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Abstract
We study properties of two probability distributions defined on the infinite set {0, 1, 2, . . .} and generalizing the ordinary dis-
crete uniform and binomial distributions. Both extensions use the grossone-model of infinity. The first of the two distributions
we study is uniform and assigns masses 1/ 1© to all points in the set {0, 1, . . . , 1© − 1}, where 1© denotes the grossone. For

this distribution, we study the problem of decomposing a random variable ξ with this distribution as a sum ξ
d= ξ1 +· · ·+ ξm ,

where ξ1, . . . , ξm are independent non-degenerate random variables. Then, we develop an approximation for the probability
mass function of the binomial distribution Bin( 1©, p)with p = c/ 1©α with 1/2 < α ≤ 1. The accuracy of this approximation
is assessed using a numerical study.

Keywords Binomial distribution · Poisson approximation · Charlier polynomials

1 Introduction

In this paper, we are interested in properties of two prob-
ability distributions defined on the infinite set {0, 1, 2, . . .}
and generalizing the ordinary discrete uniform and binomial
distributions. Both of these extensions have been recently
discussed in Calude and Dumitrescu (2020) and mentioned
in Zhigljavsky (2012); both extensions use the notion of
grossone. The grossone, introduced in Sergeyev (2013) and
denoted by 1©, is a model of infinity which, as shown in
Sergeyev (2009), Sergeyev (2017) and many other publi-
cations can be very useful in solving diverse problems of
computational mathematics and optimization; in such appli-
cations, 1© is used as numerical infinity. Grossone can also
be useful as a theoretical model of infinity, see, e.g., (Zhigl-
javsky 2012; Sergeyev 2017). Some historical, philosophical
and logical aspects of grossone have been considered in Lolli
(2012), Lolli (2015), Hansson (2020). In Sect. 1, we consider
and briefly discuss postulates of 1©.

For a positive integer n, the discrete uniform distribu-
tion on the set {0, 1, . . . , n − 1} assigns equal mass 1/n
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to all integers j ∈ {0, . . . , n − 1}. We use the notation
DU(n) from Balakrishnan and Nevzorov (2004) for this dis-
tribution. An extension of this distribution to the infinite set
{0, 1, 2 . . .} is denoted by DU(∞) and is used in Bayesian
statistics as vague prior (often called ‘Jeffrey’s prior’) for
large integer-valued parameters, in particular for the param-
eter N in the binomial distribution Bin (N , p), see, e.g.,
(Raftery 1988).An extension ofDU(n) toDU( 1©) is straight-
forward: for a random variable (r.v.) ξ ∼DU( 1©), we have
Pr{ξ = k} = 1/( 1©) for all k ∈ {0, 1, . . . , 1© − 1}. This
distribution has been considered, in particular, in Calude and
Dumitrescu (2020). The distribution DU( 1©) is easier than
DU(∞): indeed, DU(∞) is a vague (improper) distribution
but, if one agrees to perform calculations with 1©, DU( 1©) is
a well-defined distribution, very similar to DU(n).

In Sect. 2.2, we consider the problem of decomposing a

random variable ξ ∼ DU( 1©) into sums ξ
d= ξ1 + . . . + ξm ,

where ξ1, . . . , ξm are independent non-degenerate random

variables and the equality
d= means that the distributions of

the random variables in the lhs and rhs of the equation are
equal. In particular, we shall establish that DU( 1©) is not
an infinitely divisible distribution which might have been
expected in view of results of Warde and Katti (1971).

The probability mass function (pmf) for Bin(N , p), the
binomial distribution with parameters N and p, is

bx = N !
(N − x)! x ! px (1 − p)N−x , x = 0, 1, . . . , N , (1)
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where N is usually interpreted as the number of Bernoulli
trials and p as the probability of success in these trials. We
are interested in approximating the binomial probabilities (3)
in the case when N is (very) large but p is rather small like
p = c/Nα with finite c > 0 and 1/2 < α ≤ 1. This case is
important for understanding the distribution Bin( 1©, p), the
grossone extension of Bin(N , p).

