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Abstract
The aims of this study are to develop a novel compound structure that consists of two-stage decomposition (TSD), hybrid
particle swarm optimization gravitational search algorithm (HPSOGSA) andmulti-kernel least square support vector machine
(MLSSVM) for improving forecasting accuracy. In the most previous wind speed forecasting studies, only one wind speed
signal decomposition method is considered, which is insufficient. To better deal with the wind speed time series, TSDmethod
combining complementary ensemble empirical mode decomposition with adaptive noise with wavelet transform is firstly
employed in the proposed model to preprocess the wind speed samples; then, binary-valued particle swarm optimization
gravitational search algorithm is exploited as feature selection to identify and eliminate the abnormal noise signal within the
input candidate matrix that is determined by partial autocorrelation function. The kernel function and the kernel parameters
have great influence on the regression performance of LSSVM. To solve these problems, integrations of radial basis function,
polynomial (poly) and linear kernel functions by optimal weighted coefficients are constructed as multi-kernel function for
LSSVM, namely MKLSSVM, and the parameter combination is tuned by conventional PSOGSA. The feature selection and
parameter optimization are realized by hybrid PSOGSA (HPSOGSA) simultaneously. Finally, comprehensive comparison
and analysis are carried out using the historical wind speed data from one wind farm of China to illustrate the excellent
forecasting performance of TSD–HPSOGSA–MKLSSVM.

Keywords Wind speed forecasting · Two-stage decomposition · Complementary ensemble empirical mode decomposition
with adaptive noise · Wavelet transform · Multi-kernel LSSVM · Hybrid particle swarm optimization gravitational search
algorithm

1 Introduction

To reduce the greenhouse gas emission, many renewable
resources have been exploited and utilized. Among the
renewable resources, the utilization of wind energy has expe-
rienced a rapid growth in the last few years (Liu et al. 2017).
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Reported by World Wind Energy Association (WWEA), the
global cumulative capacity ofwind power has increased from
283 GW in 2012 to 597 GW in 2018. As wind speed time
series always present nonlinear and stochastic, the integra-
tion of the large scale of wind power is a serious unstable
factor for power system, which brings about large power
grid voltage fluctuations, flicker and other power quality, and
also reduces the stability and reliability of power system. It is
known that short-termwind power forecasting (ranging from
1 to 48 h) are critical to reduce the power reserves, lower the
operation cost of wind farm, decease the probability of wind
power curtailment and increase the safety of the power grid
(Sun et al. 2018c; Dong et al. 2017). However, influenced
by temperature, humidity, height and other environmental
and meteorological factors, it is hard to capture the inter-
nal tendency within wind speed times and there exist lots of
difficulties in wind power prediction with high accuracy.
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In the last decades, various wind speed forecastingmodels
have been developed and these models are mainly classified
into four categories, namely physical approaches, statistical
models, artificial intelligence and machine learning engines,
and hybrid forecasting model. Physical approaches predict
thewind power output using local terrain, humidity, tempera-
ture and other environmental andmeteorological information
through complex computation. Statistical models, mainly
including Persistence, ARMA, ARIMA and Kalman fil-
ter, make wind speed forecasting by capturing the internal
relationship among the historical wind speed time series.
Artificial intelligence and machine learning engines, mainly
includingmultilayer perceptron (MLP) (Aghajani et al. 2016;
Bouzgou and Benoudjit 2011), least squares support vec-
tor machine (LSSVM) (Yan et al. 2018; Hu et al. 2015;
Kumar et al. 2018), extreme learningmachine (ELM) (Zhang
et al. 2014, 2017; Sun et al. 2018a), back-propagation neural
network (BPNN) (Wang et al. 2016), wavelet neural net-
works (WNN) (Sun et al. 2019), Elman neutral network
(ELMNN) (Du et al. 2017) and support vector regression
(SVR) (Santamaria-Bonfil et al. 2016), have good capac-
ity in processing nonlinear components within wind speed
time series and are widely employed in wind speed forecast-
ing; however, these approaches make forecasting in implicit
ways.

In order to enhance the forecasting results, technicians
and researchers always apply hybrid model which integrates
and takes advantages of various individual approaches. For
example, studies (Dong et al. 2017; Wang et al. 2016, 2017;
Santamaria-Bonfil et al. 2016; Osorio et al. 2015) combine
artificial intelligent models with signal decomposition and
parameter optimization for wind speed forecasting. The case
studies in the above literature illustrate that the hybridmodels
are successfully applied in the wind speed forecasting with
satisfactory accuracy.

Among the aforementioned artificial intelligent models
and machine learning engines, LSSVM is a powerful tool
in dealing with small nonlinearity samples, and it has been
widely used in system modeling (Stephen et al. 2014), time
series prediction (Yan et al. 2018; Hu et al. 2015; Kumar
et al. 2018; Sun et al. 2018b) and fault diagnosis (Zheng
et al. 2011). The characteristics of LSSVM are to solve a
quadratic programming problem by translating into linear
equation, which can improve computational convergence.
Thus, LSSVM is also adopted as the core forecasting engine
in this study for wind speed forecasting.

LSSVM has better regression performance over the other
ANN-based models and SVM (Hu et al. 2015); however,
the regression performance of LSSVM is influenced by its
configuration which includes the input training samples, the
kind of kernel function and the kernel parameter. Therefore,
researchers try to enhance the performance of LSSVM in
short-term wind speed forecasting from these three aspects.

Yuan et al. (2015) selected a suitable kernel function through
comparisons and applied GSA to optimize the kernel param-
eters. In Zhou et al. (2011), LSSVM with linear, polynomial
(Poly) or Gaussian kernel function was separately con-
structed to make wind speed forecasting for finding which
kernel function performs best. In Wang et al. (2015a), C–C
method is firstly used to process thewind speed time series for
phase space reconstruction, which automatically determine
the input form for subsequent forecasting; then, the param-
eters in LSSVM are tuned by PSOGSA and the outputs of
LSSVM are corrected by Markov method.

However, there are still some shortages in LSSVM-based
wind speed forecasting models.

i: The existing studies on the application ofLSSVMinwind
speed forecasting are very limited because only one sin-
gle particular kernel function (Yuan et al. 2015; Zhou
et al. 2011;Wang et al. 2015a) or double kernel functions
(Sun et al. 2018b) are considered.As for each kernel func-
tion has its characteristics in data process, these methods
are not comprehensive.

ii: Wavelet transform (WT) (Yan et al. 2018; Liu et al. 2014),
wavelet packet decomposition (WPD) (Sun et al. 2018a),
ensemble empiricalmodedecomposition (EEMD) (Wang
et al. 2016; Sun et al. 2018b), empirical mode decom-
position (EMD) (Zhang et al. 2016a), complementary
ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) (Peng et al. 2017) and variational
mode decomposition (VMD) (Zhang et al. 2017; Naik
et al. 2018) are commonly wind speed data preprocess-
ingmethods. In the previousmost wind speed forecasting
models, only single individual data preprocessingmethod
is applied to decompose wind speed data, which cannot
thoroughly deal with wind speed in that wind speed time
series always present intermittence and instability (Sun
et al. 2019; Yin et al. 2017).

iii: Abnormal data or noise within wind speed time series is
caused by malfunctioning sensors, measurement error or
other factors, which is considered as an obstacle to obtain
high forecasting accuracy (Liu et al. 2018).

