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Abstract
Hazardous wastes’ volume produced by human activities has increased in recent years. Consequently, associated risks

involved in the treatment, recycling, disposing, and transportation of these hazardous materials have become more

attractive for the researchers. In this study, we propose a new model for hazardous waste location routing problem.

Appending the service time window and workload balance to the previous mathematical models can be taken into account

as the major contributions of this study. Three objective functions including two systematic goals (cost and risk) and one

social goal (workload balancing) have been considered for the model. Compatibility between wastes and a heterogeneous

fleet of vehicles, which are rarely investigated in the literature, is discussed in this paper. Since the proposed model is

classified as a multi-objective model, three multi-objective evolutionary algorithms, namely Non-dominated Sorting

Genetic Algorithm II (NSGA-II), Pareto Envelope-based Selection Algorithm II (PESA-II), and Strength Pareto Evolu-

tionary Algorithm II (SPEA-II) are employed. As two other innovations, an adaptive penalty function is developed and the

PESA-II is modified by removing replicated solutions from its archive and their obtained results are discussed. Finally, by

experimenting a number of test problems in different sizes, it is demonstrated that proposed modified PESA-II and SPEA-II

perform better than NSGA-II in most of comparison metrics including feasible answers exploration, CPU time, spacing

metric, inverted generational distance, quality metric, etc., whereas, NSGA-II creates more spread Pareto frontiers which

are suitable for decision-maker to choose, from among a range of different options.

Keywords Hazardous waste � Location routing problem � Workload balancing � Multi-objective optimization �
Metaheuristic algorithms

1 Introduction

Owing to the progress and extension of technologies, sci-

ence, and industries, the hazardous wastes’ volume pro-

duced by human activities have increased rapidly, and

consequently associated risks included in treatment, recy-

cling, disposing, and transportation of these dangerous

wastes and especially environmental issues, have become

the more attractive subject for the researchers. Hazardous

waste can be characterized as flammable, irritant, poi-

sonous, carcinogenic, toxic, infectious, and reactive (Nema

and Gupta 1999). There are various ranges of industries

producing hazardous waste like chemical manufacturing,

oil refining, iron production, and hospitals (Samanlioglu

2013). Hazardous waste could have undesirable impacts on

human health (Vrijheid 2000), and it can also influence the

environment directly or indirectly (Ardjmand et al. 2016).

Considering these conditions, many governments employ

hazardous waste management (HWM) systems to organize

collection, transportation, treatment, recycling, and dis-

posal of these hazardous materials (Samanlioglu 2013).

The main goal of using HWM systems is doing all the

aforementioned processes with the minimum of cost and

environmental and human bad effects (Nema and Gupta

1999). Simply say, there is a trade-off between cost and
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risk; for instance, from the transportation firms’ point of

view, the shortest way is the optimal route; on the other

hand, for the governments, the reliable path is the optimal

route according to several risk factors. Moreover, haz-

ardous wastes pass through various processes based on

their type; therefore, preparation and operating costs of

these processes are imposed on the HWM system (Alumur

and Kara 2007).

Generally, optimization studies investigating HWMs are

divided into three main categories. The first category

relates to location planning due to its importance in HWM

systems. Routes planning is the second category of HWM

studies which emerges as the vehicle routing problem

(VRP) in the HWM models. Finally, the third category is

the combination of two mentioned models which is known

as location routing problem (LRP). Due to the supreme

importance of economic and environmental aspects of

HWM, the LRP could properly formulate the concepts of

HWM problems in both theoretical and practical situations

and the integration of these concepts is recognized as

hazardous waste location routing problem (HWLRP)

(Ardjmand et al. 2016; Rabbani et al. 2018a).

In addition, job satisfaction is a new topic attracting

researchers’ attention in recent years. If one organization

seeks long-term success, it will consider its employee’s

satisfaction level to increase productivity, responsibility,

and efficiency. Therefore, employee satisfaction or dissat-

isfaction plays a critical role in organizational perfor-

mance. One essential factor that influences on job

satisfaction level is the workload. In order to increase

employee satisfaction, it is necessary to balance the

workload among the employees as much as possible (Matl

et al. 2019; Velarde Cantú et al. 2017). Given the impor-

tance of workload balancing to increase productivity, we

need to consider it as one of the study goals that has so far

been ignored in previous HWM studies.

One fundamental part of the HWM systems is the

scheduling of activities such as collection of wastes and

other processes. To clarify the importance of this issue,

imagine a facility producing explosive waste; the more

scheduling of collection is irregular, the more risk is

imposed to facility because of the variable amount of

collected wastes in the storage; therefore, not only does

time window consideration increase customer satisfaction

but also it reduces the risk and the cost. Consequently, we

append time windows constraints to the previous models to

fill this gap.

This paper proposes a new multi-objective mathematical

model for hazardous waste management, considering three

objective functions including two systematic goals (cost

and risk) and one social goal (workload balancing). Given

the NP-hard nature of LRP problems, the proposed model

is solved first by the exact method to verify model

performance and then three multi-objective evolutionary

algorithms, NSGA-II, PESA-II, and SPEA-II, are

employed; meanwhile, an adaptive penalty function is

proposed to facilitate reaching the feasible region for

evolutionary algorithms. We also improved PESA-II

function by removing duplicated solutions from its archive.

Finally, several multi-objective evolutionary algorithm

metrics including Quality Metric (QM), Mean Ideal Dis-

tance (MID), Spacing Metric (SM), Diversity Metric (DM),

Hypervolume (HV), and Inverted Generational Distance

(IGD) are employed to discuss the efficiency of these

algorithms in HWLRP problems.

The rest of the paper is organized as follows: In Sect. 2,

we review the relevant literature. In Sect. 3, the mathe-

matical model and problem description are presented. In

Sect. 4, the proposed algorithms are presented. In Sect. 5,

numerical experiments and results are discussed. Finally, in

Sect. 6 remarks of conclusion and future research direc-

tions are presented.

2 Literature review

The literature review is investigated in three main parts.

The first part of the literature investigates hazardous waste

location-routing problems. The second part focuses on the

workload balancing, and the third part is assigned to the

time windows and customer satisfaction. Finally, the lit-

erature gap recognition is presented at the end of this

section.

2.1 Hazardous waste location routing problem

Initially, Zografos and Samara (1989) formulated HWLRP

with a single type of waste. They used a goal programming

method and considered travel time, transportation risk, and

disposal facilities’ risk as the main criteria to locate dis-

posal nodes and determine the optimal routes between

demanding nodes. For the first time, Alumur and Kara

(2007) considered some constraints which have been

ignored by then such as treatment technology of each

treatment center, and compatibility between treatment

technology and waste in order to increase the efficiency of

the model. Finally, they solved the proposed model con-

sidering a multi-type of hazardous waste and using multi-

objective LRP. A new model for satisfying the air pollution

standards was proposed by Emek and Kara (2007). They

concentrated on incinerators’ establishment in a hazardous

waste LRP and incorporated recycling and treatment

facilities. In addition, they used an integer programming

model considering the transportation cost and air pollution

policies. The work of Samanlioglu (2013) is an example of

an HWM network considering a mathematical model with
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three objectives. In the model, three criteria were consid-

ered: minimizing total cost, total transportation risk, and

the total risk of the population around waste management

sites and the author used a lexicographic weighted

Tchebycheff formulation for obtaining efficient solutions

from the Pareto frontier and then the model was imple-

mented in a region of Turkey. Martı́nez-Salazar et al.

(2014) addressed a location-routing model considering

inventory risks for explosive waste management (EWM)

and utilize three types of vehicle routes, direct route, and

tour and a return trip in their proposed model. Ghezavati

and Morakabatchian (2015) improved previous work by

appending fuzzy satisfaction concepts, and human feeling

factors to the previous model and also increased the flex-

ibility of model by considering some nodes as warehouse

nodes to collect the wastes. Zhao and Verter (2015)

focused on hazardous material of used oil and proposed a

bi-objective model for LRP in order to minimize the

environmental risk and total cost. They used a modified

Goal Programming (GP) approach for transforming the bi-

objective model into a single objective, and then they

tested the application of the proposed analytical framework

in China. In addition to this study, the routes were sup-

posed to be a tour, or in other words, the vehicle ends its

tour at the starting point. Yu and Solvang (2016) presented

an HWLRP model that was filling the literature gap by

considering the risk level based on the type of waste and

treatment technology on HWM system planning. They also

used a e-constraint method to solve the proposed model.

Farrokhi-Asl et al. (2017) presented a model included

heterogeneous fleet, which has multi-separated compart-

ments and vehicles had different capacity, different travel

time and distance limitation and different fixed and vari-

able costs. Finally, the model was solved with two MOEAs

[NSGA-II and Multi-Objective Particle Swarm Optimiza-

tion (MOPSO)], and the results were compared with each

other. The work of Rabbani et al. (2018a) is an example for

HWLRP which considers constraints about the incompat-

ibility between some kinds of wastes and incorporates

routing into the model. They considered three objectives,

including cost, transportation risk, and risk of hazardous

waste sites. The researchers used two multi-objective

evolutionary algorithms and compared their results.

