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Abstract
Metaheuristics have proven their efficiency in treating complex optimization problems. Generally, they produce good results
quite close to optimal despite some weaknesses such as premature convergence and stagnation in the local optima. However,
some techniques are used to improve the obtained results, one of them is the adoption of chaos theory. Including chaotic
sequences in metaheuristics has proven its efficiency in previous studies by improving the performance and quality of the
results obtained. In this study, we propose an improvement of the metaheuristic lightning search algorithm (LSA) by using
chaos theory. In fact, the idea is to replace the values of random variables with a chaotic sequences generator. To prove
the success of the metaheuristic—chaos theory association, we tested five chaotic version of lightning search algorithm on a
benchmark of seven functions. Experimental results show that sine or singer map are the best choices to improve the efficiency
of LSA, in particular with the lead projectile update.

Keywords Metaheuristic · Lightning search algorithm · Chaos · Chaotic maps

1 Introduction

Recent studies in the field of optimization have shown a
growing interest in problem-solving methods using meta-
heuristics. In fact, metaheuristics have advantages over other
deterministic resolution approaches. Among its advantages
are: simplicity, the possibility to solve large scale and non-
linear problems and their flexibility.Metaheuristics deal with
complex optimization problems such as manufacturing sys-
tems design (Gen and Cheng 1996), mechanical engineering
(He et al. 2004), flowshop scheduling (Murata and Ishibuchi
1994), image enhancement and segmentation (Paulinas and
Ušinskas 2007), transport problem solving (Vignaux and
Michalewicz 1991), calibration of fractional fuzzy con-
trollers (Zhou et al. 2019a) and data clustering (Pacheco et al.
2018; Zhou et al. 2019b, 2017).
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In general, metaheuristics try to imitate the behaviour of
living beings or reproduce biological and physical phenom-
ena. They can be classified into categories, population-based
[Particle swarm optimization (PSO) (Eberhart and Kennedy
1995), Genetic algorithm (GA) (Holland 1992)] and single-
point search [Itarated local search (ILS) (Lourenço et al.
2003), Simulated annealing (SA) (Van Laarhoven and Aarts
1987)], memoryless (SA) and memory usage methods [Ant
colony optimization (ACO) (Dorigo and Di Caro 1999)],
nature-inspired [GA,PSO,SA,ACO,Harris hawks optimizer
(HHO) (Heidari et al. 2019)] and non-nature inspiration
metaheuristics [Tabu search (TS) (Glover and Laguna 1998),
Harmony search (HS) (Yang 2009b)]. In addition, metheuris-
tics propose practically a similar iterative operating scheme
which consists of four steps: The first step consists in ini-
tializing randomly the start population, the second aims to
search better solutions by using generation rules, third, those
potential solutions are updated, and finally, if the stopping
conditions are satisfied, we provide the best found solution,
otherwise we return to the second step. Independently of pre-
vious steps, metaheuristics are based on randomness, which
directly affects performance and efficiency, mainly in the
exploration and exploitation that form the basis for the prob-
lem solving. Exploitation is the search phase of new areas
in the search space while exploitation is the stage in which
search is carried out to the promising areas. However, even
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if the operating mode of different metaheuristics is very sim-
ilar, performance and efficiency are not identical. This is
confirmed by the No Free Lunch Theorem (NFLT) (Ho and
Pepyne 2002) which proves that there is no methaheuristic
capable of surpassing others in all optimization problems.

However, despite the advantages presented above, some
metaheuristics suffer from premature convergence problems.
Indeed, random values is widely used in metaheuristics.
These values can provide good results for some problems
and that is not the case for others. To tackle this problem,
which affects the exploration and exploitation phases, recent
researches have adopted new techniques such as hybridiza-
tion (Blum et al. 2011), local search (Lim et al. 2004) and
random walk (Yang et al. 2013).

A promising approach that joins the list is the use of
chaos theory (Thietart and Forgues 1995). Chaotic system
is a non-linear dynamic system, characterized by its unpre-
dictability, non-periodic, spread-spectrum character, ergodic
properties, and highly sensitive to the initial conditions. The
latest works integrating chaotic sequences instead of ran-
dom values produced by uniform or gaussian distribution for
example, indicates an improvement in the performance of
modified algorithms (Alatas 2010a; Arora and Singh 2017;
Chen et al. 2020; Mitić et al. 2015; Zhang and Feng 2018).
In fact, compared to stochastic searching, the use of chaotic
sequences improves the performance of the targeted opti-
mization algorithms because it avoids local optima, improves
the searching capability and accelerates the convergence of
metaheuristics. Moreover, the integration and implementa-
tion of chaotic sequences is easy to perform. However, the
efficiency of the algorithms, for large scale optimization
problems, decreases due to the high number of iterations
needed to reach the global optimum.

