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Abstract
This paper investigates an elliptic entropy of uncertain random variables and its application in the area of portfolio selection.
We first define the elliptic entropy to characterize the uncertainty of uncertain random variables and give some mathematical
properties of the elliptic entropy. Then we derive a computational formula to calculate the elliptic entropy of function of
uncertain random variables. Furthermore, we use the elliptic entropy to characterize the risk of investment and establish a
mean-entropy portfolio selection model, in which the future security returns are described by uncertain random variables.
Based on the chance theory, the equivalent form of the mean–entropy model is derived. To show the performance of the
mean–entropy portfolio selection model, several numerical experiments are presented. We also numerically compare the
mean–entropy model with the mean–variance model, the equi-weighted portfolio model, and the most diversified portfolio
model by using three kinds of diversification indices. Numerical results show that the mean-entropy model outperforms the
mean–variance model in selecting diversified portfolios no matter of using which diversification index.

Keywords Uncertainty theory · Elliptic entropy · Uncertain random variable · Chance theory · Mean-entropy model ·
Diversification index

1 Introduction

Shannon (1949) first initialized the entropy of random
variables in logarithm form. After that, several scholars
investigated the entropy in different angles. For example,
Kullback and Leibler (1951) presented relative entropy to
characterize the degree of difference between two random
variables. Jaynes (1957) proposed the principle of maximum
entropy and selected the probability distribution with max-
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imum entropy from an infinite probability distribution that
satisfied the given expected value and variance. Carbone and
Stanley (2007) calculated the Shannon entropy of time series
by using probability density function of long-range corre-
lation cluster. Ponta and Carbone (2018) used the entropy
measurement to implement the time series of prices and fluc-
tuations in financial markets.

In the above literature of investigating entropy, a key
theoretical assumption is that the indetermination is char-
acterized by random variables (Gao et al. 2017; Rao et al.
2020; Rao and Yan 2020; Xiao et al. 2020). However, sev-
eral evidences suggest that the probability distribution cannot
always be used for characterizing the indeterminate phe-
nomena (Liu 2009). To fill this research gap, Liu (2007)
developed uncertainty theory to describe this type of indeter-
minate phenomena. Up to now, the uncertainty theory has
gained considerable achievements in both theoretical and
practical aspects (Zhang et al. 2016; Chen et al. 2017a, b;
Cheng et al. 2017; Liu et al. 2017; Gao and Ralescu 2020).
Interested readers may consult the book of Liu (2010) about
the comprehensive development of uncertainty theory.

Within the framework of uncertainty theory, Liu (2009)
first put forward the entropy of uncertain variables in log-
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arithm form. After that, lots of scholars have done much
work in this emerging field. Dai and Chen (2012) obtained
a computational formula to calculate the entropy. Chen
et al. (2012) investigated the cross-entropy to measure the
divergence degree of uncertain variables and proposed the
minimum cross-entropy principle. As a supplement of log-
arithm entropy, several types of entropies for uncertain
variables have been investigated. For example, Yao et al.
(2013) studied the sine entropy, Dai (2018) proposed the
quadratic entropy, Gao et al. (2018) gave a generalized defi-
nition of cross-entropy for uncertain variables via uncertainty
distributions.

With the complex process of the decision-making system,
randomness anduncertainty need to be considered simultane-
ously (Mehralizade et al. 2020). Liu (2013a) put forward the
chance theory to handle the complex decision-making sys-
tem in which randomness and uncertainty coexisted. After
that, several scholars have applied the chance theory into
many areas, such as network optimization (Chen et al. 2018a;
Jia et al. 2018), portfolio selection (Qin 2015; Ahmadzade
and Gao 2020). Within the framework of chance theory,
Sheng et al. (2017) first defined the entropy of uncertain ran-
dom variables. Ahmadzade et al. (2017) proposed the partial
entropy for uncertain random variables. Since then, many
researchers have investigated the entropies for uncertain ran-
dom variables from different perspectives. Ahmadzade et al.
(2018) first put forward partial triangular entropy, and then
applied the partial triangular entropy into the portfolio selec-
tion problem based on the chance theory. Based on absolute
value function, Jia et al. (2018) investigated a new type of
cross-entropy for uncertain random variables and discussed
some mathematical properties of this new type of cross-
entropy.

Entropy, as a quantitative estimate of diversity, has been
widely applied in the area of portfolio selection (Deng and
Pan 2018; Yao and Wang 2018; Li et al. 2020) and financial
market (Zhou et al. 2013; Ponta and Carbone 2018). Huang
(2008) used the entropy to characterize the risk and proposed
two mean-entropy models with the framework of credibility
measure. Huang (2012) introduced the proportion entropy to
establish the mean–variance and mean–semivariance diver-
sificationmodels with credibilistic measure. Kar et al. (2017)
established a multi-objective uncertain portfolio selection
model by treating average return as expected value and
divergence among security returns as cross-entropy. Based
on the Minkowski measure, Yue and Wang (2017) inves-
tigated the third and fourth moments for fuzzy multi-
objective portfolio selection model. Within the framework
of goal programming, Aksarayli and Pala (2018) proposed
a mean–variance–skewness–kurtosis-entropy for portfolio
optimization. Deng et al. (2018a) established a fuzzy tri-
objective mean–semivariance–entropy portfolio model with
fuzzy return rates. Deng et al. (2018b) used the entropy to

measure risk and proposed a fuzzy mean-entropy portfolio
models with transaction costs. Within the framework of mul-
tiobjective optimization, Chen and Xu (2019) investigated a
mean–semivariance–entropy model for the portfolio selec-
tion problem with fuzzy returns. Based on the optimistic and
pessimistic criteria, Gupta et al. (2019) proposed two intu-
itionistic fuzzy portfolio selection models by considering the
variance, skewness, and entropy.

In recent years, some researchers have investigated the
multi-periodportfolio selectionbasedonentropy. For instance,
taking return, transaction cost, risk and diversification degree
of portfolio into consideration, Zhang et al. (2012) pre-
sented amean–semivariance–entropymodel formulti-period
portfolio selection with fuzzy information. Considering that
entropy can be seen as a measure of risk, Mehlawat (2016)
investigated the multi-objective multi-period portfolio selec-
tion problems with fuzzy information. Liu et al. (2018)
discussed a mean–semivariance–skewness model for multi-
period fuzzy portfolio selection with considering the pro-
portion entropy. Zhang and Li (2019) studied the impact of
semi-entropy on the diversified multi-period portfolio selec-
tion with background risk. Except entropy, there are some
other indicators to measure risk, such as high-order moment
(Chen et al. 2017d), skewness (Chen et al. 2018b), semi-
variance (Chen et al. 2017c, 2019), risk parity (Cesarone
et al. 2020), conditional value-at-risk (Cesarone and Colucci
2018), absolute deviation (Zhang2016, 2019), semi-absolute
deviation (Zhang 2017; Yue et al. 2019), quadratic deviation
(Wu et al. 2020), and semi-entropy (Zhou et al. 2016).

