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Abstract
Clustering ensemble can overcome the instability of clustering and improve clustering performance. With the rapid develop-
ment of clustering ensemble, we find that not all clustering solutions are effective in their final result. In this paper, we focus on
selection strategy in selective clustering ensemble. We propose a multiple clustering and selecting approach (MCAS), which
is based on different original clustering solutions. Furthermore, we present two combining strategies, direct combining and
clustering combining, to combine the solutions selected by MCAS. These combining strategies combine results of MCAS
and get a more refined subset of solutions, compared with traditional selective clustering ensemble algorithms and single
clustering and selecting algorithms. Experimental results on UCI machine learning datasets show that the algorithm that uses
multiple clustering and selecting algorithms with combining strategy performs well on most datasets and outperforms most
selective clustering ensemble algorithms.

Keywords Selective clustering ensemble · Clustering solution · Multiple clustering and selecting algorithms · Combining
strategy

1 Introduction

Clustering is one of the most important tools in data min-
ing. The major goal of clustering is to seek a grouping
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which makes the intra-group similarity large, but inter-group
similarity small. However, using different methods or same
method with different parameters on the same dataset will
have different results. The basic challenge in clustering is
choosing a suitable algorithm for one dataset. Strehl and
Ghosh (2003) proposed clustering ensemblewhich combines
independent clustering results rather than finds the best ones.
Clustering ensemble, known as clustering aggregation and
consensus clustering, is characterized by high robustness,
stability, novelty, scalability and parallelism (Yu et al. 2014;
Lv et al. 2016; Jia et al. 2011; Ma et al. 2018). In addition,
clustering ensemble has advantages in privacy protection and
knowledge reuse. It only needs to access clustering solutions
rather than original data, so it provides privacy protection for
original data (Akbari et al. 2015). Clustering ensemble uses
the results from single clustering algorithms to form the final
partition; that is to say, it can reuse knowledge (Wang et al.
2010).

Although clustering ensemble has many advantages, not
all clustering solutions make positive contributions to the
final result (Yu et al. 2016). Many existing clustering ensem-
ble algorithms combine all clustering solutions; however, we
find that onlymerging partial solutions produces better result.
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And the method using partial solutions is selective clustering
ensemble (SCE) (Hong et al. 2009). Hadjitodorov proposed
to select solutions according to diversity or quality (Had-
jitodorov et al. 2006). Furthermore, Alizadeh presented to
consider diversity and quality simultaneously for selecting
solutions (Alizadeh et al. 2014). Jia et al. (2011), Yu et al.
(2014) and Yu et al. (2014) regarded solutions as features
of dataset and selected solutions with clustering algorithms
or feature selection algorithms. These SCE algorithms have
two limitations. (1) They did not consider which diversity
would benefit the clustering ensemble. Hadjitodorov et al.
(2006) considered solutions in low diversity being good,
while Kuncheva and Hadjitodorov (2004) supported high
diversity. (2) Some methods did not take into account how
to make sure the selected solutions are in high quality while
considering diversity.

In order to address the limitations of traditional SCE algo-
rithms, we first propose a multiple clustering and selecting
approach (MCAS), which adopts multiple clustering and
selecting algorithms to select solutions. Then, we design a
method,MCASwith direct combining (MCAS_DC), to inte-
grate the selected solutions gotten by MCAS into a unified
set of selected solutions. In addition, we improveMCAS_DC
with a clustering and selecting algorithm and produceMCAS
with clustering combining (MCAS_CC). Next, we adopt
Normalized Cut algorithm (Ncut) as consensus function to
produce final result. Finally, a set of experiments are used to
compare different SCE algorithms with our methods over
multiple datasets. The experiments on ten UCI machine
learning datasets show that the proposed methods outper-
form most SCE algorithms.

The contribution of this paper is twofold. First, we propose
a MCAS approach based on different selection approaches,
which not only provides diverse solutions, but also guaran-
tees the quality of selected solutions. Second, a combining
strategy is designed to merge the selected solutions and
MCAS_CC is proposed to improveMCAS_DC,which refine
the clustering solution more accurately.

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief survey of SCE. Section 3 presents the
framework of our methods. Section 4 evaluates the perfor-
mance of the proposed methods on UCI machine learning
datasets. Section 5 draws conclusions and describes our
future works.

2 Related works

Clustering ensemble mainly includes two steps: diversity
generation and consensus function.