To address the above problems, the concept of combined
model is utilized to develop a new hybrid short-term wind
speed forecasting method that is inspired by the forecasting
mechanisms in the aforementioned studies.

i: LSSVM model with a combination of linear, Poly and
radial basis function (RBF) kernel functions by optimal
weighted coefficients is developed as core forecast-
ing engine, namely multiple kernel functions LSSVM
(MKLSSVM), in thewind speed forecastingmodel. RBF
has good local exploitation and Poly has good global
exploration capacities in dealing with nonlinear data, and
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linear kernel function can dowell in linear signal process-
ing, which can enhance forecasting performance.

ii: A novel two-stage wind speed decomposition combining
CEEMDAN with WT is utilized for data preprocessing.
CEEMDAN is firstly utilized to decompose the origi-
nal wind speed data into a few IMFs and one residual
component with different frequencies; then, WT method
is applied to break the highest frequency IMF1 into
different subseries, which further lower the regression
difficulties of LSSVM.

iii: To eliminate the abnormal data, coral reefs optimization
(CRO) was developed in Salcedo-Sanz et al. (2014) as
feature selection to identify the effective input candi-
dates for the forecasting engine ELM. A deep feature
selection framework was developed to identify the most
suitable candidates from the testing sample for machine
learning models in the first layer (Feng et al. 2017).
Apart from applying feature selection and parameter
optimization on input candidates and artificial intel-
ligent models, respectively, hybrid optimization algo-
rithms have been exploited to realize these functions
synchronously. In Luo et al. (2016), hybrid gravita-
tional search algorithm (HGSA) integrating conventional
GSA and binary-valued GSA (BGSA) were developed
to realize the fault diagnosis of rolling element bear-
ing and optimize the weights and bias parameters in
ELM. In Zhang et al. (2017), ELM combined with hybrid
backtracking search algorithm (HBSA) was developed
for short-term wind speed forecasting, and the HBSA
algorithm composes of real-valued BSA (RBSA) and
binary-valued BSA (BBSA), which was also exploited to
realize the function of feature selection and optimization.
Hybrid PSOGSA (HPSOGSA) integrating conventional
PSOGSA and binary-valued PSOGSA (BPSOGSA) is
introduce to enhance the forecasting performance of
MKLSSVM. HPSOGSA extracts the effective candi-
dates from the testing samples and optimizes the param-
eter combination in MKLSSVM, simultaneously.

Apart from the above introduction, the other parts of
this paper are arranged as follows. Section 2 provides the
methodology that used in the proposed model. The working
mechanism of the proposed forecasting strategy is presented
in Sect. 3. Case studies that verify the effectiveness of the
proposed forecasting model are carried out in Sect. 4. Con-
clusions are drawn in Sect. 5.

2 Methodology

2.1 Wind power preprocessingmethod

2.1.1 Complementary ensemble empirical mode
decomposition with adaptive noise

TheworkingmechanismofEMD is to decompose the nonlin-
ear and nonstationary complicated signal into a few relatively
stable intrinsicmode functions (IMFs) and one residual (Res)
with different frequencies using Hilbert–Huang transform
(HHT) approach (Zhang et al. 2016b). EMD method may
not correctly extract effective characteristic information of
signal in that it suffers from the drawback of the mode mix-
ing.

To solve this problem, Wu and Huang proposed a noise-
assistedEMDmethod (WuandHuang2009), namelyEEMD.
In EEMD, white Gaussian noise is added in the original sig-
nal at each shifting procedure for alleviation of the mode
mixing in EMD and these white noise signals are eliminated
by averaging in the end. However, there exists some white
noise that may not be discarded after a finite shifting pro-
cess, which affects signal reconstruction errors. To overcome
this shortage, Torres et al. (2011) proposed a new complete
EEMD with adaptive noise (CEEMDAN), which has been
successfully applied in complicated time series signal pro-
cessing (Peng et al. 2017) and fault feature extraction (Han
et al. 2019). The decomposition process of any signal x(t)
by CEEMDAN can be presented as follows.

Step 1: Add a number of white Gaussian noise z(t) with
N (0, 1) into the original signal, which is expressed
as Eq. (1).

y(t) = x(t) + η0z(t) (1)

where η0 denotes a noise coefficient;
Step 2: Decompose the y(t) by EMD method to obtain the

corresponding IMFi1.
Step 3: Calculate the first subseries of CEEMDAN bymean-

ing the IMFs obtained by EMD approach, expressed
as Eq. (2).

IMF′i
1 (t) = 1

L

L∑

i=1

IMFi1 (2)

Step 4: Calculate the residual value r1(t) = x(t) − IMF′i
1 (t)

Step 5: Calculate the first subseries of CEEMDAN bymean-
ing the IMFs obtained by EMD approach again,
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Fig. 1 Three-level decomposition of signal by WT

expressed as Eq. (3).

IMF′i
2 (t) = 1

L

L∑

i=1

E1(r1(t) + η1E1(z
i (t))) (3)

where E1(·) represents the empirical mode decom-
position EMD method.

Step 6: Repeat the above steps to yield the other IMFs until
the residual component has nomore than twoextreme
values.

2.1.2 Wavelet transform (WT)

WT, a mathematical method, has been widely used in the
time series signal processing (Aghajani et al. 2016; Osorio
et al. 2015). WT can extract the effective information in the
sample signal without losing information, and it has the abil-
ity to capture both frequency and location information in a
simultaneous manner. Low-resolution wavelets can approx-
imately capture frequency components of the sample signal,
while high-resolution wavelets can catch the high-frequency
components. WT can be mainly divided into continuous WT
(CWT) and discreteWT (DWT). For overlapping feature and
duplicity of neighbor information, CWT is very slow; thus,
DWT is adopted in this study to deal with the wind speed
data. As shown in Eq. (4), DWT utilizes scale and position
parameters by powers of two, which are named as dyadic
dilation and translations.

DWT(m, n) = 2
−m
2

L−1∑

t=0

x(t)ψ

(
t − n · 2m

2m

)
(4)

where L denotes the total length of the sample signal x(t),
m and n are two integrate number, 2m and n · 2m are factor
and shifted values, respectively. Three-level decomposition
of sample signal by WT is illustrated in Fig. 1.

As shown in Fig. 1, the sample signal is broken into two
components, namely approximation component Ai anddetail
component Di , using low-pass filter (LPF) and high-pass
filter (HPF), respectively. In the decomposition proce-
dure, the sample signal is decomposed into high-frequency

component Di and low-frequency component Ai ; then, the
low-frequency component Ai is continuously decomposed,
while the high-frequency component Di is maintained.

The kind of the mother wavelet function plays great influ-
ence on the performance of WT (Haque et al. 2013). Among
the common mother wavelet functions, including Morlet,
Haar,MexicanHat andMeyerwavelet functions,Daubechies
of order 4 (DB4) can usually provide better results; thus, DB4
is adopted as the wavelet function in this study.

2.2 Particle swarm optimization gravitational search
algorithm (PSOGSA)

2.2.1 Particle swarm optimization (PSO)

PSO is an optimization algorithm that determines the optimal
solution by simulating the social behavior of birds swarm.
A number of particles in PSO, standing for birds in the real
world, look for the optimal solution in the region by adjusting
their speed and location. PSO can be expressed as Eq. (5).

{
vt+1
i = ωvti + c1 × r1 × (pbesti − xti ) + c2 × r2 × (gbest − xti )

xt+1
i = xti + vt+1

i
(5)

where vti and vt+1
i are the velocity of the i th particle at t th and

(t +1)th iteration, respectively. ω denotes an inertial weight.
c1 and c2 are learning factors; r1 and r2 stand for random
number within (0,1); and xti and xt+1

i are the position of the
i th particle at t th and (t + 1)th iteration, respectively.

ptbesti =
⎧
⎨

⎩
pt−1
besti

if
(
f (xti ) ≥ f (pt−1

besti)
)

xti (t) if
(
f (xti ) < f (pt−1

besti)
) (6)

gbest = arg min
ptbesti

f (pbesti) (7)

The ωvti in Eq. (5) can offer good exploration capacity for
PSO, while c1 ∗ r1 × (pbesti − xti ) + c2 × r2 × (gbest − xti )
provides historical memory.

2.2.2 Gravitational search algorithm (GSA)

Inspired by Newton theory, a new heuristic optimization
algorithmGSAwas firstly proposed by Rashedi et al. (2009).
Each agent in GSA stands for candidate solution to the objec-
tive function and is considered as an object with masses
proportional to the values of the fitness function . In the iter-
ation procedure, all agents obey laws of gravity and motion
to attract each other and move.

It is assumed that a systemwith N agents andn dimensions
is shown in Eq. (8) which scatter randomly in the search
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space.

