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Abstract
The two-stage network DEA models based on the framework that the efficiency of the whole stage is equal to the product
of the efficiencies of two sub-stages can not only turn the ‘black box’ into the ‘glass box’ to identify the root causes of the
inefficiency of the network system, but also consider the relationship between the two sub-stages within the whole stage.
Nowadays, the two-stage network DEA models have been widely applied in the field of economy and management, such
as green supply chain and reverse supply chain. Due to the novelty of evaluation indexes, these emerging research objects
with network structure, such as green supply chain, involve not only traditional evaluation indexes such as cost and time, but
also some novel evaluation indexes such as customer satisfaction and flexibility. However, these new evaluation indexes are
difficult to quantify accurately, which will lead to the failure of the traditional two-stage network DEA models. Therefore,
this paper attempts to extend the traditional two-stage network DEA models to the uncertain two-stage network DEA models
with the application of uncertainty theory. In the new models, inputs, intermediates and outputs are considered to be uncertain
variables to deal with the problem of inaccurate data. Finally, a numerical example of the uncertain two-stage network DEA
models will be presented for illustration.

Keywords Two-stage network system · Data envelopment analysis · Uncertainty theory · Efficiency

1 Introduction

With the globalization of economy and the popularity of
supply chain, the traditional ‘black-box’ DEA models such
as CCR or BCC models Charnes et al. (1978) which can
only recognize DMU as a whole rather than break down
the whole system into sub-stages are no longer perfectly
suitable for evaluating a systemwith complex network struc-
ture Cook and Zhu (2010). This is because the ‘black-box’
models ignore the internal structure of the network system
and hence cannot provide enough information on identify-
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ing the root causes of the inefficiency of the network system
Esmaeilzadeh andMatin (2019). For decisionmakers, it is not
enough to evaluate whether the network system is efficient or
not from a holistic perspective. In order to improve the per-
formance of the network system comprehensively, decision
makers need to investigate the running states of sub-stages
to make the optimal decisions Chen (2009). Therefore, many
researchers have put forward that the traditional ‘black-box’
models should be converted into ‘glass-box’models inwhich
the internal structure of the network system should be taken
into account in the efficiency evaluation Kao (2014).

In order to transform ‘black-box’ models into ‘glass-box’
models, many scholars have devoted great efforts to the study
of network DEA models. For example, Fa̋re and Grosskopf
(2000) proved the usefulness of network DEA by analyzing
several networkmodels with different structures. Seiford and
Zhu (1999) established the two-stage network DEA models
to assess sub-stages of 55 top banks in US. Cook et al. (2014)
summarized the latest researches of network DEA models.

Among all the network structures, the two-stage network
structure has been considered as the most fundamental and
straightforward structure because it can be expanded to some
more intricate structures and has been widely used in numer-
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ous practical studies Kao and Hwang (2008). For example,
Seiford and Zhu (1999) decomposed the entire operation
process of a commercial bank into two sub-stages: profitabil-
ity and marketability, and the efficiencies of two sub-stages
and the whole stage were calculated by CCR models respec-
tively. Some other examples contain the performance of bank
branch affected by information technology (Chen and Zhu
2004) and the performance of two-stageMajor League Base-
ball (Sexton and Lewis 2003).

Some of the above studies are based on the two-stage net-
work DEA models in which two sub-stages are regarded
as independent individuals with their own inputs and out-
puts respectively. However, this research method does not
consider the influence of the relationship between the two
sub-stages within the whole stage on efficiency evaluation
of the two-stage network system. From the perspective of
supply chain, due to the close cooperation between upstream
and downstream enterprises, each individual does not exist
independently, whose inputs and outputs are affected by
neighboring enterprises. For instance, for the purpose of
reaching an efficient status, the downstream enterprise may
choose to cut down its inputs (intermediates). But this action
means that the outputs of the upstream enterprise will be
reduced, which may lead to the decrease of the efficiency of
the upstream enterprise. Thus, there will be potential conflict
among the two sub-stages, which is caused by their relation-
ship.

In order to solve this potential conflict caused by the
relationship between two sub-stages, a framework that the
efficiency of thewhole stage is equal to the product of the effi-
ciencies of two sub-stages was proposed by Kao and Hwang
(2008). This reasonable relationship reflects the close con-
nection between the two sub-stages within the whole stage,
which can effectively cope with this potential conflict. More-
over, the two-stage network DEA models considering their
relationship are more reliable in identifying the efficiencies
of the network system and consequently are capable of more
accurately finding out the root causes of the inefficiency of
the network system (Kao and Hwang 2008). Therefore, it is
essential to establish the two-stage networkDEAmodels that
conform to their relationship Kao (2016).

