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Abstract
The score functions are often used to rank the interval-valued intuitionistic fuzzy sets (IVIFSs) in multiattribute decision

making (MADM). The purpose of this paper is to develop an information-based score function of the IVIFS and apply it to

MADM. Considering the information amount, the reliability, the certainty information, and the relative closeness degree,

we propose an information-based score function of the IVIFS. Comparing the information-based score function with

existing ranking methods, we find that the information-based score function can overcome the drawbacks of the existing

ranking methods and can rank the IVIFSs well. Three illustrative examples of MADM with linear programming are

examined to demonstrate the applicability and feasibility of the information-based score function. It is shown that the

information-based score function is well defined and can be applied to MADM.

Keywords Score function � Ranking method � Interval-valued intuitionistic fuzzy set � Multiattribute decision making

1 Introduction

Multiattribute decision making (MADM) is an important

part of the decision-making theory, and it has been widely

used in many areas such as engineering, scientific research,

and artificial intelligence (Wan and Li 2013; Li and Ren

2015; Liang 2018; Yu et al. 2019). How to evaluate the

alternatives under attributes accurately and then select the

most desirable alternative from the alternative sets is the

key problem of the MADM.

Due to the lack of knowledge and uncertainty of infor-

mation, it is difficult for the decision maker to evaluate

alternatives under attributes accurately. Instead, people use

the method of uncertainty and vagueness to evaluate

alternatives under attributes. How to deal with the uncer-

tainty and vagueness is an interesting and important

subject. Fuzzy sets (FSs) (Zadeh 1965) seem to be suit-

able for dealing with the uncertainty and vagueness, and

they are often used to evaluate the alternatives under

attributes in the MADM. As the extension of the FSs, the

intuitionistic fuzzy sets (IFSs) (Bustine and Burillo 1996)

are often used to evaluate the alternatives through the

membership and non-membership degrees. Regarding as

the generalization of the IFSs, the membership and non-

membership degrees of the interval-valued intuitionistic

fuzzy sets (IVIFSs) (Atanassov 1994; Atanassov and Gar-

gov 1989) are intervals instead of crisp numbers. Thus, the

IVIFS is more flexible to simulate the imprecision and

vagueness than the IFS. Therefore, the research on the

IVIFS becomes a hot issue. Many researchers studied the

IVIFS (An et al. 2018; Nguyen 2019) and applied it to

many fields such as project management and emergency

management.

However, when the IVIFSs are employed to evaluate the

alternatives in MADM, we face the problem of how to

compare the IVIFSs. The ranking methods of the IVIFSs

are often used to rank the aggregated results. A well-de-

fined ranking method can definitely affect the decision

maker to select the most desirable alternative. How to rank

the IVIFSs is an important topic, which has attracted the

attention of many scholars. Sahin (2016) proposed a fuzzy

multiattribute decision-making method based on the
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improved accuracy function of the IVIFS. Gao et al. (2016)

presented an interval-valued intuitionistic fuzzy (IVIF)

multiattribute decision-making method based on the

revised fuzzy entropy and a new score function. Chen et al.

(2017) suggested a group decision-making method based

on IVIF numbers, and a new score function was used to

rank the aggregated results. Zhang and Xu (2017) proposed

an improved accuracy function to rank the IVIF values and

applied it to the MADM. Wang and Chen (2018) proposed

a new MADM method based on the novel score function of

the IVIF numbers and linear programming method. Gong

and Ma (2019) proposed a score function and an accuracy

function for the IVIFS. Though a lot of ranking methods of

the IVIFSs were proposed and applied to the MADM, they

cannot rank the IVIFSs well. So they have drawbacks. The

reason is that they did not consider the important infor-

mation affecting the ranking orders. As a result, the deci-

sion maker cannot select the most appropriate alternative in

the MADM when applying these defective ranking

methods.

The information conveyed by the IVIFS is very impor-

tant for constructing the score function. In this paper, we

will develop an information-based score function of the

IVIFS and apply it to the MADM. The information-based

score function considers the amount of information, the

reliability, the certainty information, and the relative

closeness degree. The information-based score function

can not only overcome the shortcomings of the existing

ranking methods, but also can rank the IVIFSs well.

2 Basic concepts

2.1 Interval-valued intuitionistic fuzzy sets

In this section, the concept of IVIFSs and their operations

and relations (Atanassov and Gargov 1989; Wan and Dong

2015; Atanassov 1994) will be introduced.

Let X ¼ fx1; x2; . . .; xng be the universe of discourse. An

IVIFS ea in the finite set X is denoted by

ea ¼ f\xi; l
ea
ðxiÞ; t

ea
ðxiÞ[ xi 2 Xgj ;

where l
ea
ðxiÞ ¼ ½lL

ea
ðxiÞ; lU

ea
ðxiÞ� � ½0; 1� and t

ea
ðxiÞ ¼

½tL
ea
ðxiÞ; tU

ea
ðxiÞ� � ½0; 1� denote the interval membership

degree and the interval non-membership degree of an ele-

ment xi to the IVIFS ea, respectively, such that xi 2 X,

0� lL
ea
ðxiÞ; lU

ea
ðxiÞ� 1, 0� tL

ea
ðxiÞ; tU

ea
ðxiÞ� 1 and 0� lU

ea

ðxiÞ þ tU
ea
ðxiÞ� 1.

The interval hesitancy degree of an element xi to the

IVIFS ea is denoted by p
ea
ðxiÞ ¼ ½pL

ea
ðxiÞ; pU

ea
ðxiÞ� � ½0; 1�,

where pL
ea
ðxiÞ ¼ 1� lU

ea
ðxiÞ � tU

ea
ðxiÞ and pU

ea
ðxiÞ

¼ 1� lL
ea
ðxiÞ � tL

ea
ðxiÞ. For every xi 2 X, if lL

ea
ðxiÞ ¼ lU

ea
ðxiÞ

and tL
ea
ðxiÞ ¼ tU

ea
ðxiÞ, the IVIFS reduces to the IFS. For

convenience, let l
ea
ðxiÞ ¼ ½a; b�; t

ea
ðxiÞ ¼ ½c; d�, then ea ¼

\½a; b�; ½c; d�[ is called an IVIFS. When a ¼ b and

c ¼ d, the IVIFS reduces to the IFS ea ¼ \[a,a],[c,c] [ .