Xi = (
x1i , x

2
i , . . . x

d
i , . . . xni

)
i = 1, 2, . . . , N (8)

At t th iteration, the gravitational force Fd
i j (t) of the i th

agent acting on the j th agent is expressed as Eq. (9).

Fd
i j (t) = G(t)

Mpi (t) × Maj (t)

Ri j + ε

(
xdj (t) − xdi (t)

)
(9)

where Maj (t) and Mpi (t) are active mass and passive mass,
respectively. ε denotes a small constant. G(t) and Ri j are
expressed as Eqs. (10) and (11), respectively.

G(t) = G0 × exp(−α × i ter/i termax) (10)

Ri j = ‖Xi (t), Xi (t)‖2 (11)

where G0 and α are the initial gravitational constant and the
descending coefficient, respectively. i ter and i termax are the
current iteration and the maximum iteration, respectively.

At t th iteration, the accelerated speed of i th agent with d
dimension can be expressed Eq. (12).

adi (t) =
∑N

j=1, j �=i r j × Fd
i j (t)

Mi (t)
(12)

where r j is a random value within (0,1), and Mi (t) is
expressed as Eq. (13).

⎧
⎨

⎩
mi (t) = f i ti (t)−worst(t)

best(t)−worst(t)

Mi (t) = mi (t)∑N
j=1 m j (t)

(13)

where f i t(t), best(t) andworst(t) stand for the value, min-
imum value and maximum value of the t th agent fitness
function, respectively.

In the end, the speed and location of the i th agent are
mathematically expressed as Eq. (14).

{
vdi (t + 1) = rand × vdi (t) + adi (t)
xdi (t + 1) = xdi (t) + vdi (t + 1)

(14)

where rand stands for a random number within (0,1).

2.2.3 Work principle of PSOGSA

To combine the exploitation ability of GSA with the explo-
ration capacity of PSO, the pbesti−xi (t) in Eq. (5) is replaced
by the acceleration ai (t) in Eq. (12) to construct a new
PSOGSA hybrid algorithm; thus, PSOGSA is expressed as
Eq. (15) (Zheng et al. 2017; Wang et al. 2015b). Like PSO

algorithm, PSOGSAupdates its velocity and position by con-
sidering not only current state but also previous values.

vi (t + 1) = ω × vi (t) + c1 × r1 × ai (t) + c2 × r2 × (gbest − xi (t))
(15)

xi (t + 1) = xi (t) + vi (t + 1) (16)

2.2.4 Binary PSOGSA

The traditional PSOGSA is a powerful organization algo-
rithm in solving the real continuous problems; however, there
exist binary problems that cannot be solved by the tradi-
tional PSOGSA. To solve these binary problems, Mirjalili
and Hashimx (2012) proposed a binary-valued PSOGSA,
namely BPSOGSA. In BPSOGSA algorithm, the velocity
of each agent in PSOGSA is transformed into a probability
function within (0,1) using the Hyperbolic tangent function,
which is expressed as Eq. (17).

S(vdi (t)) =
∣∣∣tanh(vdi (t))

∣∣∣ (17)

where tanh(·) represents hyperbolic tangent function. Then,
the position of each agent is updated as Eq. (18).

{
xdi, j (t + 1) = complement(xdi, j (t)) rand < S

(
xdi, j (t + 1)

)

xdi, j (t + 1) = xdi, j (t) else
(18)

where complement(·) stands for the logical negation func-
tion.

2.3 Multi-kernel function least squares support
vector machine (MKLSSVM)

2.3.1 Working principle of LSSVM

LSSVM is developed on the basis of SVM by using square
errors in the cost function and equality constraints instead
of nonnegative errors and inequality constraints. As a result,
LSSVM regresses by dealing with a linear system rather than
quadratic programming problems (Kumar et al. 2018). In
recent years, LSSVM has been successfully applied in time
series prediction (Yan et al. 2018), fault diagnosis (Kumar
et al. 2018) and system modeling (Hemmati-Sarapardeha
et al. 2018).

It is assumed training samples {(xi , yi )|xi ∈ Rd , yi ∈ R},
where i = 1, 2, . . . , N , N and d are the number of the total
samples and the dimension of input variables, respectively.
xi and yi are the input and output vectors, respectively. Using
a nonlinear function ϕ(x), the input vectors are mapped into
a high-dimensional feature space Z where the regression
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procession is carried out. The regression processions can be
mathematically expressed as Eq. (19).

y = ωTϕ(x) + b (19)

where ω and b stand for the weight vector and bias term,
respectively, which are estimated in the subsequent calcula-
tions in Eqs. (20) and (21).

C = 0.5ωTω + 0.5γ
N∑

i=1

e2i (20)

s.t.

yi = ωTϕ(xi ) + b + ei (21)

where γ > 0 is the penalty factor, ei denotes an error.
To simply the calculation, Lagrange function is con-

structed as Eq. (22).

L(ω, b, e, α) = 1

2

⎛

⎝‖ω‖2 +
N∑

i=1

e2i

⎞

⎠ −
N∑

i=1

αi

(
ωT ϕ(xi ) + b + ei − yi

)

(22)

where αi is the Lagrange multipliers.
Through partially differentiating ω, e, b and α, and elim-

inating ω and e, the regression results are expressed as
Eq. (23).

y(x) = ωTϕ(x) + b =
N∑

i=1

αi k(x, xi ) + b (23)

where k(x, xi ) stands for a positive definite kernel function.

2.3.2 Selection of kernel function

It has been proved that the regression performance and gen-
eralization capacity of LSSVM highly depend on the kind
of kernel function and its parameters (Sun et al. 2018b).
Among the common kernel functions, radial basis function
(RBF) has good local exploitation capacity, while polyno-
mial function (Poly) possesses excellent global exploitation
ability, which has good capacity in processing nonlinear sig-
nal. To enhance the forecasting performance, a weighted
multi-kernel function based on RBF, Poly and linear kernel
functions is constructed for LSSVM, namely MKLSSVM,
which takes advantages of individual approaches. The form
of multi-kernel function can be expressed as Eq. (24).

k(xi , x j ) = μ1k1(xi , x j )+μ2k2(xi , x j )+μ3k3(xi , x j ) (24)

where k1, k2 and k3 stand for RBF, Poly and linear kernel
function, respectively. μi denotes weight coefficient within
(0, 1) and

∑
μi = 1. RBF, Poly and linear kernel functions

are mathematically expressed as Eqs. (25), (26) and (27),
respectively.

kRBF(xi , x j ) = exp

(
− ||xi − x j ||2

2δ2

)
(25)

kPoly(xi , x j ) = [(xi · x j ) + 1]d (26)

kline(xi , x j ) = xi · x j (27)

Thus, the outputs of MKLSSVM can be modified as
Eq. (28).

y =
N∑

i=1

αi

⎡

⎣
3∑

j=1

μ j k j (xi , x)

⎤

⎦ + b (28)

By tuningμ j value,multi-kernel function exhibits optimal
characteristics for different input variables. Although wind
speed time series exhibits high nonlinearity, sometimes there
exist some certain linear components (Li et al. 2018). The
weighted combination of RBF, Poly and linear kernel func-
tions not only processes the nonlinear components, but also
solves the linear problems within wind speed data.

3 The workingmechanism of the proposed
forecasting strategy

3.1 Evaluation index forWSF

To illustrate the forecasting model with the best predic-
tion performance, the definitions of four statistical indices,
including RMSE, MAE, MAPE and MASE, are shown in
Table 1 and utilized to evaluate and compare different fore-
casting approaches. Smaller MAE, RMSE,MAPE orMASE
values mean that the prediction values are closer to the actual
measured wind speed.