In this study we are interested in the metaheuristic light-
ning search algorithm (LSA) (Shareef et al. 2015). Indeed,
LSA is a recent algorithm that proved its efficiency to solve
optimization problems and produced better results compared
to other methods. Howerver, a recent work has proposed
an extended version of LSA named Binary lightning search
algorithm (Islam et al. 2017). Furthermore, another exten-
sion has been proposed: the use of the Quantum theory. This
variant is applied in many works on several problems such
as charging stations placement for electric vehicles (Aljanad
et al. 2018) and the control of inductionmotors (IM) (Hannan
et al. 2017, 2018). Nevertheless, LSA suffers to obtain cor-
rect results for some tests as for the resolution of multimodal
and non-separable functions. In this paper, we propose an
improvement of LSA through the use of chaos theory.

The rest of the paper is organized as follows: a review of
chaotic metaheuristics is presented in the Sect. 2. Section 3
offers a brief introduction to the LSA algorithm. Section 4
gives a brief idea about chaotic maps. Section 5 presents
the benchmark used for the comparison of the proposed

method. Section 6 describes the proposed method chaotic
LSA, and Sect. 7 is dedicated to the interpretation of the
results obtained.

2 Highlights of recent chaotic metaheuristics

In this sections, we present the recent methods that use
chaotic sequences to improve their performance compared
to the original versions, these methods are for the most part
nature-based algorithms.

2.1 Chaotic Bat Algorithm (CBA)

Bat algorithm (BA) (Yang 2010) is based on the echolocation
ofmicrobats.Micobats generally tune frequency and increase
the pulse rate emissionwhenever a potential prey is close. An
improvement of this method is proposed. In fact, four ver-
sions integrating chaotic generators are presented (Gandomi
and Yang 2014):

• CBA-I: replace the parameter β in the equation

f = fmin + ( fmax − fmin)β (1)

by chaotic map in the equation with f is the frequency
and β is a random number between 0 and 1.

• CBA-II: replace the parameter λ by a chaotic map in the
equation

vt = vt−1 + (xt − x∗)λ (2)

where vt designates the speed at time step t , xt the posi-
tion at time step t , and λ is a random number between 0
and 1.

• CBA-III: replace loudness in BA with a chaotic map.
• CBA-IV: replace the pulse emission rate by a chaotic
map.

The results show that CBA-IV is the most effective between
proposed versions.

2.2 Chaotic Cuckoo Search (CCS)

Cuckoo search (CS) (Yang and Deb 2009) is inspired by the
incubation behaviour of cuckoos birds. Each cuckoo egg in
the nest is considered as a solution. To generate a new cuckoo
xt+1 we use the following formula:

xt+1 = xt + α ⊕ levy(λ) (3)
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with α is the step size. CCS (Wang et al. 2016) improves
performance by modifying the alpha parameter with a series
of chaotic values normalized between 0 and 2.

2.3 Firefly Algorithmwith Chaos (FAC)

Firefly algorithm (FA) (Yang 2009a) imitates the behaviour
of fireflies during summer nights. The authors develop a
metaheuristic by taking in consideration the ability of firefly
to emit light, Following rules are respected:

• All fireflies are unisex.
• The attractiveness is proportional to the brightness.
• Brightness is proportional to the landscape of cost func-
tion.

For that, light intensity is expressed by the following equa-
tion:

I (r) = I0 exp(−γ r2) (4)

whereγ is the coefficient light absorption and r is the distance
between two firefly.
Attractiveness is defined by:

β(r) = β0 exp(−γ r2) (5)

β0 represents attractiveness at r = 0.
The movement of the firefly i to another more attractive j is
calculated with :

δxi = β0 exp(−γ r2i j )(x
t
j − xti ) + αεi (6)

xti + 1 = xti + δxi (7)

FAC (Gandomi et al. 2013) offers two improvements, the
first one is tuning light absorption coefficient γ with chaotic
maps and the second is based on the tuning of the attrac-
tiveness coefficient β with chaotic maps. Simulations results
show a considerable improvement in performance by using
the second chaotic version of FA.

2.4 Chaotic GreyWolf Optimization (CGWO)

Grey wolf optimization (GWO) (Mirjalili et al. 2014) is
inspired by hunting behaviour and the social hierarchy that
organizes troop life among grey wolves. There are 4 groups
of wolves, α, β, δ who command wolves ω, and who during
the hunting operation move to the promising areas. CGWO
(Yu et al. 2016) is based on the chaotic local search technique
which is applied to the position of the current best wolf Xα

using the following formula:

Xn = Xα + r(U − L) ∗ (z − 0.5) (8)

If Xn < Xα then update position Xα . Search is done in the
neighbourhood of Xn , Xα is the center of a sphere of radius r ,
U and L denotes the upper and lower boundary of the search
area and finally z is a chaotic variable.

2.5 Chaotic Krill Herd Optimization Algorithm
(CKHO)

Krill herd optimization algorithm (KHO) (Gandomi and
Alavi 2012) mimic the behaviour of individual krill in krill
herd. The algorithm reproduces the three main activities of
krill which are:

– inductedmotion :which refers to the densitymaintenance
of the herd, it is defined as follows:

Ni (t + 1) = Nmaxαi + ωnNi (t) (9)

alphai = alphalocali + alphatargeti (10)

where Nmax is the maximum induced speed, ωn is the
inertia weight, αlocal

i and alphatargeti are local and target

effect and alphatargeti is defined by:

alphatargeti = CbestKi,bestX i,bestX i,best (11)

with Cbest is a coefficient and determined by:

Cbest = 2

(
r + 1

Imax

)
(12)

where r is a random value between 0 and 1.
– Foraging
– Random diffusion

The authors consider that the most important value to be
tuned is r , and replaces it with a chaotic value (Saremi et al.
2014). The results prove the superiority of CKHO compared
to KHO. In fact the modifications allows KHO to avoid the
local optima and to have faster convergence.

