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Abstract
Image quality is relevant to the performance of computer vision applications. The interference of rain streaks often greatly
depreciates the visual effect of images. It is a traditional and critical vision challenge to remove rain streaks from rainy images.
In this paper, we introduce a deep connectionist screen blend model for single-image rain removal research. The novel deep
structure is mainly composed of shortcut connections, and ends with sibling branches. The specific architecture is designed
for joint optimization of heterogeneous but related tasks. In particular, a feature-level task is design to preserve object edges
which tend to be lost in de-rained images.Moreover, a comprehensive image quality assessment is an additional vision task for
further improvement on de-rained results. Instead of using rules of thumb, we propose an actionable method to dynamically
assign appropriate weighting coefficients for all vision tasks we use. On the other hand, various factors such as haze also give
rise to weak visual appeal of rainy images. To remove these adverse factors, we develop an image enhancement framework
which enables the hyperparameters to be optimized in an adaptive way, and efficiently improves the perceived quality of
de-rained results. The effectiveness of the proposed de-raining system has been verified by extensive experiments, and most
results of our method are impressive. The source code and more de-rained results will be available online.

Keywords Deep neural network · Single-image de-raining · Screen blend model · Multi-task learning · Dynamic scheme ·
Evolutionary algorithm

Communicated by V. Loia.

This work is supported by the National Natural Science Foundation of
China under Grant 61672122, Grant 61602077, Grant 61772344 and
Grant 61732011, the Public Welfare Funds for Scientific Research of
Liaoning Province of China under Grant 20170005, the Natural
Science Foundation of Liaoning Province of China under Grant
20170540097, and the Fundamental Research Funds for the Central
Universities under Grant 3132016348.

B Rong Chen
rchen@dlmu.edu.cn

Yulong Fan
sumihui@dlmu.edu.cn

Yang Li
li_yang@dlmu.edu.cn

Tianlun Zhang
threekingdomst@163.com

1 College of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China

1 Introduction

In the past few years, an abundant literature devoted to the
image recovery under bad weather (Zhao et al. 2015; He
et al. 2011; Wang and Yuan 2017; Yang et al. 2019; Fu et al.
2017; Zhang and Patel 2018; Li et al. 2018b; Fu et al. 2019;
Yang et al. 2017). Among these studies, the problem of rain
removal has drawn a lot of attention (Fu et al. 2017; Zhang
and Patel 2018; Li et al. 2018b; Fu et al. 2019; Yang et al.
2017; Li et al. 2018a). With rain streaks, the visibility of
scene content tends to be drastically degraded. When suffer-
ing from images with visual quality decline, most outdoor
vision systems, such as surveillance and autonomous navi-
gation, fail to provide favorable performance. Therefore, it
becomes critical to develop effective approaches for remov-
ing rain streaks from rainy images.

For improvement of perceived quality, the focus in de-
raining researches is to decompose the rain-free background
layer from a given rainy image. Obviously, this layer separa-
tion task is an inherently ill-posed problem as one rain-free
layer can have connection with multifarious rainy scenarios.
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Moreover, when rain streaks are denser, this connection will
becomemore ambiguous since fine details of the background
scene have little or no evidence in the corresponding rainy
version. Therefore, in the absence of additional images or
rich temporal information (Kim et al. 2015; Santhaseelan
and Asari 2015; You et al. 2015), the rain removal on single
image is an extremely challenging vision issue.

To make this issue well posed, numerous worthwhile
explorations have been conducted for single-image de-
raining purpose. On one hand, inspired by a statistical
knowledge that the rainy patches have high absolute gra-
dient, the most intuitive solution is to smooth the rain streaks
through existing noise removal techniques such as linear
smoothing (Kim et al. 2013; Zhang and Xiong 2009) and
total variation regularization (Rudin et al. 1992). These sim-
ple methods can smooth away rain streaks in flat image
regions, however, the details in background scene tend to
be over smoothed or lost. On the other hand, an observed
rainy image is characterized as a linear superimposition of
the background layer and the rain streak layer. Based on this
imaging model, many discriminative de-raining works use
some conventional techniques (e.g., morphological compo-
nent analysis Kang et al. 2012 and dictionary learning Li
et al. 2016) to learn the distribution characteristics of rain
streaks, and then distinguish object edges from spurious
details caused by raindrops. These approaches can preserve
background details to a greater degree, however, they often
fail to detect and remove rain streaks because the heuris-
tic cues and strong assumptions are less effective for some
natural rainy situations, particularly in heavy rain, the rain
streaks possibly have complicated statistical characteristics
due to the various orientations, shapes, and densities. In
addition, the rainy images modeled by linear superimposi-
tion can lose some crucial characteristics of real rainy scene,
such as the appearance of internal reflections. And the lin-
ear model is sensitive to the intensity of illumination. When
suffering from intense light, the methods based on this lin-
ear model tend to confuse the rain streaks and white edges
in background. In addition, most de-raining methods ignore
the atmospheric veils caused by rain streaks, leading to unfa-
vorable visual quality of de-rained results.