Recently, some burgeoning issues such as green supply
chain and reverse supply chain have received increasing
attention in many researches Dyckhoff and Allen (2001).
Due to the novelty of evaluation indexes, these emerging
research objects with network structure, such as green sup-
ply chain, involve not only traditional evaluation indexes such
as cost and time, but also some new evaluation indexes such
as customer satisfaction, social benefits and flexibility. How-
ever, these new evaluation indexes are difficult to quantify
accurately and hence considered as inaccurate data, which
will lead to the failure of the traditional two-stage network
DEAmodels (Sadjadi and Omrani 2008). Therefore, in order

to accurately evaluate these emerging issues, it is urgent to
handle the problem of inaccurate data.

In order to solve the imprecise data, many stochastic DEA
models have been built up based on the probability theory by
Sengupta (1982), Banker (1993), Sueyoshi (2000) and Ole-
sen and Petersen (2016). Furthermore, fuzzy methods have
beenused todealwith the inaccurate data inDEA.Kao (2011)
developed the fuzzy forms of the two-stage network DEA
models. Some other researchers also have been devoted to
the application of fuzzy method in two-stage network DEA,
including Tavana (2018), Hatami-Marbini and Saati (2018)
and Wanke et al. (2018).

Nowadays, there is a tendency to use uncertainty theory
established byLiu (2007) to copewith the problemof inaccu-
rate data. The core advantage of uncertainty theory lies in the
reasonable construction of belief degree to solve the problem
of inaccurate data on the basis of overcoming the limita-
tions of human beings Liu (2012). Moreover, uncertainty
theory has constantly been applied in many fields of science
and engineering. Liu (2009) put forward uncertain program-
ming in 2009. Many other scholars have also been devoted
to the application in the field of programming from uncertain
machine scheduling (Liu 2010) and uncertainmulti-objective
programming (Liu and Chen 2015) to uncertain multilevel
programming model (Liu and Yao 2015).

In recent years, uncertainty theory has been also studied
and proved by many experts in the field of DEA. Wen et al.
(2014) proposed the first uncertain DEA model. Then, Lio
and Liu (2018) introduced an uncertain DEAmodel contain-
ing imprecise inputs and outputs. Jiang et al. (2019) further
established an uncertain DEA model to recognize the scale
efficiency in uncertain situation. In addition, Jiang et al.
(2020) developed two new uncertain DEA models capable
of further identifying specific scale efficiency. However, up
to now, there is no research on the uncertainty theory in the
two-stage network DEA models.

Thus, the purpose of this paper is to apply and extend the
uncertainty theory to the two-stage network DEAmodels. In
general, the contributions of this paper are as follows. Firstly,
this article expands the application of uncertainty theory in
the field of DEA. Secondly, this paper expands the evaluation
method of unobservable variables and the scope of applica-
tion of DEA models by establishing the uncertain two-stage
network DEA models. At last, for the contribution of prac-
tice, the new models can provide more constructive opinions
for decision makers to identify the root causes of the inef-
ficiency of the network system in complex and uncertain
environment and to further enhance the performance of the
network system.

The rest of this article is organized as follows. Section 2
will provide some basic theoretical knowledge of uncertainty
theory. The uncertain two-stage network DEA models and
their equivalent formswill be presented and proved in Sect. 3.
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In Sect. 4, a numerical example will be given for illustration.
The final section is the conclusion remarks.

2 Preliminaries

In order to better expand the application of uncertainty the-
ory in two-stage network DEA models, we will introduce
the basic knowledge and concepts of uncertainty theory. The
fundamental and essential definition of uncertainty theory is
uncertain measure. The uncertain measureM is defined as a
set function on a σ -algebra L over a nonempty set Γ by the
following three axioms Liu (2007):
Axiom 1. (Normality Axiom) M{Γ } = 1 for the universal
set Γ .
Axiom 2. (Duality Axiom) M{Λ} + M{Λc} = 1 for any
event Λ.
Axiom 3. (Subadditivity Axiom) For every countable
sequence of events Λ1,Λ2,. . . , we have

M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M{Λi }.