2.6 Chaotic Harmony Search Algorithm (CHSA)

Harmony search algorithm (Yang 2009b) based on the search
for the best state of harmony in the process of composing a
melody. Finding the best harmony means finding the best
solution determined by an objective function. To improve
the global convergence and avoid stagnating in local optima,
authors propose seven CHSA algorithms (Alatas 2010b),
the first one initializes the harmony memory solution using
chaotic maps using the following formula:

xi, j = CMi, j (x
max
j − xmin

j ) (13)
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where xmax
j and xmin

j are the upper and the lower bound of the
j th decision parameter respectively, and CMi, j is a chaotic
map which replace a random value generated from a uniform
distribution. others tuning the Pitch Adjusting Rate (PAR)
and bandwidth (bw) parameters by creating six other com-
binations of CHS. Tests reveal that three CHS algorithms
produce better results than the original version of HS.

2.7 Chaos Embadded Particle SwarmOptimization
Algorithms (CEPSOA)

Particle Swarm Optimisation (PSO) (Eberhart and Kennedy
1995) simulate the social behaviour of bird flocking and fish
schooling through a model. PSO is a simple and effective
metaheuristic, but it suffers from the problem of premature
convergence. In order to find the best solution, each particle
use the following formulas for the next iteration:

vi, j (t + 1) = wvi, j (t) + c1r1, j (pbesti, j (t) − xi, j (t))

+ c2r2, j (t)(gbesti (t) − xi, j (t)) (14)

xi (t + 1) = x(t) + vi (t + 1) (15)

where xi (t + 1) is the position of the i th particle at the t th
iteration, pbest is the best position encountered by the par-
ticle, gbest is the best position encountered by the whole
swarm, v(t) is the velocity at t th iteration, w ∈ [0.8, 1.2] is
the inetia weight, c1 and c2 ∈ [0, 2] are cognitive and social
parameter respectively, r1 and r2 are a random values gener-
ated by a uniform distribution. To improve the performance
of PSO, the authors propose twelve chaotic variants of PSO
(CEPSOA) (Alatas et al. 2009) by replacing, in the form of
combination, the parameters w, c1, c2, r1 and r2 by chaotic
values.

3 Lightning Search Algorithm (LSA)

This algorithm is based on the step leader propagation phe-
nomenon. During physical reactions inside the thundercloud,
projectiles are ejected into space, and can create a step leader.
These projectiles are considered as initial population size,
and the solution is the tip of the current step leader energy
Ec. The projectiles move with a velocity:

vp =
[
1 − 1

√
(1 − v0/c)2 − sFi/mc2)−2

]−1/2

(16)

where vp is the current velocity and v0 are the initial velocity
of the projectile, c is the speed of light, Fi is the constant
ionization rate, m is the mass of the projectile, and s is the
length of the travelled path.
Another major property described in LSA is forking. It is
realized because of nuclei collision. It is done in two ways.

The first is the appearance of two symmetrical channels, in
which case the opposite projections are expressed as follows:

p̄i = a + b − pi (17)

with a and b are the boundary limits. This technique can
improve the proposed solutions by removing the channelwith
the lowest energy. In the second type of forking, the energy
redistributed after several unsuccessful propagation of the
leaders which is qualified as channel time.

Moreover, LSA defines three types of projectiles:

• Transition projectile Which creates the first step leader,
and which represents the initial population, they can be
modelled using values generated by a uniform distribu-
tion as shown in the following equation:

pTi−new = uni f rand()∗(UB(d)−LB(d))+LB(d) (18)

where uni f rand() is a number generated by uniformdis-
tribution, UB(d) and LB(d) are the the upper and lower
dth decision parameter respectively.

• Space projectile The positions of the projectiles at step
t + 1 is modelled using the values generated by an
exponential distribution with shaping parameterμwhich
controls the direction and position of the projectiles. The
position of the projectile pSi at t + 1 is described as fol-
lows:

pSi−new = pSi ± exprand(μi ) (19)

where exprand(μi ) is an exponential random value. The
stepped leader sli is extended to a new position sli−new

if pSi−new provides good solution at t + 1.
• Lead projectile The projectile associated with the step
leader moving near the ground and modelled using a ran-
dom value belonging to the normal distribution, the lead
projectile position pL at t + 1 is:

pLnew = pL + normrand(μL , σL) (20)

where normrand is a value belonging to the normal dis-
tribution having parameters μL which takes the value
of pL , and σL which exponentially decreases as it pro-
gresses toward the Earth or as it finds the best solution.
As for space projectiles, pL takes the value pLnew if the
latter provides a better solution and the step leader sli is
extended to a new position sli−new.
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4 Chaotic maps