Instead of predefined assumptions and priors, we propose
a novel rain removal model based on deep learning method,
which can adaptively learn the structural and contextual
information in a data-driven manner. In recent years, deep
learning has achieved significant successes in wide-ranging
vision tasks (He et al. 2017; Girshick 2015; Simonyan and
Zisserman 2015; Cai et al. 2016; Krizhevsky et al. 2012).
Yet appealing to de-raining tasks, there are several crucial
issues in developing such a connectionist de-raining system.
First, in-appropriate model will make deep network under-
fit the observation, a simple linear model usually leads to
a paucity of common properties of rain streaks. To prop-

erly formulate the rain image, we instead propose to use a
nonlinear model rendering the appearance of natural rainy
scenes more faithfully. So the rain removal model can be
robust for complicated rainy situations, such as the rain streak
accumulation. Second, the learning of different but related
tasks can improve the generalization ability of deep neural
network. Thus, we develop the de-raining model within a
multi-task learning framework. The follow-up problem is to
associate different taskswith appropriate loss weights, which
play an important role in model optimization. To address
this problem, we extend evolutionary algorithm for adaptive
weight assignment. In addition, sometimes a veiling effect
may survive in de-rained results since accumulated rain-
drops in distant scenes lead to blurry vision in a manner
similar to haze (Yang et al. 2017). Based on these key prob-
lems, our focus is to conduct some further investigations on
degrading the visual effect of rain streaks. Figure 1 shows
the proposed deep screen blend network that is particularly
suitable to de-raining tasks. There are three main reasons.
First, the screen blend model is a robust nonlinear com-
posite representation for rainy image. Driven by this model,
the proposed network can effectively learn much more fea-
tures from rain observation. Second, at the end of the deep
network, one branch structure is designed specifically for
decomposing a rainy image into the corresponding rain layer
(i.e., the Rain-streaks) and the background layer (i.e., the
Derain image). Based on this structure, the rain extraction
and removal can be learned in a mutually reinforced way.
Last, based on the perceptual information, one edge-aware
regularization (i.e., L-perceptual) is proposed for the detail
preserving, which can avoid the over-smoothed results in de-
raining task. Since water-droplets often create haze in rainy
weather, haze removal is necessary to ensure higher visual
quality. To this end,we further restore the rain removal results
using a self-adaptive enhancement method.More concretely,
our work can be concluded as follows.

(1) In this work, a novel tasks-constrained de-raining net-
work with sibling branches is formulated to jointly learn
the distributive characteristics of rain layer and back-
ground scene. Instead of the linear imaging model in
existing neural rain removal methods, the objective func-
tion of the proposed deep network is developed on screen
blend model, which is a more robust nonlinear system to
model rainy conditions.

(2) Aside from pixel-wise tasks, two feature-level tasks are
conducted in this work. In the first task, we employ a
set of isotropic image gradient operators as the filter
kernels to construct a perceptual loss model, which facil-
itates the edge preservation for de-rained results. It is the
first endeavor of such technique for de-raining work. On
the other hand, motivated by salient image features (i.e.,
luminance, contrast, and structure), we introduce another
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Fig. 1 Flowchart of entire system. The light blue area is the proposed de-raining model denoted as fw . And the perceptual network model is φ.
Arrows represent the main data flow of feed-forward (color figure online)

vision task to measure the feature difference between
the reference image and the restored result. Moreover,
instead, the optimization process of our model is to reach
the minimum Pseudo-Huber Loss (PHL) (Charbonnier
et al. 1997) rather thanminimizing theMeanSquareError
(MSE) which is widely deployed in existing de-raining
works.

