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Abstract
New algorithms for the numerical solution of optimization problems involving the l0 pseudo-norm are proposed. They are
designed to use a recently proposed computational methodology that is able to deal numerically with finite, infinite and
infinitesimal numbers. This new methodology introduces an infinite unit of measure expressed by the numeral 1© (grossone)
and indicating the number of elements of the set IN, of natural numbers. We show how the numerical system built upon 1©
and the proposed approximation of the l0 pseudo-norm in terms of 1© can be successfully used in the solution of elastic net
regularization problems and sparse support vector machines classification problems.

Keywords Elastic net regularization · Grossone · Sparse support vector machines

1 Introduction

Given a vector x of n components, the l0 pseudo-norm

‖x‖0 := number of nonzero components in x,

has often been used in optimization problems arising in var-
ious fields. However, the introduction of ‖x‖0 makes these
problems extremely complicated to solve, so that approx-
imations and iterative schemes have been proposed in the
scientific literature to efficiently solve them.

The use of this pseudo-norm arises in many different
fields, such as machine learning, signal processing, pattern
recognition, portfolio optimization, subset selection problem
in regression and elastic-net regularization. Cardinality con-
strained optimization problems are difficult to solve, and a
common approach is to apply global discrete optimization
techniques.
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Quite recently Sergeyev, in a book and in a series of papers,
proposed a novel approach to infinite and infinitesimal num-
bers. By introducing the new numeral grossone (indicated
by 1©), defined as the number of elements of the set of the
natural numbers, Sergeyev demonstrated how it is possible to
operate with finite, infinite and infinitesimal quantities using
the same arithmetics. This new numerical system allows to
treat infinite and infinitesimal numbers as particular cases of
a single structure and offers a new view and an alternative
approach for many fundamental aspects of mathematics such
as limits, derivatives, sums of series and so on.

The aim of this paper is to show how this new numeral sys-
tem and in particular 1© can be used in different optimization
problems, by replacing the l0 pseudo-norm ‖x‖0 with

‖x‖0, 1©−1 :=
n∑

i=1

x2i
x2i + 1©−1

.

Indeed in literature, there aremany contributes for approx-
imating the l0 pseudo-norm. For example in Rinaldi et al.
(2010), two new smooth approximations of the l0 pseudo-
norm are presented and other approximations are recalled in
the following.

The paper is organized as follows. In Sect. 2, the new
numeral system is presented by describing its main prop-
erties: Infinity, Identity and Divisibility. Moreover, the new
numeral positional system and the concept of gross-number
are discussed. In Sect. 3, the properties of ‖x‖0 are intro-
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duced and some approximations proposed in literature are
presented. The definition of ‖x‖0, 1©−1 is then introduced and
it is shown that ‖x‖0 and ‖x‖0, 1©−1 coincide for the finite
term and may differ only for infinitesimal terms. Two differ-
ent applications of ‖x‖0, 1©−1 are presented in Sects. 4 and 5.
The first, studied in Sect. 4, concerns elastic net regulariza-
tion and an algorithm for solving the optimization problem

min
x

1

2
‖Ax − b‖22 + λ0 ‖x‖0, 1©−1 + λ1

2
‖x‖22 .

In Sect. 5, the newly proposed definition of ‖x‖0, 1©−1 is
used in classification problems using sparse support vector
machines (SVMs). In particular, we suggest an interpreta-
tion of an updating rule already proposed in the literature
based on the KKT (Karush–Kuhn–Tucker) conditions and
the expansion of gross-numbers.

We briefly describe some notations used throughout the
paper. With IN, we indicate the set of natural numbers. Given
n,m ∈ IN, let IRn be the space of the n-dimensional vectors
with real components and let IRm×n be the space of matrices
with real elements, m rows and n columns. All vectors are
column vectors and are indicated with lower case Latin letter
(e.g., x , y, z ∈ IRn). Subscripts indicate components of a vec-
tor, while superscripts are used to identify different vectors.
Matrices are indicated with upper case Roman letter (e.g.,
A, B ∈ IRm×n). If A ∈ IRm×n , AT

i · is the i th row of A. The
symbol ‖x‖ indicates the norm of a vector x . Specific norms
or parameters of the norm are indicated with subscripts. The
scalar product of two vectors x, y in IRn is denoted by xT y,
while in a generic Hilbert space we use the notation 〈x, y〉.
The symbol := denotes definition of the term. The gradient
of a continuously differentiable function f : IRn → IR at a
point x ∈ IRn is indicated by ∇ f (x).