All metaheuristics include random elements, the main prop-
erty for thesemethods is stochasticity carried out using values
belonging to statistical distributions. The idea in this study is
to substitute this values with other values provided by chaotic
maps, which by their ergodicity, solve the problems of some
metaheuristics such as fast convergence and stagnation in
local optima. Indeed, the use of chaoticmaps improves search
speed, which is not insignificant when dealing with large
scale problems. In this section, we present chaotic maps to
be tested in the different LSA variants. For the realization of
our simulations, we propose to test 11 chaotic maps:

1. Chebyshev map It is represented by the following equa-
tion:

xk+1 = cos(k cos−1(xk)) (21)

it generates chaotic values between −1 and 1.
2. Circle map It is formulated as:

xk+1 = xk + b − a

2π
sin(2πxk)mod(1) (22)

for a = 0.5 and b= 0.2, it generates chaotic values between
0 and 1.

3. Gauss/mouse map Can be defined as follows:

xk+1 =
{

0 xk = 0
1

xk mod (1)
(23)

it generates chaotic values between 0 and 1.
4. Iterative map With infinite collapses represented by the

following equation :

xk+1 = sin

(
aπ

xk

)
(24)

it generates chaotic values between −1 and 1
5. Liebovitch map Defined as follow:

xk+1 =
⎧⎨
⎩

αxk 0 < xk ≤ P1
P−xk
P2−P1

P1 < xk ≤ P2
1 − β(1 − xk)) P2 < xk ≤ 1

(25)

where α < β and

α = P2
P2

(1 − (p2 − P1)) (26)

β = 1

P2 − 1
((P2 − 1) − P1(P2 − P1)) (27)

6. Logistic map It is described as follow:

xk+1 = axk(1 − xk) (28)

If a = 4, Logistic map generates chaotic values between
0 and 1.

7. Piecewise map can be written as:

xk+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xk
P 0 ≤ xk < P
xk−P
0.5−P P ≤ xk < 1

2
1−P−xk
0.5−P

1
2 ≤ xk < 1 − P

1−xk
P 1 − P ≤ xk < 1

(29)

where P = 0.4, Piecewise map generates chaotic values
between 0 and 1.

8. Sine map can be defined as :

xk+1 = a

4
sin(πxk) (30)

where a = 4, Sine map generates chaotic values between
0 and 1.

9. Singer map can be written as :

xk+1 = μ(7.86xk − 23.31x2k + 28.75x3k − 13.3x4k ) (31)

where μ = 1.07, Singer map generates chaotic values
between 0 and 1.

10. Sinusoidal map defined as :

xk+1 = ax2k sin(πxk) (32)

where a=2.3, Sinusoidal map generates chaotic values
between 0 and 1.

11. Tent map is very similar to Logistic map, it is given by:

xk+1 =
{ xk

0.7 xk < 0.7
10
3 (1 − xk) Otherwise

(33)

It is necessary to precise that the chaotic maps that do not
produce values belonging to [0,1] are normalized to have the
same scale.

5 Numerical simulations

Different chaotic LSAs are tested using a benchmark of seven
functions. Table 1 contains the parameters used for different
LSA variants. The values of these parameters are set accord-
ing to the reference paper of LSA (Shareef et al. 2015).
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Table 1 Parameters setting for
CLSA

Parameter Value

Population size 50

Max iteration 500

Channel time 10

5.1 Benchmark functions

Table 2 summarizes the properties of the functions used for
the tests.

5.2 Performancemeasures

To evaluate the performance of the different variants of the
proposed algorithmwe use classical statistical indicator such
as themean and standard deviation, aswell as the success rate
which is defined and used by many related works (Gandomi
and Yang 2014; Gandomi et al. 2013; Mitić et al. 2015):

SR = 100 ∗ Nbsucess

Nbtest
(34)

where Nbtest is the number of run, Nbsucess is the number of
times the tests are successful. In this study, we set variable
the Nbtest to 100 and we consider a successful test only if the
result obtained is near to the optimal solution. Taking into
account the search space defined for each function, a test can
be successfully defined as follows:

∣∣∣Xgb − X∗
∣∣∣ ≤ (UB − LB) × 10−4 (35)

where Xgb is the obtained global best, X∗ is the global
optima, UB and LB are the upper and lower bounds respec-
tively.

6 Chaotic lightning search algorithm

In this section, we use chaotic maps to test different vari-
ants of the proposed CLSA algorithms. The flowchart of a
schematic chaotic LSA is presented in Fig. 1. In the following
section we present the modifications made to the parameters.

First of all, we present the results obtained by the LSA
algorithm after 100 runs. The success rate of the different
functions is given in the Table 3.

6.1 CLSA-I

The value generated by the exponential distribution in Equa-
tion (19) is modified by a chaotic map (CMi ) for each
iteration i , so the equation of the new position of the space Ta
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Table 3 Sucess rate LSA

f 1 f 2 f 3 f 4 f 5 f 6 f 7

LSA 100 40 0 10 30 10 0

projectile can be written as :

pSi−new = pSi ± CMi (36)

Random value in the original equation is a number between 0
and 1, it is substituted by a chaotic value in the same interval
for 11 different chaotic maps. The success rate after 100
runs with different chaotic maps are shown in the Table 4.
This variant produces acceptable results only for the Shekel
7 function with four chaotic maps.