In the first stage, the generation of diverse clustering solu-
tions includes four methods. (1) Heterogeneous ensemble is
appropriate for low-dimensional data and this method uses

different clustering algorithms, such as KMeans (KM), spec-
tral clustering (SC) (Liu et al. 2017) and self-organizing map
(SOM) (Strehl and Ghosh 2003). (2) Homogeneous ensem-
ble is also suitable for low-dimensional data and it changes
basic parameters of one algorithm, for example, KM with
different initial centers, SC with different k values and SOM
with different originalweighting vectors (Fred and Jain 2002;
Topchy et al. 2003). (3) Subsampling or resampling of origi-
nal data is appropriate for big dataset (Alizadeh et al. 2013).
(4) Using feature subset of data or projecting data into ran-
dom subspace is suitable for high-dimensional data (Topchy
et al. 2003; Bertoni and Valentini 2006).

The second stage in clustering ensemble is combining
these solutions to obtain final accurate result, and it mainly
includes four methods. (1) Voting approach: It solves the
inconsistency of labels and assigns data to cluster which has
more votes than other clusters (Zhou and Tang 2006). (2)
Pairwise approach: It mainly creates co-association matrix
according to pairwise similarity before clustering (Fred and
Jain 2002, 2005). (3) Graph-based approach: It produces
final partition by creating graph and cutting edges of graph
and (Strehl and Ghosh 2003; Ma et al. 2019, 2020). (4)
Feature-based approach: It considers clustering solutions as
new features of original data and clusters these data with new
features (Yu et al. 2016).

In addition, there are other consensus functions, such as
locally adaptive clustering algorithm, genetic algorithm and
kernel methods (Wang et al. 2014; Rong et al. 2019; Hong
and Kwonga 2008; Rong et al. 2019). Yousefnezhad et al.
(2017) andMinaei-Bidgoli (2016) proposed a kind of ensem-
ble clustering-based wisdom of crowds theory, which is used
for pairwise constraint clustering, and consider the indepen-
dency, decentralization and diversity for selection.

In many methods, SCE is short of a unified definition;
thereby, we introduce the concept mentioned in Muhammad
et al. (2016). SCE selects solutions from solutions library
according to some benchmark and merges them to improve
the accuracy of final partition. Considering quality and diver-
sity simultaneously, we get the following theorem to explain
SCE.

Theorem 1 If R = Lq ∩ Ld, R �= ∅ and Cr ∈ R, then
combining C −Cr performs better than combining C, where
C = {C1,C2, . . . ,Cm} is solutions library, Lq ⊂ R is com-
posed of solutions which have lower quality than average
quality Q̄ of all solutions, Ld ⊂ R is composed of solutions
which have lower diversity than average diversity D̄ of all
solutions and C − Cr is a subset of R and composed of all
solutions except Cr .

Proof The average quality of C − Cr is

QC−Cr = mQ̄ − QCr

m − 1
= Q̄ + Q̄ − QCr

m − 1
, (1)
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where QCr is the quality of solution Cr . According to the
define of Cr , QCr < Q̄ then

QC−Cr > Q̄. (2)

In the same way, the average diversity of C − Cr is

DC−Cr = mD̄ − DCr

m − 1
= D̄ + D̄ − DCr

m − 1
, (3)

where DCr is the diversity of solution Cr . According to the
define of Cr , DCr < D̄ then

DC−Cr > D̄. (4)

According to (2) and (4), we can conclude that combining
the solutions subset C −Cr performs better than combining
all solutions in library C considering quality and diversity. A
good solution has a higher diversity relative to inter-cluster
and higher quality relative to intra-cluster. So a good SCE
algorithm selects solutions not only considering quality of
solutions to reduce the influences of the ones in low quality,
but also considering the solutions which are different from
others for avoiding redundancy.

Hadjitodorov studied the relationship between diversity
of solutions and final partition and found that solutions in
high diversity are better than the ones in low diversity (Had-
jitodorov et al. 2006). However, Kuncheva found that the
relationship between diversity and quality is not linear and
median diversity is better than the ones in high diversity
(Kuncheva and Hadjitodorov 2004). Fern took into account
diversity and quality simultaneously and proposed three SCE
algorithms (Fern and Lin 2008). Alizadeh et al. (2014), Naldi
and Carvalho (2013), Nazari et al. (2019), Ali et al. (2019)
and Wu et al. (2014) put forward new selecting strategies
based on quality or diversity.