2 The algebra of 1©
The numeral system, originally proposed by Sergeyev (2001,
2009, 2017), is based on the numeral 1© (called grossone)
defined as the number of elements of the set IN. This new
definition of infinite unit consents to work numerically with
infinities and infinitesimals. In particular, the numerical
system built upon 1© makes possible to treat infinite and
infinitesimal numbers in a unique framework, and to work
with all of them numerically.

For instance, using 1©-based numerals, it is possible to
execute arithmetic operations with floating-point numbers
and to assign concrete infinite and infinitesimal values to
variables.Moreover, 1© allows to computemore precisely the
number of elements of infinite sets extending the traditional
set theory operating with Cantor’s cardinals. For example,
the set of even numbers and the set of integers that the tra-

ditional cardinalities identify both as countable, have in this
new numeral system, respectively, 1©

2 and 2 1©+1 elements.
The new computational methodology has been success-

fully applied in several fields of pure and appliedmathematics
offering new and alternative approaches. Here, we only
mention (numerical) differentiation (Sergeyev 2011a), ODE
(Sergeyev et al. 2016; Amodio et al. 2017), optimiza-
tion (Cococcioni et al. 2018; De Cosmis and De Leone
2012; De Leone 2018; De Leone et al. 2018; Gaudioso
et al. 2018; Sergeyev et al. 2018), hyperbolic geometry
(Margenstern 2012), infinite series and the Riemann zeta
function (Sergeyev 2009, 2011b), biological processes, cel-
lular automata (D’Alotto 2013). For a survey of the various
aspects and applications of 1©, we refer the interested reader
to Sergeyev (2001, 2010, 2016, 2017, 2019), Caldarola
(2018), Calude and Dumitrescu (2020), Iudin et al. (2012),
Lolli (2015), Rizza (2019) and to the references therein.

Following the procedure used in the pastwhen the numeral
0 (zero) has been introduced to extend the natural numbers
to integers, Sergeyev has introduced the new numeral 1©.

In particular, 1© is introduced by adding the Infinite Unit
Axiom postulate (IUA) to the axioms of real numbers. The
IUA postulate is composed of three parts: Infinity, Identity
and Divisibility:

1. Infinity: any finite natural number n is less than grossone,
i.e., n < 1©, ∀n ∈ IN.

2. Identity: the following relations link 1© to the identity
elements 0 and 1

0 · 1© = 1© · 0 = 0, 1© − 1© = 0,
1©
1© = 1,

1©0 = 1, 1 1© = 1, 0 1© = 0. (1)

3. Divisibility: for any finite natural number n the sets INk,n ,
1 ≤ k ≤ n, called the nth parts of the set IN of natural
numbers and defined as

INk,n = {k, k + n, k + 2n, k + 3n, . . .} , 1 ≤ k ≤ n,

n⋃

k=1

INk,n = IN, (2)

have the same number of elements indicated by the
numeral 1©

n . Note that 1©
n is larger than anyfinite number.

Since this postulate is added to the standard axioms of
real numbers, all standard properties (i.e., commutative and
associative properties, distributive property of multiplication
over addition, existence of inverse elements with respect
to addition and multiplication, …) also apply to 1© and
to grossone-based numerals. On the other hand, since in
this framework it is possible to execute arithmetical oper-
ations with a variety of different infinities and infinitesimals,
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indeterminate forms as well as various kinds of divergences
are not present when working with any (finite, infinite and
infinitesimal) numbers of the new numerical system.