Besides, Liu (2009) proposed the product axiom for the
product uncertain measure in 2009 as follows:
Axiom 4. (Product Axiom) Let (Γk,Lk,Mk) be uncertainty
spaces for k = 1, 2, . . . . The product uncertain measure M
is an uncertain measure satisfying

M

{ ∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}

where Λk are arbitrarily chosen events from Lk for k =
1, 2, . . . , respectively.

Definition 1 (Liu 2007) Uncertain variable is a measurable
function τ from an uncertainty space (Γ , L,M) to the set of
real numbers such that

{τ ∈ B} = {γ ∈ Γ | τ(γ ) ∈ B}

is an event for any Borel set B of real numbers.

Definition 2 (Liu 2007) The uncertainty distributionΨ of an
uncertain variable τ is defined by

Ψ (x) = M{τ ≤ x}

for any real number x .

We will introduce some common uncertainty distributions
based on the definitions above. Firstly, we will introduce

the most common one called linear uncertainty distribution,
which is

Ψ (x) =
⎧⎨
⎩
0, if x ≤ a
(x − a)/(b − a), if a < x ≤ b
1, if x > b;

and the second common uncertainty distribution is called
zigzag uncertainty distribution, which is

Ψ (x) =

⎧⎪⎪⎨
⎪⎪⎩
0, if x ≤ a
(x − a)/[2(b − a)], if a < x ≤ b
(x + c − 2b)/[2(c − b)], if b < x ≤ c
1, if x > c.

An uncertainty distribution Ψ (x) is deemed to be regular
(Liu 2010) if it is a continuous function and strictly increasing
with respect to x at which 0 < Ψ (x) < 1, and

lim
x→−∞ Ψ (x) = 0, lim

x→∞ Ψ (x) = 1.

If τ is an uncertain variable with regular uncertainty dis-
tribution Φ(x), the inverse function Ψ −1(α) is called the
inverse uncertainty distribution of τ (Liu 2010).

Definition 3 (Liu 2009) Uncertain variables τ1, τ2, . . ., τk are
said to be independent provided that

M

{
k⋂

i=1

(τi ∈ Bi )

}
=

k∧
i=1

M {τi ∈ Bi }

for any Borel sets B1, B2, . . ., Bk of real numbers.

The following theorem proposed by Liu (2010) can
calculate the inverse uncertainty distribution of a strictly
monotonous function of independent uncertain variables
with regular uncertainty distributions as below:

Theorem 1 (Liu 2010) Let τ1, τ2, . . . , τk be independent
uncertain variables with regular uncertainty distributions
Ψ1, Ψ2, . . . , Ψk , respectively. If f is strictly increasing with
respect to τ1, τ2, . . . , τq (q ≤ k) and strictly decreasing with
respect to τq+1, τq+2, . . . , τk , then τ = f (τ1, τ2, . . . , τk) is
an uncertain variable with an inverse uncertainty distribu-
tion

Φ−1(α) = f (Ψ −1
1 (α), . . . , Ψ −1

q (α), Ψ −1
q+1(1 − α), . . . ,

Ψ −1
k (1 − α)).

Expected value can be used to represent the size of τ ,
which is the average value of uncertain variable in the sense
of uncertain measure. The formal definition is shown below.
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Definition 4 (Liu2007)The expectedvalueof uncertain vari-
able τ is defined by

E[τ ] =
∫ +∞

0
M{τ ≥ x}dx −

∫ 0

−∞
M{τ ≤ x}dx

provided that at least one of the two integrals is finite.

Suppose that τ is defined as an uncertain variable with
uncertainty distribution Ψ . Afterwards, Liu (2007) Liu
(2010) represented the formulas about the expected values
of τ as below:

E[τ ] =
∫ +∞

0
(1 − Ψ (x))dx −

∫ 0

−∞
Ψ (x)dx,

E[τ ] =
∫ 1

0
Ψ −1(α)dα.

Theorem 2 (Liu and Ha 2010) Assume τ1, τ2, . . . , τk are
independent uncertain variables with regular uncertainty
distributionsΨ1, Ψ2, . . . , Ψk , respectively. If f(τ1, τ2, . . . , τk)
is strictly increasingwith respect to τ1, τ2, . . . , τq (q≤ k) and
strictly decreasing with respect to τq+1, τq+2, . . . , τk , then
the expected value of τ = f(τ1, τ2, . . . , τk) is

E[τ ] =
∫ 1

0
f (Ψ −1

1 (α), . . . , Ψ −1
q (α), Ψ −1

q+1(1 − α),

. . . , Ψ −1
k (1 − α))dα.