Meng regarded solutions as features of dataset and clus-
tered this dataset with affinity propagation algorithm (Meng
et al. 2016), while (Azimi and Fern 2009; Ma et al. 2015;
Zhang et al. 2015; Soltanmohammadi et al. 2016; Ma et al.
2018) adopted feature selection algorithms to select features
of the dataset which regards solutions as features of dataset
for selecting solutions. Wei (2005) used a bagging algorithm
for the purpose of selecting solutions and adopted a spectral
clustering algorithm as the consensus function (Zhang and
Cao 2014). In addition, Dai et al. (2015), Faceli et al. (2010)
and Yang et al. (2017) presented other SCE algorithms.

For extremely large-scale datasets, (Huang et al. 2019)
focus on scalability and robustness by using ultra-scalable
spectral clustering and ultra-scalable ensemble clustering,
whichdemonstrated the scalability and robustness.Bagherinia
et al. (2020) propose a new fuzzy clustering ensemble
framework combining the reliability-based weighted and

graph-based fuzzy consensuses function andget performance
clustering robustness.

3 Multiple clustering and selecting
algorithms with combining strategy for
SCE

Figure 1 provides a flowchart of multiple clustering and
selecting algorithms (MCAS) with combining strategy for
selective clustering ensemble. First, m different cluster-
ing algorithms are used to produce solutions library C =
{C1,C2, . . . ,Cm}. Then, MCAS adopts m′ clustering and
selecting algorithms to run on library C and each one gets
a subset of solutions. Next, a combining strategy combines
these subsets and produces final selected solutions. Finally,
a consensus function is used to get the final partition about
original dataset.

3.1 Diversity generation

The first step ofMCASwith combining strategy for SCE is to
get solutions library C = {C1,C2, . . . ,Cm}, which consists
of many diverse solutions about original dataset. KMeans, as
themost common clustering algorithm, has beenwidely used
in clustering ensemble (Xu et al. 2016). However, like most
traditional clustering algorithms, KMeans is only applied to
convex sphere sample space. So when the sample space is
not convex, it is easy to fall into local optimum. Therefore,
in order to avoid this problem, we use spectral clustering
(Huang et al. 2015). Spectral clustering algorithm not only
can cluster non-convex dataset, but also can cluster high-
dimensional data. Due to the fact that spectral clustering
algorithm is easy to implement and has a good prospect, it has
beenwidely used inmany fields, such as video segmentation,
speech recognition and image segmentation.

In this paper, we use KMeans to generate half of the solu-
tions library and spectral clustering algorithm to produce
the other half. KMeans clusters data according to distance,
while spectral clustering explores the connection structures
between data in depth. Applying KMeans and spectral clus-
tering simultaneously is better than using KMeans and
spectral clustering separately. Because they can complement
each other and generate solutions from different aspects with
a comprehensive exploration of data. As future study, we
intend to explore for methods that generate diverse solutions.

3.2 MCAS with combining strategy

Each solution in solutions library is represented by clus-
ter labels. Ci = {cix1 , cix2 , . . . , cixn }(i = 1, 2, . . . ,m) and
cix j is the cluster label of data x j in solution Ci . It cannot
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Fig. 1 A flowchart of multiple
clustering and selecting
algorithms with combining
strategy for selective clustering
ensemble

be directly used for the next operation. For example, solu-
tions {1, 1, 1, 2, 2, 3, 3, 3} and {2, 2, 2, 3, 3, 1, 1, 1} are in
different means of expression, but they represent the same
partition. So it is necessary to solve the problem of cluster
label inconsistency before applying MCAS. In this paper,
we use the method proposed by Wei (2005). For matching
clusters, themethod uses the criterion that the amount of cov-
ered data by clusters which have corresponding relationship
is maximum.

After solving the problem of cluster label inconsistency,
we view the solutions library C as a new dataset and a solu-
tion is a piece of data which has n attributes. Then, multiple
clustering and selecting algorithms are used to select solu-
tions from C . These clustering and selecting algorithms we
used in this paper are KMeans selection (KMS), expectation
maximization selection (EMS), hierarchical clustering selec-
tion (HCS) and farthest-first selection(FFS) (Yu et al. 2016;
Hu et al. 2016; Devi and Deepika 2016). Next, two com-
bining strategies are proposed: direct combining (DC) and
clustering combining (CC). These two combining strategies
are used to combine the solutions gotten byMCAS to get the
final selected solutions.