3.2 The proposed HPSOGSA-MKLSSVM

In the proposed HPSOGSA-MKLSSVM model, PSOGSA
is employed to optimize the kernel parameters and weighted
coefficients, which can make MKLSSVM avoid trapping
in over-fitting or local optima. For measurement errors
and malfunctioning sensors, there exists abnormal noise
in the wind speed time series (Liu et al. 2018). To elim-
inate these ineffective components, BPSOGSA approach
is exploited as feature selection to identify the abnormal
data by encoding binary value “0′′ or “1′′ (“0′′ and “1′′
represent “discarded ′′ and “selected ′′, respectively). The
feature selection for selecting effective input candidates
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Table 1 Forecasting indices and
their definitions Metrics Formula Definition

RMSE
√

1
N

∑N
i=1 (v(i) − v̂(i))2 Root mean square error

MAE 1
N

∑N
i=1 |v(i) − v̂(i)| Mean absolute error

MAPE 1
N

∑N
i=1

|v(i)−v̂(i)|
v(i) × 100% Mean absolute percent error

MASE 1
N

∑N
i=1

(
|v(i)−v̂(i)|

1
N−1

∑N
i=2 |v(i)−v̂(i)|

)
Normalized mean absolute scaled error

v(i) and v̂(i) stand for the actual measured wind speed data and the forecasting wind speed
values, respectively. N means the quality of the testing samples

Fig. 2 Feature selection and parameter optimization for MKLSSVM
by HPSOGSA

and parameter optimization for optimizing the parameter
combination in MKLSSVM are carried out by HPSOGSA
simultaneously. In this paper, RMSE is applied as the fit-
ness function to evaluate the forecasting results. The specific
working steps of HPSOGSA-MKLSSVM model for WSF
are illustrated in Fig. 2, and descriptions are shown Algo-
rithm 1.

dim = [B1, B2, . . . , Bl , γ, δ, d, μ1, μ2, μ3]. (29)

Algorithm 1 The pseudocode of HPSOGSA-MKLSSVM
1: Input: parameters including particle number N1 dimen-

sion number D, maximum iteration number N2, gravi-
tational constant G0, learning factors c1 and c2, inertial
weight ω and so on.

2: Output: optimal kernel parameter and weighted coeffi-
cients, and effective input candidates.

3: Construct the candidate feature set for some wind speed
subseries.

4: Apply BPSOGSA algorithm to make feature selection.
5: Reconstruct the training and testing variables matrix after

feature selection.
6: for i = 1 : N1 do
7: Apply the proposed hybrid model to make wind speed

forecasting using each population.
8: Compute the fitness function values according to

RMSE.
9: end for
10: Determine the initial personal solution and global solu-

tion.
11: for i = 1 : N2 do
12: Calculate the inertialmassMi (t) according toEq. (13).

13: Calculate the force Fi (t) according to Eq. (9).
14: Update acceleration and speed according to (12) and

(15), respectively.
15: Update position according to Eq. (16).
16: Determine the personal solution and global solution.
17: Apply the proposed hybrid model to make wind speed

forecasting and calculate the fitness function values.
18: Apply BPSOGSA algorithm to make feature selection

and reconstruct the training candidates.
19: end for
20: Obtain the best global solution and effective candidates.
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Fig. 3 Framework of the TSD-HPSOGSA-MKLSSVM model

3.3 The workingmechanism of the proposed hybrid
forecastingmodel

The forecasting flowchart of the proposed TSD-HPSOGSA-
MKLSSVM model is illustrated in Fig. 3, which can be
divided into four stages.

(i) Stage I Wind speed preprocessing. Employ CEEMDAN
method to break the original empirical wind speed series
into several IMFs and one residual (Res), which can
relieve the degree of nonlinearity and fluctuation of
wind speed time series. Employ WT approach to further
decompose the highest frequency component IMF1 into
a few subseries.

(ii) Stage II Input matrix reconstruction. If the PACF of the
i th subseries at lags bigger than parameter p are approx-
imately independent N (0, 1/n) random variables, the
correlation coefficients among input values are obtained
as p; thus, the dimensions of the input variables are
determined as p. For the i th subseries Xi (t), the input
variables of MKLSSVM can be represented as Xi =
{xi (t − 1), xi (t − 2), . . . xi (t − p)}, which are utilized
to predict the corresponding output of MKLSSVM. To
lower the forecasting difficulties, all the subseries are lin-
early translated into the range [0,1].

(iii) Stage III HPSOGSA-MKLSSVM training. The con-
firmed input variables are divided into two parts, the
first 1st to 1296th are utilized to train the HPSOGSA-
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(b) Wind speed data set B

Fig. 4 Original wind speed time series

MKLSSVM model and subsequent 1297th to 1440th
are applied to test the model. To enhance the forecast-
ing performance, artificial intelligent hybrid algorithm
PSOGSA is employed to tune the parameter combina-
tion in MKLSSVM, and BPSOGSA is used to identify
the effective candidates and discard the abnormal data
within the input candidate matrix determined by PACF.

(iv) Stage IV Wind speed forecasting. The well-trained
HPSOGSA-MKLSSVM model is employed to forecast
short-term wind speed in different predicting steps. The
outputs of MKLSSVM for each decomposed subseries
are aggregated after denormalization, and the final fore-
casting results are obtained. In the end, comparisons
between the proposed hybrid model with other forecast-
ing models are carried out using statistical indices.
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Table 2 Statistical description of the empirical wind speed data (m/s)

Wind power data Max Mean Min SD

Set A Entire samples 14.4418 6.6498 0.1868 3.6878

Training samples 14.4418 6.9515 0.1868 3.7268

Testing samples 7.2324 3.9343 0.8860 1.6797

Set B Entire samples 12.6914 4.9476 0.7104 2.9365

Training samples 12.6914 4.6529 0.7104 2.7476

Testing samples 12.1467 7.5996 1.9099 3.2463

4 Case studies

4.1 Description of the empirical wind speed data

This study develops a hybrid model using the historical wind
speed data to forecast the subsequent future short-term wind
speed. Thewind turbines are installed on the top of themoun-

tain with around 120 m. Two sets of empirical historical
wind speed data are collected from the Xuzhou wind farm
in Jiangsu of China, illustrated in Fig. 4, to evaluate the pro-
posed hybrid forecasting model. These wind speed data are
measured every 10 min. The first 1st to 1296th continuous
wind speed data are used to train the proposed model, and
the subsequent 1297th to the 1440th wind speed data are uti-
lized to test the proposed model. The statistical descriptions
of the empirical wind speed data are listed in Table 2. As
shown in Fig. 4 and Table 2, there exist highly nonlinearity
and instability in wind speed time series.

4.2 Wind speed data preprocessing

In this study, TSD method is employed to preprocess the
original wind speed to eliminate the uncertainty. Firstly, the
wind speed is disassembled by CEEMDAN technique into
different IMFs and one Res, which are displayed in Fig. 5a,
c. Suggested by Torres, etc. Torres et al. (2011), noise stan-

0 400 800 1296
−2

0

2

IM
F1

(m
/s

)

0 400 800 1296
−2

0

2

IM
F2

(m
/s

)

0 400 800 1296
−2

0

2

IM
F3

(m
/s

)

0 400 800 1296
−2

0

2

IM
F4

(m
/s

)

0 400 800 1296
−3

0

3

IM
F5

(m
/s

)

0 400 800 1296
−3.5

0

3

IM
F6

(m
/s

)

0 400 800 1200
−3

0

3

time (10mins)

IM
F7

(m
/s

)

0 400 800 1296
3

6

12

time (10mins)

R
es

(m
/s

)

(a) Decomposition results of wind speed data A by CEEMDAN

0 500 1000 1296
−0.6

0

0.6
A

3(
m

/s
)

0 500 1000 1296
−1

0

1

D
1(

m
/s

)

0 500 1000 1296
−1

0

1

D
2(

m
/s

)

time(10min)
0 500 1000 1296

−0.6

0

0.6

D
3(

m
/s

)

time(10min)

(b) Decomposition results of IMF1 of data A by WT

0 400 800 1296
−2

0

2

IM
F1

(m
/s

)

0 400 800 1296
−0.5

0

0.5

IM
F2

(m
/s

)

0 400 800 1296
−1

0

1

IM
F3

(m
/s

)

0 400 800 1296
−2

0

2

IM
F4

(m
/s

)

0 400 800 1296
−3.5

0

4

IM
F5

(m
/s

)

0 400 800 1296
−3.5

0

3.5

IM
F6

(m
/s

)