For any two IVIFSs eaa ¼ \½aa; ba�; ½ca; da�[ and

eab ¼ \½ab; bb�; ½cb; db�[ ; the relations and operations

are given as follows:

1. eaa � eab if and only if aa � ab, ba � bb and ca � cb,

da � db;

2. eaa ¼ eab if and only if eaa � eab and eaa � eab;

3. The complement of eaa is eaCa ¼ \½ca; da�; ½aa; ba�[ ;

4. eaa þ eab ¼ \½aa þ ab � aaab; ba
þbb � babb�; ½cacb; dadb�[ ;

5. keaa ¼ \½1� ð1� aaÞk; 1� ð1� baÞk�; ½cka; dka �[ ,

where k[ 0:

The normalized Hamming distance of two IVIFSs eaa
and eab is defined as follows:

Dðeaa; eabÞ ¼
1

4
jaa � abj þ jba � bbjþjca � cbj
�

þ jda � dbjþjð1� aa � caÞ � ð1� ab � cbÞj
þjð1� ba � daÞ � ð1� bb � dbÞj

�

ð1Þ

Let eai ¼ \½ai; bi�; ½ci; di�[ (i ¼ 1; 2; . . .; n) be IVIFSs

(Xu 2007), where 0� ai; bi � 1, 0� ci; di � 1 and

0� bi þ di � 1. Let W ¼ ðw1;w2; . . .;wnÞT be the weight

vector of the interval-valued intuitionistic fuzzy weighted

averaging (IVIFWA) operator gw for IVIFSs, where wi is

the weight of the IVIFS eai, wi 2 ½0; 1�,
Pn

i wi ¼ 1. The

IVIFWA operator gw is defined as follows:

gwðea1; ea2; . . .; eanÞ ¼ 1�
Y

n

i¼1

ð1� aiÞxi ; 1�
Y

n

i¼1

ð1� biÞxi

" #

;

*

Y

n

i¼1

cxi
i ;

Y

n

i¼1

dxi
i

" #+

¼ \[a,b],[c,d] [ :

:

ð2Þ

where a ¼ 1�
Qn

i¼1 ð1� aiÞxi , b ¼ 1�
Qn

i¼1 ð1� biÞxi ,

c ¼
Qn

i¼1 c
xi
i , d ¼

Qn
i¼1 d

xi
i , i ¼ 1; 2; . . .; n.

2.2 A critical analysis of the existing ranking
methods of the IVIFSs

The ranking methods are often used to rank the IVIFSs.

Though there are many researches related to the ranking

methods of the IVIFSs (Ye 2009; Liu and Luo 2017), some

of them have drawbacks. We will enumerate several
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existing ranking methods of the IVIFSs and discuss their

disadvantages.

2.2.1 Xu’s ranking method of the IVIFS

In order to rank the IVIFSs, Xu (2007) defined the score

function and the accuracy function as follows:

For any IVIFS ea, the score function of the IVIFS is

SXðeaÞ ¼
aþ b� c� d

2
: ð3Þ

The accuracy function of the IVIFS is

AXðeaÞ ¼
aþ bþ cþ d

2
: ð4Þ

For two IVIFSs eaa and eab,

(1) If SXðeaaÞ[ SXðeabÞ, then eaa [ eab;

(2) If SXðeaaÞ\SXðeabÞ, then eaa\eab;

(3) If SXðeaaÞ ¼ SXðeabÞ, then

(a) AXðeaaÞ[AXðeabÞ, then eaa [ eab;

(b) AXðeaaÞ\AXðeabÞ, then eaa\eab;

(c) AXðeaaÞ ¼ AXðeabÞ, then eaa ¼ eab.

Example 2.1 Suppose that ea1 ¼ \½0:3; 0:5�; ½0:2; 0:4�[
and ea2 ¼ \½0:35; 0:45�; ½0:25; 0:35�[ are two IVIFSs.

Using Eqs. (3) and (4), then we have SXðea1Þ ¼ SXðea2Þ ¼
0:1 and AXðea1Þ ¼ AXðea2Þ ¼ 0:7. So SXðeaÞ and AXðeaÞ
cannot rank these two IVIFSs.

2.2.2 Yue’s ranking method of the IVIFS

Assume that l
ea
¼ ½aa; ba� and l

eb
¼ ½ab; bb� are two inter-

vals. Xu and Da (2002) presented the possibility degree

ranking method for two intervals, i.e., the possibility

degree of l
ea
� l

eb
is defined as follows:

PXðl
ea
�l

eb
Þ ¼max 1�max

bb � aa
ba � aa þ bb � ab

;0

� �

;0

� �

:

ð5Þ

Motivated by Eq. (5), Yue (2016) gave the possibility

degree ranking method of IVIFSs, i.e., the possibility

degree of eaa � eab is defined as follows:

PXðeaa � eabÞ ¼
1

2
½PXðl

ea
� l

eb
Þ þ PXðt

eb
� t

ea
Þ�: ð6Þ

where PXðl
ea
� l

eb
Þ and PXðt

eb
� t

ea
Þ are calculated by

Eq. (5).

When PXðeaa � eabÞ[ 0:5, then eaa [ eab. When

PXðeaa � eabÞ\0:5, then eaa\eab. When PXðeaa � eabÞ ¼ 0:5

and PXðeab � eaaÞ ¼ 0:5, Yue’s method cannot rank these

two IVIFSs.

Example 2.2 Suppose that ea3 ¼ \½0:2; 0:2�; ½0:3; 0:3�[
and ea4 ¼ \½0:25; 0:25�; ½0:35; 0:35�[ are two IVIFSs.

We find that Eq. (6) cannot rank these two IVIFSs. The

reason is that Eq. (6) has the problem of dividing by zero.

Example 2.3 ea5 ¼ \½0:5; 0:6�; ½0:3; 0:4�[ and ea6 ¼
\½0:2; 0:3�; ½0:1; 0:2�[ are two IVIFSs. Using Eq. (6), we

have PXðea5 � ea6Þ ¼ 0:5 and PXðea6 � ea5Þ ¼ 0:5. It means

that Yue’s method cannot rank these two IVIFSs. Thus,

Yue’s method has drawback.