The multiple clustering and selecting algorithms we used
mainly include two steps. First, it clusters solutions library
C for the purpose that the solutions in the same cluster have

more similar diversity than those in different clusters.And the
second step is selecting one solution which has the highest
quality from each cluster. In this paper, we introduce two
important indexes to measure the quality of each solution
and diversity between two solutions.

quality(Ci ) = 1

m

m∑

j=1

NMI (Ci ,C j ), (5)

diversity(Ci ,C j ) = 1 − NMI (Ci ,C j ), (6)

where NMI(Ci ,C j ) denotes the NMI value between solu-
tions Ci and C j (Ci ,C j ∈ C and C = {C1,C2, . . . ,Cm}
is solutions library). Using these two steps, MCAS meets
the requirements of quality and diversity in SCE. Compared
with using single clustering and selecting algorithm, the rea-
son we use multiple clustering and selecting algorithms is
that it avoids the weakness of single clustering and selecting
algorithm.

KMeans selection (KMS) is an algorithm that partitions
solutions based on diversity and selects solutions according
to quality. First, it selects K solutions from C as initial cen-
troids.Next, it assigns each solution to the clusterwith similar
solutions until all solutions are assigned to the clusters. Then,
according to the solutions in the clusters, the centroid of each
cluster is updated. Repeat the above assignment and update
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until the clusters do not change anymore. Finally, the solu-
tion in each cluster that has the highest quality is selected
by KMS. The pseudo-code of KMS is described in
Algorithm 1.

Algorithm 1 KMeans Selection (KMS)
Input:K , number of selected solutions; C , solutions library
Output:Skms , a subset of C
1: Select K solutions from C as initial centroids;
2: repeat
3: Assign each solution to the corresponding cluster according to its

similar solutions;
4: (Re)calculate the centroid of each cluster;
5: until there is no change in clusters;
6: Skms is composed of solutions with highest quali t y in each cluster;

Expectation maximization selection (EMS) clusters solu-
tions iteratively in two steps and selects solutions according
to quality. First, EMS gives k a random value and assigns
all solutions into k clusters randomly. Then, E-step calcu-
lates the maximum likelihood estimator of k using existing
partition of solutions. Next, M-step calculates the values of
k by maximizing the maximum likelihood value obtained in
E-step. The two steps continue until the value of k converges.
Finally, EMS selects the solution that has the highest quality
in each cluster. EMS, described in Algorithm 2, is simple and
stable.

Algorithm 2 Expectation Maximization Selection (EMS)
Input:C , solutions library
Output:Sems , a subset of C
1: Assign random initial values to k and assign solutions to k clusters

randomly;
2: repeat
3: calculate the expected function under current k and solutions par-

tition;
4: recalculate k using expected function and reassign solutions into

k clusters;
5: until k is stable;
6: Sems is the set of solutions with highest quali t y in each cluster;

At first, hierarchical clustering selection (HCS) regards
each solution as a cluster that only has one solution and
creates adjacency matrix about clusters based on solutions’
diversity. Next, it combines the two clusters that have more
similar diversity than others. Then, it updates the adjacency
matrix about clusters according to the solutions’ diversity.
Repeat the operations of combining clusters and update adja-
cency matrix until only k clusters are remained. Finally, the
solution in each cluster that has the highest quality is selected
by HCS. This method is described in Algorithm 3.

Farthest-first selection (FFS) first labels the solutions
according to diversity from 1 to m, and the one that is most
dissimilar with others is labeled earlier. Repeat the above

Algorithm 3 Hierarchical Clustering Selection (HCS)
Input:K , number of selected solutions; C , solutions library
Output:Shcs , a subset of C
1: Create adjacency matrix with diversity among solutions;
2: repeat
3: Merge the two most similar clusters;
4: Update the adjacency matrix;
5: until only K clusters are remained;
6: Shcs is composed of solutions with highest quali t y in each cluster;

process of labeling until all solutions are labeled. Next, FFS
constructs a minimum spanning tree, and for any solution, its
parents are solutions that are more similar to it than others.
Then, it cuts the maximum edge based on diversity until only
k subtrees are generated. Finally, FFS selects the solution that
has the highest quality from each subtree. The specific pro-
cess of FFS is described in Algorithm 4.