Aydemir-Karadag (2018) developed a profit-oriented

mixed-integer mathematical model for the HWLRP con-

sidering energy recovery from waste and the application of

the polluter pays principle. The auteur addressed the

location and number of hazardous waste centers and waste

residue flow among these centers. A rolling horizon basis

through the objective function of net present value (NPV)

is considered in the study, and the profitability of the HMW

system was analyzed. The results verified the applicability

and effectiveness of the suggested model for large-scale

HWM problems. Rabbani et al. (2019) proposed a multi-

objective stochastic mixed-integer nonlinear programming

(MINLP) model to integrate decisions of location, routing,

and inventory. The auteurs alleged that their work is novel

in considering the stochastic environment, multi-period

planning horizon, and inventory control decisions. They

also introduced a simheuristic method which is an inte-

gration of NSGA-II and Mont Carlo simulation. The study

result confirmed the efficiency of the approach to finding a

high-quality solution within a reasonable time.

2.2 Workload balancing

Martı́nez-Salazar et al. (2014) presented a mathematical

formulation, for Transportation Location Routing Problem

(TLRP) with two objectives. The first objective is reducing

distribution costs, and the other is balancing the workload

for drivers in the routing stage. They also proposed a new

representation of the model, which reduces the computa-

tion time. Cantú et al. (2017) developed a VRP network

based on a mixed integer programming (MIP) model for

hazardous material transportation. They integrated the

design of territory and distribution routing in order to

minimize routes travelled by each vehicle. They also

considered hazardous material pickup and delivery costs

and solved the model with an exact algorithm, and they

could improve workload balancing in each territory with a

central depot and tour-routes by their proposed model.

Rabbani et al. (2018b) considered workload balance in a

sustainable TLRP with soft time windows. The objectives

of the problem are as follows: distribution cost, fuel con-

sumption, and carbon dioxide emission minimizing and

balancing the workload for city drivers. Sivaramkumar

et al. (2018) considered a vehicle routing problem with

time windows and they applied two balancing strategies,

route balancing and total time balancing, on their study.

They asserted that time balancing is superior to route bal-

ancing because in time balancing service time is consid-

ered. Finally, they solved their model under three strategies

by Fitness Aggregated Genetic Algorithm (FAGA) and

Fitness Aggregated Differential Evolution (FADE) and

they concluded that FAGA acts better than FADE in their

study.

2.3 Time window and customer satisfaction

Generally, the time windows are in two forms, hard time

windows (no violation of the interval is allowed) and soft

time windows (violation is allowed by paying penalties). In

this study, the soft time windows are used, and conse-

quently, our problem is converted to a Location Routing

Problem Time Window (LRPTW). Zarandi et al. (2011)

developed a Multi-depot Capacitated Location Routing
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Problem (MDCLRP) in which several parameters such as

traveling time were assumed fuzzy, and they considered a

time window for each node. Dotoli and Epicoco (2017)

presented a method to address the VRP and scheduling

problem for HWM collection and disposal. Their model

allows traveling by limitations on the time window and

fleet availability. They benchmark the proposed model with

a real case. A simulated algorithm was used for solving the

proposed model, and they concluded that their model is

robust and it is suitable for practical situations. Fazayeli

et al. (2018) combined multimodal routing and LRP for a

product distribution problem and appended time window to

their model seeking to increase customer satisfaction. They

assumed that the products should be delivered at a deter-

mined time interval. Moreover, the products demands were

assumed a fuzzy number and finally, a mix integer pro-

gramming was developed to solve the problem. Wang et al.

(2018) introduced a two-echelon time window LRP prob-

lem in which the customers were clustered based on

location and purchasing behavior. They considered two

objectives, minimizing costs and maximizing customers’

satisfaction affected by delivery time and also fuzzy time

windows were considered in their proposed model. A

modified NSGA-II was presented for problem-solving, and

then, the authors demonstrated the better performance of

modified NSGA-II than a multi-objective genetic algorithm

(MOGA) and MOPSO regarding quality metric and com-

putation time.

2.4 Recognizing the literature gap
and contributions

According to reviewed studies and the best of our knowl-

edge, it can be concluded that some of the momentous

topics that have been overlooked in previous studies are

workload balances and time windows constraints. Table 1

summarizes related literature and shows the novelty of the

presented work in this paper.

Given the mentioned gaps, the contributions of our study

are summarized as follows:

• Considering workload balancing in HWLRP by mini-

mizing the difference between each fleet crew workload

and overall workload average.

• Taking into account customer satisfaction in HWLRP

by meeting customers’ time window.

• Taking into account simultaneously waste to waste

compatibility and waste to technology compatibility

which are rarely addressed in the relevant literature.

• Using three multi-objective evolutionary algorithms,

NSGA-II, PESA-II and, SPEA-II for solving the

problem with innovation in the structure of algorithms

and developing an adaptive penalty function.

3 Problem description

3.1 Problem definition

In this study, an LRP is addressed in the case of hazardous

waste management systems in which several social objec-

tives such as customer satisfaction (as cost) and workload

balance are added to previous researches. Waste to waste

(waste-waste) and waste to technology (waste-technology)

compatibilities are also considered in the problem. There-

fore, several new constraints are appended to previous

models to formulate the aforementioned contributions into

the model.

In the realist scenario, there may be several heteroge-

neous or homogeneous containers in the fleet but, as

mentioned before, waste–waste compatibility is considered

in this study so, a heterogeneous fleet is assumed in order to

avoid combination and interaction between incompatible

wastes such as toxic waste and explosive waste. This fleet

of vehicles is also different in waste capacity and route

length based on the waste type.

In our model, each collection vehicle starts its route at a

central depot and finally ends in the same depot. After a

collection vehicle visits a set of demanding nodes (based

on waste compatibility) and collects their wastes, it has two

different options. First, it can move to a treatment facility

that is compatible with its load, and the second option is it

can move to recycle centers and transposes their processed

waste to the other facilities. The treatment processes pro-

duce two kinds of waste that can be categorized as recy-

clable and non-recyclable waste. Therefore, the recyclable

part is transported to the recycling centers and the residue

is transported to the disposal centers. Like the treatment

centers, the recycling centers also have useless parts in

their outputs which should be carried by the fleet to the

disposal centers. A conceptual framework of the research

model is presented in Fig. 1.

3.2 Assumptions and notations

Besides the economic goals, we should go over environ-

mental and social risks to achieve an acceptable and proper

solution for the HWM problems. As such, the three main

objective functions are developed. The first one addresses

economic aspects including transportation costs, facilities

establishment costs, and customer time window penalties;

the second objective function handles the risk aspects

including transportation risk and site risk. In addition, the

third objective function takes workload balance into

account to increase staff satisfaction and social justice.

Other assumptions are as follows:

• We assume four types of wastes
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– Recyclable waste.

– Non-recyclable waste which is compatible with

incineration technology.

– Non-recyclable waste which is compatible with the

chemical technology.

– Non-recyclable waste which is compatible with both

technologies.

• All of the waste types could be produced at each

demanding node.

• A time window constraint is assumed for each

customer; that is, if the service time deviates from the

allowed interval, a penalty cost affiliated with the

amount of deviation will be imposed on the system.

• The length of service time is zero.

• The amount of waste in any type generated in the

source node cannot surpass the collection vehicle

capacity.

• The partial waste collection is not allowed.

• Vehicles related to any type of waste are homogeneous

regarding capacity and maximum tour length.

• Facilities in the problem have a limited capacity for

processing waste.

• Two types of treatment technologies are available, but

just one of them can be applied to any treatment center.

• A symmetric distance matrix, where the distance of the

nodes is calculated from each other, is used to estimate

distances in this study and transportation cost and

traveling time between nodes are calculated based on

the travelled distance.

Table 1 Summary of the HWLRP literature review

Author Model features Goals

Compatibility waste

with

Fleet Cost Risk Workload

balancing

Time

windows

Waste Technology Homogeneous Heterogeneous

Zografos and Samara (1989) 4 4 4

Alumur and Kara (2007) 4 4 4

Emek and Kara (2007) 4 4 4 4

Samanlioglu (2013) 4 4 4 4

Ghezavati and Morakabatchian

(2015)

4 4 4

Zhao and Verter (2015) 4 4 4 4

Yu and Solvang (2016) 4 4 4 4

Farrokhi-Asl et al. (2017) 4 4 4 4

Rabbani et al. (2018a) 4 4 4 4 4

Aydemir-Karadag (2018) 4 4 4

Rabbani et al. (2019) 4 4 4 4 4

This study 4 4 4 4 4 4 4

Fig. 1 Conceptual framework of the proposed structure
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• In some of the equations presented in the proposed

model, there are operators such as multiplication and

absolute value that make the model nonlinear. Hence,

auxiliary equations and variables are used to linearize

the proposed model.

The notations of this study are represented in Table 2.

3.3 Mathematical model

Considering the mentioned assumptions, we formulate a

new multi-objective MIP model to address HWLRP which

develops the model proposed by Rabbani et al. (2018a).

