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Abstract
This paper describes an algorithm for calculating approximatelymixedNash equilibria (NE) in bimatrix games. The algorithm
fuzzifies the strategies with normalized possibility distributions. The fuzzification takes advantage of the piecewise linearity of
possibility distributions and transforms the NE problem of bimatrix games into a reduced form. The algorithm is guaranteed to
find approximate NE in bimatrix games and ensures that the approximate NE is the saddle point of expected payoff functions
in the reduced form. The algorithm provides a method of determining how close an approximate NE is to a solution during
computation. Numerical results show that the new algorithm is approximately seven-time faster than the Lemke–Howson
(LH) algorithm when the game size is 96, and the value of approximation deviation can be as small as 0.1.

Keywords Nash equilibria (NE) · Approximate NE · Fuzzification · Triangular fuzzy number · Possibility distribution

1 Introduction

Calculating Nash equilibria (NE) in two-player games is
polynomial parity argument directed version (PPAD) com-
plete (Chen et al. 2009; Daskalakis et al. 2009). Chen et
al. conjectured that there is a ©(nk+ε−c

)-time algorithm for
finding an ε-NE in a two-player game for some constants
c and k, where n is the number of strategies (Chen et al.
2009). Ortiz and Irfan proposed a fully polynomial time
approximation scheme algorithm that is able to calculate an
ε-NE in graphical multi-hypermatrix games (Ortiz and Irfan
2017). They used a discretization scheme to discretize the
probability space and the payoff space, and formed a grad-
ually increased probability distribution for each player. The
discretization scheme depends on the number of strategies.
Rubinstein proved that computing ε−NE in 2 player n × n
games requires nlog

1−©(1)n time (Rubinstein 2016). Fearn-
ley et al. (2012) indicated that a well-supported ε-NE in
bimatrix games can be computed within less than two-third
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approximate ratio. Kontogiannis and Spirakis used linear
programming techniques and proved that finding ε-NE in
win-lose bimatrix games can achieve ε = 0.5, and finding ε-
NE in arbitrary [0, 1]-bimatrix games can achieve ε = 0.658
approximate ratio (Kontogiannis and Spirakis 2007). Lipton
et al. used k-uniformed mixed strategies to approximate the
randomized strategies in [0,1] and they indicated that the
approximate ratio must be bigger than (12ln(n)/k)1/2 where
n was the number of strategies and k ≤ n was the number
of nonzero values (Lipton et al. 2003). Bosse et al. proved
that calculating an approximate NE in a bimatrix game can
achieve ε = 0.36392 approximate ratio (Bosse et al. 2010).

A well-known efficient algorithm for solving bimatrix
games is the Lemke–Howson algorithm (LH). However,
there is no way of determining how close one is to a solution
during computation due to the lack of an objective func-
tion in the LH algorithm (McKelvey and McLennan 1996).
They also used sets of 100 random games to measure aver-
age computational time for the LH algorithm (McKelvey and
McLennan 1996). The classical LH algorithmfinds one exact
NE in exponential time (Rubinstein 2016).

Fuzzy sets theory has been applied to matrix game theory
(Bector and Chandra 2005; Campos et al. 1992; Nishizaki
and Sakawa 2001; Vijay et al. 2005; Kacher and Larbanib
2006; Larbani 2009; Li and Zhang 2011;Gao 2012; Li 2016).
The fuzzy sets approach to game theory is based on the
fact that players are not able to exactly estimate payoffs in
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noncooperative games due to inadequate information on the
environment (Larbani 2009; Li 2016). The imprecision and
uncertainty are appropriately modeled with fuzzy sets (Li
and Zhang 2011; Li 2016; Nishizaki and Sakawa 2001). Note
that the gains and losses for the players should be identical
for a zero-sum matrix game. However, the aforementioned
approach cannot always guarantee that the gain-floor and
loss-ceiling for the players in zero-sum matrix games are
identical (Li 2016).

This paper describes a novel algorithm that achieves the
following: (1) the transformation of the NE problem in
bimatrix games into a reduced form using fuzzification; (2)
the solutions of the algorithm are the saddle points of the
expected payoff functions; (3) the performance of the new
algorithm is superior to the LH algorithm; (4) the determi-
nation of the approximation deviation during computation.
This paper is organized as follows: Sect. 2 gives concepts
that are related to game theory and fuzzy sets theory. Sec-
tion 3 describes the algorithm in detail. Section 4 analyzes
the algorithm and determines the approximation deviations.
Section 5 gives an example to demonstrate the procedure of
the algorithm and numerical results. Section 6 gives a con-
clusion.

2 Preliminaries

Definition 1 (Fuzzy number) A fuzzy number is a fuzzy set
that is defined in domain R. The membership function λ(t)
of a fuzzy number is a continuous function and its range is
[0, 1] such that 0 ≤ λ(t) ≤ 1 (Dijkman et al. 1983).

Definition 2 (Triangular fuzzy number (TFN)) A triangular
fuzzy number is a special case of fuzzy number, whosemem-
bership function forms a triangle. ATFN λ is usually denoted
with three values such that λ = (dl , dm, dr ), where dm is
called the mean value of the TFN λ, such that λ(dm) = 1, dl

and dr are the lower and upper limits of the TFN, such that
λ(dl) = λ(dr ) = 0 (Kaufmann and Gupta 1998).

Definition 3 (Fuzzification) Fuzzification is the process of
assigning the numerical inputs of a system to fuzzy sets with
some degree of membership function.

The concept of fuzzification is commonly used in fuzzy sets
theory and fuzzy control theory (Gao 1999; Zimmermann
2011).

Definition 4 (Possibility distribution) Suppose x ∈ [0, 1]n ⊆
Rn , where Rn is a n-dimensional Euclidean space. Each
xi ∈ x is mapped to a fuzzy number λi (i = 1, 2, . . . , n).
A possibility distribution associated with the variable x is
defined as λ = (λ1, λ2, . . . , λn), where the support of λi is
in [0, 1] such that suppλi ∈ [0, 1](i = 1, 2, . . . , n). When

∑n
j=1 λ j (t) > 0(t ∈ [0, 1]), we say that λ is a suitable pos-

sibility distribution.