In this new numeral positional system, a gross-number (or
gross-scalar) C can be represented similarly to traditional
positional numeral system, but with base number 1©, that is:

C = cpm 1©pm + · · · + cp1 1©p1 + cp0 1©p0

+ cp−1 1©p−1 + · · · + cp−k 1©p−k , (3)

wherem, k ∈ IN, for i = −k,−(k−1), . . . ,−1, 0, 1, . . . ,m−
1,m, numerals cpi are floating-point numbers and exponents
pi are gross-numbers such that

pm > pm−1 · · · > p1 > p0 = 0 > p−1

> · · · > p−(k−1) > p−k . (4)

A gross-number is called finite if m = k = 0, it is called
infinite if m > 0, and it is called infinitesimal if m = 0,
cp0 = 0 and k > 0. The exponents pi , i = −k,−(k −
1), . . . ,−1, 0, 1, . . . ,m−1,m, are called gross-powers and
can be finite, infinite, and infinitesimal. In (3), all numerals
cpi �= 0, i = −k,−(k − 1), . . . ,−1, 0, 1, . . . ,m − 1,m,
are called gross-digits and belong to a traditional numeral
system (for example floating-point numbers).

We note that in this new numeral system, the record

C = cpm 1©pm . . . cp1 1©p1cp0 1©p0cp−1 1©p−1 . . . cp−k 1©p−k ,

(5)

represents the number C . Infinitesimal numbers are rep-
resented by numerals C having only negative (finite or
infinite) gross-powers. The infinitesimal number 1©−1 veri-
fies 1©−1 1© = 1© 1©−1 = 1. Note that all infinitesimals are
not equal to zero and in particular 1©−1 = 1

1© > 0 because
it is the result of a division between two positive gross-
numbers. In the following, we consider only gross-numbers
having representation (3) with pi ∈ Z, i = −k, . . . ,m −
1,m.

We conclude this section by observing that the Infinity
Computer is a new kind of a supercomputer able to execute
numerical computations with finite, infinite and infinitesimal
numbers numerically (not symbolically) using 1© and the
new numeral system. For more details, see Sergeyev (2001)
and the references therein.

3 The l0 pseudo-norm and 1©
In many problems in optimization and numerical analysis, it
is extremely important to obtain a vector with the smallest
possible number of components different from zero.

In Rinaldi et al. (2010), the problem of determining a vec-
tor belonging to a polyhedral set and having the minimum
number of nonzero components is studied, and two smooth
approximations of the l0 pseudo-norm are proposed. The
general optimization problem with cardinality constraints is
considered in Burdakov et al. (2016), where a reformulation
as a smooth optimization problem is proposed. InPhamDinh
and Le Thi (2014) and Gotoh et al. (2018), the cardinality-
constrained optimization problem is reformulated using a
DC (difference of convex functions) approach. We refer the
interested reader to Gotoh et al. (2018) for additional refer-
ences to optimization problemswhere sparsity of the solution
is required.

Determining a vector having the minimum number of
nonzero components can be generally obtained by adding
to the original problem a further term penalizing the number
of components different from zero or a term that can approx-
imately achieve the same goal.

Let x ∈ IRn . The l0 pseudo-norm is defined as

‖x‖0 := number of nonzero components in x =
n∑

i=1

1xi �=0,

(6)

where 1a is the characteristic (indicator) function that is equal
to 1 if a �= 0 and zero otherwise. To be precise, ‖·‖0 is called
l0 pseudo-norm since it is not a norm. In fact for x ∈ IRn ,
x �= 0 and 0 �= λ ∈ IR, we have:

‖λx‖0 = ‖x‖0 ,

and hence, ‖λx‖0 = |λ| ‖x‖0 if and only if |λ| = 1.
In successive sections, we present some specific use of

the l0 pseudo-norm for regularization and sparse solutions
problems.

In Natarajan (1995), it is shown that computing sparse
approximate solutions to linear systems is NP-hard. More-
over, in Amaldi and Kann (1998) it is shown that, for system
of linear relations, the problems of determining a solution
violating the minimum number of relations (when the sys-
tem itself is infeasible) and determining a solution with as
few nonzero variables as possible (if feasible) are both NP-
hard, and various strong bounds on the approximability of
different variants of these problems are discussed.

Therefore, various approximations of ‖x‖0 have been pro-
posed in the literature. In the context of Feature Selection and
Machine Learning, in Bradley and Mangasarian (1998) the
following approximation is proposed

‖x‖0 ≈
n∑

i=1

(
1 − e−α|xi |

)
,
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where α is a given positive number for which the authors
suggest to set the value 5.