2.2.3 Gong and Ma’s score function of the IVIFS

Gong and Ma (2019) gave a score function of the IVIFS as

follows:

SGMðeaÞ ¼
d þ c� b� a

2
þ aþ bþ 2ðab� cdÞ

aþ bþ cþ d
: ð7Þ

Then, Gong and Ma (2019) proposed the property for the

score function of the IVIFS as follows:

Property 1 Let ea be an IVIFS. SðeaÞ has the following

properties:

(1) If b; c; d are fixed, then oSðeaÞ=oa[ 0;

(2) If a; c; d are fixed, then oSðeaÞ=ob[ 0;

(3) If a; b; d are fixed, then oSðeaÞ=oc\0;

(4) If a; b; c are fixed, then oSðeaÞ=od\0.

Though SðeaÞ satisfies Property 1, the information such

as the reliability is not taken into account. Assume that eaa
and eab are two IVIFSs, when aa þ ba ¼ ab þ bb, ca þ da ¼
cb þ db and aaba � cada ¼ abbb � cbdb, then SGMðeaÞ
cannot rank the IVIFSs.

Example 2.4 Suppose that ea7 ¼ \½0:35; 0:45�;
½0:2; 0:3�[ and ea8 ¼ \½0:3; 0:5�; ½0:15; 0:35�[ are two

IVIFSs. From our intuition, ea7 is not as big as ea8. Using

Eq. (7), we have SGMðea7Þ ¼ SGMðea8Þ ¼ 0:6154: SGMðeaÞ
cannot rank these two IVIFSs. Thus, SGMðeaÞ has drawback.

2.2.4 Wang and Chen’s score function of the IVIFS

Wang and Chen (2018) introduced the score function of the

IVIFS as follows:

SNWCðeaÞ ¼
ðaþ bÞðaþ cÞ � ðcþ dÞðbþ dÞ

2
: ð8Þ

Taking the derivation of SNWCðeaÞ with respect to b, we

have

oSNWCðeaÞ=ob ¼ a� d:

Taking the derivation of SNWCðeaÞ with respect to c, we

have

oSNWCðeaÞ=oc ¼ a� d:

An information-based score function of interval-valued intuitionistic fuzzy sets and its… 1915
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When a� d\0, then SNWCðeaÞ increases with the

decreasing of b. When a� d[ 0, then SNWCðeaÞ increases
with the increasing of c. These are the opposite of Property

1. In addition, when a ¼ b ¼ c ¼ d, SNWCðeaÞ cannot rank
the IVIFSs.

Example 2.5 Assume ea9 ¼ \½0:3; 0:3�; ½0:3; 0:3�[ and

ea10 ¼ \½0:4; 0:4�; ½0:4; 0:4�[ are two IVIFSs. From our

intuition, ea9 is not as big as ea10 and the scores cannot be

zero. Using Eq. (8), we have SNWCðea9Þ ¼ SNWCðea10Þ ¼ 0.

SNWCðeaÞ cannot rank these two IVIFSs. Thus, SNWCðeaÞ has
drawback.

2.2.5 Sahin’s accuracy function of the IVIFS

Sahin (2016) suggested a accuracy function of the IVIFS as

follows:

KðeaÞ ¼ aþ bð1� a� cÞ þ bþ að1� b� dÞ
2

: ð9Þ

When a ¼ b ¼ 0, then KðeaÞ ¼ 0, c and d have no effect on

KðeaÞ. Thus, Eq. (9) cannot rank the IVIFSs.

Example 2.6 Suppose that ea11 ¼ \½0; 0�; ½0:1; 0:1�[ and

ea12 ¼ \½0; 0�; ½0:9; 0:9�[ are two IVIFSs. From the

relations of the IVIFSs, ea12 is smaller than ea11. Using

Eq. (9), then we have Kðea11Þ ¼ Kðea12Þ ¼ 0. This is con-

trary to the relations of the IVIFSs. KðeaÞ cannot rank these

two IVIFSs. Thus, KðeaÞ has drawback.

2.2.6 Gao et al.’s score function of the IVIFS

Considering the amount of information, Gao et al. (2016)

defined the score function to rank the IVIFSs as follows:

GðeaÞ ¼ 1

4
ða� cþ b� dÞ 1þ 1

aþ b� acþ bd

� �

: ð10Þ

When a ¼ b ¼ 0, we know Eq. (10) has the problem of

dividing by zero. When a ¼ c and b ¼ d, then GðeaÞ ¼ 0.

Gao et al.’s score function cannot rank the IVIFSs.

Example 2.7 Suppose that ea13 ¼ \½0; 0�; ½0:2; 0:2�[ and

ea14 ¼ \½0; 0�; ½0:3; 0:3�[ are two IVIFSs. Using

Eq. (10), we cannot calculate the scores of ea13 and ea14.

Thus, GðeaÞ cannot rank these two IVIFSs.

2.2.7 Zhang and Xu’s accuracy function of the IVIFS

The accuracy function of the IVIFS defined by Zhang and

Xu (2017) is given as follows:

FðeaÞ ¼ 1

2

ða� cÞ þ ðb� dÞð1� a� cÞ
2

�

þðb� dÞ þ ða� cÞð1� b� dÞ
2

�

:

ð11Þ

When a ¼ c and b ¼ d, then FðeaÞ ¼ 0. Thus, FðeaÞ cannot
distinguish the IVIFSs.

Example 2.8 ea15 ¼ \½0:3; 0:5�; ½0:3; 0:5�[ and ea16 ¼
\½0:4; 0:5�; ½0:4; 0:5�[ are two IVIFSs. Using Eq. (11),

we have Fðea3Þ ¼ Fðea4Þ ¼ 0. Thus, FðeaÞ cannot rank these

two IVIFSs.

From the above analyses, we know the existing ranking

methods cannot rank the IVIFSs well and SNWCðeaÞ do not

satisfy Property 1. So they have drawbacks.

3 An information-based score function
of the IVIFS

In order to overcome the disadvantages of the existing

ranking methods of the IVIFSs and rank the IVIFSs well,

we will propose an information-based score function using

the information conveyed by the IVIFS.

Zhang and xu (2012) presented a ranking index of the

IFS from the idea of TOPSIS, which is shown as follows:

LðeaÞ ¼ 1� Dðea;\0; 1[ Þ
Dðea;\1; 0[ Þ þ Dðea;\0; 1[ Þ

¼1� 1� a

2� a� c
:

ð12Þ

Szmidt and Kacprzyk (2009) defined the amount of infor-

mation of the IFS as aþ c. Szmidt and Kacprzyk (2009)

also defined the reliability as a� c. So aþ c and bþ d are

the amount of information of the IVIFS. a� c and b� d

are the reliability of the IVIFS. The reliability is a kind of

information (Li and Ren 2015).