The goals we are following for this model are as follows:

minf1 xð Þ ¼
X

i2G

X

j2G[T[R

X

k2K
cijxijklik ð1:1Þ

þ
X
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Table 2 Notations of the study

Notation Definition

Sets

G ¼ 1; 2; . . .; gf g Set of demanding nodes

T ¼ 1; 2; . . .; tf g Set of treatment nodes

T 0 � T Set of operationalized treatment nodes

R ¼ 1; 2; . . .; rf g Set of recycling nodes

R0 � R Set of operationalized recycling nodes

F ¼ 1; 2; . . .; ff g Set of disposal nodes

F0 � F Set of operationalized disposal nodes

Q ¼ 1; 2; . . .; qf g Set of treatment technologies

D ¼ 1; 2; . . .; df g Set of depots

W ¼ 1; 2; . . .;wf g Set of waste types

K ¼ 1; 2; . . .; kf g Set of the collection vehicles fleet

Input parameters

cij Transportation cost of one unit of waste from node i to node j

disij Travel distance from node i to node j

ftqi Establishment cost of a treatment facility with technology q 2 Q at node i 2 T � T 0ð Þ
fri Establishment cost of a recycling facility at node i 2 R� R0ð Þ
ffi Establishment cost of a disposal facility at node i 2 F � F0ð Þ
popij Population within a given distance of route i� j

PAi Population around node i 2 T � Fð Þ
dWi Amount of waste type w 2 W accumulated at generation node i 2 G

bwq Proportion of recycling for waste type w 2 W treated with technology q 2 Q

rwq Proportion of mass reduction for waste type w 2 W treated with technology q 2 Q

wi Proportion of total waste recycled at node i 2 R

tci Capacity of treatment facility at node i 2 T

tcmi Minimum capacity required to establish a treatment facility at node i 2 T

rci Capacity of recycling facility at node i 2 R

rcmi Minimum capacity required to establish a recycling facility at node i 2 R

fci Capacity of disposal facility at node i 2 F

fcmi Minimum capacity required to establish a disposal facility at node i 2 F

comwq 1 if waste type w 2 W is compatible with treatment technology q 2 Q; 0 otherwise

vwk 1 if waste type w 2 W is compatible with vehicle k 2 K; 0 otherwise

aqi 1 if treatment technology q 2 Q is available at operationalized treatment facility i 2 T 0; 0 otherwise

dw Maximum capacity of a vehicle is compatible with waste type w 2 W

cw Maximum allowable traveling distance of a vehicle is compatible with waste type w 2 W

timeij Traveling time from node i to node j ; i; j 2 G

eri Earliest time of customer’s i time windows i 2 G

lai Latest time of customer’s i time windows i 2 G

pe Violation penalty of earliest time of time windows

pl Violation penalty of latest time of time windows

M Big number

Decision variable

xijk 1 if node j visited just after node i by vehicle k 2 K; 0 otherwise

tqi 1 if a treatment facility with technology q 2 Q is established at node i 2 T � T 0ð Þ; 0 otherwise

ri 1 if a recycling facility is established at node i 2 R; 0 otherwise

fi 1 if a disposal facility is established at node i 2 F; 0 otherwise

eik Distance travelled by vehicle k 2 K after visiting node i

lik Load of vehicle k 2 K after visiting node i
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xrj ¼
X

w2W

X

k2K

X

i2G
xijklikvwk þ

X

i2T
xtri0j 8j 2 R ð17:1Þ

xrj � rcjrj 8j 2 R ð17:2Þ

xrj � rcmj rj 8j 2 R ð17:3Þ
X

w2W

X

q2Q
xtwitqi 1 � rwq

� �
1 � bwq
� �

¼
X

j2F
xtfij 8i 2 T

ð18:1Þ

xrj 1 � wið Þ ¼
X

j2F
xrfij 8i 2 R ð18:2Þ

xfi ¼
X

j2T
xtfji þ

X

j02R
xrfj0i 8i 2 F ð19:1Þ

xfi � fcifj 8i 2 F ð19:2Þ

xfi � fcmi fj 8i 2 F ð19:3Þ
X

w2W

X

i2G
dwi ¼

X

w2W

X

j2T
xtwt þ

X

j2R
xrj ð20Þ

X

q2Q
tqi � 1 8i 2 T ð21Þ

tqi ¼ aqi 8q 2 Q; i 2 T 0 ð22:1Þ

ri ¼ 1 8i 2 R0 ð22:2Þ

fi ¼ 1 8i 2 F0 ð22:3Þ

xtfij � 0; xfi � 0 8i 2 T ; j 2 F

xtrij � 0; xtwi � 0 8i 2 T ; j 2 R;w 2 W

xtfij � 0; xri � 0 8i 2 R; j 2 F

eik � 0 8i 2 D [ Gð Þ; k 2 K

lik � 0 8i 2 G; k 2 K

siw � 0 8i 2 G; k 2 K

LRk � 0 8k 2 K

ð22:4Þ

xijk 2 0; 1f g 8i 2 D [ Gð Þ; j 2 G [ T [ Rð Þ; k 2 K

tqi 2 0; 1f g 8q 2 Q; i 2 T

ri 2 0; 1f g 8i 2 R

fi 2 0; 1f g 8i 2 F

ð22:5Þ

The first objective function is dedicated to the system’s

costs calculation. Equation (1.1) specifies the waste trans-

portation costs related to the waste collection stage,

including carrying wastes from demanding nodes to the

treatment centers and recycling centers. The transportation

costs associated with conveying wastes between facilities

are formulated by Eqs. (1.2–1.4). Equations (1.5–1.7)

determine new facilities establishment costs and Eq. (1.8)

addresses the customers’ time window penalties.

The second objective function takes risk parameters into

account. Risks involve treatment and disposal sites risk

knowing the crowd around them by Eqs. (2.1) and (2.2).

Equations (2.3) and (2.4) try to minimize the transportation

risk for both the waste collection stage and conveying

between the facilities’ stage.

Finally, the last objective function, which has a social

origin, ensures that the workload between collecting fleet is

divided equitably. It calculates the deviation of each

vehicle’s travelled distance from the total travelled distance

Table 2 (continued)

Notation Definition

xtwi Amount of waste type w 2 W treated at node i 2 T

xri Amount of waste recycled at node i 2 R

xfi Amount of waste disposed at node i 2 F

xtrij Amount of recyclable waste residue transported from node i 2 T to node j 2 R

xtfij Amount of waste residue transported from node i 2 T to node j 2 F

xrfij Amount of waste residue transported from node i 2 R to node j 2 F

LRk Length of the route of the kth collection vehicle

siw Starting service time at customer i 2 D [ G for waste type w

veiw Violation amount of earliest time window at customer i 2 G

vliw Violation amount of latest time window at customer i 2 G
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of the fleet. As this objective function is a nonlinear

equation, a linear form is represented in the following.

Equation (4) sets the depot as the starting point for each

servicing vehicle. Equation (5) guarantees that each col-

lection vehicle will leave the nodes after service servicing.

Equation (6) is formulated to guarantee that for each type

of waste, all demanding nodes are visited exactly once.

Equation (7) sets the depot as the final destination for

vehicles after they have delivered their load to the treat-

ment and recycling sites. Equation (8) enforces the col-

lection vehicles to unload their shipment to a suitable site

considering the type of waste and its compatibility with the

technology. Equation (9) ensures that the collection vehi-

cles unload their recyclable waste at the recycling sites

before returning to the depot. In order to calculate the

travelled distance and to ensure that the route length does

not exceed the allowable distance, which each vehicle

could travel, Eqs. (10.1–10.3) are formulated based on

Desrochers and Laporte (1991). Equation 11 determines

the travelled distance of each vehicle in order to be used in

the workload balancing objective function. Collecting

waste start time at first customer is formulated by

Eq. (12.1), and starting time at the other customers, located

on the route, is formulated by Eq. (12.2). Equations (13.1)

and (13.2) calculate the violation from the customer’s time

windows. Equations (14.1)–(14.4) are utilized in order to

remove sub-tours and also ensure the load of the waste

does not exceed the vehicle capacity (Desrochers and

Laporte 1991). Equation (15) computes the amount of

waste that is processed by each treatment center. The set of

Eqs. (16.1–16.3) check capacity limitations and calculate

the amount of the imported wastes to the treatment facili-

ties, and investigate new treatment facility establishment.

In addition, Eq. (16.3) formulates the flow from treatment

facilities to recycling facilities. Similar to the previous

equation set, Eqs. (17.1–17.3) consider the aforementioned

aspects of recycling sites. The waste flow from the treat-

ment facilities to the disposal facilities is addressed by

Eq. (18.1), and the waste flow from the recycling facilities

to the disposal sites is considered by Eq. (18.2). The

amount of the wastes, which are disposed at the disposal

centers, is calculated by Eq. (19.1) and the capacity limi-

tation of each active disposal site is considered by

Eq. (19.2). The minimum amount of limitation required to

establish a new disposal facility is investigated by

Eq. (19.3). Equation (20) guarantees that the total demand

at each generation node is met. As mentioned before, each

treatment center could utilize maximum one technology.

Therefore, this constraint is formulated as Eq. (21).

Finally, the set of Eqs. (22.1–22.5) specify the type of the

variables and determine the amount of several coefficients

considering conditions governing the problem.