0 400 800 1296
−3

0

3

time (10mins)

IM
F7

(m
/s

)

0 400 800 1296
3

6

9

time (10mins)

R
es

(m
/s

)

(c) Decomposition results of wind speed dataB by CEEMDAN

0 500 1000 1296
−0.6

0

0.6

A
3£

¨m
/s

£©

0 500 1000 1296
−1

0

1

D
1(

m
/s

)

0 500 1000 1296
−0.5

0

0.5

D
2(

m
/s

)

time(10min)
0 500 1000 1296

−0.8

0

0.8

time(10min)

D
3(

m
/s

)

(d) Decomposition results of IMF1 of dataB by WT

Fig. 5 Decomposition results of the empirical wind speed time series by TSD
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Fig. 6 PACF values with 95% confidence

dard deviation ε and ensemble size I are set as 0.02 and
500, respectively. As seen from the figures, the IMF1–IMF3
with higher frequency reveal the nonlinear information of
the empirical wind speed. IMF4–IMF7 reflect the periodic
information of the original wind speed, while the Res com-
ponents illustrate the general tendency. WT is applied to
further decompose the highest frequency component IMF1
into four sets of relatively subseries at three levels, which is
named as A3, D1, D2 and D3. The decomposed subseries are
shown in Fig. 5b, d. After decomposition by TSD technique,
the decomposed subseries are converted to [0,1], which can
reduce the regression difficulties of MKLSSVM (Hu et al.
2015).

4.3 Input matrix reconstruction and parameter
selection for HPSOGSA-MKLSSVM

4.3.1 Determination of the input dimension

Prior to submit the decomposed subseries to MKLSSVM
for wind speed forecasting, the appropriate dimension of

Fig. 7 Inputing and outputing data format for original samples A

the input variables should be determined in advance. In this
study, partial autocorrelation function (PACF) is applied to
calculate the correlation coefficients among each decom-
posed subseries, and the correlation coefficients can be
considered as the dimension of the input variables for
MKLSSVM (Hu et al. 2015; Zhang et al. 2017). The PACF
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Table 3 Feature selection
results by BPSOGSA Samples Time series Lag order

1 2 3 4 5 6 7 8 9 10 11 12 13

A IMF2 • • • • ◦ • • ◦ • • •
IMF3 • ◦ • • • ◦ • • • • • • •
IMF4 • ◦ ◦ • • • • ◦ • •
IMF5 • • • ◦ • • • • •
IMF6 • • • ◦ • • • • •
IMF7 • • • ◦ ◦ •
IMF8 ◦ • ◦ • • • • •
Res • • ◦ • • • •
A3 ◦ • • ◦ ◦ • •
D1 • • ◦ • • • • • •
D2 • ◦ • • ◦ •
D3 • • ◦ • • ◦ •
Original • • • ◦ • • ◦ •

B IMF2 • ◦ • • ◦ • • • • •
IMF3 • • • ◦ ◦ • • • ◦ • • •
IMF4 ◦ • • ◦ • • • •
IMF5 • ◦ • ◦ • • • ◦ •
IMF6 • ◦ • • • • •
IMF7 • ◦ • • • • ◦
IMF8 • • ◦ • • •
Res • ◦ • ◦ •
A3 • ◦ ◦ • • • ◦ •
D1 • • ◦ • • ◦ • • •
D2 • • • • • •
D3 • • ◦ • • • •
Original • • ◦ • ◦ • • • •

• represents “select,” ◦ denotes “discard”

values of the empirical time series for two sets are computed
from lags 0 to 25 and the calculated results with 95% confi-
dence interval line are illustrated in Fig. 6.As shown in Fig. 6,
the PACF values of original wind speed data A at lags bigger
than 8 are within the red horizontal lines, which means that
8 antecedent wind speed time series severely influence the
corresponding subsequent multi-step ahead forecasting (Hu
et al. 2015; Peng et al. 2017). Thus, the input dimension of
the original wind speed forMKLSSVMcan be determined as
8, and the input and output data formats are shown in Fig. 7.
AS shown in Fig. 7, a rolling forecasting process is adopted
in this study. In the 1-step horizontal forecasting, the previ-
ous consecutive 8 time series are utilized to predict the 9th
point data; then, the forecasting value is used as the historical

time series to forecast the next value. The same forecasting
strategies are executed for the multi-step forecasting, and the
dimensions of the other time series are determined in the
similar way.

4.3.2 Construction of the HPSOGSA-MKLSSVM

As described in Sect. 2.3, the regression performance of
MKLSSVM is influenced greatly by the kernel parame-
ters and penalty value. These real parameters are optimized
by conventional PSOGSA, while BPSOGSA technique is
exploited to identify the effective candidates and discard the
abnormal components; these parameter optimization and fea-
ture selection are executed simultaneously by HPSOGSA.
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Table 4 Parameter selection

Parameters Values

Iteration maximum number 100

Population size 30

Learning factor c1 1.3

Learning factor c2 1.8

Gravitational constant G0 2

Weighted coefficients μ1, μ2, μ3 (0,1)

Penalty factor γ (0,200)

Kernel parameters δ, d (0,20)

The effective input candidates identified by BPSOGSA
method are shown in Table 3.

The parameters in the HPSOGSA-MKLSSVMmodel are
set in Table 4, which are tuned by calculating the RMSE
values. The inertialweightω in PSOdecreases linearlywithin
(0.1, 0.9), which is expressed as Eq. (30).

ω(t) = ωmax − ωmax − ωmin

i tmax
× t (30)

where ωmax and ωmin denote constant values 0.9 and 0.1,
respectively, and i tmax and t stand for maximum iteration
number and iteration time, respectively.

4.4 Comparisons and analysis

All the algorithms are carried out in MATLAB 2014a under
Windows 8 Operating System environment. The statistical
indices including RMSE, MAE, MAPE and MASE are uti-
lized tomeasure the forecasting error. All the tests are carried
out 20 times and the averages are considered as the final fore-
casting results to eliminate the statistical errors. A systematic
investigation is carried out to illustrate how the LSSVM con-
figuration influences its prediction performance in short-term
wind speed forecasting. The regression plots of actual wind
speed and forecasting values are shown in Fig. 8.

4.4.1 Verification of the effectiveness of TSD

This section mainly investigates the forecasting results of
HPSOGSA-MKLSSVM model combining with the further
decomposition methods of IMF1-, IMF1–2- and IMF1–3-
based TSD method to determine the appropriate quantity
of IMFs that should be disassembled, which are given
in Table 5. Like IMF1, the subseries IMF2 and IMF3
are also decomposed by WT at three levels. As given
in Table 5, the forecasting results of the TSD(IMF1)-

HPSOGSA-MKLSSVM model are better than those of
TSD(IMF1–2)-HPSOGSA-MKLSSVMandTSD(IMF1–3)-
HPSOGSA-MKLSSVM regardless of 1-step or multi-step
forecasting.

ComparedwithHPSOGSA-MKLSSVMwithTSD(IMF1–
2), the RMSE errors of the HPSOGSA-MKLSSVM with
TSD (IMF1) in 1-step, 2-step and 3-step are reduced by
0.0546 m/s, 0.0409 m/s and 0.0387 m/s for wind speed data
A, respectively, 0.0560 m/s, 0.0769 m/s and 0.0811 m/s for
data B, respectively.ComparedwithHPSOGSA-MKLSSVM
with TSD (IMF1–3), the RMSE errors of the HPSOGSA-
MKLSSVM with TSD (IMF1) in 1-step, 2-step and 3-step
are reduced by 0.0619 m/s, 0.0519 m/s and 0.0492 m/s for
wind speed data A, respectively; and 0.0708 m/s, 0.0856 m/s
and 0.0930 m/s for data B, respectively.

Remark This forecasting results illustrate that the highest fre-
quency components within IMF1 are the main distributing
factors for the forecasting accuracy, and further decompo-
sition of IMF2 and IMF3 also influences the forecasting
accuracy.