Algorithm 4 Farthest-first Selection (FFS)
Input:K , number of selected solutions; C , solutions library
Output:S f f s , a subset of C
1: Pick a solution randomly and label it with 1;
2: Find the solution that most dissimilar with others and label it until

all solutions have a label;
3: Create a minimum spanning tree with solutions in labels;
4: Cut the maximum edge until K subtrees are gotten;
5: S f f s is the set of solutions with highest quali t y in each cluster;

After selecting four subsets of C with MCAS, how to get
the optimized subset is the most critical issue that needs to
be solved. In this paper, we present two combining strate-
gies: direct combining (DC) and clustering combining (CC).
Direct combining (DC), as the name indicates, is directly
combining solutions in each subset to obtain a new subset
SDC = Skms ∪ Sems ∪ Shcs ∪ S f f s . Clustering combining
(CC) is based on SDC and KMS. It takes SDC as input of
KMS, clusters SDC according to diversity among solutions
and selects solutions with the highest quality in each clus-
ter. The selected solutions by KMS are SCC. In the future,
we will study on comparing other clustering and selecting
algorithms as combining strategy.

3.3 Consensus function

The third step of MCAS with combining strategy for SCE
is consensus function. In this paper, we use normalized cut
(Ncut) (He and Zhang 2016) as the consensus function to
acquire the final result. Before applying Ncut, a consensus
matrix W is constructed and the value in W of data xi and
x j is

wi j = Ti j
|S| , (7)

123



15134 T. Ma et al.

where Ti j is the amount of times that data xi and x j appear
together in all selected solutions and |S| is the number of
selected solutions in subset SDC or SCC. Then, Ncut draws
a graph G = (X ,W ). The vertices of the graph are data in
dataset X , and the edge of two vertices is the corresponding
value inW . Ncut starts with a binary segmentation. It divides
graph into two subgraphs X1 and X2, and repeat the above
process on subgraphs until K subgraphs are obtained.

The objective function �(X1, X2) of minimizing irrele-
vancies of X1 and X2 is defined as follows:

�(X1, X2) = cut(X1, X2)

assoc(X1, X)
+ cut(X1, X2)

assoc(X2, X)
, (8)

cut(X1, X2) =
∑

xi∈X1,x j∈X2

wi j , (9)

assoc(X1, X) =
∑

xi∈X1,xl∈X
wil , (10)

where cut(X1, X2) is sum of the weights about edges that
connect vertices between X1 and X2 and assoc(X2, X) is
sum of weights about edges that connect vertices in X1.
This optimization problem is NP hard, and it can be solved
by searching approximate solution in true value field. If
this problem is formulated with generalized eigenvalues, the
result of Ncut is the eigenvector that corresponds to the sec-
ond small eigenvalue of pairwise similarity matrix.

In summary, Algorithm 5 provides pseudo-code of our
proposed MCAS with combining strategy for SCE.

Algorithm 5 Multiple Clustering and Selecting algorithms
with Combining Strategy for SCE
Input:k, number of clusters; X , dataset with n data
Output:a set of k clusters
1: Build a solutions library C = {C1,C2, · · · ,Cm} with KMeans and

Spectral clustering algorithm on X ;
2: Solve the problem of labels inconsistency in C ;
3: Build a collection of solutions subsets S = {Skms , Sems , Shcs , S f f s}

with MCAS on C using KMS, EMS, HCS and FFS;
4: Use Direct Combining (DC) as combining strategy and SDC =

Skms ∪ Sems ∪ Shcs ∪ S f f s ;
5: if Using Clustering Combining (CC) as combining strategy then
6: Build SCC with KMS on SDC ;
7: end if
8: Construct a consensus matrix and adopt Ncut to obtain the final

result;

3.4 Complexity analysis

As Fig. 1 shows, the proposed MCAS_DC and MCAS_CC
algorithms include four steps: (1) original cluster generated
by different clustering algorithms; (2) clustering and select-
ing algorithms executed including KMeans, EMS, HCS and
FFS; (3) DC and CC combining strategy used to combine the

selected subset; and (4) Ncut as a consensus function to get
the final result. The complexity of each step is given in the
following.

Step 1 There are m original results required; half of them
are generated by KMeans clustering and the other half are
generated by spectral clustering.

TheKMeans clustering time complexity is O(i ∗n∗k) and
the space complexity is O(n), where i is the iterate times, n
is the size of dataset and k is the cluster number. The spectral
clustering time complexity is O(n3), and the space complex-
ity is O(n2).

The total time complexity is O(m ∗ (i ∗ n ∗ k + n3)) and
the space complexity is O(m ∗ (n + n2)), where m is the
number of original clustering solutions.

Step 2 Select K subsets from the C = {C1,C2, . . . ,Cm}
original solutions. There are four methods.

KMeans The time complexity is O(I ∗m ∗K ), and each iter-
ation should calculate function (6). So, the time complexity
is O(I ∗m ∗ K ∗m2) and the space complexity also is O(n),
where I 	 i is the iterate times and K < k is the cluster
number.