3 The uncertain two-stage network DEA
models

In this part, we will introduce the uncertain two-stage net-
work DEA models considering the relationship between the
two sub-stages within the whole stage. Similar to the tradi-
tional two-stage network DEA models, the structure of the
uncertain two-stage network DEA models is also composed
of two sub-stages, which is shown in Fig. 1. The inputs are
transformed into intermediates through the first stage, and
then the intermediates are totally put into the second stage.
In the newmodels, inputs, intermediates and outputs are con-
sidered to be uncertain variables.

Fig. 1 Two-stage network system

In order to build the whole stage model, the first stage
model and the second stage model of the uncertain two-stage
networkDEAmodels, somebasic symbols need to be defined
as below:
DMUk : the kth DMU, k = 1, 2, . . . , j
DMUo: the target DMU
x̃ k = (x̃k1, x̃k2,…, x̃kn): the uncertain inputs vector of DMUk ,
k = 1, 2, . . . , j
x̃o = (x̃o1, x̃o2, …, x̃on): the uncertain inputs vector of DMUo

ỹk = (ỹk1, ỹk2, …, ỹkh): the uncertain outputs vector of
DMUk , k = 1, 2, . . . , j
ỹo = (ỹo1, ỹo2,…, ỹoh): the uncertain outputs vector ofDMUo

z̃k =(z̃k1, z̃k2, …, z̃kp): the uncertain intermediates vector of
DMUk , k = 1, 2, . . . , j
z̃o =(z̃o1, z̃o2, …, z̃op): the uncertain intermediates vector of
DMUo

u ∈ �n : the vector of input weights
v ∈ �h : the vector of output weights
w ∈ �p: the vector of intermediate weights

3.1 The whole stagemodel

In order to establish the whole stage model more reason-
ably, we will take into account the proportional constraint
of each sub-stage based on the relationship between the two
sub-stages within the whole stage. Moreover, the multiplier
of the intermediate z̃ we take in this model is always the
same regardless of whether it plays the role of input or out-
put throughout the process. Based on the above statement
and uncertainty theory, this model is formulated as below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
u,v,w

cw = E
[
uT ỹo
vT x̃o

]
s.t . E

[
uT ỹk
vT x̃k

]
≤ 1, k = 1, 2, . . . , j

E
[

wT z̃k
vT x̃k

]
≤ 1, k = 1, 2, . . . , j

E
[
uT ỹk
wT z̃k

]
≤ 1, k = 1, 2, . . . , j

u ≥ 0
v ≥ 0
w ≥ 0.

(1)

Definition 5 (Uncertain DEA Efficiency) If and only if the
optimal solution cw of the model (1) can reach 1, DMUo can
be considered as efficient.

The efficiency of DMU0 can be calculated by evaluating
the optimal value of the whole stage model. The equivalent
form of model (1) is proved as below:

Theorem 3 For each k, let inputs x̃k1, x̃k2, . . . , x̃kn, out-
puts ỹk1, ỹk2, . . . , ỹkh and intermediates z̃k1, z̃k2, . . . , z̃kp
be independent uncertain variables with regular uncer-
tainty distributions Ψk1, Ψk2, . . . , Ψkn, Φk1, Φk2, . . . , Φkh
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and Ωk1,Ωk2, . . . ,Ωkp, respectively. Then the whole stage
model (1) is equal to the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
u,v,w

cw = ∫ 1
0

∑h
t=1 utΦ

−1
ot (α)∑n

i=1 viΨ
−1
oi (1−α)

dα

s.t .
∫ 1
0

∑h
t=1 utΦ

−1
kt (α)∑n

i=1 viΨ
−1
ki (1−α)

dα ≤ 1, k = 1, 2, . . . , j

∫ 1
0

∑p
q=1 wqΩ−1

kq (α)∑n
i=1 viΨ

−1
ki (1−α)

dα ≤ 1, k = 1, 2, . . . , j

∫ 1
0

∑h
t=1 utΦ

−1
kt (α)∑p

q=1 wqΩ−1
kq (1−α)

dα ≤ 1, k = 1, 2, . . . , j

u = (u1, u2, . . . , uh) ≥ 0

v = (v1, v2, . . . , vn) ≥ 0

w = (w1, w2, . . . , wp) ≥ 0

(2)

whereΨo1, Ψo2, . . . , Ψon ,Φo1, Φo2, . . . , Φoh andΩo1,Ωo2,

. . . ,Ωop are the regular uncertainty distributions of x̃o1, x̃o2,

. . . , x̃on , ỹo1, ỹo2, . . . , ỹoh and z̃o1, z̃o2, . . . , z̃op, respec-
tively.