Although the existing literature has investigated the
entropy application in the portfolio optimization, there still
exists some research gap. For example, the existing literature
didn’t consider the role of elliptic entropy in the portfo-
lio selection problem in which the future returns can be
characterized as uncertain random variables. Thus, propos-
ing a model that can exactly provide practical guidance for
the stock market is significant. This paper presents elliptic
entropy of uncertain random variables and provides some
mathematical properties of the elliptic entropy. Moreover,
we put forward a computational formula to calculate the
elliptic entropy of function of uncertain random variables.
Based on the definition of elliptic entropy, we establish a
mean-entropy portfolio selection model in which the future
returns are described by uncertain random variables. Finally,
we give some numerical examples to show the performance
of the mean-entropy portfolio selection model.

Themain contributions of this paper can be summarized in
three aspects. First, we give the definition of elliptic entropy
for uncertain random variables and enrich the risk char-
acterization index of uncertain random variables. Second,
regarding the security returns as uncertain random variables,
we establish a mean-entropy model for portfolio selection
problem and derive the equivalent form of the proposed
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model. Finally, we numerically compare the mean-entropy
model with the mean–variance model, the equi-weighted
portfolio model, and the most diversified portfolio model
by using three kinds of diversification indices, which are
the complements of the Herfindahl index, the Rosenbluth
index, and the comprehensive concentration index. Numer-
ical results show that the mean-entropy model outperforms
the traditional mean–variance model in selecting diversified
portfolios regardless of which diversification index we use.

This paper is organized as follows. Section 2 presents
some preliminaries about the uncertainty theory and chance
theory. Section 3 puts forward the concept of elliptic entropy
of uncertain random variables. Section 4 gives the computa-
tional formula for the elliptic entropy of function of uncertain
randomvariables. In Sect. 5,we apply the elliptic entropy into
portfolio optimization and conduct somenumerical examples
to show the application of elliptic entropy in the area of port-
folio selection.We present concluding remarks together with
suggestions about further research in Sect. 6.

2 Preliminary

In this section, we introduce some basic concepts and results
about the uncertainty theory and chance theory, respectively.
The former is a branch of axiomatic mathematics for dealing
with belief degrees (Liu 2007), and the latter is a mathemat-
ical methodology for handling complex systems in which
uncertainty and randomness coexist (Liu 2013a).

2.1 Uncertainty theory

Assume thatΓ is a nonempty set andL represents aσ -algebra
overΓ . Elements ofL are called events. Liu (2007) presented
an axiomatic uncertain measureM{Λ} to indicate the belief
degree that uncertain event Λ occurs, where the uncertain
measureM: L → [0, 1] satisfies the following three axioms
(Liu 2007):
Axiom 1M{Γ } = 1 for the universal set Γ .
Axiom 2M{Λ} +M{Λc} = 1 for any event Λ, where Λc is
the complementary set of Λ.

Axiom 3For every countable sequenceof eventsΛ1,Λ2, . . . ,

we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M{Λi }.

The triplet (Γ ,L,M) is regarded as uncertainty space.
The product uncertain measure M on the product σ -algebra
Lwas defined by Liu (2009) as the following product axiom:
Axiom 4 Let (Γk,Lk,Mk) be uncertainty spaces for k =
1, 2, . . . . Then the product uncertain measureM is an uncer-

tain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k =
1, 2, . . . , respectively.

Definition 2.1 (Liu 2007) An uncertain variable is a function
ξ(γ ) from an uncertainty space (Γ ,L,M) to the set of real
numbers such that {ξ(γ ) ∈ B} is a measurable function of
γ ∈ Γ for any Borel set B of �.

Definition 2.2 (Liu 2007) The uncertainty distribution Φ of
an uncertain variable ξ is defined by

Φ(x) = M {ξ ≤ x}

for any x ∈ �.

Example 2.3 (Liu 2010)An uncertain variable ξ is called nor-
mal if the ξ has normal uncertainty distribution

Φ(x) =
(
1 + exp

(
π(e − x)√

3σ

))−1

, x ∈ �

denoted by N (e, σ ), where e and σ are real numbers with
σ > 0, which is shown in Fig. 1 (Liu 2010). The inverse
uncertainty distribution of N (e, σ ) is shown as

Φ−1(α) = e + σ
√
3

π
ln

α

1 − α
.

Example 2.4 (Liu 2010) An uncertain variable ξ is called lin-
ear if the ξ has linear uncertainty distribution

Φ(x) =
⎧⎨
⎩
0, if x ≤ a
(x − a)/(b − a), if a < x ≤ b
1, if x > b

denoted by I(a, b)(a < b), which is shown in Fig. 2 (Liu
2010). The inverse uncertainty distribution of I(a, b) is

Φ−1(α) = (1 − α)a + αb.

Fig. 1 Normal uncertainty distribution
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Fig. 2 Linear uncertainty distribution

Fig. 3 Lognormal uncertainty distribution

Example 2.5 (Liu 2010)An uncertain variable ξ is called log-
normal if lnx is a normal uncertain variableN (e, σ ). In other
words, a lognormal uncertain variable has an uncertainty dis-
tribution

Φ(x) =
(
1 + exp

(
π(e − lnx)√

3σ

))−1

, x ≥ 0

denoted by LOGN (e, σ ), where e and σ are real numbers
with σ > 0, which is shown in Fig. 3 (Liu 2010). The inverse
uncertainty distribution of LOGN (e, σ ) is shown as

Φ−1(α) = exp

(
e + σ

√
3

π
ln

α

1 − α

)
.

2.2 Chance theory

In many cases, uncertainty and randomness usually appear
simultaneously in a complex system. To describe this phe-
nomenon, Liu (2013a) proposed the chance theory, which is
a mathematical methodology for modeling complex systems
in which uncertainty and randomness coexist.

Let (Γ ,L,M) be an uncertainty space and (Ω,A,Pr) be
a probability space. The product (Γ ,L,M) × (Ω,A,Pr) is
said to be a chance space. Any element Θ in L × A is said
to be an event in the chance space.

Definition 2.6 (Liu 2013a) The chance measure of event Θ

is defined as

Ch{Θ} =
∫ 1

0
Pr{ω ∈ Ω | M{γ ∈ Γ | (γ, ω) ∈ Θ} ≥ x}dx .

Integrating uncertainty and randomness, an uncertain ran-
dom variable was introduced by Liu (2013a) as follows.

Definition 2.7 (Liu 2013a) An uncertain random variable is
a measurable function ξ from a chance space (Γ ,L,M) ×
(Ω,A,Pr) to the set of real numbers, i.e., {ξ ∈ B} is an event
in L × A for any Borel set B of real numbers.