As mentioned before, there are three nonlinear

Eqs. (2.3, 3, and 16.3) that make the model nonlinear. The

following equations are used to linearize the proposed

model. We have used the following equations for elimi-

nating variables product, considering an auxiliary variable

and subsisting it with variables’ product.

xlijk �Mxijk 8i 2 G; j 2 G [ R [ T; k 2 K ð23Þ

xlijk � lik 8i 2 G; j 2 G [ R [ T ; k 2 K ð24Þ

xlijk � lik � 1 � xijk
� �

M 8i 2 G; j 2 G [ R [ T; k 2 K

ð25Þ
xlijk � 0;M[1 8i 2 G; j 2 G [ R [ T; k 2 K ð26Þ

We also use the following equations in order to remove

the absolute value from the formula by using two auxiliary

variables as follows and substituting Eq. (27) with absolute

value expression:

LR
0

mean þ LR
0

k 8k 2 K ð27Þ

LRmean ¼
X

k2K

1

Kj j LRk ð28Þ

LRmean � LRk ¼ LR
0

mean � LR
0

k 8k 2 K ð29Þ

LR
0

mean � 0; LR
0

k � 0 8k 2 K ð30Þ

4 Methodology

In HWM problems, we are usually facing with different

goals; therefore, HWM problems usually are classified into

multi-objective problems, and it is required to utilize multi-

objective decision making (MODM) techniques. The

researchers who have worked on HWM usually use the

weighted sum method (WSM) to solve their proposed

multi-objective models (Alumur and Kara 2007; Nema and

Gupta 1999; Samanlioglu 2013). Since the LRP problems

are classified into NP-hard problems (Rabbani et al. 2019),

and solving them in a reasonable time is impossible, we

should use metaheuristic algorithms to solve these prob-

lems. We apply three well-known metaheuristic algorithms

for multi-objective problems, NSGA-II, PESA-II, and

SPEA-II for tackling the presented problem.

4.1 Model validation

In order to validate the performance of the proposed model,

a small-scaled problem is solved using GAMS software.

Assuming identical weights for the objective functions,

WSM is employed to address this multi-objective problem,

and the WSM results are shown in Table 3 in which D, T,

R, F represent depot, treatment facility, recycling facility,
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and disposal facility, respectively. In addition, numbers

represent the generation node. To prove the confliction

among the objectives, we use the Epsilon-constraint

method, and the Pareto frontier of the three-objective

problem is shown in Fig. 2. We also investigate the conflict

between each pair of two objectives and the results are

shown in Fig. 3.

4.2 Solution representation

To represent the solution in the algorithm, matrixes, called

chromosomes in the genetic algorithm, are used. In this

study, we consider each chromosome as a matrix with

W ? N rows and G columns, where W, N, and G represent

the number of waste types, the number of different kinds of

facilities, and the number of generating nodes, respectively.

To determine the sequence of generating nodes for each

kind of waste, W strings consisting of permutation numbers

from 1 to G are generated and are put in the top W rows of

the chromosome. We also create N strings, including per-

mutation numbers from 1 to M, in which M denotes the

total number of facilities depending on its type, and the

strings are placed from the (W ? 1)-th to (W ? N)-th rows

of the chromosome in order to determine allocation order

of facilities to the tours. Figure 4 represents the conceptual

structure of the chromosome.

We use a complex chromosome structure in this study

according to Rabbani et al. (2018a); this shape of chro-

mosome provides a wide range of mutations and crossover

operators which leads to generating a more diverse popu-

lation faster. To examine this hypothesis, a medium-sized

problem was solved by NSGA-II for 30 times with 100

maximum iterations using the proposed string-shaped

chromosome suggested by Farrokhi-Asl et al. (2017). We

Table 3 Results of the WSM solution

Routing phase Shipping phase Objective functions

Waste

type

Carrier

number

Routes Collected

waste amount

Route

length

Shipping

path

Shipping

amount

Type Components Amount

1 1 D ? 3? T3 ? D 31 108 T1 ? R1 12.919 Cost Transportation 35,527

2 D ? 4?2 ? 5? T3 ? D 122 105 T2 ? R1 33.800 Establishment 19,000

2 3 D ? 4?3 ? 5? T2 ? D 137 104 T3 ? R2 26.010 T.W Penalties 16,000

4 D ? 2? T1 ? D 50 106 T1 ? F2 73.210 Total Cost 70,527

3 5 D ? 2? T1 ? D 49 106 T2 ? F2 191.530 Risk Transportation 9764

6 D ? 4?3 ? 5? T2 ? D 122 104 T3 ? F2 104.040 Population 6261

4 7 D ? 4?2 ? 3? R2 ? D 130 104 R1 ? F1 32.703 Total Risk 72,377

8 D ? 5? R2 ? D 48 106 R2 ? F2 204.010 Workload

balance

Total 22
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solved that test problem in the same conditions using our

proposed chromosome structure. The results indicated that

there is a significant difference between CPU time of two

algorithms at the significant level of 5% and the string-

shaped chromosome acts 19% faster than matrix-shaped

but our proposed chromosome structure could generate

23% more feasible solution and it can be attributed to the

use of various crossover and mutation operators. Therefore,

it can be inferred that our proposed chromosome structure

is more productive.

The chromosome decoding procedure includes two

stages. The former is the routing stage and wastes’ col-

lection from generating nodes; the latter is the shipment of

processed wastes between facilities. We briefly called

‘‘Routing’’ and ‘‘Shipment’’ stages. Figure 5 illustrates the

decoding flowchart of the routing and shipment stages. For

a better understanding of these two stages, an example with

two types of waste and two types of treatment methods is

explained. Consider a hazardous waste management sys-

tem consists of six generation nodes, four treatment nodes

(two nodes with technology 1 and two nodes with tech-

nology 2), two recycling nodes, and two disposal nodes.

Each of these nodes has a unique location and we use a

distance matrix for calculation of the passed distance in this

study. This system uses four vehicles to collect and transfer

wastes to the treatment nodes that vehicles 1 and 2, shown

in blue, are compatible with type 1 waste and vehicles 3

and 4, shown in red, are compatible with type 2 waste.

According to the decoding procedure, in the first step,

vehicle one moves to generating node 3 to collect type 1

waste of the node and then visits generating nodes 1 and 2,

respectively. After serving generating node 2, due to the

limitation of the load route of vehicle one, vehicle two will

collect the rest of the first-row nodes of the chromosome.

After this step, the vehicle moves to one of the treatment

nodes that are compatible with its load considering chro-

mosome cells sequence and residual capacity of the treat-

ment nodes. The decoding for type 2 waste is similar to the

above procedure. For the sake of simplicity, this section

omits to explain the return of vehicles to the depot. After

the end of the ‘‘Routing’’ stage, the ‘‘Shipment’’ stage starts

with transporting processed wastes in the treatment nodes

to the recycling or disposal nodes according to their

sequence in the chromosome and residual capacity. In the

present example, waste processed at treatment 1 with

technology 1 is sent to disposal node 1 without recycling (it

is assumed that this kind of waste is non-recyclable). In the

next step, wastes of treatment node 1 with technology 2 are

0

100

200

300

400

500

600

700

45000 55000 65000 75000

W
B

Risk

0

50

100

150

200

250

300

30000 50000 70000 90000

W
B

Cost

45000

50000

55000

60000

65000

70000

75000

30000 50000 70000

Ri
sk

Cost

Fig. 3 Pairwise comparison of objective functions by Epsilon-constraint

Fig. 4 Chromosome structure

Using modified metaheuristic algorithms to solve a hazardous waste collection problem… 1895

123



transported to the recycling node 1 and treatment node 2

with technology 2 also transports its processed waste to

recycling node 1, assuming the residual capacity of recy-

cling node is greater than processed waste at the treatment

node. In the final step, the waste recycled at recycling node

1 is moved to disposal node 2 because it exceeds the free

capacity of disposal node 1. Treatment node 2 with tech-

nology 1 and recycling node 2 are non-operational in this

example. A conceptual vision of the decoding example is

depicted in Fig. 6.

4.3 NSGA-II

In this study, we utilize three metaheuristic algorithms for

our multi-objective problem that one of them is Non-

Dominated Sorting Genetic Algorithm- II; NSGA-II is one

of the most well-known evolutionary algorithms which is

population-based and its working infrastructure is based on

genetic algorithm (GA) with the difference that GA obtains

a single solution for single-objective problems, but NSGA-

II obtains a set of solutions called Pareto frontier. This

algorithm starts its work by generating a random

Fig. 5 Decoding flowchart of the routing and shipment stages

Fig. 6 Decoding example
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population and then calculates objective functions for each

individual, and it calculates rank and crowding distance of

each individual to rank the present population. Similar to

GA, NSGA-II applies crossover and mutation to create new

individuals, and then it merges the old and new populations

and recalculates the rank and crowding distance of the

population. As the new population is larger than the initial

population, the algorithm truncates the extra individuals

considering their ranks and crowding distances. This pro-

cedure continues until the completion of the termination

conditions. Pseudocode of the proposed NSGA-II is rep-

resented in Fig. 7.