6.2 CLSA-II

The value generated by the standard normal distribution in
Eq. (20) is modified by a chaotic map, so the equation of the

Fig. 1 Flowchart of the CLSA
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Table 4 Sucess rate CLSA-I

f 1 f 2 f 3 f 4 f 5 f 6 f 7

Chebyshev map 0 0 0 0 0 0 4

Circle map 0 0 0 0 0 0 0

Gauss/mouse map 0 0 0 0 0 0 0

Iterative map 0 0 0 0 0 0 4

Liebovitch map 0 0 0 0 0 0 10

Logistic map 0 0 0 0 0 0 0

Piecewise map 0 0 0 0 0 0 0

Sine map 0 0 0 0 0 0 10

Singer map 0 0 0 0 0 0 0

Sinusoidal map 0 0 0 0 0 0 0

Tent map 0 0 0 0 0 0 0

Numbers in bold are the best values

Table 5 Sucess rate CLSA-II

f 1 f 2 f 3 f 4 f 5 f 6 f 7

Chebyshev map 100 70 0 4 37 0 0

Circle map 100 44 0 7 44 14 0

Gauss/mouse map 100 77 0 7 44 14 0

Iterative map 100 67 0 7 50 7 0

Liebovitch map 100 57 0 4 47 4 0

Logistic map 100 70 0 14 57 4 0

Piecewise map 100 50 0 4 50 4 0

Sine map 100 64 0 10 54 27 0

Singer map 100 77 0 7 60 10 0

Sinusoidal map 100 57 0 4 44 14 0

Tent map 97 44 0 7 44 0 0

Numbers in bold are the best values

new position of the lead projectile can be written as:

pLi−new = pL + CMi (37)

Random value in the original equation is a number between 0
and 1, it is substituted by a chaotic value in the same interval.
The success rate after 100 runs with different chaotic maps
are shown in the Table 5.

6.3 CLSA-III

CLSA-I and CLSA-II are combined, the random values in
the Eqs. (19) and (20) are replaced by a chaotic map. The
success rate after 100 runs with different chaotic maps are
shown in the Table 6.

6.4 CLSA-IV

The value generated by the uniform distribution for the fork-
ing mechanism is modified by a chaotic map, so, forking
happens if

Table 6 Sucess rate CLSA-III

f 1 f 2 f 3 f 4 f 5 f 6 f 7

Chebyshev map 0 0 0 0 0 0 4

Circle map 0 0 0 0 0 0 0

Gauss/mouse map 0 0 0 0 0 0 0

Iterative map 0 0 0 0 0 0 0

Liebovitch map 0 0 0 0 0 0 4

Logistic map 0 0 0 0 0 0 0

Piecewise map 0 0 0 0 0 0 0

Sine map 0 0 0 0 0 0 4

Singer map 0 0 0 0 0 0 0

Sinusoidal map 0 0 0 0 0 0 0

Tent map 0 0 0 0 0 0 0

Numbers in bold are the best values

Table 7 Sucess rate CLSA-IV

f 1 f 2 f 3 f 4 f 5 f 6 f 7

Chebyshev map 100 37 0 4 30 4 0

Circle map 97 40 0 0 40 7 0

Gauss/mouse map 100 44 0 4 44 7 0

Iterative map 100 27 0 4 47 24 0

Liebovitch map 100 40 0 4 34 14 0

Logistic map 100 24 0 10 34 4 0

Piecewise map 100 37 0 4 47 7 0

Sine map 97 37 0 7 24 4 0

Singer map 100 34 0 4 37 17 0

Sinusoidal map 100 27 0 0 44 4 0

Tent map 100 27 0 7 50 10 0

Numbers in bold are the best values

CM(t) <= 0.01 (38)

Random value in the original inequality is a number between
0 and1, it is substitutedby a chaotic value in the same interval.
The success rate after 100 runs with different chaotic maps
are shown in the Table 7.

6.5 CLSA-V

During the simulations it appeared that CLSA-II provides
the best results, so we decided to combine it with CLSA-IV.
The success rate after 100 runs with different chaotic maps
are shown in the Table 8.