As Zadeh described in his initial paper, the sum of a possibil-
ity distribution is not necessarily 1 (Zadeh 1978). However,
practical problems sometimes require the normalization of
the possibility distributions. Researchers studied the normal-
ization of possibility distributions (Dubois and Prade 2015;
Zimmermann 2011). The definition of normalized possibility
distribution is given as follows.

Definition 5 (The normalization of possibility distribution)
When fuzzy numbers λi (i = 1, 2, . . . , n) in the possibility
distribution λ are TFNs and λ is a suitable possibility distri-
bution, the normalization of a possibility distribution μ(t) is
defined as follows.

μ(t) =
(

λ1(t)
∑n

j=1 λ j (t)
,

λ2(t)
∑n

j=1 λ j (t)
, . . . ,

λn(t)
∑n

j=1 λ j (t)

)

,

t ∈ [0, 1]. (2.1)

where μi (t) = λi (t)∑n
j=1 λ j (t)

(i = 1, 2, . . . , n), t ∈ [0, 1].

3 The algorithm

3.1 The problem

Definition 6 (Bimatrix games) A bimatrix game is described
as follows.

G = (2, S, u), S = (S1, S2), u = (u1, u2), (3.1)

where S1 = (s11 , s
1
2 , . . . , s

1
k )(S2 = (s21 , s

2
2 , . . . , s

2
l )) is a set of

strategies for player 1 (2); ui is the expected payoff function
of player i(i = 1, 2) that is defined as follows.

{
u1(x, y) = xT Ay

u2(x, y) = xT By
(3.2)

where xT = (x1, x2, . . . , xk) and x ∈ �k(�k is a k-
dimensional standard simplex); yT = (y1, y2, . . . , yl) and
y ∈ �l ; A, B is a k × l matrix for player 1, player 2, respec-
tively.

Definition 7 (Nash equilibrium (NE)) The pair of strategies
(x0, y0) is called a NE, if and only if

{
u1(x, y0) ≤ u1(x0, y0), ∀x ∈ S1
u2(x0, y) ≤ u2(x0, y0), ∀y ∈ S2

. (3.3)

Definition 8 (ε-NE) (Lipton et al. 2003) For any ε > 0, a
pair of strategies (x∗, y∗) is an ε-NE for the bimatrix game
(3.2) if
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(i) u1(x, y∗) ≤ u1(x∗, y∗) + ε,∀x ∈ S1.
(ii) u2(x∗, y) ≤ u2(x∗, y∗) + ε,∀y ∈ S2.

Suppose t ∈ R and s ∈ R are two free independent variables.
If one can find two transformations such that,

x = μ(t) ∈ �k, t ∈ R, (3.4)

y = η(s) ∈ �l , s ∈ R. (3.5)

Then, according to the parameterizedmethodology (Downey
and Fellows 2013), (3.2) can be described as follows.

{
u1(μ(t), η(s)) = (μ(t))T Aη(s), (t ∈ R; s ∈ R),

u2(μ(t), η(s)) = (μ(t))T Bη(s), (t ∈ R; s ∈ R).
(3.6)

The key question is how we can construct the two transfor-
mations (3.4) and (3.5). This paper proposes a method to
construct these two transformations μ(t) and η(s) by using
the fuzzification of mixed strategies (x, y).

3.2 The fuzzification

The expected payoff function of player 1 is u1(x, y). u1(x, y)
has two variables such that x ∈ �k and y ∈ �l , where
�k(�l) is k(l)-dimensional standard simplex. The fuzzifica-
tion is to assign a fuzzy number to each xi . As a result, a set
of fuzzy numbers is assigned to variable x ∈ Rk .

Note that a x = (x1, x2, . . . , xk) ∈ Rk and x ∈ �k . That
is, xi ∈ [0, 1] can be fuzzified with a TFN λi (t) because of
λi (t) ∈ [0, 1]. Therefore, x ∈ Rk can be represented with a
set of TFNs.

However, the above fuzzification has a problem that λ ∈
�k is not guaranteed because x ∈ �k . In order to guaran-
tee that the set of TFNs is over the standard simplex and to
make the fuzzification reasonable, instead of assigning a set
of TFNs λ directly to x , the fuzzification in this paper assigns
the normalization of a possibility distribution to x such that,

x = μ(t) = λ(t)
∑k

j=1 λ j (t)
, (t ∈ D1 = [0, 1]). (3.7)

where λi = (dli , d
m
i , dri ) is a TFN, and λ(t) = (λ1(t), . . . ,

λk(t)) is a set of TFNs. When a set of TFNs λ(t) is given
in domain D1 = [0, 1] (D1 means for player 1), the mean
value dmi of TFN λi will distribute in domain D1 = [0, 1].
Without loss of generality, we suppose that

0 ≤ dm1 ≤ dm2 ≤ · · · ≤ dmk ≤ 1.

These mean values decompose the domain D1 = [0, 1] into
M intervals such that,

D1 =
M⋃

i=1

D1
i , (3.8)

where 1 ≤ M ≤ k and D1
1 = [dl1, dm1 ], D1

M =
[dmk−1, d

r
k ], D1

i = [dmi−1, d
m
i ](i = 2, . . . , M − 1). It is obvi-

ous that we have the following proposition. The proof of the
proposition can be found in Gao (2017).

Proposition 1 Suppose thatλi (t) is amembership function of
a TFN λi = (dli , d

m
i , dri ), then, λi (t) is a monotonic, contin-

uous, and linear function in domain D1
j ( j = 1, 2, . . . , M).

Based on proposition 1, λi (t) can be denoted as follows.

λi (t) = pi t + qi , pi ∈ R, qi ∈ R(i = 1, 2, . . . , k),

t ∈ D1
j ( j = 1, 2, . . . , M)

Equation (3.8) shows that domain D1 = [0, 1] is decom-
posed by the mean values dmi into M sub-domains, where
1 ≤ M ≤ k. The fuzzification can be denoted as follows.

x = μ(t), x ∈ �k, μ(t) ∈ �k, t ∈ D1
i (i = 1, 2, . . . , M).