According to the central limit theorem, for any p and
large N , the distribution [Bin(N , p) − N p]/√N p(1 − p) is
approximately the standard normal distributionN (0, 1) and,
therefore, the binomial distributionBin(N , p) can be approx-
imatedby the normal distributionN (N p, N p(1 − p)).How-
ever, if p is small then, even for very large N , this normal
approximation is very poor, especially in the tails, see for
example (Berry 1941). Also, the support of the random vari-
able with distribution N (N p, N p(1 − p)) barely resembles
the support of Bin(N , p) and this could be a serious prob-
lem in practice. There are many improvements to the normal
approximation, see, e.g., (Brown et al. 2001). However, even
corrected normal approximations are rather poor in approx-
imating tails; in particular, the approximations based on the
Edgeworth expansion do not guarantee that the approxima-
tions to individual binomial probabilities are non-negative,
see for example (Petrov 1995) for an excellent account of
different approximations in the CLT. Even the shape of
the normal approximationN (N p, N p(1 − p)) may be mis-
leading. Consider, for instance, the skewness which is the
widely accepted characteristic of a non-symmetry of dis-
tributions. The skewness of N (0, 1) is zero, whereas the
skewness of [Bin( 1©,p)−p 1© ]/√p(1 − p) 1© is γ1 =
(2p − 1)/

√
p(1 − p) 1©. As an example, for p = λ/ 1© we

have γ1 = 1/
√

λ + O( 1©−1) which shows that even if N is
very large, the binomial distribution Bin(N , p) can still be
very asymmetric for small p, even after the renormalization.

Bearing inmind that the normal approximation toBin(N , p)

cannot be suitably corrected if p is small, in Sect. 3 we
will concentrate on correcting the Poisson approximation to
Bin(N , p) assuming that N is very large but p is of order
p = c/Nα with finite c > 0 and 1/2 < α ≤ 1.

One of the central concepts used below is the concept
of grossone which has been introduced in Sergeyev (2013),
developed in a series of papers byYa. Sergeyev and coauthors
and recently comprehensively reviewed in Sergeyev (2017).
Grossone can be defined axiomatically, see (Sergeyev 2017).
The two main axioms are given below.

Axiom 1 (Grossone is ‘the largest natural number’). The set
of natural numbers is N = {1, 2, . . . , 1©}, where 1© is the
grossone.

Axiom 2 (Divisibility) For any finite positive integer n, 1© is
divisible by n.

The grossonemodels infinity. Similarly, the quantities like
1/ 1© and 1/ 1©2 model infinitesimals. These models, as com-

prehensively discussed in Sergeyev (2017), are very useful
as theoretical models and as models of numerical infinity
and infinitesimals. A very attractive feature of these numeri-
cal infinity and infinitesimals is a possibility to operate with
them in numerical fashion, exactly as with numbers (rather
than with symbols like in MAPLE); this feature is the key
concept of the ‘infinity computer’ discussed in many publi-
cations of Ya. Sergeyev and coauthors, see (Sergeyev 2009,
2017).

In mathematics, a more common approach to model
infinitesimal quantities is to use the framework of the
non-standard analysis. The non-standard analysis approach
for modeling infinitesimal probabilities has been recently
discussed inBenci et al. (2018).Modeling infinitesimal prob-
abilities with 1/ 1© and similar quantities involving 1© has
also attracted serious attention, see (Calude and Dumitrescu
2020; Sergeyev 2017; Rizza 2018). One of an attractive
features of the grossone-based approach is that one may
simultaneously work with infinitesimal probabilities of dif-
ferent order like 1/ 1© and 1/ 1©2. It should be stressed that the
grossone-based methodology is different from the approach
based on the non-standard analysis, see (Sergeyev 2019).

2 Deconvolutions of discrete distributions

2.1 Deconvolution and infinite divisibility of a
discrete r.v.

The concepts of deconvolution of a r.v. and its infinite divis-
ibility are closely related.