(3) Without the need of prior knowledge about weighting
factors, we show that these vision tasks mentioned above
can be optimized in a self-adaptivemanner. In addition, to
improve the image quality of de-rained result, we propose
an adaptive method to assign appropriate hyperparame-
ters for a post-processing framework of haze removal. In
this work, these adaptive methods are implemented by
solving multi-objective optimization problems through a
population-based genetic algorithm (Qu et al. 2012).

The rest of this paper is organized as follows. In Sect. 2,
we review some basic concepts related to our principal mod-
els. In Sect. 3, we present details of the proposed de-raining
model. In Sect. 4, comprehensive experiments are presented.
At last, the conclusion and future work are discussed in
Sect. 5.

2 Background

In computer vision community, numerous researches have
devoted attention to weaken the undesirable effect of rain
streaks on vision quality (Narasimhan and Nayar 2003). Tra-
ditionally, image de-raining is considered as a noise filtering
problem (Khmag et al. 2019), in which the distributive char-
acteristics of rain streaks are different from the background
scene in rainy images.Kang et al. (2012) devised an early rain

removal model based on image decomposition. From their
views, the rain streaks can be considered as a part of the high-
frequency information in rainy images, their solution thus is
to use a bilateral filter to separate out the high-frequency
component from a single rainy image, and use dictionary
learning to decompose the high-frequency component into
rainy parts and rain-free parts. On the other hand, in Luo
et al. (2015), dictionary learning is utilized to provide dis-
criminative sparse codes to approximate the local regions
of rain and background layer. Apart from dictionary learn-
ing (Luo et al. 2015), low-rank prior structure also has been
applied in several rain removal models (Chen andHsu 2013).
However, Li et al. (2016) argued that the de-raining methods
based on dictionary learning and low-rank structure tend to
result in a lot of remaining rain streaks or over smoothed
details in background. To effectively improve the de-raining
performance, they developed layer priors on each patch of
rain and background. The Gaussian mixture model (GMM)
(Li et al. 2016) as prior is employed to, respectively, learn
the characteristics of rain and background in a patch-wise
way. The superiority of GMM-based priors has been shown
in boosting the overall visibility under complex rainy condi-
tions.

From the discussion above, one can easily note that a
challenging aspect of rain removal research is the constant
struggle for extracting characteristics from rainy and clean
layers. In this case, deep learning is an appealing solution
to acquire rich features in a data-driven manner (Chen and
Liu 2017). Recently, several researches therefore focused on
connectionist de-raining model (Fu et al. 2017; Yang et al.
2017; Zhang and Patel 2018). In Fu et al. (2017), rain streak
also is treated as a type of high-frequency component (Kang
et al. 2012), so a well-designed convolutional neural network
(CNNKrizhevsky et al. 2012) is employed to decompose rain
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streaks on the high-pass detail layer, then the sum of rain-free
detail layer and low-pass rainy image is produced as the final
de-rained result. Typically, the high-frequency components
are sparse matrices which can speed the convergence of deep
learnings.

Meanwhile, Yang et al. (2017) conducted a rain removal
research by using mask layer and cascaded CNN which are
the prevalent techniques in semantic segmentation (He et al.
2017). This is the first work using rain masks to locate the
rain streaks. And the cascaded CNN successively performs
rain detection, estimation, and removal. In a follow-up study,
the authors further proposed an enhanced version (Yang et al.
2019), in which an extra detail preserving step is introduced.
The latest connectionist de-raining models were proposed
by Zhang and Patel (2018). In their work, the de-raining task
is performed on pixel-level, feature-level, and symbol-level
information from rainy images. This is the first time that gen-
erative adversarial network (Goodfellow et al. 2014), densely
connected network (Johnson et al. 2016), and classification
learning play important roles in rain removal models. As a
result, this work presents the strong feature representation
ability of deep learnings, and performs significant improve-
ment over other state-of-the-art de-raining models.