Li and Ren (2015) illustrated that the bigger aþ c, the

bigger the score. The same as the amount of information,

the bigger a� c, the bigger the score. Li and Ren (2015)

constructed a ranking index of the IFS based on the amount

of information and the reliability as follows:

RðeaÞ ¼ 1

3
aþ 1þ a� c

1� a� c

� �

Dðea;\0; 1[ Þ
Dðea;\1; 0[ Þ þ Dðea;\0; 1[ Þ :

ð13Þ

where Dðea;\0; 1[ Þ is the distance between an IFS ea and

the smallest IFS \0; 1[ . Dðea;\1; 0[ Þ is the distance

between the IFS ea and the greatest IFS \1; 0[ .

1916 A. Wei et al.
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According to Eq. (1) and the idea of TOPSIS method,

the relative closeness degree of an IVIFS ea to the greatest

IVIFS \½1; 1�; ½0; 0�[ is defined as follows:

Dðea;\½0; 0�; ½1; 1�[ Þ
Dðea;\½1; 1�; ½0; 0�[ Þ þ Dðea;\½0; 0�; ½1; 1�[ Þ

¼ 2� c� d

4� a� b� c� d
:

ð14Þ

From Eqs. (12) and (13), we know the relative closeness

degree can determine to a certain extent which IVIFS is

bigger. The bigger the relative closeness degree, the bigger

the score. The relative closeness degree is also a kind of

information conveyed by the IVIFS.

The distance between an IFS ea ¼ \[a,a],[c,c] [ and

its complement eaC ¼ \[c,c],[a,a] [ is

Dðea; eaCÞ ¼ a� cj j: ð15Þ

The distance between an IVIFS ea and its complement

eaC is

Dðea; eaCÞ ¼ a� cj j þ b� dj j
2

: ð16Þ

1� Dðea; eaCÞ is defined by Szmidt and Kacprzyk (2005) as

the uncertainty. Thus, Dðea; eaCÞ is the certainty information

for the IVIFS and it is often used to construct the infor-

mation measure. The certainty information can also

determine to a certain extent which IVIFS is bigger. The

greater the certainty, the higher the score.

Motivated by Eqs. (3), (13) and (16), we construct an

information-based score function of the IVIFS from the

amount of information, the reliability, the certainty infor-

mation, and the relative closeness degree.

Definition 1 The information-based score function of the

IVIFS is defined as follows:

SðeaÞ ¼ ½1þ aþ b� c� d þ 0:5ð a� cj j þ b� dj jÞ�
½ð1þ aþ cÞea�cþaþb=e3 þ ð1þ bþ dÞeb�d�c�d=e�
½ð2� c� dÞ=ð4� a� b� c� dÞ�=16:

ð17Þ

where 0:5ð a� cj j þ b� dj jÞ is the distance between ea and

its complement eaC, i.e., the certainty information. ð2�
c� dÞ=ð4� a� b� c� dÞ is the relative closeness

degree. aþ c ¼ 1� pU
ea

and bþ d ¼ 1� pL
ea

are the

amount of information. a� c and b� d are the reliability

of the IVIFS.

The information-based score function conforms to

Property 1.

Proof (1) When a� c and b; c; d are fixed, then we have

SðeaÞ ¼ ½1þ 1:5aþ b� 1:5c� d þ 0:5jb� dj�
½ð1þ aþ cÞea�cþaþb=e3 þ ð1þ bþ dÞeb�d�c�d=e�
½ð2� c� dÞ=ð4� a� b� c� dÞ�=16:

Let M1 ¼ ½1þ 1:5aþ b� 1:5c� d þ 0:5jb� dj� ½ð1þ
aþ c� ea�cþaþb=e3 þ ð1þ bþ dÞeb�d�c�d=e� and

N ¼ ð2� c� dÞ=ð4� a� b� c� dÞ, by observation,

then we know a has a positive effect on M1. So taking

the derivation of M1 with respect to a, we have

oM1=oa[ 0: Taking the derivation of N with respect to

a, then we have oN=oa ¼ ð2� c� dÞ=ð4� a� b�
c� dÞ2 � 0. Given that M1 � 0 and N� 0, thus

oSðeaÞ=oa ¼ oM1=oaN þM1oN=oa� 0:

When a\c and b; c; d are fixed, then we have

SðeaÞ ¼ ð1þ 0:5aþ b� 0:5c� d þ 0:5jb� djÞ
½ð1þ aþ cÞea�cþaþb=e3 þ ð1þ bþ dÞeb�d�c�d=e�
½ð2� cdÞ=ð4� a� b� c� dÞ�=16:

Let M2 ¼ ð1þ 0:5aþ b� 0:5c� d þ 0:5jb� djÞ
½ð1þ aþ cÞea�cþaþb=e3 þ ð1þ bþ dÞeb�d�c�d=e�, we

have oM2=oa[ 0. Given that M2 � 0 and N� 0, thus

oSðeaÞ=oa ¼ NoM2=oaþM2oN=oa� 0:

Only when c ¼ d ¼ 1, then we have N ¼ 0, oN=oa ¼ 0

and oSðeaÞ=oa ¼ oM2=oaN þM2oN=oa ¼ 0.

Thus, when b; c; d are fixed, then oSðeaÞ=oa[ 0.

(2) When b� d and a; c; d are fixed, then we have

SðeaÞ ¼ ð1þ aþ 1:5b� c� 1:5d þ 0:5ja� cjÞ
½ð1þ aþ cÞea�cþaþb=e3 þ ð1þ bþ dÞeb�d�c�d=e]

½ð2� c� dÞ=ð4� a� b� c� dÞ�=16:

Let M3 ¼ ð1þ aþ 1:5b� c� 1:5d þ 0:5ja� cjÞ
½ð1þ aþ cÞ ea�cþaþb=e3 þ ð1þ bþ dÞeb�d�c�d=e�, by

observation, we know b has positive effect on M3. So

taking the derivation of M3 with respect to b, we have

oM3=ob� 0. Taking the derivation of N with respect to b,

then we have oN=ob ¼ ð2� c

�dÞ=ð4� a� b� c� dÞ2 � 0. Given that M3 � 0 and

N� 0, thus

oSðeaÞ=ob ¼ oM3=obN þM3oN=ob� 0:

When b\d and a; c; d are fixed, then we have

SðeaÞ ¼ ð1þ aþ 0:5b� c� 0:5d þ 0:5ja� cjÞ
½ð1þ aþ cÞea�cþaþb=e3 þ ð1þ bþ dÞeb�d�c�d=e�
½ð2� c� dÞ=ð4� a� b� c� dÞ�=16

Let M4 ¼ ð1þ aþ 0:5b� c� 0:5d þ 0:5ja� cjÞ
½ð1þ aþ cÞea�cþaþb=e3 þ ð1þ bþ dÞeb�d�c�d=e�, the

same as above, we have
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oSðeaÞ=ob ¼ oM4=obN þM4oN=ob� 0:

Only when c ¼ d ¼ 1, then we have N ¼ 0, oN=ob ¼ 0

and

oSðeaÞ=ob ¼ oM4=obN þM4oN=ob ¼ 0:

Thus, when a; c; d are fixed, then oSðeaÞ=ob[ 0.