A r.v. ξ can be deconvoluted if it can be represented as

ξ
d= ξ1 + ξ2, where ξ1 and ξ2 are independent but not nec-

essarily identically distributed r.v. Let φ(t) = E exp (i tξ)

be the characteristic function (c.f.) of ξ . Clearly, ξ can be
deconvoluted if and only if φ(t) can be written as a product
of two or more characteristic functions of non-degenerate r.v.
In Sect. 2.2, we consider the case where ξ is discrete uniform
r.v.

Let now ξ be a discrete r.v. taking values 0, 1, . . . with
probabilities pi = Pr(ξ = i), i = 0, 1, . . . (here we use
the traditional language). This r.v. ξ is infinitely divisible
if for any positive integer n there exist i.i.d.r.v. ξ j,n ( j =
1, . . . , n) such that ξ

d= ξ1,n + . . . + ξn,n . Equivalently, a
r.v. ξ is infinitely divisible if and only if φ(t) = E exp (i tξ),
the characteristic function (c.f.) of ξ satisfies the relation
φ(t) = [φn(t)]n for any n = 1, 2, . . . ,where φn(t) are some
characteristic functions.

It yields, in particular, that if a discrete r.v. ξ has a finite
support then it cannot be infinitely divisible. In particular,
discrete uniform DU(n) and binomial Bin(N , p) r.v. are not
infinitely divisible. Note that c.f. φDU(n)(t) of ξ ∼DU(n) and
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φBin(N ,p)(t) of ξ ∼Bin(N , p) are

φDU(n)(t)= 1 − enit

n(1 − ei t)
, φBin(N ,p)(t)=

(
1 − p + peit

)N
,

(2)

see formulas (2.22) and (5.5) in Balakrishnan and Nevzorov
(2004).

A very general sufficient condition for the infinite divis-
ibility of a discrete r.v. has been established in Warde and
Katti (1971):

Theorem 1 see Theorem 2.1 in Warde and Katti (1971). If
p0 �= 0, p1 �= 0 and the ratios p j+1/p j form a monotonously
non-decreasing sequence ( j = 0, 1, . . .), then the r.v. ξ is
infinitely divisible.

One of our aims in this paper is to generalize the con-
cept of infinite divisibility to the case when the vague ∞ is
replaced with rigid 1© and check if Theorem 1 can still be
applied. In Sect. 2.2 below, we will consider DU( 1©) where
we show that formal extension of Theorem 1 to the random
variables defined on {0, 1, . . . , 1©−1} or {0, 1, . . . , 1©} fails.
On the other hand, as shown below in this section, the formal
extension of Theorem 1 to Bin( 1©, p) cannot be applied, but
the distribution Bin( 1©, p) is infinitely divisible.

Consider a discrete r.v. ξ taking values either in {0, 1, . . . ,
1© − 1} or in {0, 1, . . . , 1©}. In both cases, φ(t) =

E exp (i tξ), the c.f. of ξ , is well-defined and we can still
classify a r.v. ξ as infinitely divisible if φ(t) = [φn(t)]n for
any finite integer n = 1, 2, . . . , where φn(t) are some char-
acteristic functions.

Consider ξ ∼Bin( 1©, p) defined on {0, 1, . . . , 1©} with

p j = 1©!
( 1© − j)! j ! p j (1 − p)

1©− j , j = 0, 1, . . . , 1© . (3)

For the ratios p j+1/p j , we have

p j+1

p j
= 1© − j

j + 1

p

1 − p
= 1© p

(1 − p)( j + 1)

− j p

(1 − p)( j + 1)
. (4)

As 1© is much larger than j for finite j , for such j we can
neglect the second term in (4) and we can clearly see that,
at least for finite j , the ratios p j+1/p j are decreasing with
j . The formal extension of Theorem 1 is thus not applicable
but ξ ∼Bin( 1©, p) is clearly infinitely divisible if we assume
Axiom 2. This is a direct consequence of (2) with N = 1©.

2.2 Deconvolution of a discrete uniform distribution
DU( 1©)

Decomposition of the discrete uniform random variable ξ ∼
DU(n) into a sum ξ

d= ξ1 + . . . + ξm , where ξ1, . . . , ξm are
independent non-degenerate random variables, is considered
in Zhigljavsky et al. (2016). It is shown in Zhigljavsky et al.
(2016) that such decompositions exist if and only if n is a
composite number and that the number of different decom-

positions ξ
d= ξ1 + . . . + ξm is equal to the number of all

ordered factorizations of n. The results of Zhigljavsky et al.
(2016) have been recently extended in Gillard and Zhigl-
javsky (2016), Golyandina and Zhigljavsky (2020) to cover
the case of deconvolution of positive definite matrices.