(3.9)

where μ(t) is defined in Eq. (3.7).
Similarly, the variable y ∈ Rl can be fuzzified with

another normalization of a possibility distribution η(s) such
that,

y = η(s) = θ(s)
∑l

j=1 θ j (s)
, (s ∈ D2 = [0, 1]). (3.10)

where θ j = (glj , g
m
j , grj ) is a TFN, and η(s) = (η1(s), . . . ,

ηl(s)) is a set of TFNs. When a set of TFNs θ(s) is give in
domain D2 = [0, 1] (D2 means for player 2), the mean value
gmj of θ j (s) will distribute in domain D2 = [0, 1]. Without
loss of generality, we suppose that

0 ≤ gm1 ≤ gm2 ≤ · · · ≤ gml ≤ 1.

These mean values of TFNs θ j decompose the domain D2 =
[0, 1] (D2 means for player 2) into L intervals such that,

D2 =
L⋃

j=1

D2
j , (3.11)

where 1 ≤ L ≤ l and D2
1 = [gl1, gm1 ], D2

L = [gml , grl ], D2
j =

[gmj−1, g
m
j ]( j = 2, . . . , L − 1). Similarly, TFN θ j (s) can be

defined as follows.
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θ j (s) = e j s + h j , e j ∈ R, h j ∈ R( j = 1, 2, . . . , l),

s ∈ D2
i (i = 1, 2, . . . , L − 1).

Equation (3.11) shows that domain D2 = [0, 1] is decom-
posed by the mean values gmj into L sub-domains, where
1 ≤ L ≤ l. The fuzzification can be denoted as follows.

y = η(s), y ∈ �l , η(s) ∈ �l , s ∈ D2
j ( j = 1, 2, . . . , L).

(3.12)

where η(s) is defined in Eq. (3.10).
By substituting x, y in Eq. (3.2) with μ(t), η(s), respec-

tively, the expected payoff function u1(x, y)(u2(x, y)) in
(3.2) can be transformed as follows in each domain D1

i ×D2
j .

{
u1(μ(t), η(s)) = (μ(t))T Aη(s), t ∈ D1

i , s ∈ D2
j .

u2(μ(t), η(s)) = (μ(t))T Bη(s), t ∈ D1
i , s ∈ D2

j .

(3.13)

It is clear that Eqs. (3.6) and (3.13) are similar. The only
difference between the two formulas is that the domains are
different. The domain in (3.6) is R × R, and the domain in
(3.13) is D1

i × D2
j (i = 1, 2, . . . , M; j = 1, 2, . . . , L).

In this paper, we use a technique that adds the two payoff
functions u1(x, y) and u2(x, y) together to constitute a single
payoff function u(x, y) such that,

u(μ(t), η(s)) = u1(μ(t), η(s)) + u2(μ(t), η(s))

= (μ(t))T (A + B)η(s), t ∈ D1
i , s ∈ D2

j .

(3.14)

NE points are critical points that satisfy the following equa-
tions in domain D1

i ×D2
j (i = 1, 2, . . . , M; j = 1, 2, . . . , L).

{
∂u(μ(t),η(s))

∂t = ∂u1(μ(t),η(s))
∂t + ∂u2(μ(t),η(s))

∂t = 0, t ∈ D1
i , s ∈ D2

j
∂u(μ(t),η(s))

∂s = ∂u1(μ(t),η(s))
∂s + ∂u2(μ(t),η(s))

∂s = 0, t ∈ D1
i , s ∈ D2

j .

(3.15)

Based on Eqs. (3.7) and (3.10), one can simplify Eq. (3.15)
as follows.
{

∂u(μ(t),η(s))
∂t = K1(t, s)V T

1 (A + B)θ(s) = 0, t ∈ D1
i , s ∈ D2

j
∂u(μ(t),η(s))

∂s = K2(t, s)V T
2 (AT + BT )λ(t) = 0, t ∈ D1

i , s ∈ D2
j

(3.16)

where Ki (t, s)(i = 1, 2) and Vi (i = 1, 2) are denoted as
follows.

K1(t, s) = 1

(
∑k

i=1 λi (t))2
∑l

j=1 θ j (s)
, t ∈ D1

i ; s ∈ D2
j

(3.17)

K2(t, s) = 1

(
∑l

i=1 θi (s))2
∑k

j=1 λ j (t)
, t ∈ D1

i ; s ∈ D2
j

(3.18)

V T
1 =

⎛

⎝p1

k∑

j=1

q j − q1

k∑

j=1

p j , . . . , pk

k∑

j=1

q j

− qk

k∑

j=1

p j

⎞

⎠ (3.19)

V T
2 =

⎛

⎝e1

l∑

j=1

h j − h1

l∑

j=1

e j , . . . , el

l∑

j=1

h j

− hl

l∑

j=1

e j

⎞

⎠ . (3.20)

Based on the definition of membership functions of TFNs,
when ∀t ∈ R, λi (t) ≥ 0 and ∀s ∈ R, θ j (s) ≥ 0. If the
fuzzifications for variables x and y are reasonable, then the
sum of all membership functions of TFNs will be larger than
zero such that

∑k
i=1 λi (t) > 0 and

∑l
j=1 θ j (s) > 0. If

Ki (t, s) > 0(i = 1, 2), then the right hand of Eq. (3.16) can
be simplified as follows.

{
V T
1 (A + B)θ(s) = 0, t ∈ D1

i , s ∈ D2
j ,

V T
2 (AT + BT )λ(t) = 0, t ∈ D1

i , s ∈ D2
j .

(3.21)

When possibility distributions λ(t) = (λ1(t), . . . , λk(t)) ∈
Rk and θ(s) = (θ1(s), . . . , θl(s)) ∈ Rl are given, where
λi (t) = pi t +qi (i = 1, 2, . . . , k) and θ j (s) = e j s+h j ( j =
1, 2, . . . l), the coefficients pi , qi (i = 1, 2, . . . , k) and e j ,
h j ( j = 1, 2, . . . , l) are known. The elements of Vi (i = 1, 2)
are constant. The elements of λ(t) are linear functions of t .
The elements of θ(s) are linear functions of s. Therefore, the
solution of Eq. (3.21) can be explicitly denoted as follows.

t∗ = V T
2 (AT + BT )Q

V T
2 (AT + BT )P

, s∗ = V T
1 (A + B)H

V T
1 (A + B)E

. (3.22)

where E , H , P , and Q are as follows.