Proof Since the function uT ỹk/vT x̃k is strictly increasing
with respect to ỹk and strictly decreasing with respect to x̃k
for each k. According to Theorem 1, we can conclude that
the inverse uncertainty distribution of uT ỹk/vT x̃k is

G−1
k (α) =

∑h
t=1 utΦ

−1
kt (α)∑n

i=1 viΨ
−1
ki (1 − α)

.

From Theorem 2, we obtain

E

[
uT ỹk
vT x̃k

]
=

∫ 1

0

∑h
t=1 utΦ

−1
kt (α)∑n

i=1 viΨ
−1
ki (1 − α)

dα, k = 1, 2, . . . , j .

Similarly, for each k, according to the above proof, it can be
drawn at once that the function

E

[
wT z̃k
vT x̃k

]
=

∫ 1

0

∑p
q=1 wqΩ

−1
kq (α)∑n

i=1 viΨ
−1
ki (1 − α)

dα

is strictly increasingwith respect to z̃k and strictly decreasing
with respect to x̃k . Identically, for each k, it can be inferred
very quickly that the function

E

[
uT ỹk
wT z̃k

]
=

∫ 1

0

∑h
t=1 utΦ

−1
kt (α)∑p

q=1 wqΩ
−1
kq (1 − α)

dα

is strictly increasingwith respect to ỹk and strictly decreasing
with respect to z̃k .
The theorem has been proved. �	

3.2 The first stagemodel

The first stage model is established based on the whole stage
model. Therefore, the first stage model is trying to find the
maximum efficiency of the first stage while maintaining the
efficiency of the whole stage. Then the first stage model is
formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
u,v,w

c1 = E
[

wT z̃o
vT x̃o

]
s.t . E

[
uT ỹ0
vT x̃0

]
= cw

E
[
uT ỹk
vT x̃k

]
≤ 1, k = 1, 2, . . . , j

E
[

wT z̃k
vT x̃k

]
≤ 1, k = 1, 2, . . . , j

E
[
uT ỹk
wT z̃k

]
≤ 1, k = 1, 2, . . . , j

u ≥ 0
v ≥ 0
w ≥ 0.

(3)

Definition 6 (Uncertain DEA Efficiency) If and only if the
optimal solution c1 of the model (3) can reach 1, DMUo can
be considered as efficient.

The efficiency of DMU0 can be calculated by evaluating
the optimal value of the first stage model. The equivalent
form of model (3) is proved as below:

Theorem 4 For each k, let inputs x̃k1, x̃k2, . . . , x̃kn, out-
puts ỹk1, ỹk2, . . . , ỹkh and intermediates z̃k1, z̃k2, . . . , z̃kp
be independent uncertain variables with regular uncer-
tainty distributions Ψk1, Ψk2, . . . , Ψkn, Φk1, Φk2, . . . , Φkh

and Ωk1,Ωk2, . . . ,Ωkp, respectively. Then the first stage
model (3) is equal to the following form:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
u,v,w

c1 = ∫ 1
0

∑p
q=1 wqΩ−1

oq (α)∑n
i=1 viΨ

−1
oi (1−α)

dα

s.t .
∫ 1
0

∑h
t=1 utΦ

−1
ot (α)∑n

i=1 viΨ
−1
oi (1−α)

dα = cw

∫ 1
0

∑h
t=1 utΦ

−1
kt (α)∑n

i=1 viΨ
−1
ki (1−α)

dα ≤ 1, k = 1, 2, . . . , j

∫ 1
0

∑p
q=1 wqΩ−1

kq (α)∑n
i=1 viΨ

−1
ki (1−α)

dα ≤ 1, k = 1, 2, . . . , j

∫ 1
0

∑h
t=1 utΦ

−1
kt (α)∑p

q=1 wqΩ−1
kq (1−α)

dα ≤ 1, k = 1, 2, . . . , j

u = (u1, u2, . . . , uh) ≥ 0

v = (v1, v2, . . . , vn) ≥ 0

w = (w1, w2, . . . , wp) ≥ 0

(4)

whereΨo1, Ψo2, . . . , Ψon ,Φo1, Φo2, . . . , Φoh andΩo1,Ωo2,

. . . ,Ωop are the regular uncertainty distributions of x̃o1, x̃o2,

. . . , x̃on , ỹo1, ỹo2, . . . , ỹoh and z̃o1, z̃o2, . . . , z̃op, respec-
tively.