Theorem 1 of Zhigljavsky et al. (2016) states that if ξ ∼
DU(n) can be represented as ξ

d= ξ1 + ξ2, where ξ1 and
ξ2 are independent non-degenerate random variables, then
both ξ1 and ξ2 are uniformly distributed on some subsets of
{0, 1, . . . , n − 1}. Let us show that such random variables ξ1
and ξ2 cannot be identically distributed. Indeed, the moment
generating function (mgf) of ξ is F(s) = (1 + s + . . . +
sn−1)/n. The assumption ξ = ξ1 + ξ2 with ξ1, ξ2 identically
distributed implies F(s) = F20(s), whereF0(s) is themgf of ξ1
and ξ2. From the above-mentioned Theorem 1 of Zhigljavsky
et al. (2016), F0(s) = (a0 + a1s + . . . + an−1sn−1)/k for
k = √

n and coefficients a j ∈ {0, 1}. The squared mgf F20(s)
cannot have the form (1+s+. . .+sn−1)/n as in the expansion
of nF20(s) coefficients with some powers will necessarily be
larger than 1. Similarly, for any n, m > 1 the randomvariable

ξ ∼DU(n) cannot be represented as a sum ξ
d= ξ1+. . .+ξm ,

where ξ1, . . . , ξm are i.i.d.r.v.
All results of Zhigljavsky et al. (2016) can be extended

to the case n = 1©. Likewise, we arrive at the conclusion of
impossibility of representation of ξ ∼ DU( 1©) in the form

of a sum ξ
d= ξ1 + . . . + ξm , where ξ1, . . . , ξm are indepen-

dent non-degenerate random variables (1 < m ≤ 1©). This
conclusion seems to contradict to Theorem 1 of Sect. 2.1.
However, the proof of Theorem 1 of Sect. 2.1 (which is The-
orem 2.1 of Warde and Katti (1971)) cannot be extended to
the case when Pr(ξ = j + 1)/Pr(ξ = j) = 1 for all j as
for the validity of formula (3) of Warde and Katti (1971), at
least one of the inequalities p j+1/p j ≥ p j/p j−1 should be
strict.

For ξ ∼ DU(n), the number of different decompositions

ξ
d= ξ1 + . . .+ ξm with independent non-degenerate random

variables ξ1, . . . , ξm is equal to the number of all ordered
factorizations of 1©. In view of Hille (1936) and (Chor et al.
2000), the number of all ordered factorizations of n (and
hence the number of different decompositions of ξ ∼DU(n)

as sums of independent non-degenerate random variables)
may reach the order nρ , where ρ 
 1.72865 and is defined
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as the solution of the equation ζ(ρ) = 2, where ζ(·) is
the classical Riemann’s zeta-function ζ(s); this function is
unambiguously defined for all s with Re(s) > 1.

Assuming the grossone divisibility axiom, we thus expect
for the number of all ordered factorizations of 1© to be much
larger than 1© and reaching 1© ρ with ρ 
 1.72865. Note
that this is not a precise statement as the divisibility axiom
does not give us enough information about all divisors of 1©.
Note also that there are difficulties (discussed in Sergeyev
(2017),Ya (2011) regarding the use of the zeta-function in the
grossone-based universe since many different zeta-functions
can be distinguished in the latter.