ET = (e1, e2, . . . , el), HT = (−h1,−h2, . . . ,−hl),
(3.23)

PT = (p1, p2, . . . , pk), QT = (−q1,−q2, . . . ,−qk).
(3.24)

The sub-domain D1
i (D

2
j ) is divided by the mean value

dmi (gmj ) of TFN λi (η j ). The necessary and sufficient condi-
tions of Eq. (3.22) being a solution of Eq. (3.21) is as follows.

{
t∗ ∈ D1

i , such that dmi−1 ≤ t∗ ≤ dmi ,

s∗ ∈ D2
j , such that gmj−1 ≤ s∗ ≤ gmj .

(3.25)

That is, (t∗, s∗) ∈ D1
i × D2

j (i = 1, 2, . . . , M; j =
1, 2, . . . L). If either t∗ or s∗ does not satisfy the inequality
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An algorithm for finding approximate Nash equilibria in bimatrix games 1185

(3.25), then, Eq. (3.21) does not have a solution in D1
i × D2

j
and the algorithm will try the next sub-domain (Fig. 2). If
(t∗, s∗) satisfies the inequalities in (3.25), then (t∗, s∗) is a
solution of Eq. (3.16).

The diagram of the algorithm is depicted in Fig. 1. First,
the mixed strategies (x, y) are fuzzified with the normal-
ized possibility distributions defined in Eqs. (3.7) and (3.10).
Secondly, the algorithm calculates the potential critical point
(t∗, s∗) with Eq. (3.22). Finally, the algorithm verifies if
(t∗, s∗) satisfies the inequality (3.25) to determine if (t∗, s∗)
is a solution of Eq. (3.16). In case if there is no solution is
found in all the sub-domains D1

i ×D2
j (i = 1, 2, . . . , M; j =

1, 2, . . . , L), the algorithm is able to adjust the fuzzification
and try the procedure again until an approximateNE is found.

The details of the algorithm are described in Algorithm 1.

Algorithm 1
Step 1. Fuzzify mixed strategies x and y with the normalized
possibility distributions μ(t) ∈ �k and η(s) ∈ �l . Decide the
numbers M , L , and domain D1

i (i = 1, 2, . . . , M) and domain
D2

j ( j = 1, 2, . . . , L).
while M > 0 do

while L > 0 do
Step 2. Verify K1(t, s) > 0 and K2(t, s) > 0 based on (3.17)
and (3.18). If either K1(t, s) ≤ 0 or K2(t, s) ≤ 0, then go to
step 1.
Step 3. Calculate V1 in D1

i with equation (3.19), V2 in D2
j with

equation (3.20), and λ(t) in D1
i and θ(s) in D2

j .
Step 4. Calculate vectors E and H with equation (3.23), and
vectors P and Q with equation (3.24).
Step 5. Based on equation (3.22), calculate solution (t∗, s∗).
If the inequality (3.25) is not satisfied, then go to Step 2.
Step 6. Verify inequalities (4.3) and (4.4) are satisfied. If not,
go to step 2.
Step 7. Calculate (x∗, y∗) with equations (3.7) and (3.10).
Step 8. Calculate the approximation parameter εi (i = 1, 2) in
D1
i × D2

j with equation (4.10) and (4.11).
end while

end while
Step 9. Calculate ui (x∗, y∗)(i = 1, 2).
return (x∗, y∗) and ui (x∗, y∗)(i = 1, 2)

3.3 The analysis of the fuzzification

From a conceptual point of view, the proposed algorithm
might be considered as a type of divide-and-conquer algo-
rithms. However, it differs from the divide-and-conquer
algorithms because it requires neither a base case for sub-
problems nor recursive operations.

The algorithm decomposes domain D1 × D2 = [0, 1] ×
[0, 1] into M×L sub-domains, and then finds a critical point
in each sub-domain D1

i × D2
j (Fig. 2). The purpose of the

decomposition is to take advantage of the piecewise linearity
of possibility distributions. The algorithm calculates (t∗, s∗)
withEq. (3.22) in each sub-domain.Then, it verifies if (t∗, s∗)
satisfies the inequalities in (3.25) and the inequalities (4.3)

and (4.4) in Sect. 4. If the verification passes, then the algo-
rithm finds a saddle point of the expected payoff functions in
the reduced forms in sub-domain D1

i ×D2
j (i = 1, . . . , k; j =

1, . . . , l).
The advantages of the fuzzification are the simplification

of the NE problem of bimatrix games and the encapsulation
of the standard simplex of strategies x and y in possibility
distributions.

4 The analysis of the algorithm

First, we prove that if (t∗, s∗) is a solution of Eq. (3.16), then
(μ(t∗), η(s∗)) can be a saddle point of function u(μ(t), η(s))
in domain D1

i × D2
j . Secondly, we prove that a saddle point

of function u(μ(t), η(s)) can also be a saddle point of func-
tion u1(μ(t), η(s)) and function u2(μ(t), η(s)). Finally, we
discuss how to determine the approximation parameter ε.

Theorem 1 If (t∗, s∗) is a solution of Eq. (3.16) in domain

D1
i × D2

j and
∂2u
∂t∂s |t=t∗

s=s∗

= 0, then (μ(t∗), η(s∗)) is a saddle

point of function u(μ(t), η(s)) that is denoted in Eq. (3.14).

Proof Since (t∗, s∗) is a solution of Eq. (3.16), we have the
following.

∂u(μ(t), η(s))

∂t
|t=t∗
s=s∗

= 0 and
∂u(μ(t), η(s))

∂s
|t=t∗
s=s∗

= 0.

The Taylor expansion of u(μ(t), η(s)) at (t∗, s∗) in domain
D1
i × D2

j is as follows.

u(μ(t), η(s)) = u(μ(t∗), η(s∗)) + ∂u

∂t
|t=t∗
s=s∗

(t − t∗)

+ ∂u

∂s
|t=t∗
s=s∗

(s − s∗)

+ 1

2

∂2u

∂t2
|t=t∗
s=s∗

(t − t∗)2 + 1

2

∂2u

∂s2
|t=t∗
s=s∗

(s − s∗)2

+ ∂2u

∂t∂s
|t=t∗
s=s∗

(t − t∗)(s − s∗)

+ H .O.T ., t ∈ D1
i , s ∈ D2

j .