Proof Since the function uT ỹk/vT x̃k is strictly increasing
with respect to ỹk and strictly decreasing with respect to x̃k
for each k. According to Theorem 1, we can conclude that
the inverse uncertainty distribution of uT ỹk/vT x̃k is

J−1
k (α) =

∑h
t=1 utΦ

−1
kt (α)∑n

i=1 viΨ
−1
ki (1 − α)

.

From Theorem 2, we obtain

E

[
uT ỹk
vT x̃k

]
=

∫ 1

0

∑h
t=1 utΦ

−1
kt (α)∑n

i=1 viΨ
−1
ki (1 − α)

dα, k = 1, 2, . . . , j .

Similarly, for each k, according to the above proof, it can be
drawn at once that the function

E

[
wT z̃k
vT x̃k

]
=

∫ 1

0

∑p
q=1 wqΩ

−1
kq (α)∑n

i=1 viΨ
−1
ki (1 − α)

dα

is strictly increasingwith respect to z̃k and strictly decreasing
with respect to x̃k . Identically, for each k, it can be inferred
very quickly that the function

E

[
uT ỹk
wT z̃k

]
=

∫ 1

0

∑h
t=1 utΦ

−1
kt (α)∑p

q=1 wqΩ
−1
kq (1 − α)

dα

is strictly increasingwith respect to ỹk and strictly decreasing
with respect to z̃k .

The theorem has been proved. �	

3.3 The second stagemodel

Similarly, the efficiency of the second stage model is based
on the efficiencies of the first stage and the whole stage.
While maintaining the efficiencies of the whole stage and
the first stage, the efficiency of the second stage reaches the
maximum. The second stage model is presented as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
u,v,w

c2 = E
[
uT ỹo
wT z̃o

]
s.t . E

[
uT ỹ0
vT x̃0

]
= cw

E
[

wT z̃0
vT x̃0

]
= c1

E
[
uT ỹk
vT x̃k

]
≤ 1, k = 1, 2, . . . , j

E
[

wT z̃k
vT x̃k

]
≤ 1, k = 1, 2, . . . , j

E
[
uT ỹk
wT z̃k

]
≤ 1, k = 1, 2, . . . , j

u ≥ 0
v ≥ 0
w ≥ 0.

(5)

Definition 7 (Uncertain DEA Efficiency) If and only if the
optimal solution c2 of the model (5) can reach 1, DMUo is
considered as efficient.

The efficiency of DMU0 can be calculated by evaluating
the optimal value of the second stage model. The equivalent
form of model (5) is proved as below:

Theorem 5 For each k, let inputs x̃k1, x̃k2, . . . , x̃kn, out-
puts ỹk1, ỹk2, . . . , ỹkh and intermediates z̃k1, z̃k2, . . . , z̃kp
be independent uncertain variables with regular uncer-
tainty distributions Ψk1, Ψk2, . . . , Ψkn, Φk1, Φk2, . . . , Φkh

and Ωk1,Ωk2, . . . ,Ωkp, respectively. Then the second stage
model (5) is equal to the following form:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
u,v,w

c2 = ∫ 1
0

∑h
t=1 utΦ

−1
ot (α)∑p

q=1 wqΩ−1
oq (1−α)

dα

s.t .
∫ 1
0

∑h
t=1 utΦ

−1
ot (α)∑n

i=1 viΨ
−1
oi (1−α)

dα = cw∫ 1
0

∑p
q=1 wqΩ−1

oq (α)∑n
i=1 viΨ

−1
oi (1−α)

dα = c1∫ 1
0

∑h
t=1 utΦ

−1
kt (α)∑n

i=1 viΨ
−1
ki (1−α)

dα ≤ 1, k = 1, 2, . . . , j

∫ 1
0

∑p
q=1 wqΩ−1

kq (α)∑n
i=1 viΨ

−1
ki (1−α)

dα ≤ 1, k = 1, 2, . . . , j∫ 1
0

∑h
t=1 utΦ

−1
kt (α)∑p

q=1 wqΩ−1
kq (1−α)

dα ≤ 1, k = 1, 2, . . . , j

u = (u1, u2, . . . , uh) ≥ 0
v = (v1, v2, . . . , vn) ≥ 0
w = (w1, w2, . . . , wp) ≥ 0

(6)

whereΨo1, Ψo2, . . . , Ψon ,Φo1, Φo2, . . . , Φoh andΩo1,Ωo2,

. . . ,Ωop are the regular uncertainty distributions of x̃o1, x̃o2,

. . . , x̃on , ỹo1, ỹo2, . . . , ỹoh and z̃o1, z̃o2, . . . , z̃op, respec-
tively.