7 Discussions

A first remark to note is that algorithms LSA, CLSA-
II, CLSA-IV, and CLSA-V display a correct performance
regarding the Sphere function ( f 1). Concerning Schwefel
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Table 8 Sucess rate CLSA-V

f 1 f 2 f 3 f 4 f 5 f 6 f 7

Chebyshev map 100 44 0 0 40 7 0

Circle map 100 57 0 4 34 10 0

Gauss/mouse map 100 67 0 7 44 17 0

Iterative map 100 54 0 0 50 10 0

Liebovitch map 100 57 0 0 40 14 0

Logistic map 100 70 0 0 54 7 0

Piecewise map 100 47 0 0 50 14 0

Sine map 100 67 0 7 47 10 0

Singer map 94 50 0 7 34 17 0

Sinusoidal map 97 57 0 7 44 10 0

Tent map 100 47 0 4 47 4 0

Numbers in bold are the best values

2.22 function f 2, the best results are obtained by CLSA-
II which are significantly better than the others by using
Gauss/mouse map and Singer map. However, all algorithms

have failed to reach a tolerance threshold for the search for the
optimum for the Rosenbrock function ( f 3). Then, according
to the results, we can observe that the CLSA-II algorithm
is a little more efficient in terms of success rate compared
to the other methods, and this by using the Logistic map.
For the Griewank function ( f 5), the CLSA-II, CLSA-IV and
CLSA-V show performances that exceed the standard LSA
version, especially when adopting Singer map in CLSA-
II. For the Kowalik function, the results displayed by the
CLSA-II, CLSA-IV and CLSA-V variants seem to be the
best, especially when adopting Sine map for CLSA-II. How-
ever, it is noted that only CLSA-I, CLSA-III succeed to reach
the tolerance threshold for the Shekel 7 function ( f 7).
In general, it can be concluded that the CLSA-II variant pro-
vides the best results by using Sine and Singer map, followed
by theCLSA-V andCLSA-IVvariantswhich produce results
higher thanLSA.Finally,we canobserve that chaotic variants
of LSA outperform the standard version in terms of quality

Table 9 Statistical results LSA Function Average Median Best Worst SD

f 1 9,2602E−12 4,8782E−16 5,2893E−19 2,5270E−10 4,6044E−11

f 2 1,5780E−02 8,1787E−04 7,7808E−07 1,9857E−01 3,8726E−02

f 3 6,9465E+01 7,7420E+01 5,7271E+00 2,0896E+02 4,9500E+01

f 4 6,3909E+01 6,2185E+01 4,2783E+01 9,4521E+01 1,1751E+01

f 5 1,1233E−02 7,3960E−03 6,6613E−16 4,1631E−02 1,2023E−02

f 6 4,1750E−04 3,0845E−04 3,0749E−04 1,5941E−03 3,2449E−04

f 7 −7,2323E+00 −1,0403E+01 −1,0403E+01 −2,7659E+00 3,5022E+00

Numbers in bold are the best values

Table 10 Statistical results
CLSA-II-Chebyshev map

Function Average Median Best Worst SD

f 1 2,51562E−12 3,84772E−16 2,70088E−19 3,20448E−11 7,80096E−12

f 2 7,11924E−04 1,50885E−05 8,63426E−09 1,03079E−02 2,08723E−03

f 3 3,80148E+01 2,50303E+01 1,08943E+00 1,28699E+02 3,70146E+01

f 4 7,03766E+01 6,56672E+01 4,47731E+01 1,18400E+02 1,76382E+01

f 5 8,94052E−03 7,39604E−03 0,00000E+00 2,94591E−02 9,20316E−03

f 6 5,95511E−04 3,84136E−04 3,07486E−04 1,59405E−03 4,48920E−04

f 7 −6,88424E+00 −7,76588E+00 −1,04029E+01 −1,83759E+00 3,64937E+00

Numbers in bold are the best values

Table 11 Statistical results
CLSA-II-Circle map

Function Average Median Best Worst SD

f 1 6,34024E−12 5,49656E−17 6,55881E−20 1,90181E−10 3,47221E−11

f 2 1,25619E−03 1,33165E−04 4,24746E−10 2,12798E−02 3,91176E−03

f 3 5,52422E+01 5,17788E+01 7,39837E−01 1,37153E+02 4,28773E+01

f 4 8,33777E+01 8,60637E+01 5,07428E+01 1,27354E+02 1,82519E+01

f 5 8,70134E−03 7,39604E−03 1,11022E−16 3,94071E−02 1,08133E−02

f 6 4,97245E−04 3,35916E−04 3,07486E−04 1,59405E−03 3,83919E−04

f 7 −6,81740E+00 −5,12882E+00 −1,04029E+01 −1,83759E+00 3,51232E+00

Numbers in bold are the best values
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Table 12 Statistical results CLSA-II-Gauss/mouse map