Definition 2.8 (Liu 2013a) Let ξ be an uncertain random
variable. Then its chance distribution is defined by

Φ(x) = Ch{ξ ≤ x},∀x ∈ �.

Liu (2013b) provided the following operation law to cal-
culate the chance distribution of uncertain random variable.

Theorem 2.9 (Liu 2013b) Assume that η1, η2, . . . , ηm are
independent random variables with probability distributions
Ψ1, Ψ2, . . . , Ψm, respectively, and assume that τ1, τ2, . . . , τn
are independent uncertain variables. Then the uncertain ran-
dom variable ξ = f (η1, η2, . . . , ηm, τ1, τ2, . . . , τn) has a
chance distribution

Φ(x) =
∫

�m
F(x; y1, y2, . . . , ym)dΨ1(y1)dΨ2(y2)

. . . dΨm(ym),

where F(x; y1, y2, . . . , ym) is the uncertainty distribution
of f (y1, y2, . . . , ym, τ1, τ2, . . . , τn) for any real numbers
y1, y2, . . . , ym .

Definition 2.10 (Liu 2013b) Let ξ be an uncertain random
variable. Then its expected value is defined as

E[ξ ] =
∫ +∞

0
Ch{ξ ≥ x}dx

−
∫ 0

−∞
Ch{ξ ≤ x}dx

provided that at least one of the two integrals is finite.

Theorem 2.11 (Liu 2013b) Let η1, η2, . . . , ηm be inde-
pendent random variables with probability distributions
Ψ1, Ψ2, . . . , Ψm, and τ1, τ2, . . . , τn be independent uncer-
tain variables with uncertainty distributionsΥ1, Υ2, . . . , Υn,
respectively. Then the uncertain random variable ξ =
f (η1, η2, . . . , ηm, τ1, τ2, . . . , τn) has an expected value

E[ξ ] =
∫

�m

∫ 1

0
f
(
y1, y2, . . . , ym, Υ −1

1 (α), Υ −1
2 (α),
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. . . , Υ −1
n (α)

)
dαdΨ1(y1)d

Ψ2(y2) . . . dΨm(ym)

provided that the function f is strictly increasing or decreas-
ing with respect to τ1, τ2, . . . , τn.

3 Elliptic entropy of uncertain random
variable

The purpose of this section is to consider a new type of
entropy called elliptic entropy for uncertain random variable,
as well as provide some mathematical properties of the ellip-
tic entropy. In the chance theory, Ahmadzade et al. (2017)
gave the definition of entropy for uncertain random variables
as follows.

Definition 3.1 (Ahmadzade et al. 2017) Suppose that η1,
. . ., ηm are independent random variables with probability
distributions Ψ1, . . ., Ψm , respectively, and τ1, . . ., τn are
uncertain variables. Entropy of uncertain random variable
ξ = f (η1, . . . , ηm, τ1, . . . , τn) is defined as

H [ξ ] =
∫

�m

∫ +∞

−∞
S(F(x, y1, . . . , ym))dxd

Ψ1(y1) . . . dΨm(ym),

where S(t) = −t lnt−(1−t)ln(1−t) and F(x, y1, . . . , ym) is
the uncertainty distribution of uncertain variable f (y1, . . . ,
ym, τ1, . . . , τn) for any real numbers y1, . . . , ym .

Following the results of Ahmadzade et al. (2017), we
define the elliptic entropy of uncertain random variable as
follows.

Definition 3.2 Suppose that η1, η2, . . ., ηm are indepen-
dent random variables with probability distributions Ψ1,
Ψ2, . . ., Ψm , respectively, and τ1, τ2, . . ., τn are uncer-
tain variables. Elliptic entropy of uncertain random variable
ξ = f (η1, . . . , ηm, τ1, . . . , τn) is defined as

H [ξ ] =
∫

�m

∫ +∞

−∞
g(F(x, y1, . . . , ym))dxd

Ψ1(y1) . . . dΨm(ym),

where g(t) = 2k
√
t(1 − t) and F(x, y1, . . . , ym) is the

uncertainty distribution of uncertain variable f (η1, . . . ,
ηm, τ1, . . . , τn) for any real numbers y1, . . . , ym .

Note that g(t) = 2k
√
t(1 − t) (shown in Fig. 4) is strictly

increasing in [0, 0.5] and decreasing in [0.5, 1], and k is a
given number determined by the decision-maker. Moreover,
k is the half axis of ellipse and takes values on the interval
(0,+∞). From Fig. 4, we can see that g(t) is a function of

Fig. 4 The function g(t)

k. Some special entropies can be induced for a given k. For
instance, when k = 1

2 , the elliptic entropy becomes the circle
entropy shown in Ahmadzade et al. (2017).

Theorem 3.3 Let η1, η2, . . ., ηm be independent random
variables with probability distributions Ψ1, Ψ2, . . ., Ψm,
respectively, and τ1, τ2, . . ., τn be independent uncertain vari-
ables. For a measurable function f , the uncertain random
variable ξ = f (η1, . . . , ηm, τ1, . . . , τn) has elliptic entropy

H [ξ ] = k
∫

�m

∫ +∞

−∞
F−1(α, y1, . . . , ym)

2α − 1√
α(1 − α)

dαd

Ψ1(y1) . . . dΨm(ym).

Proof Let g(α) = 2k
√

α(1 − α). Then g(α) is a derivable
function with g′(α) = k 1−2α√

α(1−α)
. Since

g(F(x, y1, . . . , ym)) =
∫ F(x,y1,...,ym )

0
g′(α)dα

= −
∫ 1

F(x,y1,...,ym )

g′(α)dα,

we have

H [ξ ] =
∫

�m

∫ +∞

−∞
g(F(x, y1, . . . , ym))dxd

Ψ1(y1) . . . dΨm(ym)

=
∫

�m

∫ 0

−∞

∫ F(x,y1,...,ym )

0
g′(α)dαdxd

Ψ1(y1) . . . dΨm(ym)

−
∫

�m

∫ +∞

0

∫ 1

F(x,y1,...,ym )

g′(α)dαdxd

Ψ1(y1) . . . dΨm(ym).
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It follows from Fubini theorem (Chen et al. 2012) that

H [ξ ] =
∫

�m

∫ F(0,y1,...,ym )

0

∫ 0

F−1(α,y1,...,ym )

g′(α)

dxdαdΨ1(y1) . . . dΨm(ym)

−
∫

�m

∫ 1

F(0,y1,...,ym )

∫ F−1(α,y1,...,ym )

0
g′(α)

dxdαdΨ1(y1) . . . dΨm(ym)

= −
∫

�m

∫ F(0,y1,...,ym )

0
F−1(α, y1, . . . , ym)g′(α)

dαdΨ1(y1) . . . dΨm(ym)

−
∫

�m

∫ 1

F(0,y1,...,ym )

F−1(α, y1, . . . , ym)g′(α)

dαdΨ1(y1) . . . dΨm(ym)

= −
∫

�m

∫ 1

0
F−1(α, y1, . . . , ym)g′(α)

dαdΨ1(y1) . . . dΨm(ym)

= k
∫

�m

∫ 1

0
F−1(α, y1, . . . , ym)

2α − 1√
α(1 − α)

dαdΨ1(y1) . . . dΨm(ym).