Recently, Fu et al. (2019) proposed a lightweight pyramid
network for rain removal on single image. They introduced
the mature Gaussian–Laplacian image pyramid decomposi-
tion technology into deep learning, which greatly simplifies
the complexity of deep neural model. Meanwhile, Li et al.
(2018b) combined the deep convolutional and recurrent neu-
ral network for single image rain removal. They used the
dilated convolution to enlarge the receptive field of deep net-
work, and removed the overlapping rain streaks by using
recurrent network. Thus, this work models de-raining task
as a temporal problem with multiple stages. In addition, sev-
eralGAN-based de-rainingmethods have been proposed. For
example, Xiang et al. (2019) trained a GANmodel for which
the supervision from ground truth is imposed on different
layers of the generator network, and achieved good results.
Matsui and Ikehara (2020) proposed aGAN-based de-raining
network trained with mixture of two rain image composite
models, these enables their proposed network robust enough
to handle a variety of actual rain.

3 The proposed de-raining system

The proposed de-raining neural model is a fully convolu-
tional network composed of homogenous kernels, each with
the size of 3 by 3. The first 16 shareable convolutional layers
are designed for representative learning; the following two
sibling branches are generative networks, in which the char-
acteristics learning for rain streaks and background scenes
are simultaneously conducted. Other visual models such as

Fig. 2 An illustration of de-raining network. a Is the representative
sub-network, b shows two sibling networks

perceptual loss are incorporated with the main de-raining
network.

3.1 Representative sub-network

The construction of the representative network involves two
feature hierarchy modules, as shown in Fig. 2a, in which
the proportionally scaled feature maps are successively out-
putted, and these layerswith the same size ofmaps are defined
as one hierarchy level (i.e., a stage) of a module, each stage
is composed of several residual block (He et al. 2016), each
is

f (Xi ) = Wi+1 ∗ g (Xi ) + Xi ,

g (Xi ) = ξ
(
Wi ∗ Xi

)
, (1)

where Xi denotes input of the i th layer, W is the convo-
lutional kernel with the size of 3×3, ∗ is a convolutional
operation, and ξ is the batch normalization followed by the
activation function ReLU (Nair and Hinton 2010). Here, the
first module is a downsampling in-network with a fixed scal-
ing step of 2. The top stage has stride of 4 pixels with respect
to the input image, and outputs the highest-level semantic
features in the bottom-up pathway. On the top-down way,
the second module uses fractionally strided convolutions to
recover the resolution. Despite being semantically stronger,
the features become spatially coarser from top to down. The
coarsest outputs of the Staged directly lead to block artifact
in the desired results. To remove the aliasing effect caused
by upsampling, we add a single convolution layer at the end
of Staged . In addition, to remain more accurate locations, we
enhance the features output by Conv_2 via a lateral connec-
tion from the Conv_1 as follows:

J = [g(X0), g(X15)], (2)

where [·] represents concatenation operation, X0 denotes the
input rainy image, and X15 are the features output by Staged .
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Fig. 3 Diagram of the saliency feature comparisons between b and B

In doing so, the features with the same shape but different
semantics are merged as the final features of the representa-
tive model, i.e., J .

3.2 Generative sub-networks

Figure 2b illustrates the generative structure which is con-
structed by two building blocks. The first one learns the
high-frequency characteristics of rainy layers R, and out-
puts the sparse approximation r . Meanwhile, the other one
restores the rain-free results b by acquiring the representa-
tion of background scenes B. We formulate these two sibling
models in what follows

Lb = �(b, B), Lr = �(r , R),

g( f (J )) =
{
r , rain branch
b, norain branch

(3)

where � is the empirical critical (EC); to ensure that all
pixels have a reasonable influence on the final output,
we use a scaled bilateral rectified linear unit (BReLU)
(Cai et al. 2016) at the sibling layers to compute θ :
x → min(max(x, 0), 255). Obviously, Lb is a difficult task
because B tends to have complex information, while Lr is
easy to reach its minimization due to the sparsity of rain-
streaks. For this reason, we design the branch construction
to utilize the easy task Lr to facilitate the optimization of
complicated issue Lb via the following constraint

Lo = �(o, R + B − RB),

o = 1 − (1 − r)(1 − b) = r + b − rb. (4)

Here, o is the reconstruction of observed rainy image O ,
which is expressed via a nonlinear system called screen
blendmodel (SBM).Different from linear additive composite
model (i.e., O = B + R), SBM not only reflects the over-
lapping effect of raindrops, but also the transparency effect

in most natural rain environment. As a result, the SBM is so
robust that b behaves toward B when r is perfect. All the
learning criterions mentioned are pixel-wise tasks, the next
focus is on developing feature-aware vision tasks for further
improvement.