In Li and Ye (2017), in the context of elastic net regular-
ization (discussed in detail in Sect. 4), the authors proposed
the following approximation:

‖x‖0 ≈ ‖x‖0,δ :=
n∑

i=1

x2i
x2i + δ

, (7)

where δ > 0 and smaller positive values of δ provide a better
approximation of ‖x‖0.

Following this suggestion and by using the new numeral
system, we propose to approximate the quantity ‖x‖0 with

‖x‖0, 1©−1 :=
n∑

i=1

x2i
x2i + 1©−1

. (8)

Let us study in detail the connections between ‖x‖0 and

‖x‖0, 1©−1 . Let ψ(t) := t2

t2 + 1©−1 . Hence, ‖x‖0, 1©−1 =
n∑

i=1

ψ(xi ). For i = 1, . . . , n, we assume

xi = x (0)
i + Ri 1©−1,

where Ri includes only finite and infinitesimal terms.
When x (0)

i = 0

ψ(xi ) = R2
i 1©−2

R2
i 1©−2 + 1©−1

= 1©−1 R2
i 1©−1

R2
i 1©−2 + 1©−1

= 1©−1 R2
i

R2
i 1©−1 + 1

= 0 1©0 + R′
i 1©−1,

where R′
i includes only finite and infinitesimal terms. Instead,

when x (0)
i �= 0

ψ(xi ) =
(
x (0)
i + Ri 1©−1

)2

(
x (0)
i + Ri 1©−1

)2 + 1©−1

= 1 − 1©−1

(
x (0)
i + Ri 1©−1

)2 + 1©−1
= 1 + S′

i 1©−1,

where again S′
i includes only finite and infinitesimal terms.

Therefore,

‖x‖0, 1©−1 = ‖x‖0 + T 1©−1, (9)

for some gross-number T which includes only finite and
infinitesimal terms. Hence, the finite parts of ‖x‖0 and
‖x‖0, 1©−1 coincide.

4 Elastic net regularization and 1©
Given a matrix A ∈ IRm×n and a vector b ∈ IRm , in many
important applications it is essential to determine a solution
x ∈ IRn of the system of linear equations Ax = b with the
smallest number of nonzero components:

minx ‖x‖0 ,

subject to Ax = b.

The associated generalized elastic net regularization prob-
lem (Li and Ye 2017) is

min
x

1

2
‖Ax − b‖22 + λ0 ‖x‖0 + λ2

2
‖x‖22 , (10)

where λ0 > 0 and λ2 > 0 are regularization parameters.
In Li and Ye (2017), the authors suggest to substitute ‖x‖0
with ‖x‖0,δ , as defined in (7), for fixed positive δ, and a
convergent algorithm for the solution of the corresponding
optimization problem is proposed. Clearly, the obtained solu-
tion only approximates the optimal solution of (10).

We propose to use in (10) the approximation (8) of ‖x‖0.
Replicating some of the proofs in Li and Ye (2017), a con-
vergent algorithm can be constructed. Moreover, due to the
position (9), apart from terms of order 1©−1 or below, the
obtained solution solves also problem (10).

In detail, consider the problem

min
x

f (x),

where

f (x) := 1

2
‖Ax − b‖22 + λ0 ‖x‖0, 1©−1 + λ2

2
‖x‖22

= 1

2
(Ax − b)T (Ax − b) + λ0

n∑

i=1

x2i
x2i + 1©−1

+ λ2

2
xT x .

(11)

Let D(x) ∈ IRn×n be given by

Dii (x) = 2 1©−1

(
(xi )2 + 1©−1

)2 , Di j (x) = 0, i �= j . (12)

Then,

∇ f (x) =
(
AT A + λ2 I + λ0D(x)

)
x − AT b.