Proof Since the function uT ỹk/vT x̃k is strictly increasing
with respect to ỹk and strictly decreasing with respect to x̃k
for each k. According to Theorem 1, we can conclude that
the inverse uncertainty distribution of uT ỹk/vT x̃k is

Q−1
k (α) =

∑h
t=1 utΦ

−1
kt (α)∑n

i=1 viΨ
−1
ki (1 − α)

.

From Theorem 2, we obtain

E

[
uT ỹk
vT x̃k

]
=

∫ 1

0

∑h
t=1 utΦ

−1
kt (α)∑n

i=1 viΨ
−1
ki (1 − α)

dα, k = 1, 2, . . . , j .

Similarly, for each k, according to the above proof, it can be
drawn at once that the function

E

[
wT z̃k
vT x̃k

]
=

∫ 1

0

∑p
q=1 wqΩ

−1
kq (α)∑n

i=1 viΨ
−1
ki (1 − α)

dα

is strictly increasingwith respect to z̃k and strictly decreasing
with respect to x̃k . Identically, for each k, it can be inferred
very quickly that the function

E

[
uT ỹk
wT z̃k

]
=

∫ 1

0

∑h
t=1 utΦ

−1
kt (α)∑p

q=1 wqΩ
−1
kq (1 − α)

dα

is strictly increasingwith respect to ỹk and strictly decreasing
with respect to z̃k .

The theorem has been verified. �	

4 A numerical example

In this section, the expected results of the uncertain two-
stage network DEA models we have established are shown
as follows. We will use a set of data to test the uncertain
two-stage network DEA models. The original data which is
shown in Table 1 is composed of three uncertain inputs, three
uncertain intermediates and three uncertain outputs of five
DMUs. The results of the efficiency evaluation are shown in
Table 2, including the efficiency values for the whole stage,
the first stage and the second stage.

The efficiency of the whole stage is the chief observation
object for decisionmakers,which enables them to understand
the network system from a holistic perspective. As is shown
in Table 2, we can observe the efficiencies (c∗

w) of the whole
stage of five DMUs by the uncertain two-stage network DEA
models. It can be clearly seen that the optimal value (c∗

w) of
DMU1 reaches 1.0000 which means that DMU1 is efficient
at the whole stage. By comparison, the efficiency (c∗

w) of
the whole stage of the DMU2 is 0.2549 which is lower than
1.0000 and considered to be inefficient at the whole stage.
The analyses of the DMU3, DMU4 and DMU5 can be shown
in the same way.

After identifying the efficiency of the whole stage, the
efficiencies of the internal sub-stages also need to be analyzed
in order to find out the root causes of the inefficiency of the
network system. As shown in Table 2, the efficiencies (c∗

1,
c∗
2) of two sub-stages of DMU1 are both 1.0000, which is the
real reason why DMU1 is efficient at the whole stage. That is
because only when the efficiency of each sub-stage reaches
1.0000, the whole stage can be efficient as a whole. In other
words, the efficiencies of the two sub-stages of DMU1 can
correspond to the relationship between the two sub-stages
that the efficiency of the whole stage is equal to the product
of the efficiencies of the two sub-stages. For decisionmakers,
efficient DMU1 can be viewed as a benchmark to further
improve other inefficient DMUs.

Different from DMU1, the efficiency (c∗
1) of the first stage

of DMU2 is 1.0000 while the efficiency (c∗
2) of the second

stage is 0.2545. It is easy to draw the conclusion that the inef-
ficiency of thewhole stage ofDMU2 is due to the inefficiency
of the second stage. Similarly, the efficiency (c∗

2) of the sec-
ond stage of DMU3 is 1.0000, whereas the efficiency (c∗

1) of
the first stage is 0.1779, which can be regarded as the root
cause of the inefficiency of DMU3. Through the comparison
of the above two DMUs, we can easily find out that DMU2

andDMU3 are similarly inefficient at thewhole stage. But the
reasons for the inefficiency are quite different, which are due
to the different internal inefficient stages. Since the reasons
for eachDMUbeing inefficient are different, it is very impor-
tant to be able to identify the inefficient sub-stages, which can
prevent decision makers from allocating finite resources to
efficient stages and neglecting inefficient stages.
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Table 1 Five DMUs with three
inputs, three intermediates and
three outputs, in which L(a, b)
represents linear uncertain
variable and Z(a, b, c)
represents zigzag uncertain
variable