Some assessments, e.g., structural similarity (SSIMWang
et al. 2004), emphasize the sensitivity of visual system to
diverse vision signalswhich correlatewellwith the subjective
fidelity ratings.Motivated by this,we introduce a comprehen-
sive task to learn the statistical distributions from images. As
illustrated in Fig. 3, this task comprises three image attribute
measures: luminance (I ), Contrast (C), and Structure (S),
which can be represented as follows:

I (b, B) = 2μbμB + ε1

μ2
b + μ2

B + ε1,

C(b, B) = 2σbσB + ε2

σ 2
b + σ 2

B + ε2,

S(b, B) = σbB + ε3

σbσB + ε3,

(5)

where μb and μB are the mean signal intensities, σb and
σB are the standard deviation of signal samples, σbB refers
to the covariance. The nonnegative constants ε1, ε2, ε3 are
included to avoid division by zero, and we set ε2 = 2ε3.
Then, the comprehensive task can be defined as:

Ld = 1 − I (b, B) · C(b, B) · S(b, B)

= 1 − (2μbμB + ε1) (2σbB + ε2)(
μ2
b + μ2

B + ε1
) (

σ 2
b + σ 2

B + ε2
) .

(6)
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Fig. 4 Saliency maps of perceptual information. a Denotes the input
image. From b to d, the first 3 maps in each row are the edge features
with respect to vertical direction. The 3 middle maps are edge features

of horizontal direction. The last 3 maps are the combinations of vertical
and horizontal features. For visualization, the results are squared before
square root (sqrt)

3.3 Perceptual model

Johnson et al. (2016) proposed the early perceptual network
which is the VGG net (Simonyan and Zisserman 2015)

pre-trained on ImageNet dataset (Deng et al. 2009). These
features obtained from hidden layers are considered as the
perceptual information. It is a popular approach to main-
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tain the structure of image. However, Li et al. also argued
that the perceptual network only emphasize specific features
which is helpful for object recognition since it is a discrim-
inative model trained on a classification dataset with finite
categories. Besides, we find another limitation of this model
with respect to the information loss caused by pooling layer.
For de-raining work, it is not necessary to capture the deep
features with rich semantics, we thus propose a flat model as
the alternative way of deeply trained structure. Concretely,
ourmodel unifies two types of discrete differentiation kernels
which can be defined as

filterh =
⎡
⎣

−1 0 +1
−2 0 +2
−1 0 +1

⎤
⎦ ,filterv =

⎡
⎣

−1 −2 −1
0 0 0

+1 +2 +1

⎤
⎦ , (7)

where filterh estimates gradient along the horizontal direc-
tion, and the other produces measurement of the gradient
along the vertical direction (refer to Fig. 4 for some exam-
ples). According to the two basic SF operators, the width of
perceptual model can be extended through enriching the set
of kernels S. Then, the perceptual loss can be represented as

L p = 1

3|S|
∑
c

|S|∑
ω

�
(
filterω ∗ bc,filterω ∗ Bc) , (8)

where c ∈ {red, green, blue} denotes the channel of color
image. Technically, these kernels are convolved with b and
B to calculate approximations of the derivatives with respect
to different orientations, then the average gradient distance
is used to define the loss of details in the restored image.

3.4 Adaptive optimization

Fromwhat has been discussed above, the optimizationmodel
in our rain removal work is

L(θ) =
∑
i∈Ω

λi Li , (9)

whereΩ = {b, r , o, d, p}, θ is the set of network parameters,
λi is the lossweight of the i th task. For each i , � can be defined
by PHL whose generic form is

�(ŷ, y) =
δ2

(√
1 + ((y − ŷ)/δ)2 − 1

)

N
, (10)

where N is the amount of information. δ is a predefined
threshold of residual, and when difference between restored
signal ŷ and reference signal y approaches toward a large
value, the steepness of PHL approximates δ. Obviously, PHL
combines the best properties of MSE and L1 absolute loss,

thus it is not only strongly convex at the vicinity of optimal
points, but also less sensitive to extreme values.