4.4 PESA-II

Pareto envelope-based selection algorithm is known as a

multi-objective evolutionary algorithm, and it works based

on region selection which is the main difference between

this algorithm and the other algorithms which are based on

individual selection. This algorithm tries to arrange Pareto

instead of individuals. The main advantage of this method

becomes evident when the number of archive population

exceeds the allowed amount. In this situation, the algorithm

attempts to remove extra individuals from the Pareto cell

which are more crowded to keep Pareto frontier diversity,

whereas the other algorithms do not investigate the Pareto

and eliminate individuals based on their ranks. Similar to

NSGA-II, PESA-II is a population-based algorithm, and it

starts its work with an initial population and manipulates its

population with GA crossover and mutation operators. As

mentioned before, PESA-II tries to improve Pareto quality

by making a uniform frontier. Therefore, it eliminates the

extra individuals from the crowded Pareto cells and also

chooses parents for mutation and crossover from low-

population Pareto cells to increase the probability of off-

spring generation in these cells.

In this study, we improve the PESA-II by removing

analogous chromosomes from the archive that causes

generating sparse Pareto; therefore, the quality of the

modified PESA-II is improved. Additional descriptions are

1. Set NSGA-II parameters include: population size (NPop), maximum iteration (MaxIt), 
crossover percentage (PCrossover), and mutation percentage (PMutation)
2. Generate NPop random individuals

3. for In = 1: NPop
pop(In) Calculate objective functions (including Cost, Risk, and Workload balance)

end

4. for In = 1: NPop
pop(In) Non-dominated sorting calculation
pop(In) Crowding distance calculation

end
Sort population

5. for It = 1: MaxIt
5.1. for c = 1: NPop×PCrossover

Choose two chromosomes randomly
Doing crossover
Calculate objective functions

end
5.2. for m = 1: NPop×PMutate

Choose a chromosome randomly
Do mutation
Calculate objective functions

end
5.3. Merge new population to the old population
5.4. for In = 1: NPop

pop(In) Non-dominated sorting calculation
pop(In) Crowding distance calculation

end
5.5. Sort population

end

6. for n = 1: NPop
If pop(n) is not feasible

pop(n)delete 
end if

end

Fig. 7 Pseudocode of the

proposed NSGA-II
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presented in the following, and Fig. 8 represents pseu-

docode of the proposed modified PESA-II as follows:

4.5 SPEA-II

Strength Pareto Evolutionary Algorithm-II was introduced

as a modified version of the SPEA. This algorithm con-

siders two sets of the population that one of them is formed

from a regular population, keeping individuals generated in

each loop of algorithm and the other is an archive of the

best individuals generated during algorithm runtime. The

algorithm uses the Pareto dominance concept and fitness

value for selection process. In the first step, this algorithm

generates a population of random individuals and calcu-

lates their objective functions, dominance, and fitness.

Then, the algorithm merges two sets of population and

calculates dominance and fitness. According to the number

of archive individuals, the algorithm may truncate the

archive using the truncate operator or fill the archive using

dominated individuals. At each iteration and so long as the

stop condition is not reached, GA mutation and crossover

operators, which use binary tournament for selecting par-

ents, generate new regular population and then fitness

values of individuals in both populations are calculated and

superior individuals stay in the archive. Pseudocode of the

proposed SPEA-II is represented in Fig. 9.

4.6 Crossover operator

Three kinds of crossover operators are defined for this

problem: two one-point crossovers and a double-point

crossover. The conceptual framework of the crossover

operators is shown in Fig. 10.

In the one-point crossover, a number between one to

G is generated randomly, and it will be used as the cross-

over point. It is clear from Fig. 10 that the first chromo-

some’s columns from beginning to selected column by the

crossover point and second chromosome’s columns from

the column after the crossover point to the end are gener-

ating the first offspring. The second offspring is also cre-

ated in the same way, with the difference that the first and

second chromosomes are replaced. It is worth to notice that

1. Set M-PESA-II parameters include: population size (NPop), archive size (NArchive), number of grids per 
dimension (NGrid), Grid inflation (InfFac), selection pressure (BetaS), removing pressure (BetaR), maximum 
iteration (MaxIt), crossover percentage (PCrossover), and mutation percentage (PMutation)

2. Generate NPop random individuals as pop

3. for In = 1: NPop
pop(In) Calculate objective functions (including Cost, Risk, and Workload balance)

end

4.  for It = 1: MaxIt
4.1 for In = 1: NPop

pop(In) Determine dominates
end
Add pop to archive
Remove analogous chromosomes from archive

4.2 for In = 1: NArchive
archive(In) Determine dominates

end
Remove dominated individuals from the archive
Creating grid
if the number of individuals in the archive > NArchive

Truncate archive considering removing pressure
Create grid

end if
4.3 for c = 1: NPop×PCrossover

Choose two chromosomes considering selection pressure
Do crossover
Calculate objective functions

end
4.4 for m = 1: NPop×PMutate

Choose a chromosome considering selection pressure
Do mutation
Calculate objective functions

end
Empty pop and consider crossover and mutation offspring as the pop

end

5. for n = 1: NArchive
if archive(n) is not feasible

delete  archive (n)
end if

end

Fig. 8 Pseudocode of the

proposed modified PESA-II
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since routing and shipment stages are independent, their

crossover should not affect each other so that only one of

the two sections of the chromosome goes under crossover

at a time; the constant part is specified by gray color in

Fig. 10. In the one-point crossover maybe some elements

are removed or are duplicated in a row, so several cor-

rective actions are applied to prevent generating non-fea-

sible children. The cells on which corrective actions are

applied are indicated in yellow in Fig. 10.

In the double-point crossover, two numbers that the

minimum of them is between one to W ? N - 1, we call it

C1, and the maximum of them is between two to W ? N,

we call it C2, are selected randomly. As it is recognizable

from Fig. 10, we generate the first offspring from the

beginning to C1-th and C2-th to last rows of the first

chromosome and (C1 ? 1)-th to C2-th rows of the second

chromosome. The second offspring will be generated by

replacing the first and second chromosomes. Unlike the

one-point crossover, double point crossover does not

require corrective actions and its children are always

feasible.

4.7 Mutation operator

Generally, there are three kinds of mutation operators for

the problem with permutation solutions, namely, Swap,

reversion, and insertion. These operators are usually

applied on chromosomes which have strain structure. In

this study, our chromosomes are shaped like a matrix,

therefore, it is required to manipulate the operators to

create new high-quality off-springs. For this purpose, six

mutation operators are designed which are shown in

Fig. 11. As mentioned before, each chromosome contains 4

rows for the routing stage and 4 rows for system facilities

allocation. In order to utilize permutation mutation opera-

tors, we assume each row of the chromosome as a string.

Because the members of the chromosome’s rows are not

equal, two categories of the operators are designed, one

category specific to the generation points and the other

specific to the system facilities. The rows are selected

randomly so that a random number between one to W or

N based on the operators’ category is generated called S, to

determine how many row(s) should be mutated. After this

step, a random sample with S members will be chosen from

a 1 to W or N to determine which row(s) should be mutated.

1. Set SPEA-II parameters include: population size (NPop), archive size (NArchive), maximum iteration 
(MaxIt), crossover percentage (PCrossover), and mutation percentage (PMutation)

2. Generate NPop random individuals as pop

3. for In = 1: NPop
Calculate objective functions for pop (including Cost, Risk, and Workload balance)

end

4.  for It = 1: MaxIt
4.1 for In = 1: NArchive

archive(In) Determine SPEA-II fitness values
end

4.2 for In = 1: NPop
pop(In) Determine SPEA-II fitness values

end
Copy non-dominated individuals of pop to archive
if the number of individuals in the archive > NArchive

Truncate archive considering truncation operator
else if number of individuals in the archive <= NArchive

Fill archive with dominated individuals of pop
4.3 for c = 1: NPop×PCrossover

Choose two chromosomes using binary tournament selection
Do crossover
Calculate objective functions

end
4.4 for m = 1: NPop×PMutate

Choose a chromosome using binary tournament selection
Do mutation
Calculate objective functions

end
Consider crossover and mutation individuals as the pop

end

5. for n = 1: NArchive
if archive(n) is not feasible

delete archive (n)
end if

end

Fig. 9 Pseudocode of the

proposed SPEA-II
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4.8 Parameter tuning

There are several parameters for each evolutionary algo-

rithm that should be tuned to optimize the algorithm per-

formance. For this purpose, several experiences with

different values of parameters are designed and the per-

formance of each algorithm is investigated. In this study,

Taguchi-based method is employed for designing experi-

ences, which is a prevalent method of parameter tuning and

it produces reasonable results from a low amount of

information. For NSGA-II, we set the Number of Function

Evaluation (NFE), population size (NPop), mutation per-

centage (PMutation), and crossover percentage parameters

(PCrossover). For PESA-II, NFE, population size (NPop),

archive size (NArchive), crossover percentage (PCross-

over), selection pressure (BetaS), and removing pressure

(BetaR) parameters are tuned and for SPEA-II, NFE,

population size (NPop), archive size (NArchive), and

crossover percentage (PCrossover) are tuned. It is worth to

notice that the percentage of mutation in PESA-II and

SPEA-II is equal to one minus the crossover percentage

(PCrossover), therefore we just have tuned crossover per-

centage and mutation percentage (PMutation) is calculated

based on it.