(3) When a� c and a; b; d are fixed, by observation, then

we know c has negative effect onM1. Taking the derivation

of M1 with respect to c, we have oM1=oc� 0. Taking the

derivation of N with respect to c, then we have oN=oc ¼
ðaþ b� 2Þ=ð4 �a� b� c� dÞ2 � 0. Given that M1 � 0

and N� 0, thus

oSðeaÞ=oc ¼ oM1=ocN þM1oN=oc� 0:

When a\c and b; c; d are fixed, the same as the above

proof, then we have

oSðeaÞ=oc ¼ oM2=ocN þM2oN=oc� 0:

Only when c ¼ d ¼ 1, then we have N ¼ 0, oN=oc\0 and

M1 ¼ M2 ¼ 0. So

oSðeaÞ=oc ¼ oM1=ocN þM1oN=oc ¼ 0

oSðeaÞ=oc ¼ oM2=ocN þM2oN=oc ¼ 0:

Thus, when a; b; d are fixed, then oSðeaÞ=oc\0.

(4) When b� d and a; b; c are fixed, by observation, then

we know d has negative effect on M3. So taking the

derivation of M3 with respect to d, we have oM3=od� 0.

Taking the derivation of N with respect to d, then we have

oN=od ¼ ðaþ b� 2Þ=ð4� a� b� c� dÞ2 � 0. Given

that M3 � 0 and N� 0, thus

oSðeaÞ=od ¼ oM3=odN þM3oN=od� 0:

When b\d and a; b; c; are fixed, the same as above,

then we have

oSðeaÞ=od ¼ oM4=odN þM4oN=od� 0:

Only when c ¼ d ¼ 1, then we have N ¼ 0, oN=od\0

and M3 ¼ M4 ¼ 0. So

oSðeaÞ=od ¼ oM3=odN þM3oN=od ¼ 0:

oSðeaÞ=od ¼ oM4=odN þM4oN=od ¼ 0:

Thus, when a; b; c are fixed, then oSðeaÞ=od\0.

Property 2 Let ea be an IVIFS, then eRðeaÞ 2 ½0; 1�.

Proof When ea ¼ \½1; 1�; ½0; 0�[ , then using Eq. (17),

we have SðeaÞ ¼ 1.

When ea ¼ \½0; 0�; ½1; 1�[ , then using Eq. (17), we

have SðeaÞ ¼ 0.

From the above proof, we know SðeaÞ satisfies Property
1. So SðeaÞ increases with the increasing of a and b,

whereas it decreases with the increasing of c and d. When

a ¼ b ¼ 1 and c ¼ d ¼ 0, then SðeaÞ gets the maximum

score value 1. When a ¼ b ¼ 0 and c ¼ d ¼ 1, then SðeaÞ
gets the minimum score value 0.

Therefore, we have SðeaÞ 2 ½0; 1�.

4 Comparison with the existing ranking
methods

In this section, we use related examples to show the

effectiveness and superiority of the information-based

score function. Firstly, in order to prove the effectiveness

of our information-based score function, we will verify that

the information-based score function satisfies the relations

of the IVIFSs. Then, we compare it with the existing

ranking methods. Secondly, the comparative analyses will

be used to show the superiority of the information-based

score function. For convenience, Eq. (6) is abbreviated to

PX in this section.

Example 4.1 ea17 ¼ \½0:15; 0:35�; ½0:2; 0:3�[ , ea18 ¼
\½0:25; 0:35�; ½0:2; 0:3�[ , ea19 ¼ \½0:5; 0:6�; ½0:3; 0:4�
[ , ea20 ¼ \½0:5; 0:6�; ½0:1; 0:4�[ , ea21 ¼ \½0:5296;
0:7�; ½0:1516; 0:2551�[ , ea22 ¼ \½0:5476; 0:6565�; ½0:1;
0:2213�[ . ea23 ¼ \½0:8; 0:8�; ½0:2; 0:2�[ , ea24 ¼
\½0; 0:4�; ½0:4; 0:4�[ , ea25 ¼ \½0:2; 0:6�; ½0:2; 0:4�[ ,

and ea26 ¼ \½0:2; 0:3�; ½0:1; 0:5�[ are IVIFSs. The values

of these IVIFSs calculated by Eqs. (6), (7), (9)–(11) and

(17) are shown in Table 1. Let us analyze the ranking

orders by using the relations of the IVIFSs.

ea17 and ea18 have the same non-membership interval and

0:25[ 0:15, so ea18 [ ea17. ea19 and ea20 have the same

membership interval and 0:3[ 0:1, so ea19\ea20. From the

membership intervals of ea21 and ea22, we have

0:5476� 0:5296 ¼ 0:018, 0:6565� 0:7 ¼ �0:0435 and

�0:0435þ 0:018 ¼ �0:0025. From the non-membership

intervals of ea21 and ea22, we have 0:1516� 0:1 ¼ 0:0516,

0:2551� 0:2231 ¼ 0:032, and 0:0516þ 0:032 ¼ 0:0836.