One can note that the proposal de-raining model falls
under the umbrella of multi-task learning (MTL), in which
Lb is the main optimization objective, others are side tasks,
and L is a differentiable joint function with respect to θ .
The assignment of balancing coefficients is a non-trivial
problem because these tasks in MTL have different learn-
ing difficulties and convergence rates in different iteration
of training process (Yin and Liu Feb. 2018). For appropriate
loss weights, we develop a dynamic-weightingmethod based
on differential evolution (DE) (Qu et al. 2012) (refer to Algo-
rithm 1 for details), in which the weight of main task Lb is
1, namely λb = 1. Meanwhile, the dynamic-weighting algo-
rithm learns to allocate lossweights to overall auxiliary tasks,
i.e., λn, n ∈ {o, r , d, p}. The i th candidate solution in the gth
generation is (λ

i,o
g , λ

i,r
g , λ

i,d
g , λ

i,p
g ), denoted as Pi

g . And the
solutions of initial population are randomly sampled from a
finite instance space. Here, F denotes the fitness function in
each evaluation phase. To overcome catastrophic forgetting
(Kirkpatrick et al. 2017) during training process, we develop
F as a constrained optimization model which avoids to halt
any tasks, then three operations (i.e., mutation, crossover,
and selection) successively evolve populations with random
probabilities.

The last part of our de-raining system is the image
enhancement approach. Based on the atmospheric scattering
model (McCartney 1976), the imaging model to represent
the formation of a rainy image can be extended as

Oc = t
(
Bc + R − BcR

) + (1 − t)Ac, (11)

where t is the medium transmission, A is the atmospheric
light. Here, we attempt to use an existing method (Gao et al.
2019) for estimations of t and A. However, the setting of
hyperparameters in this method is also non-trivial. Thus,
we use DE to develop an adaptive framework for image
enhancement. The optimization objectives are regularization
parameter λ and exponent β, the former is used to balance the
data term and the gradient constraint, the latter determines
the levels of sensitivity to gradients of the minimum chan-
nel, and the fitness function is Contrast Enhancement Image
Quality (CEIQ) (Jia et al. 2018).

4 Experiments

In this section, comprehensive experiments are performed
on synthetic and real rainy images. The optimization method
used in our model is stochastic gradient descent (SGD) with
momentum=0.9, and we set the initial learning rate as 1e-2,
dividing it by 10 at the 20th epoch, and terminate training
at the 40th epoch. The implementation of the proposed de-

123



2228 Y. Fan et al.

Table 1 Influence of δ on model performance

Task EC δ SSIM VIF

Pixel PHL 1 0.5459 0.1692

2 0.8957 0.5128

3 0.9365 0.6380

4 0.9344 0.6234

5 0.9341 0.6039

10 0.9343 0.6229

50 0.9321 0.6204

100 0.9262 0.6085

Testing on Rain100L images
Bold values mean the maximum values

Table 2 Average SSIM/VIF values on Rain100L images

Task EC SSIM VIF

Pixel MSE 0.9211 0.6239

Pixel PHL 0.9365 0.6380

Pixel + L p PHL 0.9397 0.6429

Pixel+VGG PHL 0.9391 0.6337

Pixel + L p + Ld PHL 0.9412 0.6435

Fixed PHL 0.9277 0.5907

Bold values mean the maximum values

Table 3 Average SSIM/VIF values on Rain100H images

Task EC SSIM VIF

Pixel MSE 0.8138 0.3881

Pixel PHL 0.8279 0.3945

Pixel + L p PHL 0.8402 0.3986

Pixel+VGG PHL 0.8394 0.3979

Pixel + L p + Ld PHL 0.8521 0.4040

Fixed PHL 0.8478 0.3970

Bold values mean the maximum values

raining model is conducted on Python3.5, TensorFlow1.8,
GeForce GTX TITAN with 12GB RAM.

In the dynamic-weighting scheme, Pop is the size of pop-
ulation, which is a multiple of the size of solutions. A smaller
Pop corresponds to the lowdiversity that often causes the evo-
lutionary algorithm to stagnate at local optimum solution.
However, a bigger Pop tends to result in a higher com-
putational complexity. For a compromise between solution
diversity and computational cost, we set Pop as 5 times as
the size of solution. The maximum iteration G affects the
evolutionary algorithm in the similar manner as that of Pop.
Thus, we set G as 100 for a suitable trade-off. The mutation
factor pm and crossover probability pcr affect the retrieval
efficiency. To be more stable, pm and pcr usually are lim-
ited in the interval (0, 1). Generally, bigger pm and pcr may
enlarge the retrieval range, for a better convergence rate, we

thus set smaller values to pm and pcr, i.e., pm = 0.5 and
pcr = 0.3.