EMS The complexity is same, as KMeans as procedure is
same. So, the time complexity is O(I ∗m ∗ K ∗m2) and the
space complexity also is O(n).

HCSThe time complexity isO(m2) and the space complexity
also is O(n).

FFS The time complexity is O(m ∗ K ∗ m2) and the space
complexity also is O(n).

Steps 3 Combine the selected subsets. For MCAS_DC,
SDC = Skms ∪ Sems ∪ Shcs ∪ S f f s . The time complexity
is O(1), and the space complexity is O(m). For MCAS_CC,
using clustering algorithm combine 4 ∗ K solution with K ,
so the time complexity is O(I ′ ∗ 4K ∗ K ∗ 4K ∗ 4K ), where
I ′ is the iterate times, and the space complexity is O(m).

Steps 4 Adopt Ncut as consensus function to get the final
result. The time complexity isO(K*K*K), and the space com-
plexity is O(K*K).

The total time complexity is sum up above four steps, so it
is:O(m∗(i∗n∗k+n3))+O(I∗m∗K∗m2)+O(I∗m∗K∗m2)

+ O(m2) + O(m ∗ K ∗m2) + O(I ′ ∗ 4K ∗ K ∗ 4K ∗ 4K ) +
O(K*K*K).

As I ′ < I 	 i , K < k, m 	 n, K < m, so the time
complexity can be reduced to O(m ∗ n3).

The space complexity is: O(m ∗ (n + n2)) + O(n) +O(n)
+ O(n) + O(n) + O(m) + O(m) + O(K*K) and can be reduced
to O(m ∗ n2).

So, the whole algorithm’s complexity depends on the
spectral clustering of the first step. Our proposed methods
MCAS_DC and MCAS_CC are in the same level with SCE.
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Table 1 Summary of ten UCI machine learning datasets (where k
denotes the number of classes, n denotes the amount of data and d
denotes the number of features)

Datasets k n d

Breast Cancer 2 683 8

Ecoli 8 336 7

Glass Identification 6 214 9

Iris 3 150 4

Lung Cancer 3 32 56

Seeds 3 210 7

Soybean (Small) 4 47 35

Statlog (Heart) 2 270 13

Wine 3 178 13

Yeast 10 1484 8

4 Experiments

The proposed methods, multiple clustering and selecting
with direct combining strategy (MCAS_DC) and multiple
clustering and selecting with clustering combining strat-
egy (MCAS_CC), are tested on ten UCI machine learning
datasets shown in Table 1. The number of classes, features
and data amount are diverse enough in order to reflect the
advantages and disadvantages of our methods. It is worth
noting that all of the datasets are labeled with supervised
classification information, but this label information is only
used to evaluate our methods, but not in our methods.

In the step of diversity generation, the number of clusters is
randomly selected from [2,√n] and the error is set as 1e-5 in
KMeans and spectral clustering. Them in Fig. 1 is consistent
from 50 solutions generated by KMeans and 50 solutions
generated by spectral clustering. In the step of MCAS with
combining strategy, the number m′ of selected solutions is
from10 to 100with step 10. In the step of consensus function,
the number of clusters for Ncut is the real class number k of
dataset.

The external evaluation indexes are used to measure our
proposed methods. We use normalized mutual information
(NMI), adjusted Rand index (ARI) and joint index (JI) as
evaluating indicators to calculate the difference between the
results of our methods and the real partition of original
dataset. Because these indexes produce similar results and
trends compared with the real partition of dataset, we only
show the result of NMI about 20-time running.

4.1 The comparison between single CAS algorithm
andMCAS with combining strategy

In this experiment, we compare four single clustering and
selecting algorithms, namely KMS, EMS, HCS and FFS,
and two proposed MCASs with combining strategy, namely

MCAS_DC, MCAS_CC. Figure 2 shows the NMI values
of six SCE algorithms. It can be seen that MCAS_DC
and MCAS_CC provide better results than four single CAS
algorithms, especially on Ecoli, Glass Identification, Lung
Cancer, Seeds, Soybean, Wine and Yeast datasets. Though
our algorithms sometimes are slightly inferior to some single
CAS algorithms on datasets Breast Cancer, Iris and Statlog,
they are overall better than single CAS algorithm. The possi-
ble reasons are as follows. (1)We consider different solutions
as a piece of data in new dataset, cluster the new dataset to
ensure high diversity and select solutions with high quality
from each cluster to prune redundant solutions. (2) There is
not a single CAS algorithm that works well on all datasets.
For example, KMS only gets better results on Lung Cancer
and Statlog, while EMS achieves the best result only on Iris.
This encourages us to use multiple clustering and selecting
algorithms and design a combining strategy to combine the
solutions selected by MCAS. In summary, the performance
of MCAS with combining strategy is obviously better than
that of single CAS algorithm.