Function Average Median Best Worst SD

f 1 1,38251E−11 6,55337E−16 3,17805E−19 3,63923E−10 6,65608E−11

f 2 1,87947E−04 2,50840E−05 1,41994E−08 1,76872E−03 4,12440E−04

f 3 4,30005E+01 2,56972E+01 3,93471E−01 1,03514E+02 3,50023E+01

f 4 8,24156E+01 7,95966E+01 4,37781E+01 1,09445E+02 1,65812E+01

f 5 7,88067E−03 7,39604E−03 3,33067E−16 2,71008E−02 8,56181E−03

f 6 1,29208E−03 3,19030E−04 3,07486E−04 2,03633E−02 3,63870E−03

f 7 −6,61048E+00 −5,08767E+00 −1,04029E+01 −1,83759E+00 3,70973E+00

Numbers in bold are the best values

Table 13 Statistical results CLSA-II-Iterative map

Function Average Median Best Worst SD

f 1 3,56160E−15 4,61766E−17 1,57477E−19 7,94186E−14 1,44784E−14

f 2 2,31769E−03 4,66808E−05 2,85434E−08 4,93428E−02 9,15564E−03

f 3 3,52068E+01 1,46771E+01 1,83164E+00 9,72907E+01 3,23584E+01

f 4 7,73413E+01 8,00940E+01 5,07428E+01 1,07455E+02 1,41746E+01

f 5 8,20558E−03 3,69802E−03 3,33067E−16 3,43621E−02 1,06411E−02

f 6 4,82155E−04 3,14065E−04 3,07486E−04 1,59405E−03 3,53823E−04

f 7 −8,35033E+00 −1,04029E+0 1 −1,04029E+01 −2,76590E+00 3,21319E+00

Numbers in bold are the best values

Table 14 Statistical results CLSA-II-Liebovitch map

Function Average Median Best Worst SD

f 1 2,61575E−12 8,05928E−17 1,01135E−18 7,76040E−11 1,41639E−11

f 2 4,42543E−03 6,44219E−05 1,42819E−09 4,12422E−02 1,13331E−02

f 3 4,15359E+01 2,66009E+01 3,81531E−01 8,83681E+01 3,27934E+01

f 4 9,23096E+01 9,26698E+01 5,47239E+01 1,25364E+02 1,88201E+01

f 5 1,13021E−02 7,39604E−03 4,44089E−16 6,33896E−02 1,59730E−02

f 6 4,62817E−04 3,09163E−04 3,07486E−04 1,33985E−03 3,40398E−04

f 7 −7,38843E+00 −1,04029E+01 −1,04029E+01 −2,76590E+00 3,34298E+00

Numbers in bold are the best values

Table 15 Statistical results CLSA-II-Logistic map

Function Average Median Best Worst SD

f 1 2,93823E−14 1,26207E−17 4,79079E−21 8,15261E−13 1,48820E−13

f 2 2,33885E−03 2,21641E−05 2,60218E−07 2,54997E−02 6,34494E−03

f 3 4,86728E+01 6,69772E+01 3,87150E−04 1,39432E+02 3,95326E+01

f 4 7,99614E+01 7,41243E+01 5,87025E+01 1,15415E+02 1,60548E+01

f 5 8,10769E−03 1,48764E−12 0,00000E+00 5,86220E−02 1,34361E−02

f 6 5,19792E−04 3,26812E−04 3,07486E−04 1,59405E−03 4,15833E−04

f 7 −7,66024E+00 −1,04029E+01 −1,04029E+01 −1,83759E+00 3,27229E+00

Numbers in bold are the best values
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Table 16 Statistical results CLSA-II-Piecewise map

Function Average Median Best Worst SD

f 1 4,54043E−13 1,16100E−15 1,37735E−18 7,19434E−12 1,46050E−12

f 2 8,53257E−03 2,17026E−04 2,69835E−09 9,85295E−02 2,10864E−02

f 3 6,20644E+01 6,80233E+01 4,39400E−01 1,92583E+02 5,24975E+01

f 4 7,83377E+01 7,61149E+01 4,67661E+01 1,19395E+02 1,82238E+01

f 5 6,31618E−03 1,94050E−10 2,22045E−16 6,13431E−02 1,16534E−02

f 6 4,22459E−04 3,17385E−04 3,07486E−04 1,23915E−03 2,75753E−04

f 7 −7,61462E+00 −1,04029E+01 −1,04029E+01 −1,83759E+00 3,54089E+00

Numbers in bold are the best values

Table 17 Statistical results CLSA-II-Sine map

Function Average Median Best Worst SD

f 1 2,69910E−12 1,50436E−16 2,32973E−19 7,97957E−11 1,45618E−11

f 2 6,52482E−04 3,47097E−05 4,00753E−08 9,24310E−03 1,89028E−03

f 3 6,47270E+01 7,41109E+01 6,22410E−01 1,66800E+02 4,45258E+01

f 4 8,11222E+01 8,30789E+01 4,37781E+01 1,20390E+02 1,84866E+01

f 5 7,13026E−03 2,15894E−12 0,00000E+00 4,89056E−02 1,10651E−02

f 6 4,61268E−04 3,09520E−04 3,07486E−04 1,59405E−03 3,69687E−04

f 7 −7,33683E+00 −7,76588E+00 −1,04029E+01 −2,76590E+00 3,19284E+00

Numbers in bold are the best values

Table 18 Statistical results
CLSA-II-Singer map

Function Average Median Best Worst SD

f 1 3,37243E−15 6,85045E−17 1,60406E−20 4,07910E−14 8,69388E−15

f 2 2,52182E−04 3,22649E−05 2,83682E−09 2,27122E−03 5,16415E−04

f 3 4,97095E+01 2,65028E+01 2,32082E+00 1,49826E+02 3,99856E+01

f 4 6,30547E+01 6,36773E+01 3,98038E+01 9,55158E+01 1,43387E+01

f 5 4,84374E−03 1,57874E−13 1,11022E−16 4,42682E−02 8,77602E−03

f 6 5,00866E−04 3,15456E−04 3,07486E−04 1,36593E−03 3,56878E−04

f 7 −6,92217E+00 −5,12882E+00 −1,04029E+01 -2,76590E+00 3,16290E+00

Numbers in bold are the best values

of results for multimodal and non-separable functions, such
as CLSA-II for f 5 and f 6, and CLSA-I for f 7.

Tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 pro-
vide a statistical description of the simulations by comparing
the results obtained by CLSA-II with LSA. The results dis-
played show the average, the median, the best results, worst
results, and the standard deviation of the best fitness costs for
100 runs. These results show that the use of chaotic series
for LSA significantly improves performance.

After an evaluation of the different values presented in the
previous tables we can see that except for Gauss mouse map
and tent map, the other maps in CLSA-II produce averages
higher than LSA for f 1. For f 2 all chaotic maps show bet-
ter results than LSA for the average and the best obtained.
For f 3, the performance is comparable, the best average is
obtained by iterative map and the best is provided by logistic
map. For f 4, both Singer map and sinusoidal map perform
better than LSA in terms of average, the results however are

similar. For f 5, all maps except Liebovitch map offer better
results than LSA for the average of the best runs. For f 6,
Sinusoidal map outperforms LSA in terms of average while
Gauss mouse map offers the best performance for f 7.

The results presented in the previous tables are confirmed
by Figs. 7, 8, 2, 3, 4, 5 and 6. Hence, we can see that there
is always a chaotic map that allows to have the best average
and the best result for each function compared to the standard
version of LSA. Moreover, we can notice that for certain
functions like f 1, f 2, f 3, and f 5 the median obtained by
some chaotic maps are much superior to the median obtained
by LSA, and the interquartile range is smaller for thesemaps.

8 Conclusion

The use of chaos theory is one of the techniques that improve
the performance ofmetaheuristics. In this study, chaotic vari-
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Table 19 Statistical results CLSA-II-Sinusoidal map

Function Average Median Best Worst SD

f 1 3,63092E−12 5,59250E−16 7,52654E−20 1,06040E−10 1,93472E−11

f 2 1,29934E−02 1,07194E−04 9,90233E−09 2,20841E−01 4,85021E−02

f 3 6,35959E+01 6,87325E+01 8,36391E−02 2,07375E+02 5,47706E+01

f 4 6,24502E+01 5,92000E+01 4,17882E+01 1,14420E+02 1,46524E+01

f 5 7,54256E−03 7,39604E−03 2,22045E−16 4,66562E−02 1,11865E−02

f 6 3,54911E−04 3,10483E−04 3,07486E−04 1,33256E−03 1,86177E−04

f 7 −7,80547E+00 −1,04029E+01 −1,04029E+01 −1,83759E+00 3,31799E+00

Numbers in bold are the best values

Table 20 Statistical results CLSA-II-Tent map

Function Average Median Best Worst SD

f 1 7,87304E−10 2,04595E−16 1,84061E−19 2,35838E−08 4,30558E−09

f 2 1,98845E−03 1,78853E−04 1,36775E−08 1,48186E−02 4,30090E−03

f 3 5,88672E+01 2,66457E+01 1,92619E+00 2,36913E+02 5,78498E+01

f 4 7,59484E+01 7,16369E+01 5,07428E+01 1,26359E+02 1,61816E+01

f 5 8,28387E−03 7,39604E−03 1,11022E−16 3,92602E−02 1,01050E−02

f 6 5,78587E−04 3,42061E−04 3,07486E−04 1,59405E−03 4,79374E−04

f 7 −8,03287E+00 −1,04029E+01 −1,04029E+01 −1,83759E+00 3,44603E+00

Numbers in bold are the best values

Fig. 2 Variation in result for function f 1
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Fig. 3 Variation in result for function f 2

Fig. 4 Variation in result for function f 3
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Fig. 5 Variation in result for function f 4

Fig. 6 Variation in result for function f 5
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Fig. 7 Variation in result for function f 6

Fig. 8 Variation in result for function f 7
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ants of Lightning Search Algorithm were proposed. Three
of the five variants proposed, for instance CLSA-II, CLSA-
IV, and CLSA-V, significantly improves the results obtained,
while other variants are able to produce good results for par-
ticular functions such as the CLSA-I algorithm for Shekel
7 function. We have chosen to adopt a variant that seems to
provide the best results, e.g CLSA-II, which aims to tune
lead projectile. According to the results presented based on
two metrics which are success rate and statistical indicators
(average, standard deviation ...), introducing a chaotic value
generator improves the success rate, optimality and quality
of the results, especially for multimodal and non-separable
functions, by escaping the local optima. The advantages
offered using chaos theory and the promising results encour-
age us to adopt this technique with other metaheuristics and
test through experiments the impact of the modified param-
eters in a distributed or parallel way as well. This is our
short-term objective. Furthermore, we aim to investigate the
efficiency of combining metaheuristics with chaos theory to
solve real world engineering problems. Finally, in this study,
we adopted the general version of LSA. Therefore, we will
explore in future work, the impact of using other variants of
LSA with the chaos theory.
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