4.1 Data preparation

Since the pairs of rain and rain-free images from natural
scenes are not massively available, the training instances
are generated by synthesizing rainy images based on screen
blend model. More specifically, 1800 rain-free images as
ground truth data are collected from BSD300 (Martin et al.
2001). There are 1800 rain layers. To augment the size of
training dataset, 10 pairs of image patches are cropped from
each pair of synthetic rain image and corresponding ground
truth image. As a result, there are 18,000 pairs of instances
in our training dataset.

4.2 Results on synthetic rainy images

In this experimental part, we will investigate where the
improvement of performance comes from. For objectivity,
we conduct ablation study on two public benchmark datasets
(Yang et al. 2017). To quantitatively assess these different
settings, two evaluation criteria (i.e., SSIMWang et al. 2004
and VIF Sheikh and Bovik 2004) are employed to measure
the difference between de-rained result and corresponding
ground truth image. A SSIM close to 1.0 indicates that the
performance is perfect, and the higher VIF is, the better
image reconstruction does. Here, the basic model is based on
pixel-level tasks (denoted as Pixel). The results are shown in
Tables 2 and 3.

The first comparison focuses on training criterion, as
shown in the first two rows of Tables 2 and 3, and the basic
model with PHL has better performance in terms of SSIM
and VIF. These quantitative results demonstrate that PHL
provides a robust regression finding the relation between
observed and predicted images. According to Eq. (10), one
can note that δ has a significant impact on the steepness of
PHL. A smaller δ tends to cause vanishing gradient, on the
contrary, a larger δ often results in the oscillation in opti-
mization. For a suitable threshold of residual, we conduct
the grid search on a set of discrete values. As reported in
Table 1, when δ = 3, the method based on PHL can get
better results in terms of SSIM and VIF. Therefore, in the
following experiment, δ is fixed as 3. Then, we analyze the
suitability of feature-level tasks. From the second, third, and
fifth lines of Tables 2 and 3, the comparison results indicate
that the feature-level tasks we design are capable of assisting
with the improvement of rain removal results. Also, one can
note that results on the first dataset (i.e., Rain 100L) tend to
be higher, this reason is that all rainy layers in this dataset
are composed of slight rain streaks which are not difficult
to be handled. When presented with heavy rain streaks in
the second dataset (i.e., Rain100H), the feature-level tasks
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Fig. 5 Prefix symbol ‘a’
denotes the original rainy
images, ‘b’–‘f’ are the results of
Ours, DDN, LPNet, RESCAN,
JORDER-E, respectively
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Table 4 Quantitative
comparison among our method
and state-of-the-art methods

Rain100H Rain100L

Models SSIM VIF SSIM VIF

RESCAN Li et al. (2018b) 0.8055 0.4057 0.9401 0.6591

DDN Fu et al. (2017) 0.7492 0.3427 0.9097 0.5727

JORDER-E Yang et al. (2019) 0.8005 0.4033 0.9396 0.6610

LPNet Fu et al. (2019) 0.7719 0.3422 0.9248 0.6121

Ours 0.8521 0.4040 0.9412 0.6435

Bold values mean the maximum values

Fig. 6 Prefix symbol ‘a’
denotes the original rainy
images, ‘b’–‘f’ are the results of
Ours, DDN, LPNet, RESCAN,
JORDER-E, respectively
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Fig. 7 Prefix symbol ‘a’
denotes the original rainy
images, ‘b’–‘f’ are the results of
Ours, DDN, LPNet, RESCAN,
JORDER-E, respectively

play crucial role for improvement. Other interesting com-
parisons also are presented in the two tables. On one hand,
the proposed perceptual model gets competitive results com-
pared with VGG net, this demonstrates that simple gradient
operators are good enough for image reconstruction, and can
replace the complex pre-trained neural model. On the other
hand, in the last two rows in these tables, ’Fixed’ denotes
the model with fixed weighting factors, and these results

demonstrate that the dynamic optimization method gets bet-
ter generalization ability on evaluation datasets.