DMUk 1 2 3 4 5

Input1 L(4, 6) L(10, 11) L(28, 30) L(30, 31) L(14, 16)

Input2 L(5, 6) L(9, 11) L(29, 30) L(30, 32) L(15, 16)

Input3 L(4, 5) L(10, 12) L(30, 31) L(28, 30) L(14, 15)

Intermediates1 Z(28, 29, 30) Z(59, 60, 62) Z(27, 28, 30) Z(30, 31, 32) Z(38, 39, 40)

Intermediates2 Z(28, 29, 30) Z(59, 60, 61) Z(28, 29, 31) Z(28, 30, 31) Z(38, 40, 42)

Intermediates3 Z(30, 31, 32) Z(60, 61, 62) Z(30, 31, 32) Z(27, 28, 30) Z(40, 41, 42)

Output1 L(400, 402) L(199, 200) L(398, 400) L(298, 300) L(199, 200)

Output2 L(399, 400) L(200, 202) L(400, 401) L(300, 302) L(200, 201)

Output3 L(403, 404) L(199, 200) L(396, 398) L(300, 301) L(198, 200)

Table 2 The results of
evaluating the efficiencies by the
uncertain two-stage network
DEA models

DMUk 1 2 3 4 5

Optimal value c∗
w for the whole stage 1.0000 0.2549 0.1778 0.0509 0.0410

Optimal value c∗
1 for the first stage 1.0000 1.0000 0.1779 0.1331 0.4439

Optimal value c∗
2 for the second stage 1.0000 0.2545 1.0000 0.3828 0.0924

By further observation, we can find out more things wor-
thy of our attention from DMU4 and DMU5. The efficiency
(c∗

1) of the first stage of DMU4 is 0.1331 while the efficiency
(c∗

2) of the second stage is 0.2545. The result for DMU5

can be interpreted in a similar way. Different from DMU2

and DMU3, the DMU4 and DMU5 are not only inefficient
at the whole stage, but also at all the sub-stages. It is a com-
mon situation faced by most policy makers. However, due to
the limited resources, it is impossible for policy makers to
invest resources in all the inefficient sub-stages to improve
performance. Therefore, decision makers can firstly choose
to improve the inefficient sub-stages with lower efficiency.
This is because the inefficient sub-stagewith lower efficiency
is more likely to be improved when the same resources are
invested. Moreover, a slight improvement in the relatively
lowefficiency of the sub-stagewill result in a higher improve-
ment of the overall performance. This fully demonstrates the
importance of identifying efficiencies of sub-stages for deci-
sion makers.

5 Conclusions

In the research of the economics, the key element to improve
the performance of network system is to identify the internal
root causes of the inefficiency. Moreover, due to the novelty
of evaluation indexes, the traditional DEA models cannot
deal with the emerging indexes such as social welfare, which
cannot be quantified accurately. Thus, based on uncertainty
theory, this paper establishes the uncertain two-stage network
DEA models, which have the most basic structure that can

be extended to other more complex network models. The
new models can accurately identify the root causes of the
inefficiency of the network system and deal with the problem
of inaccurate data in uncertain environments.

In addition to theoretical expansion, the models can also
be used in empirical application. In reality, there are many
systems with complex network structure, such as maritime
supply chain. Generally speaking, the maritime supply chain
consists of two sub-stages: ports and shipping companies.
For decision makers, in addition to identifying the overall
efficiency of the maritime supply chain, it is also important
to explore its internal structure and hence identify the inter-
nal root causes of the inefficiency. By the uncertain two-stage
network DEAmodels, decision makers can identify the inef-
ficient supply chain members and make the right resource
allocation decisions in uncertain environment.

In general, the contributions of this paper are as follows.
Firstly, this article expands the application of uncertainty the-
ory in the field of DEA. Secondly, this paper expands the
evaluationmethod of unobservable variables and the scope of
applicationofDEAmodels by establishing the uncertain two-
stage network DEA models. Despite some theoretical and
practical contributions, this research concentrates on only a
simple two-stage network structure. In practice, the paral-
lel structure is also common, especially for enterprises with
multiple homogenous sub factories. Therefore, in the future,
our researchwill focus on the efficiency evaluation of parallel
structure systems with inaccurate data.
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