= u(μ(t∗), η(s∗)) + 1

2

∂2u

∂t2
|t=t∗
s=s∗

(t − t∗)2

+ 1

2

∂2u

∂s2
|t=t∗
s=s∗

(s − s∗)2

+ ∂2u

∂t∂s
|t=t∗
s=s∗

(t − t∗)(s − s∗), t ∈ D1
i , s ∈ D2

j

= u(μ(t∗), η(s∗))

+ 1

2
(t − t∗, s − s∗)

(
∂2u
∂t2

∂2u
∂t∂s

∂2u
∂t∂s

∂2u
∂s2

)

|t=t∗
s=s∗

(
t − t∗
s − s∗

)

,

t ∈ D1
i , s ∈ D2

j . (4.1)
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Fig. 1 The diagram of the
algorithm

Fig. 2 An example of sub-domainD1
i × D2

j

If we calculate the second-order partial derivative of the first
equation in (3.16), we have the following.

∂2u(μ(t), η(s))

∂t2
|t=t∗
s=s∗

= ∂K1(t, s)

∂t
|t=t∗
s=s∗

V T
1 (A + B)θ(s∗) = 0. (4.2)

The determinant of the Hessian matrix is as follows.

DetH = ∂2u

∂t2
|t=t∗
s=s∗

∂2u

∂s2
|t=t∗
s=s∗

−
(

∂2u

∂t∂s
|t=t∗
s=s∗

)2

= −
(

∂2u

∂t∂s
|t=t∗
s=s∗

)2

.

If ∂2u(μ(t),η(s))
∂t∂s |t=t∗

s=s∗

= 0, then DetH < 0. That is,

(μ(t∗), η(s∗)) is a saddle point of u(μ(t), η(s)). ��
According to Theorem 1, if (t∗, s∗) is a solution of

Eq. (3.16) in D1
i × D2

j and the mixed second-order partial

derivative at (t∗, s∗) is not zero, then (μ(t∗), θ(s∗)) is a sad-
dle point of function u(μ(t), η(s)). It is interesting to know
under what conditions the solution (t∗, s∗) will be a critical
point of the payoff function u1(μ(t), η(s)) and the payoff
function u2(μ(t), η(s)). We have the following proposition.

Proposition 2 If (t∗, s∗) is a solution of Eq. (3.16) in domain
D1
i × D2

j , and the following inequalities are satisfied,

∂u1(μ(t), η(s))

∂t
|t=t∗
s=s∗

∂u2(μ(t), η(s))

∂t
|t=t∗
s=s∗

≥ 0 (4.3)

∂u1(μ(t), η(s))

∂s
|t=t∗
s=s∗

∂u2(μ(t), η(s))

∂s
|t=t∗
s=s∗

≥ 0. (4.4)

Then, (t∗, s∗) is a critical point of u1(μ(t), η(s)) and
u2(μ(t), η(s)) such that

⎧
⎨

⎩

∂u1(μ(t),η(s))
∂t |t=t∗

s=s∗
= 0

∂u1(μ(t),η(s))
∂s |t=t∗

s=s∗
= 0.

⎧
⎨

⎩

∂u2(μ(t),η(s))
∂t |t=t∗

s=s∗
= 0

∂u2(μ(t),η(s))
∂s |t=t∗

s=s∗
= 0.

Proof Since (t∗, s∗) is a solution of Eq. (3.16) in domain
D1
i × D2

j , based on Eq. (3.15), we have the following.

⎧
⎪⎪⎨

⎪⎪⎩

(
∂u
∂t |t=t∗

s=s∗

)2

=
(

∂u1
∂t |t=t∗

s=s∗

)2

+
(

∂u2
∂t |t=t∗

s=s∗

)2

+ 2 ∂u1
∂t |t=t∗

s=s∗
∂u2
∂t |t=t∗

s=s∗
= 0.

(
∂u
∂s |t=t∗

s=s∗

)2

=
(

∂u1
∂s |t=t∗

s=s∗

)2

+
(

∂u2
∂s |t=t∗

s=s∗

)2

+ 2 ∂u1
∂s |t=t∗

s=s∗
∂u2
∂s |t=t∗

s=s∗
= 0.

(4.5)

According to inequalities (4.3) and (4.4), if and only if the
following is satisfied,

⎧
⎨

⎩

∂u1(μ(t),η(s))
∂t |t=t∗

s=s∗
= 0

∂u1(μ(t),η(s))
∂s |t=t∗

s=s∗
= 0,

⎧
⎨

⎩

∂u2(μ(t),η(s))
∂t |t=t∗

s=s∗
= 0

∂u2(μ(t),η(s))
∂s |t=t∗

s=s∗
= 0,

,
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An algorithm for finding approximate Nash equilibria in bimatrix games 1187

then Eq. (4.5) is satisfied. That is, the solution (t∗, s∗)
is a critical point of function u1(μ(t), η(s)) and function
u2(μ(t), η(s)). ��

The following theorem proves that (μ(t∗), η(s∗)) is a sad-
dle point of functions u1(μ(t), η(s)) and u2(μ(t), η(s)) if
(μ(t∗), η(s∗)) is a saddle point of function u(μ(t), η(s)) and
the inequalities (4.3) and (4.4) are satisfied.

Theorem 2 Suppose that (t∗, s∗) is a solution of Eq. (3.16) in
domain D1

i ×D2
j and inequalities (4.3) and (4.4) are satisfied.