Compared with HPSOGSA-MKLSSVM with CEEM-
DAN, the RMSE errors of the proposed model in 1-step,
2-step and 3-step are reduced by 0.0488 m/s, 0.0443 m/s and
0.0468m/s forwind speed data A, respectively; and 0.05m/s,
0.0496 m/s and 0.0472 m/s for wind speed data B, respec-
tively.

Remark These forecasting results can be explained that the
irregularity of IMF1 with highest frequency is the main fac-
tor that influences the forecasting accuracy and the further
decomposition by WT can effectively address the irregular-
ity issue of IMF1.Thus, the further decomposition of IMF1 in
the proposed TSD-HPSOGSA-MKLSSVM model is appro-
priate.

4.4.2 Comparisons with other different decomposition
methods

To further illustrate the effectiveness of the proposed TSD,
the popular wind speed preprocessing methods, including
EEMD, EMD, WD and VMD, are employed to combine
the HPSOGSA-MKLSSVMmodel to make multi-step wind
speed forecasting. The parameters in EEMD and VMD are
set according to Refs. Sun et al. (2018b) and Sun et al.
(2019), respectively. The statistical forecasting errors of the
decomposition-based model are given in Table 6. As given
in Tables 5 and 6, CEEMDAN-based forecasting model
outperforms EEMD- and EMD-based forecasting models.
For example, compared with the EEMD-based forecasting
model, the RMSE values of the proposed CEEMDAN-
HPSOGSA-MKLSSVM model in 1-step, 2-step and 3-step
are cut by 0.0380m/s, 0.0235m/s and 0.0143m/s for data set
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1297 1350 1400 1440
0

5

10

15

Time (10min)

w
in

d 
sp

ee
d 

(m
/s

)

 

 

Ori Step1

1297 1350 1400 1440
0

5

10

15

Time (10min)

w
in

d 
sp

ee
d 

(m
/s

)

 

 

Ori Step2

1297 1350 1400 1440
0

5

10

15

Time (10min)

W
in

d 
sp

ee
d 

(m
/s

)

 

 

Ori step3

(c) Actual wind speed and forecasting values for data B
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(d) Actual wind speed and forecasting values for data B

Fig. 8 Forecasting results by the proposed model

Table 5 Forecasting errors of the HPSOGSA-MKLSSVM with CEEMDAN and further decomposition

Data set Index CEEMDAN TSD(IMF1) TSD(IMF1–2) TSD(IMF1–3)
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

A MAE (m/s) 0.2098 0.2585 0.3126 0.1824 0.2276 0.2848 0.2161 0.2572 0.3085 0.2246 0.2682 0.3242

RMSE (m/s) 0.2389 0.2839 0.3463 0.1901 0.2396 0.2995 0.2447 0.2806 0.3383 0.2520 0.2915 0.3488

MAPE (%) 5.3865 7.7113 8.3878 5.7325 7.0393 8.4897 5.8037 7.6198 8.9515 6.1744 7.8642 9.0707

MASE 0.5853 0.7211 0.8721 0.5091 0.6350 0.7944 0.6028 0.7176 0.8606 0.6266 0.7481 0.9044

B MAE (m/s) 0.3461 0.3815 0.4306 0.3006 0.3541 0.3912 0.3467 0.3894 0.4399 0.3622 0.4032 0.4575

RMSE (m/s) 0.3726 0.4245 0.4682 0.3226 0.3749 0.4210 0.3786 0.4518 0.5021 0.3934 0.4605 0.5140

MAPE (%) 5.2221 5.6895 6.0462 4.8812 5.5381 6.2350 5.4664 5.7123 5.9435 5.6451 5.9593 6.2433

MASE 0.9654 1.0641 1.2012 0.8386 0.9877 1.0912 0.9672 1.0864 1.2272 1.0105 1.1249 1.2765
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Table 6 Forecasting errors of the HPSOGSA-MKLSSVM with other different decomposition methods

Data set Index EEMD EMD VMD WT
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

A MAE (m/s) 0.2430 0.2807 0.3251 0.3237 0.3803 0.4122 0.2584 0.2932 0.3472 0.2928 0.3197 0.3662

RMSE (m/s) 0.2770 0.3074 0.3606 0.3673 0.4121 0.4461 0.2929 0.3212 0.3852 0.3098 0.3492 0.4070

MAPE (%) 6.1939 8.3521 8.5985 8.7339 10.6845 12.3206 6.7238 8.6848 9.4817 8.5378 8.9699 9.4549

MASE 0.6780 0.7833 0.9070 0.9032 1.0611 1.1502 0.7208 0.8181 0.9686 0.8168 0.8918 1.0218

B MAE (m/s) 0.3734 0.4181 0.4546 0.4107 0.4597 0.5132 0.3919 0.4425 0.5023 0.3935 0.4630 0.5084

RMSE (m/s) 0.4086 0.4520 0.4907 0.4467 0.5115 0.5687 0.4113 0.4631 0.5190 0.4497 0.5029 0.5491

MAPE (%) 5.5035 6.1776 6.6562 6.3921 6.8521 7.2277 6.8114 7.2767 8.1191 5.1645 6.7869 7.5144

MASE 1.0416 1.1661 1.2681 1.1459 1.2826 1.4318 1.0931 1.2343 1.4012 1.0977 1.2916 1.4184

Table 7 Forecasting errors of the TSD-HPSOGSA-LSSVM based on different kernel functions

Samples Index RBF Poly Line RBF&Poly
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

A MAE (m/s) 0.2287 0.2573 0.3108 0.2395 0.2734 0.3295 0.2775 0.3240 0.3811 0.1976 0.2391 0.2906

RMSE (m/s) 0.2419 0.2748 0.3464 0.2562 0.2947 0.3724 0.3035 0.3453 0.4029 0.2145 0.2517 0.3213

MAPE (%) 6.4390 7.2126 8.6492 7.4222 7.9364 8.7343 8.7598 9.6058 11.6353 5.3840 6.9289 8.0023

MASE 0.6380 0.7180 0.8671 0.6682 0.7626 0.9193 0.7742 0.9040 1.0633 0.5513 0.6669 0.8107

B MAE (m/s) 0.3512 0.3881 0.4535 0.3515 0.4125 0.4534 0.3999 0.4431 0.4995 0.3315 0.3927 0.4156

RMSE (m/s) 0.4008 0.4326 0.5052 0.3908 0.4432 0.4916 0.4389 0.4713 0.5415 0.3603 0.4194 0.4661

MAPE (%) 5.3483 5.6023 6.9271 5.2700 6.0512 6.9994 5.4473 6.5406 7.7502 5.0339 5.7644 6.4775

MASE 0.9799 1.0828 1.2651 0.9808 1.1508 1.2648 1.1156 1.2363 1.3936 0.9246 1.0954 1.1594

Table 8 Forecasting results of the other single forecasting models (I)

Data set Index Persistence LSSVM(RBF) CSA-LSSVM
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

A MAE (m/s) 0.5021 0.5484 0.6115 0.4559 0.5069 0.5390 0.4442 0.5014 0.5288

RMSE (m/s) 0.5587 0.5990 0.6509 0.4982 0.5426 0.5912 0.4813 0.5345 0.5747

MAPE (%) 13.3756 15.6816 17.7538 12.9821 15.6294 15.2724 12.7226 15.4633 15.0439

MASE 1.4010 1.5301 1.7062 1.2720 1.4142 1.5037 1.2392 1.3987 1.4754

B MAE (m/s) 0.6382 0.6568 0.7654 0.5882 0.6417 0.6965 0.5641 0.6282 0.6729

RMSE (m/s) 0.7045 0.7503 0.8416 0.6342 0.6840 0.7581 0.6019 0.6656 0.7273

MAPE (%) 9.5897 9.7667 10.8788 9.0856 10.2179 11.0682 8.7597 10.0788 10.8339

MASE 1.7806 1.8320 2.1351 1.6408 1.7901 1.9429 1.5734 1.7523 1.8771
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(c) 2-step forecasting results
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(e) 3-step forecasting results
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Fig. 9 Forecasting results of the other forecasting models for data set A (ori, Per, PMLM and HPMLM stand for original, Persistence, PSOGSA-
MKLSSVM and HPSOGSA-MKLSSVM, respectively. The same definitions are in Fig. 10 )
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Fig. 10 Forecasting results of the other forecasting models for data set B
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Table 9 Forecasting results of the other single forecasting models (II)