In addition, the proposed method (namely Pixel + L p +
Ld ) is also compared with other state-of-the-art methods,
namely DDN (Fu et al. 2017), RESCAN (Li et al. 2018b),
LPNet (Fu et al. 2019), and JORDER-E (Yang et al. 2019).
From the results reported in Table 4, one can note that the
proposed method has the best SSIM and competitive VIF.
These advantages can be mainly attributed to three reasons.
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Fig. 8 Prefix symbol ‘a’
denotes the original rainy
images, ‘b’–‘f’ are the results of
Ours, DDN, LPNet, RESCAN,
JORDER-E, respectively

First, our method adopts the screen blend model which is
more robust than the linear additive composite model used
by other methods. Second, in the multitask learning, the side
task Ld can help the deep network learn much more salient
image features, such as the luminance, contrast, and structure,
while the other auxiliary task L p can effectively preserve
the background details. The third reason lies in the dynamic
fusion, and all rain removal tasks can be combined to achieve
favorable performance.

4.3 Results on real-world rainy images

In this part, the proposed de-raining model without post-
processing step is compared with several state-of-the-art rain
removal models as mentioned above. The real-world rainy
images are kindly provided by existing publications. These
images cover different rainy situations in terms of the size,
velocity, and angle of rain streaks, and contain rich details.
Thus, the generalization capabilities of de-raining models
can be effectively verified by tackling these complex cases.

The visual comparisons of different de-raining methods
are shown in Figs. 5, 6, 7 and 8. Through visual inspection,
one can note that all methods can effectively remove rain
streaks in most cases. However, when confronting dense rain
streaks, some methods tend to leave heterogeneous veiling
effect (see Figs. 6 and 8), which degrades the visual quality.
Instead, our method can avoid this unfavorable effect (see
the b-4 in Fig. 6), because in the multitask learning, the pro-
posed network can learn not only how to remove the rain
streaks, also to enhance the visual effect of image. Besides,
some methods may lead to over-smoothed results (such as
f-1 and f-3 in Fig. 5), in which many details are lost, while
ourmethod can significantlymaintain details andmuchmore
texture of background scene. This advantage mainly bene-
fits from the S(b, B) and the perceptual model based on SF
operators. These comparisons demonstrate that our method
is more robust to deal with various rainy conditions while
preserving image details.
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Fig. 9 Rainy images and the
results. The first row of each
group shows the full image, and
the second row shows two
zoomed-in regions. It is clear
that the proposed method
performs well in edge
preserving

4.4 Impact of adaptive post-processing step

In this section, the effect of entire de-raining system including
post-processing step will be presented. The state-of-the-art
de-rainingmodel denoted as JORDER-R (Yang et al. 2017) is
comparedwith our system, because JORDER-R also embeds
a de-hazingmethodHe et al. (2011) into its de-raining frame-
work. Figure 9 shows comparisons between JORDER-R and
our system. Though observing the de-rained results, one can
note that the surviving haze can be effectively removed from
de-rained images. Compared with JORDER-R, the proposed

method tends to keep some details of rainy images, such as
the lines of leaves, the outlines of bars and the stripes of
clothes.

5 Conclusion

A neural de-raining system based on screen blend model
is presented in this paper. We take advantage of the syn-
ergy among main task and side tasks to improve the effect
of rain removal model. Especially, we design a vision task
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to preserve complex texture of background layer by using
Sobel–Feldman Operator. And we also introduce another
feature-level task with respect to salient image features
that convey the crucial information for human visual sys-
tem. To tackle with unknown balancing parameters among
these tasks we use, a dynamic method is embedded into
the learning process whose objective is to minimize the
PHL. Due to the design of multiple tasks and adaptive
optimization, we show that a simple neural network with sib-
ling branches can achieve state-of-the-art de-rained results
on most rainy scenes. Finally, an evolutionary-based post-
processing framework for haze removal is utilized to further
improve the visual quality of de-rained image. Comprehen-
sive experiments have been conducted on synthetic and real
rainy images, and the effectiveness of the proposedde-raining
system is verified in terms of reference criteria and visual
inspection. In the future work, we will research other appro-
priate tasks that can significantly boost the visual effect of
rainy images.
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