If ∂2ui
∂t∂s |t=t∗

s=s∗

= 0(i = 1, 2), then, (μ(t∗), η(s∗)) is a saddle

point of function u1(μ(t), η(s)) and u2(μ(t), η(s))

Proof First, we prove that (μ(t∗), η(s∗)) is a saddle point
of u1(μ(t), η(s)). The Taylor expansion of u1(μ(t), η(s)) at
(t∗, s∗) in domain D1

i × D2
j is as follows.

u1(μ(t), η(s)) = u1(μ(t∗), η(s∗))

+∂u1
∂t

|t=t∗
s=s∗

(t − t∗) + ∂u1
∂s

|t=t∗
s=s∗

(s − s∗)

+1

2

∂2u1
∂t2

|t=t∗
s=s∗

(t − t∗)2

+1

2

∂2u1
∂s2

|t=t∗
s=s∗

(s − s∗)2

+∂2u1
∂t∂s

|t=t∗
s=s∗

(t − t∗)(s − s∗)

+H .O.T ., t ∈ D1
i , s ∈ D2

j . (4.6)

Since inequalities (4.3) and (4.4) are satisfied and according
to Proposition 2, (t∗, s∗) is a critical point of u1(μ(t), η(s))
such that,

⎧
⎨

⎩

∂u1(μ(t),η(s))
∂t |t=t∗

s=s∗
= K1(t, s)V T

1 Aθ(s) |t=t∗
s=s∗

= 0

∂u1(μ(t),η(s))
∂s |t=t∗

s=s∗
= K2(t, s)V T

2 Aλ(t) |t=t∗
s=s∗

= 0.
(4.7)

If we apply Eqs. (4.7)–(4.6), then Eq. (4.6) is simplified as
follows.

u1(μ(t), η(s)) = u1(μ(t∗), η(s∗)) + 1

2

∂2u1
∂t2

|t=t∗
s=s∗

(t − t∗)2

+ 1

2

∂2u1
∂s2

|t=t∗
s=s∗

(s − s∗)2 + ∂2u1
∂t∂s

|t=t∗
s=s∗

(t − t∗)(s − s∗),

= u1(μ(t∗), η(s∗))

+ 1

2
(t − t∗, s − s∗)

⎛

⎝
∂2u1
∂t2

∂2u1
∂t∂s

∂2u1
∂t∂s

∂2u1
∂s2

⎞

⎠ |t=t∗
s=s∗

(
t − t∗
s − s∗

)

,

t ∈ D1
i , s ∈ D2

j . (4.8)

Ifwecalculate the second-order partial derivative ofEq. (4.7),
we get the following.

⎧
⎪⎨

⎪⎩

∂2u1(μ(t),η(s))
∂t2

|t=t∗
s=s∗

= ∂K1(t,s)
∂t V T

1 Aθ(s) |t=t∗
s=s∗

= 0

∂2u1(μ(t),η(s))
∂s2

|t=t∗
s=s∗

= ∂K2(t,s)
∂s V T

2 Aλ(t) |t=t∗
s=s∗

= 0.
(4.9)

If we apply Eq. (4.9) to Hessian matrix in Eq. (4.8), then the
determinant of the Hessian matrix is as follows.

DetH = ∂2u1
∂t2

|t=t∗
s=s∗

∂2u1
∂s2

|t=t∗
s=s∗

−
(

∂2u1
∂t∂s

|t=t∗
s=s∗

)2

= −
(

∂2u1
∂t∂s

|t=t∗
s=s∗

)2

.

If ∂2u1
∂t∂s |t=t∗

s=s∗

= 0, then DetH < 0. That is, (μ(t∗), η(s∗)) is

a saddle point of u1(μ(t), η(s)).
Similarly, we can prove that (μ(t∗), η(s∗)) is a saddle

point of function u2(μ(t), η(s)) if the conditions in Theo-
rem 2 are satisfied. ��

4.1 The analysis of approximation ratio

Without loss of generality, suppose that domain D1 =
[0, 1](D2 = [0, 1]) is equally decomposed with possibil-
ity distributions λ(t)(θ(s)) such that | t − t∗ |≤ 1/M for
t, t∗ ∈ D1

i (| s − s∗ |≤ 1/L for s, s∗ ∈ D2
i ). We have the

following theorem.

Theorem 3 If (t∗, s∗) is a solution of Eq. (3.16) in domain
D1
i × D2

j , and inequalities (4.3) and (4.4) are satisfied, then
there exist ε1 > 0 and ε2 > 0 such that,

ε1 = max

{
1

ML
K1(t

∗, s∗) | V T
1 AE |, 1

ML
K2(t

∗, s∗) | V T
2 AT P |

}

(4.10)

ε2 = max

{
1

ML
K1(t

∗, s∗) | V T
1 BE |, 1

ML
K2(t

∗, s∗) | V T
2 BT P |

}

(4.11)

and

| u1(μ(t), η(s)) − u1(μ(t∗), η(s∗)) |≤ ε1, ∀t ∈ D1
i ; ∀s ∈ D2

j .

(4.12)

| u2(μ(t), η(s)) − u2(μ(t∗), η(s∗)) |≤ ε2, ∀t ∈ D1
i ; ∀s ∈ D2

j .

(4.13)

where K1(t, s)(K2(t, s)) is defined in Eqs. (3.17), (3.18),
V1(V2) is defined in Eq. (3.19), (3.20), and E, P is denoted
in Eqs. (3.23), (3.24), respectively.

Proof First, we prove that there exists ε1 in (4.10) and
u1(μ(t), η(s)) satisfies (4.12). Since (t∗, s∗) is a solution of
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Eq. (3.16) in domain D1
i ×D2

j and inequalities (4.3) and (4.4)
are satisfied, based on Proposition 2, we have the following.

⎧
⎨

⎩

∂u1(μ(t),η(s))
∂t |t=t∗

s=s∗
= K1(t, s)V T

1 Aθ(s) |t=t∗
s=s∗

= 0, t ∈ D1
i , s ∈ D2

j ,

∂u1(μ(t),η(s))
∂s |t=t∗

s=s∗
= K2(t, s)V T

2 AT λ(t) |t=t∗
s=s∗

= 0, t ∈ D1
i , s ∈ D2

j

(4.14)

The Taylor expansion of u1(μ(t), η(s)) at (t∗, s∗) in domain
D1
i × D2

j is as follows.

u1(μ(t), η(s)) = u1(μ(t∗), η(s∗)) + 1

2

∂2u1
∂t2

|t=t∗
s=s∗

(t − t∗)2

+1

2

∂2u1
∂s2

|t=t∗
s=s∗

(s − s∗)2 + ∂2u1
∂t∂s

|t=t∗
s=s∗

(t − t∗)(s − s∗)

+H .O.T ., t ∈ D1
i , s ∈ D2

j . (4.15)

Ifwecalculate the second-order partial derivative ofEq. (4.14),
then we have the following.