Data set Index PSOGSA-MKLSSVM HPSOGSA-MKLSSVM Proposal
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

A MAE (m/s) 0.4305 0.4757 0.5212 0.4184 0.4633 0.5024 0.1824 0.2276 0.2848

RMSE (m/s) 0.4728 0.5283 0.5522 0.4613 0.5044 0.5450 0.1901 0.2396 0.2995

MAPE (%) 12.4831 14.0740 15.9885 12.2406 13.7004 14.6695 5.7325 7.0393 8.4897

MASE 1.2009 1.3271 1.4541 1.1673 1.2927 1.4015 0.5091 0.6350 0.7944

B MAE (m/s) 0.5359 0.6015 0.6459 0.4917 0.5354 0.6083 0.3006 0.3541 0.3912

RMSE (m/s) 0.5936 0.6598 0.7101 0.5614 0.6334 0.6803 0.3226 0.3749 0.4210

MAPE (%) 7.5477 8.5755 9.2306 6.9381 6.7162 8.6064 4.8812 5.5381 6.2350

MASE 1.4948 1.6777 1.8016 1.3714 1.4935 1.6967 0.8386 0.9877 1.0912

A, respectively; and 0.0359 m/s, 0.0274 m/s and 0.0226 m/s
for data set B, respectively. Compared with the HPSOGSA-
MKLSSVM with EEMD, the RMSE errors of the proposed
model for wind speed data A in 1-step, 2-step and 3-step are
reduced by 0.0869 m/s, 0.0678 m/s and 0.0610 m/s, respec-
tively; and 0.0869 m/s, 0.0678 m/s and 0.061 m/s for wind
speed data B, respectively.

Remark Theunderlying reasons are thatCEEMDANmethod
effectively resolves the mode mixing problems existing
in decomposition method EMD and completely neutral-
izes the added white Gaussians noise composing of paired
positive and negative signals that added to the original sam-
ples. HPSOGSA-MKLSSVM with CEEMDAN also has
better forecasting results than HPSOGSA-MKLSSVM with
WD and VMD in terms of the statistical indices. In terms
of the statistical indices listed in the tables, HPSOGSA-
MKLSSVM with TSD also outperforms that with VMD,
EMD or WT. Thus, TSD is more effective wind speed pre-
processing method.

4.4.3 Verification of the effectiveness of multi-kernel
function

The main aims of this section are to illustrate the fore-
casting performance of TSD-HPSOGSA-LSSVM based on
multi-kernel function over that based on RBF, Poly, linear or
RBF&Poly kernel function. The forecasting results of TSD-
HPSOGSA-LSSVM based on different kernel functions are
shown in Table 7. As given in Table 7, the LSSVM with
weighted RBF&Poly kernel functions performs best in terms
of the fitness values RMSE among that with linear, RBF and
Poly kernel functions, because RBF&Poly kernel function
takes advantages of the local exploitation capacity of RBF
function and the global exploration ability of Poly function
by optimal weighted coefficients. Overall, the LSSVM with
the linear kernel function performs the worst in that there

are a lot of nonlinear information hiding in the wind speed
data that the linear kernel function cannot catch. As given
by the statistical error indices in Tables 5 and 7, MKLSSVM
integrating Poly, RBF and line kernel functions by optimal
weighted coefficients has better forecasting accuracy than
LSSVM based on the combination of RBF and Poly kernel
functions by optimal weighted coefficients, the reasons of
which are that there exist some linear information within the
wind speed data.

4.4.4 Comparisons of TSD-HPSOGSA-MKLSSVMwith
Persistence and the other LSSVM-based forecasting
models

In this section, Persistence, LSSVM, PSOGSA-MKLSSVM,
HPSOGSA-MKLSSVM are constructed to assess the fore-
casting performance of TSD-HPSOGSA-MKLSSVM using
the four statistical indexes and the forecasting results are
listed in Tables 8 and 9. The RBF function is adopted as ker-
nel function in LSSVM and its parameters σ and γ are set
according to Ref. Yuan et al. (2015) and the parameters in
couple simulated annealing (CSA)-LSSVMare set according
to Ref. Rostami et al. (2019).

The well-known Persistence, a simple approach for time
series prediction, is generally utilized as a benchmark to com-
pare with a new proposed forecastingmodels (Hu et al. 2015;
Wang et al. 2017; Zheng et al. 2017). Persistence employs the
current values at time t as the forecasting values at the future
time t+k, namely ût+k = ut where k denotes the forecasting
interval. In this study, the forecasting quality of the proposed
hybrid model is also compared with the Persistence method.
Based on the forecasting error indices listed in Tables 5 and 8,
it can be obtained that the RMSE errors differences between
the proposed hybrid model and Persistence are 0.3686 m/s,
0.3593 m/s and 0.3514 m/s in 1-step, 2-step and 3-step for
data set A, respectively; and 0.3819 m/s, 0.3753 m/s and
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(a) 1-step forecasting results forA

1297 1350 1400 1440
0

5

10

15

Time (10min)

w
in

d 
sp

ee
d 

(m
/s

)

 

 

Ori
EHDKLM

1297 1350 1400 1440
0

5

10

15

Time (10min)

w
in

d 
sp

ee
d 

(m
/s

)

 

 

Ori
WHELM

1297 1350 1400 1440
0

5

10

15

Time (10min)

w
in

d 
sp

ee
d 

(m
/s

)

 

 

Ori
EGBP

1297 1350 1400 1440
0

5

10

15

Time (10min)

w
in

d 
sp

ee
d 

(m
/s

)

 

 

Ori
WGSVM

(b) 1-step forecasting results forB
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(c) 2-step forecasting results for A
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(d) 2-step forecasting results for B
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(e) 3-step forecasting results for A
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(f) 3-step forecasting results for B

Fig. 11 Forecasting results of the recently developed forecasting models (EDKLM, WHELM, EGBP and WGSVM stand for EEMD-HGSA-
DKLSSVM, WPD-HPSOGSA-ELM, EEMD-GA-BP and WD-GA-SVM, respectively)
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Table 10 Forecasting results of the other hybrid forecasting models

Data set Index EEMD-HGSA-LSSVM WPD-HPSOGSA-ELM EEMD-GA-BP WT-GA-SVM
1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step 1-step 2-step 3-step

A MAE (m/s) 0.2517 0.3010 0.3645 0.2423 0.3144 0.3707 0.2707 0.3374 0.3974 0.2995 0.3548 0.3872

RMSE (m/s) 0.2745 0.3364 0.3906 0.2776 0.3401 0.4021 0.2931 0.3572 0.4181 0.3201 0.3860 0.4332

MAPE (%) 8.3976 9.1049 10.8903 6.3288 8.9250 10.3515 8.8057 10.6921 12.4065 9.2944 10.3405 9.8701

MASE 0.7023 0.8397 1.0170 0.6761 0.8771 1.0342 0.7552 0.9413 1.1087 0.8356 0.9899 1.0802

B MAE (m/s) 0.3960 0.3683 0.3886 0.4171 0.4266 0.4124 0.4341 0.4755 0.4770 0.4616 0.4889 0.5166

RMSE (m/s) 0.4197 0.4011 0.4386 0.4672 0.4719 0.4537 0.4806 0.5156 0.5183 0.4956 0.5332 0.5635

MAPE (%) 6.2716 5.4779 5.8256 5.9267 6.4246 6.0938 6.4926 7.3297 6.6910 6.7825 7.0398 7.5548

MASE 1.1048 1.0274 1.0842 1.1635 1.1901 1.1504 1.2112 1.3264 1.3306 1.2875 1.3640 1.4410

0.4206 m/s for data set B, respectively. From the above
error indices in the tables, the proposed TSD-HPSOGSA-
MKLSSVM model obtains the largest improvement over
Persistence.