Thus the proof is verified. ��
We next summarize some mathematical properties of

elliptic entropy of uncertain random variables.

Theorem 3.4 Let τ be an uncertain variable with uncertainty
distribution function Φ and η be a random variable with
probability distribution function Ψ . If ξ = τη, then H [ξ ] =
H [τ ]E[η].
Proof If ξ = τη, then F−1(α, y) = Φ−1(α)y. Therefore, by
using Theorem 3.3, we obtain

H [ξ ] = k
∫

�

∫ 1

0
Φ−1(α)y

2α − 1√
α(1 − α)

dαdΨ (y)

= k
∫ 1

0
Φ−1(α)

2α − 1√
α(1 − α)

dα
∫

�
ydΨ (y)

= H [τ ]E[η].

Thus the proof is completed. ��
Theorem 3.5 Let τ be an uncertain variable with uncer-
tainty distribution function Φ and η be a random variable
with probability distribution function Ψ . If ξ = η + τ , then
H [ξ ] = H [τ ].
Proof If ξ = η + τ , then F−1(α, y) = Φ−1(α) + y. There-
fore, by using Theorem 3.3, we obtain

H [ξ ] = k
∫

�

∫ 1

0
(Φ−1(α) + y)

2α − 1√
α(1 − α)

dαdΨ (y)

= k
∫

�

∫ 1

0
Φ−1(α)

2α − 1√
α(1 − α)

dαdΨ (y)

+ k
∫

�

∫ 1

0
y

2α − 1√
α(1 − α)

dαdΨ (y)

= k
∫ 1

0
Φ−1(α)

2α − 1√
α(1 − α)

dα
∫

�
dΨ (y)

+ k
∫ 1

0

2α − 1√
α(1 − α)

dα
∫

�
ydΨ (y)

= H [τ ].

Thus the proof is completed. ��

4 Elliptic entropy of function of uncertain
random variable

Our attention of this section is to discuss the elliptic entropy
of function of uncertain random variables, and then verify
the positive linearity property of elliptic entropy. Follow-
ing Jia et al. (2018) and Sheng et al. (2018) in the area of
chance theory and Barberis (2000), Brandt et al. (2005),
Brandt and Santa-Clara (2006), and Martellini and Urose-
vic (2006) in financial market, we consider that the random
variables and uncertain variables are both independent in the
elliptic entropy of function of uncertain random variables.

Theorem 4.1 Let η1, η2, . . ., ηn be independent random vari-
ables, and τ1, τ2, . . ., τn be independent uncertain variables.
Suppose that

ξ1 = f1(η1, τ1), ξ2 = f2(η2, τ2), . . . , ξn = fn(ηn, τn).

If f (x1, x2, . . . , xn) is strictly increasing with respect to
x1, x2, . . . , xm and strictly decreasing with respect
xm+1, xm+2, . . . , xn, then ξ = f (η1, . . . , ηm, τ1, . . . , τn)

has the elliptic entropy

H [ξ ] = k
∫

�m

∫ 1

0
f
(
F−1
1 (α, y1), . . . , F

−1
m (α, ym),

F−1
m+1(1 − α, ym+1), . . . , F

−1
n (1 − α, yn)

)
2α − 1√
α(1 − α)

dαdΨ1(y1) . . . dΨn(yn),

where F−1
i (α, yi ) is the inverse uncertainty distribution of

uncertain variable fi (τi , yi ) for any real number yi , i =
1, 2, . . . , n.

Proof Basedon themathematical properties of inverse uncer-
tainty distribution of uncertain variable shown in Liu (2010),
we can obtain that

F−1(α, y1, . . . , ym) = f
(
F−1
1 (α, y1), . . . , F

−1
m (α, ym),
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F−1
m+1(1 − α, ym+1), . . . , F

−1
n (1 − α, yn)

)
.

Applying Theorem 3.3, this theorem is verified. ��
Based on Theorem 4.1, we next present two corollaries

for the elliptic entropy with strictly increasing or decreasing
functions.

Corollary 4.2 Let η1, η2, . . ., ηn be independent random vari-
ables, and τ1, τ2, . . ., τn be independent uncertain variables.
Suppose that

ξ1 = f1(η1, τ1), ξ2 = f2(η2, τ2), . . . , ξn = fn(ηn, τn).

If f (x1, x2, . . . , xn) is strictly increasing with respect to
x1, x2, . . . , xn, then ξ = f (η1, η2, . . . , τn) has an elliptic
entropy

H [ξ ] = k
∫

�m

∫ 1

0
f (F−1

1 (α, y1), F
−1
2 (α, y2), . . . , F

−1
n (α, yn))

2α − 1√
α(1 − α)

dαdΨ1(y1) . . . dΨn(yn).

Corollary 4.3 Let η1, η2, . . ., ηn be independent random vari-
ables, and τ1, τ2, . . ., τn be independent uncertain variables.
Suppose that

ξ1 = f1(η1, τ1), ξ2 = f2(η2, τ2), . . . , ξn = fn(ηn, τn).

If f (x1, x2, . . . , xn) is strictly decreasing with respect to
x1, x2, . . . , xn, then ξ = f (η1, η2, . . . , τn) has an elliptic
entropy

H [ξ ] = k
∫

�m

∫ 1

0
f (F−1

1 (1 − α, y1), F
−1
2 (1 − α, y2), . . . ,

F−1
n (1 − α, yn))

2α − 1√
α(1 − α)

dαdΨ1(y1) . . . dΨn(yn).

According to the results shown in Theorem 4.1, Corol-
lary 4.2, andCorollary 4.3, we present the next theorem about
the computational formula to calculate the elliptic entropy
of function and provide the theoretical basis for the mean-
entropy portfolio selection model.

Theorem 4.4 Letη1 andη2 be independent randomvariables
with probability distribution functions Ψ1 and Ψ2, respec-
tively, and τ1 and τ2 be independent uncertain variables with
uncertainty distribution functions Φ1 and Φ2, respectively.
If ξ1 = η1 + τ1 and ξ2 = η2 + τ2, then

H [ξ1ξ2] = H [τ1τ2] + H [τ2]E[η1] + H [τ1]E[η2].