⎧
⎪⎨

⎪⎩

∂2u1(μ(t),η(s))
∂t2

|t=t∗
s=s∗

= ∂K1(t,s)
∂t V T

1 Aθ(s) |t=t∗
s=s∗

= 0, t ∈ D1
i , j ∈ D2

j .

∂2u1(μ(t),η(s))
∂s2

|t=t∗
s=s∗

= ∂K2(t,s)
∂s V T

2 AT λ(t) |t=t∗
s=s∗

= 0, t ∈ D1
i , j ∈ D2

j .

Therefore, Eq. (4.15) is simplified as follows.

u1(μ(t), η(s)) = u1(μ(t∗), η(s∗))

+ ∂2u1
∂t∂s

|t=t∗
s=s∗

(t − t∗)(s − s∗), t ∈ D1
i , s ∈ D2

j . (4.16)

If we calculate the mixed second-order partial derivative of
the first equation in (4.14), then we have the following.

∂2u1(μ(t), η(s))

∂t∂s
|t=t∗
s=s∗

= ∂K1(t, s)

∂s
V T
1 Aθ(s) |t=t∗

s=s∗

+ K1(t, s)V
T
1 A

dθ(s)

ds
|t=t∗
s=s∗

= K1(t, s)V
T
1 A

dθ(s)

ds
|t=t∗
s=s∗

= K1(t
∗, s∗)V T

1 AE . (4.17)

If we calculate the mixed second-order partial derivative of
the second equation in (4.14), then we have the following.

∂2u1(μ(t), η(s))

∂s∂t
|t=t∗
s=s∗

= ∂K2(t, s)

∂s
V T
2 AT λ(t) |t=t∗

s=s∗

+ K2(t, s)V
T
2 AT dλ(t)

dt
|t=t∗
s=s∗

= K2(t, s)V
T
2 AT dλ(t)

dt
|t=t∗
s=s∗

= K2(t
∗, s∗)V T

2 AT P. (4.18)

Since | t − t∗ |≤ 1/M and | s − s∗ |≤ 1/L , based on
Eq. (4.16), the following inequality is derived.

| u1(μ(t), η(s)) − u1(μ(t∗), η(s∗)) |

≤ 1

ML
| ∂2u1

∂t∂s
|t=t∗
s=s∗

|, t ∈ D1
i , s ∈ D2

j . (4.19)

Generally speaking, the right hands of Eqs. (4.17) and (4.18)
are identical. However, because they are approximations of
the second-order partial derivatives, they may be not equal to
each other. Therefore, we choose ε1 as the maximum value
of them such that,

ε1 = max

{
1

ML
K1(t

∗, s∗) | V T
1 AE |,

1

ML
K2(t

∗, s∗) | V T
2 AT P |

}

.

We have the following inequality.

| u1(μ(t), η(s)) − u1(μ(t∗), η(s∗)) |≤ ε1, t ∈ D1
i , s ∈ D2

j .

Similarly, we can prove that there exist ε2 in (4.11) and
u2(μ(t), η(s)) satisfies inequality (4.13). ��
Based on the definition of ε−NE (Lipton et al. 2003), Theo-
rem 3 indicates that ui (μ(t∗), η(s∗))(i = 1, 2) is an ε−NE.
For a given fuzzification, the value of εi (i = 1, 2) is deter-
mined. Theoretically, εi (i = 1, 2) can be any value in interval
[0,+∞). Theorem 3 provides the measurement of approx-
imation deviation. Numerical results in Sect. 5.1 show that
the value of εi (i = 1, 2) can be as small as 0.1.

5 Example and numerical results

First, an example of 5× 5 bimatrix game is given to demon-
strate the procedure of the novel algorithm. Secondly, we
compare the new algorithm with the LH algorithm by using
numerical experiments.

Example 1 Find ε−NE in the following bimatrix game.

A =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0 0 0
0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, B =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 0 0
0 0 1 0 0
0 1 0 1 0
1 0 0 0 1
1 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.

Step 1. Fuzzify strategies x and y. A possibility distribution
for player 1 is given as follows.

λ1 = (0, 0, 1), λ2 = (0, 1, 1), λ3 = (0, 1, 1),

λ4 = (0, 0, 1), λ5 = (0, 1, 1).
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The membership functions λi (t) of TFNs λi (i = 1, . . . , 5)
are as follows.

λ1(t) =
{
1 − t t ∈ [0, 1]
0 otherwise

, λ2(t) =
{
t t ∈ [0, 1]
0 otherwise

,

λ3(t) =
{
t t ∈ [0, 1]
0 otherwise

,

λ4(t) =
{
1 − t t ∈ [0, 1]
0 otherwise

, λ5(t) =
{
t t ∈ [0, 1]
0 otherwise

.

A possibility distribution for player 2 is given as follows.

θ1 = (0, 1, 1), θ2 = (0, 1, 1), θ3 = (0, 0, 1),

θ4 = (0, 1, 1), θ5 = (0, 1, 1).

The membership functions η j (s) of TFNs θ j ( j = 1, . . . , 5)
are as follows.

θ1(s) =
{
s s ∈ [0, 1]
0 otherwise

, θ2(s) =
{
s s ∈ [0, 1]
0 otherwise

,

θ3(s) =
{
1 − s s ∈ [0, 1]
0 otherwise

,

θ4(s) =
{
s s ∈ [0, 1]
0 otherwise

, θ5(s) =
{
s s ∈ [0, 1]
0 otherwise

.

Step 2. Verify Ki (t, s) > 0(i = 1, 2).

K1(t, s) = 1

(2 + t)2 × (1 + 3s)
> 0, t ∈ [0, 1], s ∈ [0, 1]

K2(t, s) = 1

(1 + 3s)2 × (2 + t)
> 0, t ∈ [0, 1], s ∈ [0, 1].

Step 3. Calculate V1 and V2. Based on equations (3.19) and
(3.20), we can calculate Vi (i = 1, 2) as follows.