Table 1 Calculation results of the ranking methods in Example 4.1

SðeaÞ PX FðeaÞ KðeaÞ SGMðeaÞ GðeaÞ

ea17 0.0162 0.4167 0.0037 0.39 0.485 0

ea18 0.0195 0.0362 0.44 0.5455 0.06

ea19 0.0458 0.375 0.11 0.61 0.611 0.184

ea20 0.067 0.17 0.67 0.7857 0.2663

ea21 0.1097 0.4279 0.2454 0.7383 0.7459 0.3607

ea22 0.1184 0.2727 0.7512 0.7903 0.3912

ea23 0.2516 1 0.3 0.8 0.8 0.4875

ea24 0.0079 - 0.12 0.32 0.2667 - 0.2786

ea25 0.0284 0.65 0.08 0.58 0.5286 0.1

ea26 0.0132 0.05 0.375 0.5227 - 0.0647
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0:0836� 0:0025[ 0, so ea22 is bigger than

ea21.0:8[ 0; 0:8[ 0:4 and 0:2\0:4; 0:2\0:4; we have

ea23 [ ea24. 0:2� 0:2 ¼ 0, 0:6� 0:3 ¼ 0:3 and

0:2� 0:1 ¼ 0:1, 0:4� 0:5 ¼ �0:1, so ea25 is bigger than

ea26. From Table 1, we know the ranking orders calculated

by SðeaÞ conform to the relations of the IVIFSs. Further-

more, the ranking orders calculated by SðeaÞ are consistent

with those of Eqs. (6), (7) and (9)–(11). Thus, SðeaÞ is

effective.

In order to show the superiority of the information-based

score function, the comparative analyses will be performed

by using the special IVIFSs, for example, the IVIFSs have

the characteristics of a ¼ b ¼ 0, aþ b ¼ cþ d or

a ¼ b ¼ c ¼ d. ea27 ¼ \½0:5; 0:5�; ½0:5; 0:5�[ and ea28 ¼
\½0; 0�; ½0; 0�[ are two special IVIFSs. Using the infor-

mation-based score function of the IVIFS and the existing

ranking methods, we calculated the special IVIFSs. The

values are shown in Table 2.

From Table 2, we know the existing ranking methods

have unreasonable results (in bold type) giving the same

ranking value for two different IVIFSs. For instance, PX

cannot rank the IVIFSs except ea11 and ea12.SNWCðeaÞ cannot
rank ea9, ea10, ea27 and ea28. KðeaÞ cannot rank ea11, ea12, ea15,

ea16, ea27 and ea28. SGMðeaÞ cannot rank ea1, ea2, ea9 to ea12, ea15
and ea16. SGMðeaÞ cannot calculate the scores of ea28. GðeaÞ
cannot rank ea9, ea10, ea15 and ea16. GðeaÞ cannot calculate the
scores of ea11, ea12 and ea28. Using SðeaÞ, we can rank all

these special IVIFSs well. The shortcomings of the existing

ranking methods are overcome. The information conveyed

by the IVIFSs ensures that SðeaÞ can distinguish the IVIFSs.

Note: ‘‘bold’’ denotes the unreasonable case. The sym-

bol ‘‘9’’ means ‘‘cannot calculate the value.’’

The membership and non-membership intervals of the

IVIFS affect the ranking value significantly. Because the

membership and non-membership intervals of the IFS that

have no effect on the ranking value are zero, the IFS is a

special case of the IVIFS. The IFS has only two parame-

ters, i.e., the membership and the non-membership. Very

few parameters cause important information that affects the

ranking value not to be considered when constructing the

ranking method of the IFS. When the IVIFSs reduce to the

IFSs, our information-based score function can also rank

the IFSs well.

Example 4.2 ea29 ¼ \½0:5; 0:5�; ½0:45; 0:45�[ , ea30 ¼
\½0:25; 0:25�; ½0:05; 0:05�[ , ea31 ¼ \½0:6; 0:6�; ½0:2; 0:2�
[ and ea32 ¼ \½0:7; 0:7�; ½0:30:3�[ are IFSs. Using

Eq. (17), then we have

Sðea29Þ ¼ 0:022; Sðea30Þ ¼ 0:0368;

Sðea31Þ ¼ 0:1014 and Sðea32Þ ¼ 0:116:

Thus,

Sðea29Þ\Sðea30Þ and Sðea31Þ\Sðea32Þ

The membership degree of ea29 is bigger than that of ea30,

i.e., 0:5� 0:25 ¼ 0:25. The non-membership of ea29 is

bigger than that of ea30, i.e., 0:45� 0:05 ¼ 0:4. So ea29 is

smaller than ea30. The membership of ea32 is bigger than that

of ea31, i.e., 0:7� 0:6 ¼ 0:1. The non-membership of ea32 is

bigger than that of ea31, i.e., 0:3� 0:2 ¼ 0:1. The infor-

mation amount of ea32 is 1, and the information amount of

ea31 is 0.8. Thus, 1[ 0:8 is one reason why ea32 is bigger

than ea31. 0:7[ 0:6 is another reason why ea32 is bigger than

ea31. In addition, the relative closeness degree of ea32 is

bigger than that of ea31, i.e., 0:7[ 0:6667. Thus, we select

ea30 and ea32 as the better IFSs.

Using Eq. (7), then we have

SNWCðea29Þ ¼ 0:0475; SNWCðea30Þ ¼ 0:06;

SNWCðea31Þ ¼ 0:27 and SNWCðea32Þ ¼ 0:45:

Thus,

SNWCðea29Þ\SNWCðea30Þ and SNWCðea31Þ\SNWCðea32Þ:

The ranking orders calculated by Eq. (17) are consistent

with those of Eq. (7).

Using Eq. (9), then we have

GGMðea29Þ ¼ 0:5263; GGMðea30Þ ¼ 0:8333;

GGMðea31Þ ¼ 0:75 and GGMðea32Þ ¼ 0:7:

Thus,

GGMðea29Þ\GGMðea30Þ and GGMðea31Þ[GGMðea32Þ:

Table 2 Comparison with the existing ranking methods

SðeaÞ PX SNWCðeaÞ KðeaÞ SGMðeaÞ GðeaÞ

ea1 0.0266 0.5 - 0.07 0.54 0.5714 0.1032

ea2 0.0261 0 0.525 0.5714 0.1075

ea3 0.0107 0.5 - 0.175 0.3 0.4 - 0.05

ea4 0.0119 - 0.15 0.35 0.4167 - 0.06

ea5 0.0506 0.5 0.09 0.61 0.6111 0.184

ea6 0.0179 0 0.405 0.625 0.1426

ea9 0.0146 0.5 0 0.42 0.5 0

ea10 0.0226 0 0.48 0.5 0

ea11 0.0071 1 - 0.01 0 0 3

ea12 0.0011 - 0.81 0 0 3

ea15 0.0133 0.5 - 0.16 0.5 0.5 0

ea16 0.0162 - 0.09 0.5 0.5 0

ea27 0.0169 0.5 0 0.5 0.5 0

ea28 0.0131 0 0 3 3
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GGMðea31Þ[GGMðea32Þ is not consistent with the above

analyses because the information used to rank the IFSs was

not taken into account.