As given in Tables 5 and 8, the single individual model
LSSVM without input data preprocessing and parameter
optimization performs much worse than that with parameter
optimization and feature selection. Compared with LSSVM,
the RMSE errors of PSOGSA-MKLSSVM for data set A
in 1-step, 2-step and 3-step predictions are cut by 0.0254
m/s, 0.0143 m/s and 0.039 m/s, respectively. Compared
with PSOGSA-MKLSSVM model, the RMSE errors of
HPSOGSA-MKLSSVM for data set A in 1-step, 2-step and
3-step predictions are cut by 0.0115 m/s, 0.0239 m/s and
0.0072 m/s, respectively; and 0.0322 m/s, 0.0263 m/s and
0.0298 m/s for wind speed data B, respectively (Fig. 9).

Remark The reasons of these results are (1) TSD decom-
poses the nonstationary and nonlinear wind speed time series
into a few relatively stable components that can lower the
regression difficulty of LSSVMs. (2) BPSOGSA algorithm
identifies and discards the noise components that can relieve
the negative effect of input candidates on the forecasting
results. (3) LSSVM has good capacity in addressing small
sample and nonlinear problems (Hu et al. 2015); in addi-
tion, the kernel function in LSSVM takes advantages of
RBF, Poly and linear functions and the parameter combina-
tion is optimized by PSOGSA algorithm. These combination
of different kernel functions by optimal parameters can
enhance the forecasting results. Tables 5, 6 and 8 show
that HPSOGSA-MKLSSVM without signal decomposition
method performs much worse than that with signal decom-
position method regardless of WT, EMD, EEMD, VMD or
TSD when applied in wind speed forecasting. These signal
decomposition methods break the wind speed data into the
relatively stable subseries that contribute to higher forecast-
ing accuracy; thus, the proposed compound structure taking

advantages of various approaches is an effective wind speed
forecasting model.

4.4.5 Comparing TSD-HPSOGSA-MKLSSVMwith the other
recently developed forecasting models

In order to further assess the forecasting performance of
the proposed TSD-HPSOGSA-MKLSSVM, the recently
developed forecasting models, including EEMD-HGSA-
DKLSSVM (Sun et al. 2018b),WPD-HPSOGSA-ELM (Sun
et al. 2018a), EEMD-GA-BP (Wang et al. 2016) and WD-
GA-SVM (Liu et al. 2014), are constructed as comparative
reference and these referenced forecastingmodels are simply
described as follows.

(i) EEMD-HGSA-DKLSSVM: The original empirical wind
speed data are decomposed by EEMD, HGSA make
feature selection and parameter optimization, and all
the decomposed subseries are used to forecast by well-
trained DKLSSVM.

(ii) WPD-HPSOGSA-ELM: The original empirical wind
speed data are decomposed by WPD, HPSOGSA make
feature selection and parameter optimization, and all
the decomposed subseries are used to forecast by well-
trained ELM.

(iii) EEMD-GA-BP: The original empirical wind speed data
are decomposed by EEMD, and all the decomposed sub-
series are used to forecast by BPNN optimized by GA.

(iv) WT-GA-SVM: The original empirical wind speed data
are decomposed by WT, and all the decomposed sub-
series are used to forecast by SVM optimized by GA.

All the parameters of each referenced forecasting model
are set according to the corresponding paper. These four
referenced forecasting models make multi-step wind speed
forecasting using the same wind speed data displayed in
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Fig. 4 and the forecasting results are shown in Table
10.

As given in Tables 5 and 10, it is obviously obtained
that: Compared with EEMD-HGSA-DKLSSVM, WPD-
HPSOGSA-ELM, EEMD-GA-BP and WD-GA-SVM for
data set A in 1-step, the RMSE values of the proposed
model are cut by 0.0844 m/s, 0.0875 m/s, 0.103 m/s and
0.13 m/s, respectively; in the 2-step forecasting, the RMSE
values of the proposed model are cut by 0.0967 m/s,
0.1005 m/s, 0.1175 m/s and 0.1463 m/s, respectively; in
the 3-step forecasting, the RMSE values of the proposed
model are cut by 0.0911 m/s, 0.1026 m/s, 0.1185 m/s and
0.1337 m/s, respectively. For data set B, it can be also
found that the proposed model outperforms EEMD-HGSA-
DKLSSVM, WPD-HPSOGSA-ELM, EEMD-GA-BP and
WD-GA-SVM. These forecasting results further illustrate
the effectiveness of TSD-HPSOGSA-MKLSSVM in short-
term wind speed forecasting (Fig. 11).

5 Conclusion

In this study, a new compound HPSOGSA-MKLSSVM
wind speed forecasting model combined with decomposi-
tion method TSD is proposed. To illustrate the effectiveness
of TSD-HPSOGSA-MKLSSVM, two sets of 10-min wind
speed time series selected randomly from one wind farm
in China are employed to test the proposed model and
other forecasting approaches. Based on the aforementioned
comparisons and analysis with other single and hybrid
forecastingmodels, some conclusions can be obtained as fol-
lows.

i: Considering that TSD signal processing method can
decompose thoroughly wind speed intomore stable com-
ponents, we adopt TSD method combining CEEMDAN
with WT to break the wind speed sample into differ-
ent components. The testing results illustrate that the
decomposed performance of TSD outperforms that of
both CEEMDAN and WT. HPSOGSA-MKLSVM with
TSD method also has better forecasting results than that
with EEMD, EMD, VMD or WT. Thus, TSD is very
suitable to be used in the hybrid proposed model.

ii: Because wind speed time series always present large
irregularity, not only single individual LSSVM with-
out signal processing technique but also MKLSSVM
with parameter optimization and feature selection cannot
make wind speed forecasting with high accuracy. Fea-
ture selection and parameter optimization contribute to
enhance the forecasting performance of the proposal.

iii: MKLSSVM takes advantages of RBF kernel function
with goodcapacity in local exploitation, Polykernel func-
tionwith excellent ability in global exploration and linear

kernel functions by optimal coefficient. Thus, TSD-
HPSOGSA-LSSVM based on multiple kernel function
has obtained higher forecasting accuracy than that based
on RBF, Poly, linear or double kernel function.

iv: Compared with the recently developed EEMD-HGSA-
DKLSSVM,WPD-HPSOGSA-ELM,EEMD-GA-BPand
WD-GA-SVM forecasting models, the proposed hybrid
model has better forecasting performance.

What is more, the proposed model makes great improve-
ment compared with the base model Persistence. Thus,
the proposed TSD-HPSOGSA-MKLSSVM is an effective
method for wind speed forecasting. For further studies, it
can be applied in energy demand prediction and other simi-
lar domain.
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Appendix

All abbreviations are collected, and a brief explanation is
given in Table 11.

123



A new compound wind speed forecasting structure combining multi-kernel LSSVM with two-stage… 1499

Table 11 Abbreviations

BBSA Binary backtracking search algorithm MAE Mean absolute error

BPNN Back-propagation neural network MAPE Mean absolute percent error

CEEMDAN Complementary ensemble empirical
mode decomposition with adaptive
noise

MASE Normalized mean absolute scaled error

CWT Continuous wavelet transforms MLP Multilayer perceptron

DB4 Daubechies of order 4 MKLSSVM Multi-kernel least square support vec-
tor machine

DWT Discrete wavelet transforms PACF Partial autocorrelation function

EMD Empirical mode decomposition Poly Polynomial

EEMD Ensemble empirical mode decompo-
sition

PSO Particle swarm optimization

ELM Extreme learning machine PSOGSA Particle swarm optimization gravita-
tional search algorithm

ELMNN Elman neutral network RBF Radial basis function

GSA Gravitational search algorithm RMSE Root mean square error

HGSA Hybrid gravitational search algorithm SVR Support vector regression

HPF High-pass filter TSD Two-stage decomposition

HPSOGSA Hybrid particle swarm optimization
gravitational search algorithm

WNN Wavelet neural network

HHT Hilbert–Huang transform WPD Wavelet package decomposition

IMF Intrinsic mode functions WT Wavelet transform

LPF Low-pass filter VMD Variational mode decomposition

LSSVM Least square support vector machine
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