Minitab 17 software is employed for designing experi-

ments by a three-level Taguchi method, and the normalized

amounts of the objective functions are considered as the

response for the Taguchi method. The output of the

Minitab for parameter tuning for SPEA-II, PESA-II, and

NSGA-II is shown in Fig. 12, and the parameter tuning

result is presented in Table 4.

4.9 Constraints handling and penalty function

There are several ways to handle system constraints in the

metaheuristic algorithms, such as eliminating non-feasible

solutions and imposing penalty function to non-feasible

points. In this study, it has been attempted as far as possible

to prevent generating non-feasible solutions in the popu-

lation generation stage. However, several constraints, most

related to capacity, could not be handled in the generation

stage, and they should be handled by a penalty function.

The penalty function is a popular method for researchers

to handle constraints; there are several types of penalty

function methods such as static penalties, dynamic penal-

ties, adaptive penalties, etc. In this study, an adaptive

penalty function that respects the feasible solution numbers

created on the Pareto frontier is presented and is compared

Fig. 10 Crossover operators
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with static penalty function. The proposed function

increases penalty coefficient, if the number of feasible

points on the Pareto frontier is relatively low in order to

force the algorithm to reach feasible areas, but when the

Fig. 11 Mutation operator
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Fig. 12 Parameter tuning for SPEA-II, PESA-II, and NSGA-II

Table 4 Parameter tuning

results
Parameter

NFE NPop PCrossover PMutation NArchive BetaS BetaR

NSGA-II 100,000 100 0.6 0.9

PESA-II 100,000 100 0.4 0.6 100 1 2

SPEA-II 100,000 100 0.7 0.3 100
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algorithm found a significant number of feasible solutions,

it diminishes the penalty coefficient gradually to reduce the

pressure on the algorithm for finding feasible points, and

the algorithm can explore the solution space better by

investigating non-feasible solutions and consequently, the

probability of staying at local optimums decreases;

Eq. (31) and Fig. 13 represents the adaptive penalty func-

tion amounts assuming NPop = 100. P(x) represents pen-

alty function value, and x represents the number of feasible

solutions achieved on the Pareto frontier. To prove the

superiority of the proposed adaptive penalty function, a

problem includes 25 generation nodes, 12 treatment facil-

ities, 10 recycling facilities, and 14 disposal facilities is

solved under different types of penalty function for 30

times for each kind of penalty function and finally a

comparison in quality metric, which will be further

explained in the next section, is presented. The summary

results of comparison between adaptive and static penalty

functions are represented in Table 5.

P xð Þ ¼ 100log NPopþ1Þ�xð Þð Þ ð31Þ

5 Results and discussion

In this section, we make two different comparisons

between the algorithms. At first, classic PESA-II and

modified PESA-II are compared, and then, the superior

method in the first comparison is compared with proposed

NSGA-II and SPEA-II. For numerical examples, we use 30

problems in three different sizes (small, medium, large)

generated randomly in which the parameters are estab-

lished appropriately. Table 6 shows the test problems’

characteristics.

5.1 Comparison metrics

There are several comparison metrics, such as Quality

Metric (QM), Mean Ideal Distance (MID) Diversification

Metric (DM), Spacing Metric (SM), CPU time (CPU),

hypervolume (HV), number of explored feasible solution

(NF), and Inverted Generational Distance (IGD). These

metrics will be described in the following considering each

comparison requirement.

• Quality metric (QM)

Quality metric is one of the most common metrics

which computes the domination percentage of two or more

algorithms on each other. In other word, it combines non-

dominated points of two or more multi-objective algo-

rithms and recalculates domination criteria and reports the

percentage of remaining non-dominated points after

recalculation. It is clear that a higher amount of this

parameter expresses a better performance of the algorithm

(Tavakkoli-Moghaddam et al. 2011). In this study, we use a

pairwise comparison for evaluating algorithms’

performance.

• Mean ideal distance (MID)

MID ¼ 1

n

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

j¼1

fij � f best
j

fmax
j � fmin

j

 !2
vuut ð32Þ

MID calculates the distance between the best solution

founded on the Pareto and the other Pareto points. MID can

be calculated as follows (Farrokhi-Asl et al. 2018):

Where n represents the number of non-dominated

points, respectively fmax
j ; fmin

j ; f best
j represent the maximum,

the minimum, and the best solutions of j-th objective

function among all non-dominated points. It is clear that

lower values of MID, expresses the lower distance between

the ideal solution and the other solutions, therefore algo-

rithms with lower MID have better performance.

• Spacing metric (SM)

Spacing metric is usually used for evaluating the uni-

formity of attained Pareto frontier, and it is calculated by

Eqs. (33) and (34) in which n; di; �d, respectively, denote

the number of non-dominated points on the Pareto frontier,

minimum distance from the i-th point to the other points on

the Pareto frontier, and the average of di. Similar to MID,

lower values of this parameter are desirable, because it

indicates more uniformity in the Pareto frontier (Rabbani

et al. 2019).

di ¼ min
j

X3

k¼1

f jk � f ik
�� ��; 8i; j � 1; 2; 3; . . .; nf g ð33Þ

SM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

�d � dið Þ2

n� 1

vuut ð34Þ

• Diversity metric (DM)
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Table 5 Comparison between adaptive and static penalty functions

Static penalty function value Quality metric mean Hypothesis test (T test)

Static penalty function Adaptive penalty function Null hypothesis P value Superior method

P = 20 0.644 0.723 H0 : ls � lA
H1 : ls [lA

�
0.817 Adaptive P.F

P = 100 0.664 0.733 H0 : ls � lA
H1 : ls [lA

�
0.777 Adaptive P.F

P = 1000 0.618 0.749 H0 : ls � lA
H1 : ls [lA

�
0.931 Adaptive P.F

P = 10,000 0.631 0.760 H0 : ls � lA
H1 : ls [lA

�
0.934 Adaptive P.F

Table 6 Test problems and their characteristics

Problem specification System facilities Vehicle type

Size Number Generation nods Treatment Recycling Disposal Type 1 Type 2 Type 3 Type 4

Small 1 10 5 5 6 3 3 2 2

2 10 6 6 6 3 2 3 2

3 10 6 5 7 3 2 2 3

4 10 7 6 7 2 2 3 3

5 20 9 7 9 5 5 5 5

6 20 9 9 12 6 4 5 5

7 20 12 12 12 5 5 6 4

8 20 14 12 14 4 5 5 6

9 25 12 8 14 7 6 6 6

10 25 12 10 14 6 7 6 6

11 25 14 13 16 6 6 7 6

12 25 14 10 17 6 6 6 7

Medium 13 30 14 12 14 7 7 8 8

14 30 17 16 21 8 8 7 7

15 30 21 14 18 7 8 7 8

16 40 21 16 23 10 10 10 10

17 40 25 18 21 10 10 10 10

18 40 29 21 23 10 10 10 10

19 40 23 23 21 10 10 10 10

20 50 29 23 26 12 12 13 13

21 50 26 25 29 13 13 12 12

Large 22 60 33 25 30 15 15 15 15

23 60 35 23 30 15 15 15 15

24 60 30 26 32 15 15 15 15

25 75 40 35 41 19 19 19 18

26 75 37 32 40 19 19 18 19

27 75 41 35 46 19 18 19 19

28 75 46 39 48 18 19 19 19

29 100 60 49 66 25 25 25 25

30 100 63 53 64 25 25 25 25
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This parameter determinates the Pareto frontier spread,

and it is calculated by Eqs. (35) and (36). Similar to QM,

higher values of DM indicate a better algorithm’s

performance.

di ¼ max
j

X3

k¼1

f jk � f ik
� �2

( )
; 8i; j � 1; 2; 3; . . .; nf g ð35Þ

DM ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

di

s
ð36Þ

• Hypervolume (HV)

Hypervolume or S-metric is a well-known and prevalent

metric in assessing multi-objective algorithms. HV uses the

covered space dominate by an obtained Pareto front as a

quality parameter. It usually considers the worst values of

the objective functions as the reference point for the cal-

culation. A higher value of HV indicates higher diversity

and convergence of the Pareto front; therefore, it is desir-

able that this metric value be as high as possible (Lwin

et al. 2014; Moraes et al. 2019).

• Inverted generational distance (IGD)

IGD is a performance metric for evaluating the obtained

Pareto front quality. It considers a true Pareto front as a

reference and calculates the distance of each its solutions

from the true Pareto front. IGD measures both the diversity

and the convergence of the solution set. The lower value of

IGD indicates a closer front to the true Pareto front. In

highly constraint models like the proposed model in this

study, the true Pareto front is unknown, therefore, best-

obtained values for each objective function is used for

reference points. The IGD formula is as follows where n is

the number of solutions in the obtained Pareto front and d

is the Euclidean distance between each solution in the true

Pareto and the nearest solution in the Pareto front (Hu et al.

2019; Lwin et al. 2014).