Using Eq. (13), we have

Rðea29Þ ¼ 0:2619; Rðea30Þ ¼ 0:1781;

Rðea31Þ ¼ 0:3926 and Rðea32Þ ¼ 0:49:

Thus, Rðea29Þ[Rðea30Þ and Rðea31Þ\Rðea32Þ.
Equation (13) only considers that the membership of ea29

is bigger than that of ea30, i.e., Equation (13) ignores the

important influence of the non-membership on ranking

value. Thus, the results cannot really reflect the ranking

orders.

From the above analyses, we know the information-

based score function conforms to the relations of the

IVIFSs and Property 1. Furthermore, it can rank the IVIFSs

well. So it is reasonable and better than the existing ranking

methods.

5 Applications of the information-based
score function in MADM

In this section, we use three illustrative examples adapted

from Wang and Chen (2018) to demonstrate the imple-

mentation process of the proposed MADM method based

on the information-based score function. The comparison

analysis of computational results is also conducted to show

the superiority of proposed MADM.

When \[h,y],[z,g] [ is the IVIF weight for the

attribute, the maximum weight range proposed by Chen

and Huang (2017) is ½h; 1� z�. They omitted the maximum

impossible weight range ½y; 1� z�. If we take into account

the maximum impossible weight range ½y; 1� z�, the

weight range is ½h; y�. In addition, ensuring the rationality

of the weights, the weight relation calculated by linear

programming model should be consistent with the weight

relation calculated by Eq. (17). We apply the ranges and

relation of the weights to the following examples:

Example 5.1 Let x1, x2, x3 and x4 be four alternatives and

C1, C2 and C3 be three attributes. Assume the IVIF weights

ew1, ew2 and ew3 of the attributes C1, C2 and C3 are

Assume that the decision matrix eR ¼ ðerijÞ4�3 provided

by the decision maker is as follows:

ew1 ¼ \½0:1; 0:4�; ½0:2; 0:55�[ ;

ew2 ¼ \½0:2; 0:5�; ½0:15; 0:45�[ ;

ew3 ¼ \½0:25; 0:6�; ½0:15; 0:38�[ :

The ranges of weights are 0:1�w	
1 � 0:4, 0:2�w	

2 � 0:5

and 0:25�w	
2 � 0:6. Using Eq. (17), we have

Sð ew1Þ ¼ 0:0097, Sð ew2Þ ¼ 0:0207 and Sð ew3Þ ¼ 0:0636.

Thus, the weight relation is w	
3 �w	

2 �w	
1.

eR ¼ ðerijÞ4�3 ¼

\½0:4; 0:5�; ½0:3; 0:4�[
\½0:53; 0:7�; ½0:05; 0:1�[
\½0:3; 0:6�; ½0:3; 0:4�[
\½0:7; 0:8�; ½0:1; 0:2�[

0

B

B

B

@

\½0:4; 0:6�; ½0:2; 0:4�[
\½0:6; 0:63�; ½0:16; 0:3�[
\½0:5; 0:6�; ½0:3; 0:4�[
\½0:6; 0:7�; ½0:1; 0:3�[

\½0:1; 0:3�; ½0:5; 0:6�[
\½0:49; 0:7�; ½0:1; 0:2�[
\½0:5; 0:6�; ½0:1; 0:3�[
\½0:3; 0:4�; ½0:1; 0:2�[

1

C

C

C

A

Step 1: Based on eR ¼ ðerijÞ4�3, the ranges, and relation of

the weights, we have the following linear programming

model:

max M ¼
X

3

j¼1

wj

X

4

i¼1

X

4

k¼1

Dðerij; erkjÞ
" #( )

s:t:

0:1�w	
1 � 0:4

0:2�w	
2 � 0:5

0:25�w	
3 � 0:6

w	
3 �w	

2 �w	
1

w	
1 þ w	

2 þ w	
3 ¼ 1

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð18Þ

Step 2: Solving Eq. (18), we have the optimal weights,

i.e., w	
1 ¼ 0:2; w	

2 ¼ 0:2; w	
3 ¼ 0:6.

Step 3: Based on Eq. (2) and the above optimal weights

of attributes, then we have the aggregated results as

follows:

ea1 ¼ \½0:2347; 0:4149�; ½0:3758; 0:5102�[ ;

ea2 ¼ \½0:5221; 0:6871�; ½0:0956; 0:1888�[ ;

ea3 ¼ \½0:4562; 0:6000�; ½0:1552; 0:3366�[ ;

ea4 ¼ \½0:4717; 0:5807�; ½0:1000; 0:2169�[ :

Step 4: Using Eq. (17), then we obtain

Sðea1Þ ¼ 0:0099; Sðea2Þ ¼ 0:1295;

Sðea3Þ ¼ 0:0636; Sðea4Þ ¼ 0:0856:

Because Sðea2Þ[ Sðea4Þ[ Sðea3Þ[ Sðea1Þ, thus the

preference order of the alternatives is

x2 
 x4 
 x3 
 x1:

where ‘‘
’’ means ‘‘is better than.’’ This result is distinct

from the preference order of Wang and Chen (2018), which

is

x4 
 x2 
 x3 
 x1:
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Example 5.2 Let x1, x2, x3 be three alternatives and C1, C2

and C3 be three attributes. Assume that the IVIF weights

ew1, ew2 and ew3 of the attributes C1, C2 and C3 are

ew1 ¼ \½0:25; 0:25�; ½0:25; 0:25�[ ;

ew2 ¼ \½0:35; 0:35�; ½0:4; 0:4�[ ;

ew3 ¼ \½0:3; 0:3�; ½0:65; 0:65�[ :

Assume that the decision matrix eR ¼ ðerijÞ3�3 provided

by the decision maker is as follows:

eR ¼ ðerijÞ3�3 ¼
\½0:45; 0:66�; ½0:15; 0:2�[
\½0:3; 0:48�; ½0:2; 0:25�[
\½0:15; 0:2�; ½0:45; 0:5�[