3 Improving Poisson approximation to the
Binomial probabilities

The pmf for Poi(λ), the Poisson distribution with parameter
λ, is defined by

px = e−λλx

x ! , x = 0, 1, 2, . . . . (5)

There is a lot of literature on the accuracy of Poisson approx-
imation to Bin(N , p), see for example (Hodges and Le Cam
1960; Duembgen et al. 2019). If we are not interested in
approximating tails of the Binomial distribution, then Pois-
son approximation Poi(λ) to Bin(N , p) is rather accurate
when λ = pN is not too large. However, unless λ is small
enough, Poi(λ) does not approximate tails of Bin(N , p)well
even if N is very large. There are several approaches for cor-
recting the Poisson approximation including the Stein–Chen
method, see (Barbour et al. 1992). Among these asymptotic
corrections, the most known is based on the use the expan-
sionwith respect to the Charlier polynomials. This expansion
has been developed in Uspensky (1931) and can be written
as follows:

bx

px
=

[
1− c̃2(x; λ)

2N
+ 8c̃3(x; λ)+3c̃4(x; λ)

4! N 2

−12c̃4(x; λ)+8c̃5(x; λ)+c̃6(x; λ)

2 · 4! N 3 +O

(
1

N 4

)]
,(6)

whereλ = p/N , bx and px are defined by (3) and (5), respec-
tively, c̃ j (x; λ) = λ j c j (x; λ) and c j (x; λ) are the Charlier
polynomials

c j (x; λ) =
j∑

k=0

(−1)kλ−k
(

j
k

)(
x
k

)
k! .

We will derive an alternative improvement to the Poisson
approximation which, as we will demonstrate, is very accu-
rate at the lower tail of the binomial distribution Bin(N , p)

with very large N and very small p; the value of λ = N p
could be rather large but smaller than

√
N .

To start with, we rearrange the binomial probability bx as
follows

bx = N !
(N − x)! x ! px (1 − p)N−x = λx

x !
N !

(N − x)!N x︸ ︷︷ ︸
R(

1 − λ

N

)N

︸ ︷︷ ︸
Q

(
1 − λ

N

)−x

︸ ︷︷ ︸
T

. (7)

Assume N is large enough and p = λ/N . For all λx << N ,
we have

T =
(
1 − λ

N

)−x

= 1 +
∞∑
j=1

Tj (λ, x)N− j (8)

with

Tj (λ, x) = (−1) jλ j x( j)

j ! ( j = 1, 2, . . .),

where x( j) = x(x − 1) . . . (x − j + 1) is the falling factorial.
The series (8) converges if λx/N → 0 as N → ∞.

Now, consider Q of (7):

Q =
(
1 − λ

N

)N

= exp

{
N log

(
1 − λ

N

)}

= exp

{
−N

∞∑
k=1

λk

k N k

}
= e−λe−y,

where

y =
∞∑

k=1

λk+1

(k + 1) N k
= λ

∞∑
k=1

λk

(k + 1) N k
.

Using the expansion e−y = 1 + ∑∞
m=1(−1)m ym/m! and

writing ym in the form of the multiple sum

ym = λm
∞∑

k1=1

. . .

∞∑
km=1

λk1 . . . λkm

N k1 . . . N km (k1 + 1) . . . (km + 1)
,

we obtain

(
1 − λ

N

)N

= e−λ

⎡
⎣1 +

∞∑
m=1

(−1)mλm

m!
∞∑

k1=1

. . .

∞∑
km=1

λk1 . . . λkm

N k1 . . . N km (k1 + 1) . . . (km + 1)

⎤
⎦ .
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Collecting the terms by powers of 1/N , we obtain

Q =
(
1 − λ

N

)N

= e−λ

⎡
⎣1 +

∞∑
j=1

Q j (λ)N− j

⎤
⎦ , (9)

where the first four polynomials Q j (λ) are

Q1(λ) = −1

2
λ2,

Q2(λ) = 1

4! λ3 (3 λ − 8) ,

Q3(λ) = − 1

2 · 4! λ4 (λ − 2) (λ − 6) ,

Q4(λ) = 1

8 · 6! λ5
(
15 λ3 − 240 λ2 + 1040 λ − 1152

)
.

The series (9) converges if
√

λ/N → 0 as N → ∞.
For the term R of (7), we have:

R = N !
(N − x)!N x

=
x−1∏
i=0

(
1 − i

N

)
= 1 +

∞∑
j=1

R j (x)N− j ,

(10)

where the first four polynomials R j (x) are

R1(x) = −1

2
x(x − 1),

R2(x) = 1

4! x(x − 1)(x − 2)(3x − 1),

R3(x) = − 1

2 · 4! x2(x − 1)2(x − 2)(x − 3),

R4(x) = 1

8 · 6! x(x − 1)(x − 2)(x − 3)(x − 4)

(15x3 − 30x2 + 5x + 2).