4.2 The effect of solutions quality

To illustrate the relationship between the basic cluster-
ing solutions and the performance of MCAS_DC and
MCAS_CC, we compare the NMI of our methods and the
average NMI of basic solutions. Here, basic clustering solu-
tions are the original solutions generated in the first step. The
basic clustering solutions consist of KMeans generating 50
solutions and spectral clustering generating 50 solutions.

As shown in Fig. 3, the quality of basic solutions has pos-
itive influence on our algorithms. For instance, on Breast
Cancer, the basic clustering solution has higher NMI in the
first and eleventh runnings, and correspondingly,MCAS_DC
and MCAS_CC have better performance in these runnings.
It can be seen that basic solutions have higher NMI on Ecoli,
Seeds, Soybean and Wine than on Glass, Lung Cancer and
Yeast, so the performance of MCAS_DC and MCAS_CC
on the first four datasets is better than that on the last three
datasets. This is mainly because when the quality of basic
solutions is good, MCAS_DC and MCAS_CC can ensure
the selected solutions have the optimal trade-off between
quality and diversity. In general, better the quality of basic
clustering solutions, better the performance of MCAS_DC
and MCAS_CC.

4.3 The effect of selection proportion

In order to study the relation between the selection proportion
and the performance of our proposed algorithms, we make
a set of experiments, and Fig. 4 shows the result of using
all and partial solutions. When the selection proportion is
10%, it means that the amount of selected solutions is 100×
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Fig. 2 Comparison of single
and multiple CAS algorithms for
SCE. EMS, KMS, FFS and HCS
are four single CAS algorithms:
expectation maximization
selection, KMeans selection,
farthest-first selection and
hierarchical clustering selection
for CAS operation, respectively.
MCAS_DC and MCAS_CC are
our proposed SCE algorithms
that use MCAS with direct
combining (DC) and clustering
combining (CC). a–j are,
respectively, NMI values of six
SCE algorithms on ten UCI
datasets of 20-time running
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Fig. 3 Relationship between
MCAS for SCE and qualities of
basic clustering solutions.
Basic denotes the average NMI
among basic clustering
solutions. MCAS_DC and
MCAS_CC are our proposed
SCE algorithms that use MCAS
with direct combining (CC) and
clustering combining (CC). a–j
are, respectively, NMI values of
those on ten UCI datasets of
20-time running
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Fig. 4 Relationship between
selection proportion and
algorithm performance.
Original is clustering ensemble
algorithm using all clustering
solutions. MCAS_DC and
MCAS_CC are our proposed
SCE algorithms that use MCAS
with direct combining (DC) and
clustering combining (CC). a–j
are, respectively, NMI values of
those on ten UCI datasets of
different selection proportions.
When the selection proportion is
10%, it means the number of
selected solutions is
100 × 10% = 10
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Table 2 p value according to t test on ten UCI datasets of three SCE algorithms compared with MCAS_DC and MCAS_CC

Datasets MCAS_DC MCAS_CC MCAS_DC

HCES Akbari
et al. (2015)

HCSS (Jia
et al. 2011)

SELSCE (Yu
et al. 2014)

HCES
(Akbari et al.
2015)

HCSS (Jia
et al. 2011)

SELSCE (Yu
et al. 2014)