Proof It is clear that F−1
1 (α, y1) = y1 + Φ−1

1 (α) and
F−1
2 (α, y2) = y2 + Φ−1

2 (α). Based on the results shown
in Theorem 4.1, we have

H [ξ ] = k
∫

�2

∫ 1

0
F−1
1 (α, y1)F

−1
2 (α, y2)

2α − 1√
α(1 − α)

dαdΨ1(y1)dΨ2(y2)

= k
∫

�2

∫ 1

0
(y1 + Φ−1

1 (α))(y2 + Φ−1
2 (α))

2α − 1√
α(1 − α)

dαdΨ1(y1)dΨ2(y2)

= k
∫

�2

∫ 1

0
Φ−1

1 (α)Φ−1
2 (α)

2α − 1√
α(1 − α)

dαdΨ1(y1)dΨ2(y2)

+ k
∫

�2

∫ 1

0
y1Φ

−1
2 (α)

2α − 1√
α(1 − α)

dαdΨ1(y1)dΨ2(y2)

+ k
∫

�2

∫ 1

0
y2Φ

−1
1 (α)

2α − 1√
α(1 − α)

dαdΨ1(y1)dΨ2(y2)

= k
∫ 1

0
Φ−1

1 (α)Φ−1
2 (α)

2α − 1√
α(1 − α)

dα
∫

�2
dΨ1(y1)dΨ2(y2)

+ k
∫ 1

0
Φ−1

2 (α)
2α − 1√
α(1 − α)

dα∫
�2

y1dΨ1(y1)dΨ2(y2)

+ k
∫ 1

0
Φ−1

1 (α)
2α − 1√
α(1 − α)

dα∫
�2

y2dΨ1(y1)dΨ2(y2)

= H [τ1τ2] + H [τ2]E[η1] + H [τ1]E[η2].

The next theorem summarizes the positive linearity prop-
erty for the elliptic entropy of uncertain random variables.

��

Theorem 4.5 (Positive linearity) Let η1 and η2 be indepen-
dent randomvariableswith probability distribution functions
Ψ1 and Ψ2 respectively, and τ1 and τ2 be independent uncer-
tain variables with uncertainty distribution functions Φ1

and Φ2, respectively. Suppose that ξ1 = f (η1, τ1) and
ξ2 = f (η2, τ2). Then for any real numbers a and b, we

123



1932 L. Chen et al.

have

H [aξ1 + bξ2] = |a|H [ξ1] + |b|H [ξ2].

Proof We prove this theorem by three steps.
Step 1 We prove H [aξ1] = |a|H [ξ1]. If a > 0, then

a f (τ1, y1) has an inverse uncertainty distribution

F−1(α, y1) = aF−1
1 (α, y1),

where F−1(α, y1) is the inverse uncertainty distribution of
f1(τ1, y1). It follows from Theorem 4.1 that

H [aξ ] = ak
∫

�

∫ 1

0
F−1
1 (α, y1)

2α − 1√
α(1 − α)

dαdΨ1(y1) = |a|H [ξ1].

If a < 0, then a f (τ1, y1) has an inverse uncertainty distribu-
tion

F−1(α, y1) = aF−1
1 (1 − α, y1).

It follows from Theorem 4.1 that

H [aξ ] = ak
∫

�

∫ 1

0
F−1
1 (1 − α, y1)

2α − 1√
α(1 − α)

dαdΨ1(y1)

= ak
∫

�

∫ 0

1
F−1
1 (α, y1)

1 − 2α√
α(1 − α)

d(−α)dΨ1(y1)

= −ak
∫

�

∫ 1

0
F−1
1 (α, y1)

2α − 1√
α(1 − α)

dαdΨ1(y1) = |a|H [ξ1].

Ifa = 0,we then immediately have H [aξ1] = 0 = |a|H [ξ1].
Thus we obtain H [aξ1] = |a|H [ξ1].

Step 2Weprove H [ξ1+ξ2] = H [ξ1]+H [ξ2].The inverse
uncertainty distribution of f1(τ1, y1) + f2(τ2, y2) is

F−1(α, y1, y2) = F−1(α, y1) + F−1(α, y2).

It follows from Theorem 4.1 that

H [ξ1 + ξ2] = k
∫

�2

∫ 1

0
(F−1

1 (α, y1) + F−1
2 (α, y2))

2α − 1√
α(1 − α)

dαdΨ1(y1)dΨ2(y2)

= k
∫

�2

∫ 1

0
F−1
1 (α, y1)

2α − 1√
α(1 − α)

dαdΨ1(y1)dΨ2(y2)

+ k
∫

�2

∫ 1

0
F−1
2 (α, y2)

2α − 1√
α(1 − α)

dαdΨ1(y1)dΨ2(y2)

= H [ξ1] + H [ξ2].

Step 3 For any real numbers a and b, combining Step 1
and Step 2, we derive

H [aξ1 + bξ2] = |a|H [ξ1] + |b|H [ξ2].

The theorem is proved. ��

5 Application to uncertain random portfolio
selection problem

In this section, we apply the elliptic entropy of uncertain ran-
dom variable into the portfolio selection problem. Old stocks
and new stocks have always coexisted in the real stock mar-
ket (Qin 2015; Qin et al. 2017). For old stocks, we can rely on
historical data to obtain the probability distribution. For new
stocks, however, we have to rely on experts’ estimations to
predict the security returns. Following Qin (2015), Qin et al.
(2017), Ahmadzade et al. (2018), and Ahmadzade and Gao
(2020), we employ the chance theory to investigate the opti-
mal portfolio selection problem in such a complex security
market.

In the traditional financial market, the returns on invest-
ment were quantified as expected value and risk as variance
(Qin 2015; Qin et al. 2017). However, several evidences indi-
cated that entropy is more general as an efficient measure to
characterize risk than variance (Huang 2012; Zhang et al.
2012; Kar et al. 2017; Chen and Xu 2019). Motivated by
the above observations, we establish an entropy optimization
model for the uncertain random portfolio selection problem,
in which the elliptic entropy is employed to reflect risk asso-
ciated with investment. For better understanding, Table 1
summarizes the notations used in the mean-entropy portfolio
selection model.