V T
1 = (−3, 2, 2,−3, 2), V T

2 = (1, 1,−4, 1, 1).

Step 4. Calculate E , H , P and Q with Eq. (3.23) and (3.24).

PT = (−1, 1, 1,−1, 1), Q = (−1, 0, 0,−1, 0)

ET = (1, 1,−1, 1, 1), HT = (0, 0,−1, 0, 0).

Step 5. Calculate (t∗, s∗) based on Eq. (3.22). (t∗, s∗) =
(0.75, 0.4). It is clear that inequalities in (3.25) are satisfied
such that 0.75 ∈ [0, 1] and 0.4 ∈ [0, 1].

Step 6. Verify that inequalities (4.3) and (4.4) are satisfied.

∂u1(μ(t), η(s))

∂t
|t=t∗
s=s∗

= K1(t
∗, s∗)V T

1 Aθ(s∗) = 0

∂u2(μ(t), η(s))

∂t
|t=t∗
s=s∗

= K1(t
∗, s∗)V T

1 Bθ(s∗) = 0

∂u1(μ(t), η(s))

∂s
|t=t∗
s=s∗

= K2(t
∗, s∗)V T

2 AT λ(t∗) ≈ −0.0939

∂u2(μ(t), η(s))

∂s
|t=t∗
s=s∗

= K2(t
∗, s∗)V T

2 BT λ(t∗) ≈ −0.0939.

Step 7. Calculate (x∗, y∗). Based on Eqs. (3.7) and (3.10),
we get the following.

x∗ = (0.0909, 0.2727, 0.2727, 0.0909, 0.2727)

y∗ = (0.1818, 0.1818, 0.2727, 0.1818, 0.1818).

Step 8. Calculate the parameter εi (i = 1, 2). Based on
Eqs. (4.10) and (4.11), we can get ε1 ≈ 0.3005 and ε2 ≈
0.3005.
Step 9. Calculate ui (μ(t∗)), η(s∗))(i = 1, 2). u1(μ(t∗),
η(s∗)) ≈ 0.2727 and u2(μ(t∗), η(s∗)) ≈ 0.2727.

5.1 Numerical results

The algorithm is implemented in C++ with Microsoft Visual
Studio 2015 and run in a computer with one Intel Core i5-
7200U CPU (2.50GHz) and 8 GB RAM.

First, we compare the new algorithm with the LH algo-
rithm with one instance for each size 12, 16, 24, 32, 48, 64,
and 96 of bimatrix games. The instance is generated with
C++ generator of random numbers uniformly distributed in
the interval [0,1]. Matrices A = (ai j ) and B = (bi j ) are
generated independently for each size of bimatrix games.
The data of the LH algorithm in Table 1 are obtained with
the Windows version gambit-lcp.exe of GamBit (McKelvey
et al. 2014). The data of the new algorithm in Table 1 are
obtained when εi = 0.1(i = 1, 2).

Table 1 shows that the new algorithm is superior to the
LH algorithm (gambit-lcp.exe) for each size game from the
perspective of computational time. It may not be prudent to
conclude that one algorithm is better than another by using
only one instance because the computational times differ
from one instance to another.

To have unbiased comparison, we use sets of random
bimatrix games to measure the average of the computational
times (McKelvey andMcLennan1996).Wegenerate 100 sets
of random games by using C++ generator of random num-
bers uniformly distributed in the interval [0,1]. In all cases,
the computational time is measured when one approximate
NE is found. The average computational times for each game
are shown in Table 2. The data are visualized in Fig. 3.

When the game size is smaller than or equal to 24, the com-
putational time of the new algorithm is similar to that of the
classical LH algorithm. However, when game sizes increase,
the computational time of the classical LH algorithm surges
sharply, while the computational time of the new algorithm
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Table 1 The comparison of the
new algorithm with the LH
algorithm

Size (k = l) LH algorithm (gambit-lcp.exe) New algorithm(ε1 = ε2 = 0.1)
Number of NE Time (S) Number of NE Time (S)

12 9 1.16 4 0.70

16 61 6.91 24 2.06

24 195 216.91 73 9.11

32 3205 8075.7 173 32.34

48 3411 2131.04 726 168.04

64 3411 3312.63 2339 508.85

96 745(1) 11163.66 3876 2543.19

(1) gambit-lcp.exe was terminated by an error bad-alloc when size is 96

Table 2 Average times on 100 random games in seconds

Size (k = l) LH algorithm New algorithm

12 0.084 0.062

16 0.1737 0.103

24 0.5772 0.653

32 2.153 1.64

48 12.22 5.76

64 43.68 8.49

96 182.1 29.02

The data of the LH algorithm are cited from Table 2 in paper McKelvey
and McLennan (1996)

Fig. 3 Computational time comparison with the LH algorithm

keeps its growth rate within three. For example, the compu-
tational time of the classical LH is more than sixfold of that
of the new algorithm when the game size is 96.

6 Conclusion

This paper proposed a new algorithm for computing approx-
imately mixed NE in bimatrix games. Advantages of the
algorithm are that: the encapsulation of the standard sim-
plex into the normalized possibility distributions by using
the fuzzifications, the transformation of the NE problem in
bimatrix games into a reduced form by taking advantage of
the piecewise linearity of possibility distributions, the solu-
tions of the new algorithm are the saddle points of payoff
functions, and the new algorithm provides a method of deter-
mining how close an approximate NE is to a solution and the
numerical results show that the value of approximation devi-
ation can be as small as 0.1.

The example in Sect. 5 demonstrates that the algorithm
is efficient and easy to use when proper possibility distribu-
tions are defined. The numerical results show that the new
algorithm is superior to the LH algorithm from the perspec-
tives of computational time. The essential and vital step of
the algorithm is the technique of fuzzifying mixed strategies
(x, y) appropriately. Appropriate fuzzifications result in both
better performance and accuracy for calculating mixed NE.

This work leaves many potentials for future research, for
instance, comprehensive comparisons with other algorithms
such as semidefinite programming and heuristic algorithms,
and the theoretical analysis of the new algorithm from the
perspective of computational complexity theory. For exam-
ple, it is necessary to categorize the complexity class of the
new algorithm.
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