MCAS_CC

Breast Cancer 0.3116 0.3909 0.3310 0.3520 0.3811 0.4104 0.6273

Ecoli 0 0 0 0 0 0 0.6903

Glass Identification 0 0 0 0 0.0001 0 0.4523

Iris 0.2219 0.0044 0.0308 0.1457 0.0003 0.0203 0.5181

Lung Cancer 0.0569 0.0261 0.0803 0.0405 0.0197 0.1049 0.5567

Seeds 0.1116 0.1151 0.0839 0.1042 0.1269 0.1316 0.6589

Soybean (Small) 0.0121 0.0008 0.0001 0.0057 0.0001 0 0.4810

Statlog (Heart) 0.2886 0.2148 0.25 0.3107 0.2359 0.2237 0.4848

Wine 0.0086 0.0002 0.0011 0.0061 0.0014 0.0054 0.5421

Yeast 0.0001 0 0 0 0 0 0.5817

10% = 10. The result of selective clustering ensemble is
better than using all solutions, but the appropriate selection
proportion for different datasets is not same. For example,
10%, 20%, 30%, 40% and 50% are, respectively, suitable for
Iris, Yeast, Statlog, Ecoli and Seeds. In the future, studying
the suitable selection proportion is a good direction. From
Fig. 4, we can observe that it is possible to obtain better
results on all datasets by choosing a subset of solutions than
using all solutions, which is described in Sect. 2. Not all
solutions are effective for creating subset of solutions, and
pruning useless solutions can improve the performance of
final result. Therefore, it is worth to research how to choose
appropriate selection proportions for different datasets.

4.4 The comparison of different selective clustering
ensemble algorithms

In this experiment,we compare our two algorithmswith three
common SCE algorithms [SCE based on Quality which is
named as HCES (Akbari et al. 2015), Diversity which is
named as HCSS (Jia et al. 2011) and Feature Selection which
is named as SELSCE (Yu et al. 2014)] on ten UCI datasets of
20-time running. A pairwise two-sided t-test is used to ana-
lyze how better MCAS_DC and MCAS_CC are than other
three SCE algorithms (Hung 2015). The p value in t-test
measures the difference between two algorithms, and it repre-
sents the probability of the two compared sample sets coming
from the same variance distribution. The smaller the p, the
better the MCAS_DC and MCAS_CC in performance. And
0.05 is considered as a typical threshold of statically signif-
icant. The p values of three SCE algorithms compared with
MCAS_DC andMCAS_CC on tenUCI datasets are reported
in Table 2, and in the table, the bold values lower than 0.05
denote MCAS_DC or MCAS_CC has obvious advantage
compared with others.

Table 2 shows MCAS_DC and MCAS_CC have better
performances in most cases. It can be summed up from
Table 2 thatMCAS_DC is significantly superior to other SCE
algorithms on at least five of ten datasets and MCAS_CC is
better than other SCE algorithms on at least six datasets.
If using all solutions, the ones in low quality will reduce the
final result.And some similar solutionswill increase the com-
plexity of algorithms. Therefore, they will be filtered out by
our proposed MCAS. The three SCE algorithms only select
solutions form one aspect and do not think quality and diver-
sity simultaneously. On dataset Breast Cancer, Seeds and
Statlog, although MCAS_DC and MCAS_CC do not clearly
beat other SCE algorithms, they edged out them by a slight
advantage. It is mainly because in the process of generat-
ing diverse basic solutions, the number of classes k ranges
in [2,√n], and the real class numbers on the three datasets
are relatively smaller than k. This decreases the quality of
solutions and has a bad influence on final result.

From Fig. 3, it showsMCAS_CC sometimes is better than
MCAS_DC, sometimes is not. We calculate the p value with
the different NMIs according to each dataset to verify the
advantage of MCAS_CC. We can see from the last column
of Table 2 that MCAS_CC is better, but not obviously bet-
ter than MCAS_DC. Generally speaking, MCAS_DC which
lacks a clustering and selecting process is a good choice
when the requirement of time complexity is high.Conversely,
MCAS_CC is the best when considering accuracy.

5 Conclusion

In this paper, we study the problem of SCE and propose a
MCAS approach taking quality and diversity into account.
We also present two combining strategies, direct combin-
ing and clustering combining. We implement a throughout
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study of MCAS_DC and MCAS_CC on ten UCI datasets
and draw several conclusions. (1) Multiple CAS algorithms
work better than single CAS algorithm. (2) If the qual-
ity of basic solutions is generally good, the performance
of MCAS_DC and MCAS_CC is also good. (3) The suit-
able selection proportion that has the best final result is not
same on different datasets. (4) Our proposed algorithms,
MCAS_DC andMCAS_CC, overmatch common SCE algo-
rithms. MCAS_DC is the best choice considering algorithm
complexity; otherwise, MCAS_CC is a good choice.

Considering the experiments in this paper, our future stud-
ies are mainly on the following aspects. First, we are going
to study more single clustering and selecting algorithms and
integrate them into our methods. Second, a comprehensive
research about selection proportion on different datasets is
a good direction. Third, MCAS_CC uses KMS algorithm as
clustering and selecting algorithm and in the future we will
explore other combining strategy. In addition, there is always
priori information in real life, so how to use this knowledge
to help us is one of the worth topics.
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