Following (Li and Ye 2017), the iterative scheme we pro-
pose is given in Algorithm 4.1, moreover Lemma 1 is the
basis for establishing the convergence result.
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Algorithm 4.1:
1 Choose Choose x0 ∈ IRn ;
2 For k = 0, 1, . . .
3 Compute xk+1 by solving

(
AT A + λ2 I + λ0D(xk)

)
xk+1 = AT b. (13)

4 End

Lemma 1 Let f be given by (11). Let xk+1 be obtained from
xk by solving the system of Eq. (13). Then

f
(
xk
)

− f
(
xk+1

)
≥ 1

2

∥∥∥Axk − Axk+1
∥∥∥
2

2
+ λ2

2

∥∥∥xk − xk+1
∥∥∥
2

2
,

(14)

and hence

∥∥∥Axk − Axk+1
∥∥∥
2

2
≤ 2

(
f
(
xk
)

− f
(
xk+1

))
, (15)

∥∥∥xk − xk+1
∥∥∥
2

2
≤ 2

λ2

(
f
(
xk
)

− f
(
xk+1

))
. (16)

Proof See “Appendix A.” ��
The lemma above shows that the sequence { f (xk)} is a

non-increasing sequence. We are now ready to state the fol-
lowing convergence theorem.

Theorem 1 Let L0 := {x : f (x) ≤ f (x0)} be a compact
set, and let {xk} be the sequence produced by the iterative
scheme (13). Then

1. the sequence {xk} is all contained in L0;
2. the sequence

{
xk
}
has at least one accumulation point;

3. each accumulation point of {xk} belongs to L0;
4. each accumulation point x∗ satisfies the condition

(
AT A + λ2 I + λ0D(x∗)

)
x∗ = AT b,

and hence is a stationary point of f .

Proof First, from condition (14) in Lemma 1 we have
f
(
xk+1

) ≤ f
(
xk
)
, and hence, the entire sequence {xk}

is contained in L0. Moreover, the sequence
{
f
(
xk
)}

is a
bounded non-increasing sequence, and hence, it is a conver-
gent sequence. The existence of accumulation points for the
subsequence follows from the compactness of L0. Let now
x∗ be an accumulation point of {xk} and {xkl } be a subse-
quence indexed by l converging to x∗. From (16), it follows
that

∥∥∥xkl − xkl+1

∥∥∥
2

2
≤ 2

λ2

(
f
(
xkl
)

− f
(
xkl+1

))
.

The right term converges to 0, and also the subsequence{
xkl+1

}
converges to the accumulation point x∗. Moreover,

(
AT A + λ2 I + λ0D(xkl )

)
xkl+1 = AT b,

and hence,

(
AT A + λ2 I + λ0D(x∗)

)
x∗ = AT b.

Therefore, x∗ is a stationary point of f . ��

5 Sparse support vector machine

In this section, we show how 1© and the results of Sect. 3
can be used in the context of sparse support vector machines
(SSVMs).

Assume that empirical data (training set) (xi , yi ), i =
1, . . . , l, are given, where xi ∈ IRn, and yi ∈ {−1, 1}, i =
1, . . . , l. Note that when the index i is used as a superscript
the corresponding object is an input, while when it is used as
a subscript the corresponding object is an output. The aim is
to determine an hyperplane (and hence a vector w ∈ IRn and
a scalar θ ) such that:

wT xi + θ > 0when yi = 1 andwT xi + θ < 0when yi = −1.

The classification function is

h(x) = sign
(
wT x + θ

)
.

Classification in the feature space (instead of the original
space) requires to introduce a map

φ : IRn �→ E,

where E is an Hilbert Space with scalar product 〈·, ·〉. In
classical SVM [see Cortes and Vapnik (1995), Cristianini
and Shawe-Taylor (2000), Smola and Schölkopf (2004) and
references therein], the construction of the optimal hyper-
plane requires to solve the following (primal) optimization
problem

min
w,θ,ξ

1
2 〈w,w〉 + CeT ξ,

subject to yi
(〈
w,φ(xi )

〉+ θ
) ≥ 1 − ξi , i = 1, . . . , l,

ξi ≥ 0, i = 1, . . . , l,

(17)

where e is a vector with all elements equal to 1 and C is a
positive scalar.
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The corresponding dual problem is

min
α

1
2α

T Qα − eTα,

subject to yTα = 0,
0 ≤ α ≤ Ce,

(18)

where

Qi j = yi y j Ki j , and Ki j = K (xi , x j ) :=
〈
φ(xi ), φ(x j )

〉
.