Let ξ1, ξ2, . . . , ξn be the independent uncertain random
return rates and x1, x2, . . . , xn be the investment propor-
tions in the securities. The aim of mean-entropy model is
to find out the most desirable portfolio by regarding the
expected value of the total return as the investment return and
using the entropy to measure the investment risk. Following
Huang (2008) and Huang (2012), we choose a portfolio with
maximum investment return under the condition of a given
tolerable risk level. Under this framework, the mean-entropy
model for uncertain random portfolio selection problem can
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Table 1 Summary of notations for the portfolio selection model

Notation Description

n The number of securities

i The index of securities, i = 1, 2, . . . , n

ξi The return rate of the security i

xi The investment proportion of the security i

F−1
i Inverse uncertainty distribution of the uncertain variable fi

γ The maximum entropy level

E Expected value operator

V Variance operator

H Entropy operator

be established as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maxx1,...,xn E[x1ξ1 + x2ξ2 + · · · + xnξn]
subject to:

H [x1ξ1 + x2ξ2 + · · · + xnξn] ≤ γ

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n,

(1)

where E is the expected value, H represents the elliptic
entropy, and γ denotes the maximum entropy level. The con-
straint H [x1ξ1 + x2ξ2 + · · · + xnξn] ≤ γ means that the
entropy value of the portfolio must be lower than or equal to
a predetermined safety level γ .

Let η1, η2, . . . , ηm be independent random variables with
probability distributions Ψ1, Ψ2, . . . , Ψm , and τ1, τ2, . . . , τn
be independent uncertain variables with uncertainty dis-
tributions Υ1, Υ2, . . . , Υn , respectively. We consider ξi =
fi (ηi , τi ) (i = 1, 2, . . . , n) as uncertain random variables,
F−1
i (α, yi ) as the inverse uncertainty distribution of the

uncertain variable fi (yi , τi ). According to Theorem 2.11,
we can transform the objective function into

E[x1ξ1 + x2ξ2 + · · · + xnξn]
=

n∑
i=1

xi

∫
�

∫ 1

0
F−1
i (α, yi )dαdΨi (yi ).

By using Theorem 4.1 and Theorem 4.5, we can transform
the entropy constraint into the following one:

n∑
i=1

xi

∫
�

∫ 1

0

2α − 1√
α(1 − α)

F−1
i (α, yi )dαdΨi (yi ) ≤ γ

k
.

Therefore, Model (1) can be converted into the equivalent
form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

maxx1,...,xn
∑n

i=1 xi
∫
�

∫ 1
0 F−1

i (α, yi )dαdΨi (yi )
subject to : ∑n

i=1 xi
∫
�

∫ 1
0

2α−1√
α(1−α)

F−1
i (α, yi )dαdΨi (yi ) ≤ γ

k

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n.

(2)

Note that we can directly solve Model (2), because it
is linear programming, which can be solved precisely by
MATLAB and other software. In the following, we present
three numerical examples to show the performance of the
mean-entropy portfolio selection Model (2). Example 5.1
presents the situation that the investor has 4 securities for
portfolio investment, where the risky returns are described
by uncertain random variables. Similar to Woerheide and
Persson (1993), we employ the complements of Herfind-
ahl index (Woerheide and Persson 1993), the Rosenbluth
index (Rosenbluth 1961), and the comprehensive concentra-
tion index (Horvath 1970) to characterize the diversification
degree of our mean-entropy model and other models such
as the mean-entropy model (Ahmadzade and Gao 2020),
the equi-weighted portfolio model (DeMiguel et al. 2009),
and the most diversified portfolio model (Choueifaty and
Coignard 2008; Choueifaty et al. 2013; Froidure et al. 2019).
Example 5.2 investigates the situation that the investor has
10 securities for portfolio investment. Example 5.3 presents
the situation in which the random returns are characterized
as normal random distribution and uncertain returns are char-
acterized as various uncertainty distributions such as linear,
normal, and lognormal, to show the robustness of results.
In other words, Example 5.3 shows that the performance
of our model does not depend on the distribution assump-
tion. Although any finite number of stocks can be considered,
we respectively choose 4 and 10 stocks in Example 5.1 and
Example 5.2 to reduce the complexity of the presentation.
The experiments are performed on a personal computer with
Windows 10 and Intel (R) Core (TM) i7-4790CPU 3.60GHz
and 2.0 GB memory. The numerical examples are imple-
mented in MATLAB 2017b.

Before processing the numerical examples, we first sum-
marize the three concentration indices, and then present three
diversification indices. Three types of concentration indices
are summarized as follows.

(1) Herfindahl index, which is the most widely used mea-
sure of economic concentration, takes the shares of the all
individual firms into account (Woerheide and Persson 1993).
The Herfindahl index is

HI =
n∑

i=1

x2i , (3)
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where xi (i = 1, 2, . . . , n) are the investment proportions in
the securities.

(2) Rosenbluth index ranks of firms as weights with secu-
rity holdings ranked in descending order by size with the
i-th firm receiving rank i (Rosenbluth 1961). The Rosen-
bluth index is

RI = 1

2
n∑

i=1

i xi

, (4)

where xi (i = 1, 2, . . . , n) are the investment proportions in
the securities.

(3)Comprehensive concentration index indicates the com-
bination of both discrete measures and summary measures
(Horvath 1970). The comprehensive concentration index is

CCI = x1 +
n∑

i=2

x2i [1 + (1 − xi )], (5)

where x1 is the proportion of the largest firm, xi , i =
2, 3, . . . , n are ranked in descending order.

Following Woerheide and Persson (1993), we employ the
complements of the Herfindahl index, Rosenbluth index, and
comprehensive concentration index to characterize the diver-
sification degree of the portfolio. The complements of the
Herfindahl index,Rosenbluth index, and comprehensive con-
centration index are shown as:

H IC = 1 −
n∑

i=1

x2i , RI
C = 1 −

1

2
n∑

i=1

i xi

,CC IC = 1 − x1 −
n∑

i=2

x2i [1 + (1 − xi )]. (6)

In the above three types of diversification indices, the
larger the value of the diversification index, the more diver-
sified the portfolio of the investor.

We next summarize the mean-entropy model, the equi-
weighted portfolio model, and the most diversified portfolio
model. In the mean–variance model, the portfolio return
and risk are characterized as expected value and variance,
respectively (Ahmadzade and Gao 2020). Mathematically,
the mean–variance model can be established by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

maxx1,...,xn E[x1ξ1 + x2ξ2 + · · · + xnξn]
subject to:

V [x1ξ1 + x2ξ2 + · · · + xnξn] ≤ γ

x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n,

(7)

where E is the expected value, V represents the variance, and
γ denotes the maximum risk level. The constraint V [x1ξ1 +
x2ξ2 + · · · + xnξn] ≤ γ means that the risk of the portfolio
must be lower than or equal to a predetermined safety level γ .

In the equi-weighted portfolio model, the investor assigns
each portfolio with equal weight (DeMiguel et al. 2009). For
n stocks, the equi-weighted portfolio weights are

xi = 1

n
, i = 1, 2, . . . , n. (8)

In the most diversified portfolio model, the investor seeks
to maximize the diversification ratio, which is defined as
the ratio of the portfolio’s weighted average volatility to its
overall volatility (Choueifaty andCoignard 2008;Choueifaty
et al. 2013). That is,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
maxx1,...,xn

σ X√
X ′UX

subject to:
x1 + x2 + · · · + xn = 1
xi ≥ 0, i = 1, 2, . . . , n,

(9)

where X = (x1, x2, . . . , xn)
′
are the weights, σ =

(σ1, σ2, . . . , σn) are the standard deviations of returns on the
stocks, and U is the variance–covariance matrix of returns
on the stocks (Pai 2017).