Combining (7)–(10), we obtain the following expansion for
the probability bx :

bx

px
=

⎡
⎣1 +

∞∑
j=1

Q j (λ)N− j

⎤
⎦

⎡
⎣1 +

∞∑
j=1

R j (x)N− j

⎤
⎦

⎡
⎣1 +

∞∑
j=1

Tj (λ, x)N− j

⎤
⎦ . (11)

All the series converge if λx/N → 0 as N → ∞. If λx/N
does not tend to 0 as N → ∞, but x/N and

√
λ/N do, then

we recommend to use the approximation

bx

px
=

⎡
⎣1 +

∞∑
j=1

Q j (λ)N− j

⎤
⎦

⎡
⎣1 +

∞∑
j=1

R j (x)N− j

⎤
⎦

(
1 − λ

N

)−x

, (12)

where the term T of (7) is not expanded. Numerical results
show that for x in the left tail of the binomial distribution,
the approximations (11) and (12) practically coincide if we
get enough terms in the expansion for T .

Let us rewrite the result (11) in terms of the binomial
probabilities of Bin( 1©, λ/ 1©) keeping only two main terms
in the expansion:

bx

px
=1− (λ + x)2−x

2 1©
+3(λ+x)4+9x2−2(4λ3+9λ2x+6λx2+5x3+x)

24 1©2

+O

(
1
1©3

)
. (13)

This formula makes sense in the grossone universe. Indeed,
both λ and x could be infinitely large but (λ+ x)2/ 1© should
be kept infinitesimal as otherwise the second and third terms
in the rhs of (13) become large. In particular, the expansion
(13) is valid if λ = c1 1©α and x = c2 1©β where c1 and c2
are finite constants and both α and β are smaller than 1/2.

4 Numerical study

In Figs. 1, 2 and 3, we demonstrate accuracy of several
approximations for bx in (3) by plotting the ratio b̃x/bx where
b̃x is an approximation for bx . We have chosen the following
coding for the x axis: “0” is the mean λ = N p of the dis-
tribution Bin(N , p) and j = ±1,±2, . . . denote the points
λ + js, where s = √

N p(1 − p) is the standard deviation of
Bin(N , p) .

In Figs. 1, 2 and 3, we have chosen p = 0.03 and
N = 103, 104, 105 so that λ = 30, 300 and 3000. The nor-
mal approximation (depicted by black solid line) is always
very poor. Due to incorrect skewness, the normal approxi-
mation considerably underestimates the probabilities bx for
x < λ overestimates them for x > λ. We have tried to use
several improved normal approximations, in particular, the
ones based on theEdgeworth expansion, but these expansions
were not much better and in many cases some of the estima-
tors b̃x becamenegative.UncorrectedPoisson approximation
(blue dashed line) is slightlymore accurate than normal, but it
is still quite poor. The corrected Poisson approximations (6),
based on the expansion with respect to the Charlier polyno-
mials, significantly improve the Poisson approximation. The
first-order Charlier approximation (red dotted line), where
we keep only the term c̃2(x; λ)/2N in (6), works well for
x within the 3σ -interval; the second-order Charlier approxi-
mation is very accurate x within the 4σ -interval.
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Fig. 1 Ratios b̃x/bx , where b̃x
is computed using the
approximations: normal (black
solid), Poisson (blue dashed),
first-order Charlier (red dotted)
and second-order Charlier
(green dash-dotted); N = 1000,
p = 0.03 (color figure online)

Fig. 2 Ratios b̃x/bx , where b̃x
is computed using the
approximations: normal (black
solid), Poisson (blue dashed),
first-order Charlier (red dotted)
and second-order Charlier
(green dash-dotted); N = 104,
p = 0.03 (color figure online)