IGD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 d
2
i

p

n
ð37Þ

5.2 Modified PESA-II and classic PESA-II
comparison

We employ multi-objective metaheuristics algorithms to

recognize the preferable method for solving HWM prob-

lems. A modified PESA-II is presented, and its results are

compared with the classic PESA-II which is commonly

used by other researchers (Anagnostopoulos and Mamanis

2011; Montoya et al. 2014). The results demonstrate that

modified PESA-II not only improves the Pareto frontier but

Table 7 Modified PESA-II and classic PESA-II comparison results

Comparison metric Average performance of algorithms Hypothesis test (T test)

Modified PESA-II Classic PESA-II Hypothesis P value Superior method

Feasible solution exploration 97.46 98.46 H0 : lCPESA�II ¼ lMPESA�II�
H1 : lCPESA�II 6¼ lMPESA�II

�
0.204 No significant difference

CPU time 858.54 899.83 H0 : lCPESA�II\lMPESA�II

H1 : lCPESA�II � lMPESA�II

�
0.019 modified PESA-II

Quality metric 0.848 0.603 H0 : lCPESA�II [lMPESA�II

H1 : lCPESA�II � lMPESA�II

�
0.004 Modified PESA-II

Mean ideal distance 0.853 0.836 H0 : lCPESA�II ¼ lMPESA�II

H1 : lCPESA�II 6¼ lMPESA�II

�
0.399 No significant difference

Spacing metric 11,564.3 11,596.4

H0 : lCPESA�II ¼ lMPESA�II

H1 : lCPESA�II 6¼ lMPESA�II

�
0.975 No significant difference

Diversity metric 7,577,409 7,352,263 H0 : lCPESA�II ¼ lMPESA�II

H1 : lCPESA�II 6¼ lMPESA�II

�
0.703 No significant difference

Hypervolume 0.263 0.254 H0 : lCPESA�II ¼ lMPESA�II

H1 : lCPESA�II 6¼ lMPESA�II

�
0.498 No significant difference

IGD 0.423 0.451 H0 : lCPESA�II ¼ lMPESA�II

H1 : lCPESA�II 6¼ lMPESA�II

�
0.645 No significant difference

*lCPESA�II and lMPESA�II indicate mean of classic PESA-II and modified PESA-II respectively
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also reduces the computation time. It can be inferred that

by removing replicated chromosomes from the archive,

some unnecessary computations are eradicated and conse-

quently, the time can be saved, so there is no replicated

solution in the archive, the empty space in the archive can

be assigned to new solutions, therefore, less memory will

be used. Since it was proven that modified PESA-II is more

efficient than classic PESA-II, we use our proposed mod-

ified PESA-II as PESA-II method in the rest of the paper

and other algorithms will be compared with this novel

method. The summary of modified PESA-II and classic

PESA-II comparison results is represented in Table 7.

5.3 Comparison metrics’ results and discussion

In this section we investigate three algorithms, NSGA-II,

PESA-II, and SPEA-II based on summery results of com-

parison metrics which is represented in Table 8; The result

of Algorithm-1 $ Algorithm-2 is shown as ‘‘?’’, ‘‘-’’, or

‘‘*’’ when Algorithm-1 is significantly better than, sig-

nificantly worse than, or statistically equivalent to Algo-

rithm-2, respectively; the detailed results are also presented

in ‘‘Appendix’’. According to the results, PESA-II acts

significantly better than NSGA-II in the exploration of the

feasible solutions, spacing metric, quality metric, and IGD

in any dimension of the test problems. It also overcame

NSGA-II in MID in small and medium test problems, but

in CPU time in medium and large test problems NSGA-II

had a better performance. On the other hand, like PESA-II,

SPEA-II acts better than NSGA-II in QM, SM, and IGD in

all dimensions of the test problems. It also performed

significantly better than NSGA-II in finding the feasible

solutions in medium-size test problems but in CPU time in

small and large problems NSGA-II had a better perfor-

mance. NSGA-II also performed better than PESA-II and

SPEA-II in DM in all kind of test problems or in other

words it was able to search a wider area of the problem

space. The performance of PESA-II and SPEA-II did not

differ significantly in most cases; however, PESA-II acted

better than SPEA-II in the small test problems in obtaining

more feasible solutions, QM in the large-size test problems,

and CPU time in small and medium test problems. On the

other hand, SPEA-II dominated PESA-II in SM in all kind

of test problems. In the case of the hypervolume metric, no

significant difference was found between the algorithms’

performance. In general, it can be concluded that given the

results of algorithms’ comparison, the performance of

proposed modified PESA-II is more suitable than the other

two algorithms, and the use of this algorithm in HWM

Problems can lead to the production of a more efficient set

of answers. For better conceptual understanding, boxplots

of comparison metrics, convergence IGD graph, and Pareto

front of several test problems are represented in Figs. 14,

15 and 16, respectively.

6 Conclusion

In this study, we proposed a new model for HWLRP. The

service time windows and workload balancing were

appended to the previous models, and three objective

functions including two systematic goals (cost and risk)

and one social goal (workload balancing) were considered

for the new model. We also considered waste–waste

compatibility and heterogeneous fleet, which have been

rarely investigated in the literature. Since our model was

Table 8 Summary of

comparison results of

algorithms

Test problem size Algorithm 1 $ Algorithm 2 Comparison metrica

NF QM CPU MID SM DM HV IGD

Small NSGA-II $ PESA-II - - * - - ? * -

NSGA-II $ SPEA-II * - ? * - ? * -

PESA-II $ SPEA-II ? * ? * - * * *

Medium NSGA-II $ PESA-II - - ? - - ? * -

NSGA-II $ SPEA-II - - * * - ? * -

PESA-II $ SPEA-II * * ? * - ? * *

Large NSGA-II $ PESA-II - - ? * - ? * -

NSGA-II $ SPEA-II * - ? * - ? * -

PESA-II $ SPEA-II * ? * * - * * -

aThree algorithms are compared by using Student’s T test. The statistical results obtained by a two-tailed T

test at a 0.05 level of significance. We used
H0 : lAlgorithm1 � lAlgorithm2

H1 : lAlgorithm1 [lAlgorithm2

�
Hypothesis in tests where less

value is preferred, and
H0 : lAlgorithm1 � lAlgorithm2

H1 : lAlgorithm1\lAlgorithm2

�
Hypothesis in tests where high value is preferred. We

used ‘‘-’’ for P values less than 5%, ‘‘?’’ for P values more than 95%, and ‘‘*’’ for P value between 5 and

95%
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Fig. 14 Boxplot of comparison metrics
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classified into multi-objective models, two exact methods

including the weighted sum method and Epsilon-constraint

method were used to validate the model structure. In

addition, since the model nature was NP-hard, three multi-

objective evolutionary algorithms, NSGA-II, PESA-II, and

SPEA-II have been employed to solve large-scale prob-

lems. Moreover, an adaptive penalty function that was

more applicable in Pareto frontier improvement has been

developed in this paper. In the next step, the presented

PESA-II was modified by removing replicated solutions

from its archive and then was compared with classic

PESA-II, NSGA-II, and SPEA-II. We used different

MOEA comparison metrics including the number of fea-

sible solutions, quality metric, spacing metric, CPU time,

mean ideal distance, diversity metric, hypervolume, and

inverted generational distance to evaluate the algorithms’

performance in HWLRP.

Modified PESA-II could prevail over PESA-II in CPU

time and QM. It also acted better than NSGA-II in most

cases; however, it had a weak performance in DM against

NSGA-II. As shown in Fig. 14, with increasing problem

dimensions, SM and DM increase faster for the NSGA-II

algorithm than two others. As such, PESA-II and SPEA-II

are more reasonable algorithms for large size problems

because of the power of the NSGA-II decreases more

rapidly with increasing dimensions of the problem in

finding feasible solutions. Although NSGA-II performed

weaker than PESA-II and SPEA-II in creating efficient

Pareto, it could generate wider Pareto frontier compared to

PESA-II and SPEA-II, which is appropriate for the situa-

tion that the decision-maker prefers to distinguish all

options instead of knowing a limited number of best

options. Finally, the Pareto approximation of each algo-

rithm in several test problems is represented in Fig. 16.

Fig. 14 continued

Fig. 15 IGD convergence plot
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In addition to the conclusions above, this study

demonstrates the application of the PESA-II method in

routing problems which is scarce in the literature, and it

can be a new subject for interested researchers.

For future researches, the following contributions are

suggested. As mentioned in the previous sections, social

and systematical decisions are complimentary which,

without considering them simultaneously, cannot expect a

reasonable answer in a problem. Therefore, it seems that is

essential to append more social objectives in the HWM

problems to enrich the efficiency and comprehensiveness

of the results. Considering green objectives and clustering

approaches can be other suggestions for future researchers.
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Fig. 16 Pareto approximation of six test problems
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Appendix

Detailed results of algorithms comparison

See Tables 9, 10 and 11.