Example 5.1 According to the data in security markets and
the experts’ knowledge,we consider that the investor chooses
4 securities from different industries for investment, among
which the distributions of uncertain and random returns are
normal and uniform, respectively.We consider the data in the
numerical example of Ahmadzade and Gao (2020), in which
the 4 securities are assumed to be uncertain random variables
with ξi = ηi + τi (i = 1, 2, 3, 4). The data of the uncertain
random security returns are shown in Table 2. Note that U
denotes the uniform random distribution and N represents
the normal uncertainty distribution shown in Example 2.3.
Similar to Gao and Ralescu (2018), we set k = 1

2 .

Based on the data shown in Table 2, the optimal portfolios
under the mean-entropy model with different limits of the
maximal entropy of the overall return γ can be obtained as
shown inTable 3.We can see fromTable 3 thatwhen themax-
imal entropy achieves 148, all securities will be selected. In
particular, the manager should invest Securities 1 and 3 with
proportions around 25%, Security 2 with proportion around
43.53%, and Security 4 with proportion less than 7%. As γ

goes up, more and more investment will be concentrated in
Securities 2 and 3. We can also observe from Table 3 that the
optimal revenue for the 4 security is increasing with γ . How-
ever, the risk is also increasingwith γ because the investment
will be concentrated.
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Table 2 Uncertain random
returns of four securities of
Example 5.1

Security (i) Random term Uncertain term Inverse uncertainty distribution

1 U(108, 132) N (100, 15) F−1
1 (α, y1) = y1 + 100 + 15

√
3

π
ln α

1−α

2 U(165, 195) N (115, 13) F−1
2 (α, y2) = y2 + 115 + 13

√
3

π
ln α

1−α

3 U(240, 260) N (125, 14) F−1
3 (α, y3) = y3 + 125 + 14

√
3

π
ln α

1−α

4 U(162, 188) N (130, 20) F−1
4 (α, y4) = y4 + 130 + 20

√
3

π
ln α

1−α

Table 3 Allocation of money to
4 securities of Example 5.1. (%)

γ Security 1 Security 2 Security 3 Security 4 Objective value

148 24.36 43.53 25.17 6.94 297.4380

150 11.14 49.15 34.72 4.99 314.9200

152 4.39 51.50 37.18 6.93 322.1445

154 0.00 52.37 39.90 7.73 327.6625

156 0.00 49.50 44.73 5.77 331.3610

158 0.00 47.37 48.30 4.33 334.0730

160 0.00 45.62 51.27 3.11 336.3270

Considering all the future security returns are described
by uncertain random variables, we next compare our mean-
entropy model with the mean–variance model (Ahmadzade
andGao2020), the equi-weightedportfoliomodel (DeMiguel
et al. 2009), and the most diversified portfolio model
(Choueifaty and Coignard 2008; Choueifaty et al. 2013) by
using the Herfindahl index (Woerheide and Persson 1993),
the Rosenbluth index (Rosenbluth 1961), and the compre-
hensive concentration index (Horvath 1970). Based on the
data shown in Table 2, we obtain that when the predeter-
mined safety level γ = 150, under themean–variancemodel,
the optimal portfolio plan is x1 = 0.203, x2 = 0.103,
x3 = 0.694, and x4 = 0. Under the equi-weighted portfolio
model, the optimal portfolio plan is x1 = 0.25, x2 = 0.25,
x3 = 0.25, and x4 = 0.25. Under the most diversified
portfolio model, the optimal portfolio plan is x1 = 0.354,
x2 = 0.143, x3 = 0.451, and x4 = 0.052.

According to the diversification index shown in Equation
(6), the diversification degree under various different mea-
sures for the mean-entropy model (ME model in short), the
mean–variancemodel (MVmodel), the equi-weightedmodel
(EWmodel), and themost diversifiedmodel (MDmodel) can
be summarized in the following Table 4.

Table 4 shows that the diversification degree under the
equi-weighted model is the largest, followed by the most
diversified model and the mean-entropy model, finally by
the mean–variance model regardless of which diversification
index is used. It means that our mean-entropy model outper-
forms the mean–variance model in terms of diversification
degree, and such conclusion is independent on the diversifi-
cation index we use. This result shows that our mean-entropy
model leads to more diversified investments than the tradi-
tional mean–variance model, which echoes the phrase “don’t

put all your eggs in one basket”. However, our mean-entropy
model is inferior to the most diversified model and the equi-
weighted model. Therefore, we should consider other factors
in the portfoliomodel, such as the diversification ratio, which
is defined as the ratio of the portfolio’s weighted average
volatility to its overall volatility (Choueifaty and Coignard
2008; Choueifaty et al. 2013).

Example 5.2 In order to further illustrate the performance
of the mean-entropy portfolio selection model, we consider
the situation that the investor has 10 securities for portfo-
lio investment in different industries from Shanghai Stock
Exchange in China. Data of the 10 securities from January
2016 toDecember 2018 are collected. The correspondingdis-
tributions for the uncertain random future returns are shown
in Table 5, inwhich the 10 securities are assumed to be uncer-
tain randomvariableswith ξi = ηiτi (i = 1, 2, . . . , 10). Note
that U denotes the uniform random distribution and I rep-
resents the linear uncertainty distribution which is shown in
Example 2.4. Similar to Example 5.1, we set k = 1

2 .

Based on the data shown in Table 5 and mathematical
software MATLAB, we can obtain the portfolio allocation
plan in Table 6. To obtain the maximum expected return
at the entropy value γ = 1.0, the investors should select
the Securities 3, 8, and 10 whose expected returns are high,
and the maximum expected return is 2.8192. Table 6 shows
that the lower the preset entropy value, the more diversi-
fied the investment allocation.When the preset entropy value
achieves 0.5, the investors should invest the four securities
with codes 600081, 600591, 600638, and 600886. However,
when the preset entropy value is 0.15, the investors should
invest the ten securities. These numerical findings are consis-
tent with those in Example 5.1 that people should not put all
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Table 4 Diversification degree
of Example 5.1 under different
diversification indices

Diversification index ME model MV model EW model MD model

H IC 0.6230 0.4666 0.7500 0.6481

RIC 0.7093 0.6451 0.8000 0.7216

CC IC 0.2810 0.2118 0.4219 0.2995

Table 5 Uncertain random
returns of 10 securities of
Example 5.2

Security (i) Security code Random term Uncertain term Inverse uncertainty distribution