The function

K : IRn × IRn → IR,

is called the kernel function. It is well known that for the con-
struction of the dual problem and the classification function
the complete knowledge of the function φ(·) is not neces-
sary: only the quantities Ki j = 〈φ(xi ), φ(x j )

〉
are needed. In

fact, from KKT conditions

w =
l∑

i=1

αi yiφ(xi ) (19)

and the classification function is

h(x) = sign
(
〈w,φ(x)〉 + θ

)

= sign

(
l∑

i=1

αi yi
〈
φ(xi ), φ(x)

〉
+ θ

)
.

For a sparse representation of SVM, the vector w is substi-
tuted by its expansion in terms of the vector α. Moreover, let
Ki . be the column vector that corresponds to the i th row of
matrix (Ki j ), note that

Ki .
Tα + θ =

l∑

j=1

Ki jα j + θ

=
l∑

j=1

〈
φ(xi ), φ(x j )

〉
α j + θ

=
〈
φ(xi ),

l∑

j=1

φ(x j )α j

〉
+ θ.

In Huang et al. (2010), the authors consider the following
optimization problem instead of (17), obtained by replacing
1
2 〈w,w〉 with ‖α‖0 and by using the expansion (19) of w in
terms of α:

minα,θ,ξ ‖α‖0 + CeT ξ,

subject to yi
[
Ki .

Tα + θ
]

≥ 1 − ξi , i = 1, . . . , l,

ξ ≥ 0.

(20)

In problem (20) the term ‖α‖0 is then replaced by 1
2α

T	α,
where 	 is the diagonal matrix with 	i i = λi , i = 1, . . . , l.

The following iterative scheme was proposed in Huang
et al. (2010) to solve the above problem. In particular, given
a very small positive value ε, in the Algorithm 5.1 the new

value λk+1
r for λr is set to 1/

(
αk
r

)2
if
∣∣αk

r

∣∣ is “significantly”
different from zero, otherwise, λk+1

r = 1/ε2.

Algorithm 5.1:
1 Set λ0r = 1, r = 1, . . . , l;
2 For k = 0, 1, . . .
3 Solve

minα,θ,ξ

1

2

l∑

r=1

λkrα
2
r + CeT ξ,

subject to yi
[
Ki .

T α + θ
]

≥ 1 − ξi , i = 1, . . . , l,

ξ ≥ 0.
(21)

and let αk be the optimal solution;
4 Update λk+1 according to the formula

λk+1
r =

⎧
⎪⎪⎨

⎪⎪⎩

1
(
αk
r

)2 if
∣∣αk

r

∣∣ ≥ ε,

1

ε2
otherwise,

r = 1, . . . , l,

5 End

The KKT conditions for Problem (21) are

	kα −
l∑

j=1

β j y j K j . = 0, (22a)

βT y = 0, (22b)

Ce − β ≥ 0, (22c)

β ≥ 0, (22d)

βT (Ce − β) = 0, (22e)

where β is the vector of multipliers associated to the con-

straints yi
[
Ki .

Tα + θ
]

≥ 1 − ξi , i = 1, . . . , l.

From (22a) it follows that

λkrαr =
l∑

j=1

β j y j K jr = K̄ T
r . β, r = 1, . . . , l,

where K̄r j = y j K jr , with r , j = 1, . . . , l.
Once again, instead of ‖α‖0, we use ‖α‖0, 1©−1 and we

propose to solve the following 1©–Sparse SVM problem in
place of (20):
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minα,θ,ξ
1©
2 ‖α‖0, 1©−1 + CeT ξ,

subject to yi
[
Ki .

Tα + θ
]
≥ 1 − ξi , i = 1, . . . , l,

ξ ≥ 0.

(23)

Let by (8)

h(α) := 1©
2

‖α‖0, 1©−1

= 1©
2

l∑

j=1

α2
j

α2
j + 1©−1

= 1©
2

l∑

j=1

α2
j + 1©−1 − 1©−1

α2
j + 1©−1

= l

2
1© −

l∑

j=1

1©
2

1©−1

α2
j + 1©−1

= l

2
1© − 1

2

l∑

j=1

1

α2
j + 1©−1

.

Then,

[
∇h(α)

]

r
= αr
(
α2
r + 1©−1

)2 .