Table 9 NSGA-II comparison results

Test problem number NF CPU QM (against PESA-II) QM (against SPEA-II) MID SM DM HV Log (IGD)

1 99.00 518.83 0.81 0.73 0.80 541.46 127,215.59 0.17 4.16

2 93.00 471.02 0.43 0.46 0.89 736.46 156,573.41 0.27 4.40

3 95.00 510.20 0.97 0.86 0.83 446.37 99,874.38 0.18 4.05

4 95.00 554.77 0.63 0.48 0.82 401.78 69,980.65 0.19 3.96

5 95.00 585.69 0.32 0.59 0.89 823.67 168,880.18 0.27 4.54

6 98.00 510.36 0.42 0.61 0.84 808.85 201,773.38 0.23 5.01

7 96.00 538.98 0.39 0.55 0.82 855.19 204,162.62 0.24 4.74

8 97.00 482.60 0.39 0.54 0.84 1094.47 194,653.69 0.24 4.77

9 84.00 539.16 0.19 0.20 0.91 895.94 150,773.50 0.26 4.69

10 93.00 487.90 0.85 0.62 0.87 948.55 248,497.51 0.22 4.86

11 95.00 507.41 0.52 1.00 0.89 903.14 253,084.84 0.26 4.83

12 84.00 515.90 0.85 0.64 0.85 906.96 214,007.54 0.25 4.77

13 92.00 517.94 0.64 0.79 0.88 1089.23 239,430.09 0.30 4.94

14 86.00 502.78 0.19 0.86 0.89 1172.50 265,856.68 0.33 5.00

15 85.00 572.02 0.00 0.78 0.85 915.87 183,489.00 0.24 4.80

16 77.00 617.45 0.17 0.23 0.88 1251.92 206,357.23 0.24 4.89

17 91.00 607.78 0.70 0.45 0.92 1069.51 284,266.10 0.24 5.33

18 85.00 605.45 0.69 0.04 0.92 937.43 234,947.73 0.24 5.29

19 86.00 565.81 0.76 0.44 0.92 1177.53 237,232.96 0.33 5.17

20 74.00 598.66 0.09 0.42 0.90 1598.65 289,054.78 0.26 5.21

21 77.00 596.11 0.64 0.56 0.83 1195.33 204,487.17 0.22 5.25

22 92.00 685.45 0.15 0.35 0.88 1602.91 303,037.58 0.24 5.33

23 73.00 681.07 0.03 0.00 0.93 797.46 179,618.39 0.33 5.50

24 92.00 666.40 0.45 0.61 0.95 1152.93 262,994.80 0.39 5.21

25 84.00 719.11 0.77 0.24 0.80 1864.41 366,686.42 0.18 5.27

26 77.00 707.87 0.57 0.96 0.88 1436.86 281,368.25 0.25 5.59

27 84.00 697.07 0.00 0.37 0.94 1448.61 312,196.91 0.37 5.85

28 79.00 704.08 0.00 0.92 0.90 1077.57 220,343.00 0.28 6.05

29 53.00 756.21 0.38 0.00 0.88 1316.84 166,368.14 0.35 6.06

30 95.00 713.27 0.00 0.12 0.95 1709.77 434,765.53 0.35 5.86
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Table 10 PESA-II comparison results

Test problem number NF CPU QM (against PESA-II) QM (against SPEA-II) MID SM DM HV Log (IGD)

1 100.00 605.55 0.95 0.95 0.78 296.52 72,186.33 0.21 3.79

2 98.00 465.01 1.00 0.69 0.83 385.18 80,322.75 0.21 4.01

3 100.00 538.13 0.65 0.35 0.73 304.79 52,192.21 0.19 3.59

4 97.00 511.92 0.86 0.23 0.89 227.55 47,438.42 0.31 3.66

5 99.00 493.66 1.00 1.00 0.85 454.77 98,500.81 0.24 4.15

6 100.00 453.15 0.99 0.98 0.81 511.49 100,008.44 0.26 4.40

7 100.00 480.40 1.00 0.96 0.87 407.81 65,598.52 0.29 4.17

8 98.00 522.95 1.00 0.97 0.84 404.09 73,250.06 0.21 4.09

9 100.00 557.50 1.00 1.00 0.85 332.27 62,842.07 0.25 3.94

10 99.00 534.98 0.98 0.03 0.80 465.99 97,737.74 0.22 4.16

11 100.00 534.37 1.00 1.00 0.89 314.34 46,783.21 0.34 4.10

12 100.00 480.71 0.79 0.99 0.79 455.27 58,984.20 0.23 4.25

13 100.00 507.99 1.00 0.95 0.84 407.67 69,744.59 0.29 3.84

14 100.00 499.35 1.00 1.00 0.88 527.62 104,909.03 0.26 4.31

15 99.00 459.15 1.00 1.00 0.83 418.13 88,042.92 0.28 4.15

16 100.00 584.46 1.00 1.00 0.85 499.86 98,172.31 0.29 4.31

17 100.00 512.84 1.00 0.96 0.81 495.04 83,705.84 0.29 4.41

18 99.00 545.53 1.00 0.00 0.89 448.64 79,259.03 0.33 4.70

19 100.00 508.74 1.00 0.00 0.88 419.18 71,571.46 0.31 4.42

20 100.00 543.92 1.00 1.00 0.81 546.70 103,833.05 0.23 4.36

21 80.00 567.24 1.00 0.53 0.85 659.10 120,430.69 0.32 4.48

22 100.00 589.52 1.00 1.00 0.87 544.85 84,507.26 0.31 4.52

23 85.00 525.12 1.00 1.00 0.80 679.35 97,410.35 0.24 5.59

24 100.00 529.81 1.00 0.97 0.84 550.02 93,590.57 0.28 4.60

25 99.00 583.71 1.00 1.00 0.98 410.78 72,577.32 0.36 4.92

26 94.00 796.19 1.00 1.00 0.95 684.21 107,812.27 0.37 4.46

27 99.00 514.04 1.00 1.00 0.83 535.72 97,146.16 0.31 5.28

28 99.00 509.25 1.00 1.00 0.86 589.15 74,914.16 0.31 5.52

29 85.00 709.01 1.00 0.29 0.85 717.74 107,481.24 0.28 5.76

30 91.00 722.29 1.00 1.00 0.95 571.69 106,739.36 0.37 4.96
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Table 11 SPEA-II comparison results

Test problem number NF CPU QM (against PESA-II) QM (against SPEA-II) MID SM DM HV Log (IGD)

1 90.00 593.21 0.83 0.80 0.81 413.78 82,571.55 0.18 3.70

2 100.00 582.20 1.00 0.86 0.74 345.16 72,087.69 0.19 3.91

3 100.00 543.57 0.99 1.00 0.80 194.61 82,609.81 0.16 3.80

4 99.00 541.96 0.91 1.00 0.86 200.31 56,752.58 0.32 3.51

5 100.00 561.59 1.00 0.95 0.71 250.04 56,116.38 0.20 3.78

6 85.00 548.71 0.99 0.72 0.86 349.11 95,364.93 0.30 4.70

7 100.00 572.22 1.00 0.03 0.91 195.94 46,626.90 0.34 3.84

8 98.00 576.01 1.00 0.76 0.82 345.93 55,657.30 0.26 3.94

9 94.00 566.23 1.00 0.19 0.75 353.27 60,790.73 0.23 3.89

10 98.00 555.65 1.00 1.00 0.78 405.36 91,421.59 0.21 4.46

11 73.00 559.91 0.04 0.00 0.95 342.61 69,221.27 0.28 4.08

12 65.00 563.39 0.94 1.00 0.92 402.39 51,550.58 0.31 4.18

13 92.00 576.87 1.00 0.92 0.85 248.66 45,274.64 0.34 4.11

14 99.00 597.34 1.00 0.02 0.92 221.79 65,674.59 0.26 4.10

15 98.00 561.87 0.92 0.00 0.82 284.59 66,754.28 0.26 4.17

16 100.00 601.15 1.00 0.05 0.96 270.92 65,080.36 0.41 4.23

17 97.00 580.59 1.00 1.00 0.91 460.16 67,170.50 0.37 4.56

18 99.00 573.32 1.00 1.00 0.88 352.55 64,568.69 0.31 4.43

19 100.00 572.54 1.00 1.00 0.85 306.78 77,892.71 0.29 4.92

20 96.00 614.41 1.00 0.27 0.72 487.13 75,428.03 0.16 4.32

21 99.00 597.82 1.00 0.95 0.80 355.01 100,746.70 0.20 4.48

22 98.00 638.65 1.00 0.05 0.95 297.69 97,535.62 0.40 4.51

23 98.00 597.70 1.00 0.35 0.85 516.15 118,725.16 0.29 6.00

24 95.00 614.25 0.96 0.48 0.81 477.17 123,768.46 0.17 4.84

25 58.00 665.03 1.00 1.00 0.95 555.67 76,033.38 0.33 4.62

26 75.00 642.16 0.77 0.00 0.93 613.46 104,256.35 0.37 5.34

27 83.00 617.53 1.00 1.00 0.77 537.05 75,936.87 0.26 5.86

28 100.00 613.57 1.00 0.10 0.92 401.99 87,244.72 0.38 5.79

29 95.00 664.52 1.00 1.00 0.78 220.34 107,020.52 0.24 6.14

30 98.00 702.19 1.00 0.00 0.84 576.72 116,369.31 0.27 5.16
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