0

B

@

\½0:5; 0:7�; ½0:13; 0:28�[
\½0:6; 0:7�; ½0:2; 0:2�[
\½0:7; 0:75�; ½0:05; 0:1�[

\½0:3; 0:8�; ½0:16; 0:2�[
\½0:45; 0:47�; ½0:5; 0:5�[
\½0:6; 0:6�; ½0:3; 0:3�[

1

C

A

Step 1: Based on eR ¼ ðerijÞ3�3, the ranges, and relation of

the weights, we have the linear programming model as

follows:

max M ¼
X

3

j¼1

wj

X

3

i¼1

X

3

k¼1

Dðerij; erkjÞ
" #( )

s:t:

0:25�w1 � 0:75

0:35�w2 � 0:6

0:3�w3 � 0:35

w	
3 �w	

2 �w	
1

w1 þ w2 þ w3 ¼ 1

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð19Þ

Step 2: Solving Eq. (19), we have the optimal weights,

i.e., w	
1 ¼ 0:35; w	

2 ¼ 0:35;w	
3 ¼ 0:3.

Step 3: Based on Eq. (2) and the above optimal weights

of attributes, then we have the aggregated results as

follows:

ea1 ¼ \½0:4281; 0:7225�; ½0:1455; 0:2250�[ ;

ea2 ¼ \½0:4647; 0:5686�; ½0:2633; 0:2847�[ ;

ea3 ¼ \½0:5291; 0:5675�; ½0:1847; 0:2442�[ :

Step 4: Using Eq. (17), then we obtain

Sðea1Þ ¼ 0:1018; Sðea2Þ ¼ 0:0531; Sðea3Þ ¼ 0:0763:

Because Sðea1Þ[ Sðea3Þ[ Sðea2Þ, thus the preference

order of the alternatives is

x1 
 x3 
 x2:

This result is distinct from the preference order of Wang

and Chen (2018), which is

x3 
 x1 
 x2:

Example 5.3 Assume the IVIF weights ew1, ew2 and ew3 of

the attributes C1, C2 and C3 are

ew1 ¼ \½0:1; 0:4�; ½0:2; 0:55�[ ;

ew2 ¼ \½0:2; 0:5�; ½0:15; 0:45�[ ;

ew3 ¼ \½0:25; 0:6�; ½0:15; 0:38�[ :

Assume that the decision matrix eR ¼ ðerijÞ4�3 provided

by the decision maker is as follows:

eR ¼ ðerijÞ4�3 ¼

\½0:32; 0:51�; ½0:34; 0:43�[
\½0:32; 0:75�; ½0:03; 0:11�[
\½0:42; 0:6�; ½0:29; 0:4�[
\½0:61; 0:7�; ½0:08; 0:22�[

0

B

B

B

@

\½0:41; 0:6�; ½0:1; 0:3�[
\½0:51; 0:6�; ½0:1; 0:3�[
\½0:4; 0:5�; ½0:2; 0:4�[
\½0:4; 0:6�; ½0:14; 0:2�[

\½0:41; 0:6�; ½0:19; 0:4�[
\½0:42; 0:7�; ½0:1; 0:21�[
\½0:45; 0:6�; ½0:1; 0:33�[
\½0:45; 0:7�; ½0:1; 0:29�[

1

C

C

C

A

Step 1: Based on eR ¼ ðerijÞ4�3, the ranges, and relation of

the weights, we have the following linear programming

model:

max M ¼
X

3

j¼1

wj

X

4

i¼1

X

4

k¼1

Dðerij; erkjÞ
" #( )

s:t:

0:1�w1 � 0:4

0:2�w2 � 0:5

0:25�w3 � 0:6

w	
3 �w	

2 �w	
1

w1 þ w2 þ w3 ¼ 1

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð20Þ

Step 2: Solving Eq. (20), we have the optimal weights,

i.e., w	
1 ¼ 1=3; w	

2 ¼ 1=3; w	
3 ¼ 1=3.

Step 3: Based on Eq. (2) and the above optimal weights of

attributes, then we have the aggregated results as follows:

ea1 ¼ \½0:3814; 0:5720�; ½0:1836; 0:3723�[ ;

ea2 ¼ \½0:4218; 0:6892�; ½0:0670; 0:1907�[ ;

ea3 ¼ \½0:4237; 0:5691�; ½0:1797; 0:3752�[ ;

ea4 ¼ \½0:4951; 0:66698�; ½0:1039; 0:2337�[ :

Step 4: Using Eq. (17), then we obtain

Sðea1Þ ¼ 0:043; Sðea2Þ ¼ 0:1133; Sðea3Þ ¼ 0:0472; Sðea4Þ
¼ 0:1072

Because Sðea2Þ[ Sðea4Þ[ Sðea3Þ[ Sðea1Þ, thus the prefer-

ence order of the alternatives is
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x2 
 x4 
 x3 
 x1:

This result is distinct from the preference order of Wang

and Chen (2018), which is

x4 
 x2 
 x3 
 x1:

From Example 5.1 to Example 5.3, our ranking order

results are all different from those of Wang and Chen

(2018). One reason is that Wang and Chen’s method did

not take into account the maximum impossible weight

ranges and the relations of the weights. In Step 1, Wang

and Chen (2018) used the defective SNWCðeaÞ to calculate

the scores. Instead of the ranking method, we use the

method of calculating the distance between IVIFSs. In Step

4, Wang and Chen (2018) used the defective SNWCðeaÞ to

calculate the scores of the aggregated results again. Thus,

the ranking order results are definitely not accurate. On the

other hand, our information-based score function is well

defined and only used to rank the aggregated results in Step

4. Thus, the orders ranked by our method are better than

that of Wang and Chen (2018).

6 Conclusions

In this paper, we enumerate several existing ranking

methods which have drawbacks of ranking the IVIFSs.

Then, we proposed an information-based score function

considering the information amount, the reliability, the

certainty information, and the relative closeness degree. It

is proved that the information-based score function

increases with the increasing of a; b, whereas it increases

with the decreasing of c; d. Related examples are used to

show the effectiveness of the information-based score

function. Calculating the special IVIFSs, the results show

that the information-based score function is proved to be

more reasonable than the existing ranking methods.

Finally, according to the distance of IVIFSs, the ranges,

and the relation of weights, we apply the information-based

score function and linear programming method to three

illustrative examples. By comparing with Wang and

Chen’s MADM method, we know that the information-

based score function is well defined. In addition, our

MADM method is superior to that of Wang and Chen.
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