Fig. 3 Ratios b̃x/bx , where b̃x
is computed using the
approximations: normal (black
solid), Poisson (blue dashed),
first-order Charlier (red dotted)
and second-order Charlier
(green dash-dotted); N = 105,
p = 0.03 (color figure online)

The style of Figs. 4, 5 and 6 is similar to Figs. 1, 2 and
3. In these figures, we also demonstrate accuracy of several
approximations b̃x for binomial probabilities bx by plotting
the ratio b̃x/bx where b̃x is an approximation forbx . Similarly
to Figs. 1, 2 and 3, for the x-axis, j = 0,±1,±2, . . . denote
the points λ + js, where s = √

N p(1 − p). In Figs. 4, 5
and 6, the smallest value at the x-axis corresponds to x = 0
in (3) so that we show the values of the ratios b̃x/bx for
x = 0, 1, . . . , λ + 6

√
N p(1 − p).

In Figs. 4, 5 and 6, we do not use uncorrected normal
and Poisson approximations as these approximations are
poor. We use three approximations based on the expansion
(6): the first-order Charlier approximation (red dotted line),

second-order Charlier (green dash-dotted) and third-order
Charlier (magenta long dashed). We also use the expansion
(12) (brown dashed line), where we keep the first four terms
in the expansions for Q and R.

The corrected Poisson approximations (6), based on the
expansion with respect to the Charlier polynomials, signifi-
cantly improve the Poisson approximation. The first-order
Charlier approximation works well for x within the 3σ -
interval, but the second-order and especially third-order
Charlier approximations are much more accurate. The new
approximation (11) is basically exact at the lower tail of the
binomial distribution and outperforms the Charlier approxi-
mations.
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Fig. 4 Ratios b̃x/bx , where b̃x
is computed using the
approximations: (12) (brown
dashed), first-order Charlier (red
dotted), second-order Charlier
(green dash-dotted), third-order
Charlier (magenta long dashed);
N = 104, p = 0.008 (color
figure online)

Fig. 5 Ratios b̃x/bx , where b̃x
is computed using the
approximations: (12) (brown
dashed), first-order Charlier (red
dotted), second-order Charlier
(green dash-dotted), third-order
Charlier (magenta long dashed);
N = 105, p = 0.0015 (color
figure online)

Fig. 6 Ratios b̃x/bx , where b̃x
is computed using the
approximations: (12) (brown
dashed), first-order Charlier (red
dotted), second-order Charlier
(green dash-dotted), third-order
Charlier (magenta long dashed);
N = 106, p = 0.0002 (color
figure online)

Conclusion

We study properties of two probability distributions defined
on the infinite set {0, 1, 2, . . .} and generalizing the ordinary
discrete uniform and binomial distributions. Both extensions
use the notion of grossone denoted by 1©. The uniform
distribution assigns masses 1/ 1© to all points in the set
{0, 1, . . . , 1© − 1}. For this distribution, we study the prob-
lem of decomposing a r.v. ξ with this distribution as a sum

ξ
d= ξ1 + . . . + ξm , where ξ1, . . . , ξm are independent non-

degenerate r.v. We establish that, under the validity of the
grossone divisibility axiom, such decompositions exist, but

all r.v. ξ j in the decomposition ξ
d= ξ1 + . . . + ξm must

have different distributions and, as a corollary, that the dis-
crete uniform distribution on the set {0, 1, . . . , 1©− 1} is not
infinitely divisible, where the natural extension of the notion
of infinite divisibility (introduced in Sect. 2.1) is used.

Then, we study the accuracy of different approximations
for the probability mass function of the binomial distribu-
tion Bin( 1©, p) with p = c/ 1©α with 1/2 < α ≤ 1. We
demonstrate that the normal and uncorrected Poisson approx-
imations are rather poor and develop a new approximation
which is demonstrated to be extremely accurate on the lower
tail of Bin( 1©, p).We compare the accuracy of the developed
approximation with the corrected Poisson approximations
constructed from the expansion with respect to the Charlier
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polynomials. The accuracy of approximations is assessed on
the base of a numerical study. To derive approximations, we
use asymptotic expansions formulated in the standard lan-
guage, but the final results we translate into the language of
grossone.
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