The KKT conditions for the above problem (23) are

∇h(α) −
l∑

j=1

β j y j K j . = 0, (24a)

βT y = 0, (24b)

Ce − β ≥ 0, (24c)

β ≥ 0, (24d)

βT (Ce − β) = 0. (24e)

Note that conditions (24a) can be rewritten as

1
(
α2
r + 1©−1

)2 αr = K̄ T
r . β, r = 1, . . . , l. (25)

From the above formula, it is “natural” to set the new value
for λr

λk+1
r = 1

(
α2
r + 1©−1

)2 , r = 1, . . . , l.

Now, for r = 1, . . . , l, let

αr = α(0)
r + α(1)

r 1©−1 + . . . = α(0)
r + A 1©−1,

with A ∈ IR finite or infinitesimal. When α
(0)
r = 0

α2
r + 1©−1 = 1©−1 + A2 1©−2,

and

1
(
α2
r + 1©−1

)2 = 1
(

1©−1 + A2 1©−2
)2 = 1

1©−2 + A′ 1
1©−3 ,

(26)

with A′ finite or infinitesimal. In place, when α
(0)
r �= 0

α2
r + 1©−1 =

(
α(0)
r

)2 + A′′ 1©−1,

and

1
(
α2
r + 1©−1

)2 = 1
(
α

(0)
r

)4 + A′′′ 1©−1
, (27)

with A′′, A′′′ finite or infinitesimal.
Formulas (26) and (27) mimic almost perfectly the updat-

ing formulas for λk+1 proposed in Huang et al. (2010) in
order to solve (20) by using problem (21). The main differ-
ence is that, for the nonzero case there is a power 4 instead of
2. However, using 1© and considering problem (23) we can
shed some light on the updating formulas for β, otherwise
quite arbitrary. The term 1

1©−2 perfectly corresponds to the

updating formula λk+1
r = 1

ε2
. In the other case, the updating

formula λk+1
r = 1

ᾱ2
r
is replaced by the term 1(

α
(0)
r

)4 .

The use of 1© allows to easily obtain both formulas from
the KKT condition (24a) and observations on the expansion
of the gross-number α.

6 Conclusions

In this paper, we have presented some possible uses in
optimization problems of the novel approach to infinite
and infinitesimal numbers proposed by Sergeyev (2001,
2009, 2017). In particular, optimization problems including
smoothed l0 penalty and classification problems involving
sparse support vector machines are studied. In order to avoid
the difficulties due to the use of the l0 pseudo-norm of a vec-
tor, we propose to approximate the l0 pseudo-norm by using a
smooth function defined in terms of 1©. The results obtained
using this new approximation in the two optimization prob-
lems perfectly match with those presented in the literature.
Actually, the new 1©-based methodology may represent a
fruitful and promising tool to be exploited within other clas-
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sification and regression problems offering new views and
different perspectives.
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A Proof of Lemma 1

We prove Lemma 1 of Sect. 4 by adapting to this context the
proof proposed by the authors in Li and Ye (2017), Lemma 2.

Proof of Lemma 1. Let f be defined in (11). We have:

f
(
xk
)

− f
(
xk+1

)
= 1

2

∥∥∥Axk − b
∥∥∥
2

2
+ λ0

∥∥∥xk
∥∥∥
0, 1©−1

+ λ2

2

∥∥∥xk
∥∥∥
2

2

− 1

2

∥∥∥Axk+1 − b
∥∥∥
2

2
− λ0

∥∥∥xk+1
∥∥∥
0, 1©−1

− λ2

2

∥∥∥xk+1
∥∥∥
2

2

= 1

2

∥∥∥Axk − b
∥∥∥
2

2
− 1

2

∥∥∥Axk+1 − b
∥∥∥
2

2

+ λ2

(
1

2

∥∥∥xk
∥∥∥
2

2
− 1

2

∥∥∥xk+1
∥∥∥
2

2

)

+ λ0

(∥∥∥xk
∥∥∥
0, 1©−1

−
∥∥∥xk+1

∥∥∥
0, 1©−1

)
. (28)

We analyze separately the different terms of (28). We can
write:

1

2

∥∥∥Axk − b
∥∥∥
2

2
− 1

2

∥∥∥Axk+1 − b
∥∥∥
2

2

= 1

2

(
Axk

)T (
Axk

)
− 1

2

(
Axk+1

)T (
Axk+1

)

+ bT
(
Axk+1 − Axk

)

= 1

2

∥∥∥Axk − Axk+1
∥∥∥
2

2
+
(
Axk − Axk+1

)T (
Axk+1

)

+ bT
(
Axk+1 − Axk

)

= 1

2

∥∥∥Axk − Axk+1
∥∥∥
2

2
+
(
Axk+1 − b

)T (
Axk − Axk+1

)

= 1

2

∥∥∥Axk − Axk+1
∥∥∥
2

2
+
(
xk − xk+1

)T (
AT Axk+1 − AT b

)

= 1

2

∥∥∥Axk − Axk+1
∥∥∥
2

2
− λ2

(
xk+1

)T (
xk − xk+1

)

− λ0

n∑

i=1

(
xki − xk+1

i

)
xk+1
i 2 1©−1

((
xki
)2 + 1©−1

)2 , (29)

where in the last step the definitions of the proposed iterative
scheme (13) and the matrix D in (12) have been used.
Moreover,

1

2

∥∥∥xk
∥∥∥
2

2
− 1

2

∥∥∥xk+1
∥∥∥
2

2

= 1

2
(xk)T xk + 1

2
(xk+1)T xk+1

−(xk)T xk+1 − (xk+1)T xk+1 + (xk)T xk+1

= 1

2

∥∥∥xk − xk+1
∥∥∥
2

2
+ (xk+1)T

(
xk − xk+1

)
. (30)

Substituting (29) and (30) into (28) we have:

f
(
xk
)

− f
(
xk+1

)
= 1

2

∥∥∥Axk − Axk+1
∥∥∥
2

2
+ λ2

2

∥∥∥xk − xk+1
∥∥∥
2

2

− λ0

n∑

i=1

(
xki − xk+1

i

)
xk+1
i 2 1©−1

((
xki
)2 + 1©−1

)2

+ λ0

(∥∥∥xk
∥∥∥
0, 1©−1

−
∥∥∥xk+1

∥∥∥
0, 1©−1

)
. (31)

From the definition (8)

∥∥∥xk
∥∥∥
0, 1©−1

−
∥∥∥xk+1

∥∥∥
0, 1©−1

=
n∑

i=1

⎛

⎜⎝
(
xki
)2

(
xki
)2 + 1©−1

−
(
xk+1
i

)2

(
xk+1
i

)2 + 1©−1

⎞

⎟⎠ . (32)

It is easy to prove (Li and Ye 2017), Lemma 1 that given
δ > 0, for any a, b ∈ IR the following inequality holds:

a2

a2 + δ
− b2

b2 + δ
− 2δb(a − b)

(a2 + δ)2
≥ δ(a − b)2

(a2 + δ)2
. (33)

As a result, we can write

n∑

i=1

⎛

⎜⎝
(
xki
)2

(
xki
)2 + 1©−1

−
(
xk+1
i

)2

(
xk+1
i

)2 + 1©−1
−

2 1©−1
(
xki − xk+1

i

)
xk+1
i

((
xki
)2 + 1©−1

)2

⎞

⎟⎠

≥
n∑

i=1

1©−1
(
xki − xk+1

i

)2

((
xki
)2 + 1©−1

)2 . (34)
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By using (32)–(34) into (31), we can conclude:

f
(
xk
)

− f
(
xk+1

)
≥ 1

2

∥∥∥Axk − Axk+1
∥∥∥
2

2
+ λ2

2

∥∥∥xk − xk+1
∥∥∥
2

2

+ λ0

n∑

i=1

1©−1
(
xki − xk+1

i

)2

((
xki
)2 + 1©−1

)2

≥ 1

2

∥∥∥Axk − Axk+1
∥∥∥
2

2
+ λ2

2

∥∥∥xk − xk+1
∥∥∥
2

2
(35)

since
∑n

i=1

1©−1
(
xki − xk+1

i

)2

((
xki
)2 + 1©−1

)2 ≥ 0 for any xki and xk+1
i .

��
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