1 600030 U(−1, 1.2) I(−1, 2) F−1
1 (α, y1) = y1(3α − 1)

2 600050 U(−0.8, 3.4) I(−0.4, 1.4) F−1
2 (α, y2) = y2(1.8α − 0.4)

3 600081 U(1, 2) I(1, 3) F−1
3 (α, y3) = y3(2α + 1)

4 600111 U(0.5, 1.5) I(−0.2, 2) F−1
4 (α, y4) = y4(2.2α − 0.2)

5 600270 U(0.4, 2.2) I(−0.8, 3.2) F−1
5 (α, y5) = y5(4α − 0.8)

6 600570 U(−0.4, 3) I(−0.5, 3.1) F−1
6 (α, y6) = y6(3.6α − 0.5)

7 600591 U(2, 3) I(0.2, 1.3) F−1
7 (α, y7) = y7(1.1α + 0.2)

8 600638 U(2.1, 2.4) I(1, 2.5) F−1
8 (α, y8) = y8(1.5α + 1)

9 600713 U(0.6, 1.8) I(2, 4) F−1
9 (α, y9) = y9(2α + 2)

10 600886 U(−0.6, 3) I(0.5, 3) F−1
10 (α, y10) = y10(2.5α + 0.5)

Table 6 Allocation of money to
10 securities of Example 5.2.
(%)

γ 1 2 3 4 5 6 7 8 9 10 Objective value

0.15 2.93 4.56 13.74 6.22 6.64 6.84 13.79 17.64 13.48 14.16 1.8708

0.2 0.00 0.00 15.55 1.76 5.69 7.39 15.19 24.63 12.95 16.84 2.1097

0.4 0.00 0.00 16.36 0.00 0.00 2.08 12.42 47.71 1.09 20.34 2.4413

0.5 0.00 0.00 14.78 0.00 0.00 0.00 9.08 56.19 0.00 19.95 2.5354

1 0.00 0.00 1.89 0.00 0.00 0.00 0.00 86.10 0.00 12.01 2.8192

the eggs into one basket. The consistent findings show that
our mean-entropy model outperforms the traditional mean–
variance model in selecting diversified portfolios.

Example 5.3 In order to show the application of the mean-
entropy model and the robustness of results, we discuss
the situation in which the random returns are character-
ized as normal random distribution and uncertain returns are
characterized as various uncertainty distributions such as lin-
ear, normal, and lognormal, which are shown in Section 2.
The corresponding distributions for the uncertain random
future returns are shown in Table 7 with ξi = ηi + τi (i =
1, 2, . . . , 5). For random term,N denotes the normal random

distribution. For uncertain term, I,N , andLOGN represent
the linear, normal, and lognormal uncertainty distribution,
respectively.

When the predetermined safety level γ = 5,we can obtain
the portfolio allocation plan as follows: x1 = 0.6, x2 = 0.1,
x3 = 0.1, x4 = 0.15, and x5 = 0.05, and the maximum
expected return is 0.2. That is, the manager should invest
Security 1 with proportion 60%, Securities 2 and 3 with pro-
portion 10%, Security 4 with proportion 15%, and Security 5
with proportion 5%. Therefore, Example 5.3 shows that the
performance of our mean-entropymodel is not relying on the
distribution assumption.

Table 7 Uncertain random
returns of 5 securities of
Example 5.3

Security (i) Random term Uncertain term Inverse uncertainty distribution

1 N (0.1, 0.01) I(−1.5, 1.5) F−1
1 (α, y1) = y1 + 3α − 1.5

2 N (0.1, 0.04) N (1.3) F−1
2 (α, y2) = y2 + 1 + 3

√
3

π
ln α

1−α

3 N (0.2, 0.09) N (1.2, 2) F−1
3 (α, y3) = y3 + 1.2 + 2

√
3

π
ln α

1−α

4 N (0.3, 0.16) LOGN (1, 2) F−1
4 (α, y4) = y4 + exp(1 + 2

√
3

π
ln α

1−α
)

5 N (0.4, 0.25) LOGN (2, 3) F−1
5 (α, y5) = y5 + exp(2 + 3

√
3

π
ln α

1−α
)
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6 Conclusions

In this paper, we proposed the elliptic entropy of uncertain
random variables and applied the elliptic entropy into the
portfolio selection problem by using the entropy to mea-
sure the investment risk. We first introduced the concept of
elliptic entropy for uncertain random variables, and then dis-
cussed some mathematical properties of the elliptic entropy.
In order to apply the elliptic entropy well, we also investi-
gated the elliptic entropy of function of uncertain random
variables. Then we established a mean-entropy portfolio
selection model with uncertain random return to test the
functionality of the elliptic entropy. We gave some numer-
ical examples to show the application of the mean-entropy
model. The numerical results showed that the elliptic entropy
had a good performance to reflect risk. We also compared
our mean-entropy model with the mean–variance model, the
equi-weighted portfoliomodel, and themost diversified port-
folio model by using three kinds of diversification indices,
which are the complements of the Herfindahl index, Rosen-
bluth index, and comprehensive concentration index.

This article contributes to the existing literature by inves-
tigating a diversified portfolio selection model in which
the security returns are depicted as uncertain random vari-
ables. The main contributions of this paper are threefold.
First, based on the chance theory, we introduced the con-
cept of the elliptic entropy for uncertain random variables
and investigated some mathematical properties of the ellip-
tic entropy for the function of uncertain random variables.
Second, we applied the elliptic entropy into the portfolio
selection problem and established a mean-entropy portfo-
lio selection model. Finally, we conduct some numerical
examples to illustrate the idea of the mean-entropy model
and compare our model with the traditional mean–variance
model. The comparison results show that our mean-entropy
model leads to more diversified investments than the tradi-
tional mean–variance model, which echoes the phrase “don’t
put all your eggs in one basket.”

There are several issues that should be discussed fur-
ther. First, we plan to investigate other types of entropies of
uncertain random variables such as radical entropy and sine
entropy, and we will also study their mathematical properties
and possible applications. Second, we plan to design some
algorithms to solve large-scale portfolio selection problem
with uncertain random variables (Sun et al. 2020). Third, we
only discussed the single-period portfolio selection problem
in this paper, it will be valuable to investigate themulti-period
portfolio selection problem using entropy to measure risk
(Gupta et al. 2020). Finally, it is interesting to add variance,
diversification ratio which is proposed by Choueifaty and
Coignard (2008) and defined as the ratio of the portfolio’s
weighted average volatility to its overall volatility, into the
mean-entropy model under uncertain random environment.

In such situation, we should balance the mean, variance,
entropy, and diversification ratio in a portfolio selection
model. Considering four factors simultaneously in a model
canmake it very complicated.We leave it for future research.
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