in 10-unit system—Case2

Table 15 Statistical results of
the HV in 6-unit
system—Case2

Best Median Worst Average Std

MOLBSA 1.173061 1.170642 1.165222 1.170423 0.001671

MOBSA 1.159150 1.155928 1.149041 1.155336 0.002623

MOPSO 1.165447 1.161064 1.152740 1.160788 0.002821

NSGA-II 1.163402 1.150145 1.101075 1.146295 0.013986

Table 16 Statistical results of the HV in 10-unit system—Case2

Best Median Worst Average Std

MOLBSA 2255222.356006 2217643.293265 2162564.382445 2217627.894755 22524.012869

MOBSA 2871278.841368 2183943.621607 2156167.509809 2270772.824151 182308.755271

MOPSO 2486496.666509 2226955.778590 2209963.182218 2254816.020503 64768.6043301

NSGA-II 2186724.121689 2071084.782599 1830337.699687 2042967.690990 98767.582055
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Table 17 Statistical results of the C in 6-unit system—Case2

MOLBSA MOBSA MOPSO NSGA-II

C(MOLBSA,*) – 0.72 0.68 0.24

C(MOBSA,*) 0.02 – 0.26 0.02

C(MOPSO,*) 0.02 0.4 – 0.08

C(NSGA-II,*) 0.06 0.52 0.36 –

Table 18 Statistical results of the C in 10-unit system—Case2

MOLBSA MOBSA MOPSO NSGA-II

C(MOLBSA,*) – 0.72 0.18 0.48

C(MOBSA,*) 0 – 0.04 0.06

C(MOPSO,*) 0.24 0.48 – 0.38

C(NSGA-II,*) 0.04 0.38 0.02 –

MOLBSA, two learning strategies are proposed. The first is
a leader-choosing strategy, which accords to maximum dis-
tance between solutions to select the sparse Pareto optimal
solution as the leader. The second is a leader-guiding strat-
egy, which leads individuals to move toward the direction
of sparse solution in Pareto optimal set. Moreover, a con-
straint handling technique is used to settle the power balance
equality constraint in the EED problem. This paper studies
the effectiveness of MOLBSA by testing 6-unit system and
10-unit system. Numerical results of compromise solutions
and extreme solutions usingMOLBSA and other seven well-
known approaches disclosure that MOLBSA has can obtain
a satisfactory compromise solution and highly diverse Pareto
optimal set. Compared with other three established methods
for three metrics, namely, spacing metric (SP), hypervol-
ume (HV ) and c-metric (C), the Pareto front obtained by
MOLBSA in EED problem shows superior uniformity. How-
ever, as the number of decision variables increases, the
diversity of Pareto front obtained by MOLBSA is no longer
advantageous. This is because the proposed algorithm puts
more efforts on improving the uniformity.
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